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Abstract

Nonparametric classification does not assume a particular functional form of the underlying
data distribution, being a suitable approach for a wide variety of data sets. The k-nearest
neighbor (k-NN) algorithm is one of the most popular methods for nonparametric classifi-
cation. However, a relevant limitation concerns the definition of the number of neighbors
k. This parameter exerts a direct impact on several properties of the classifier, such as
the bias-variance tradeoff, smoothness of decision boundaries, robustness to noise, and class
imbalance handling. In the present paper, we propose a new adaptive k-nearest neighbours
(kK-NN) algorithm that explores the local curvature at a sample to automatically define
the neighborhood size. The rationale is that points with low curvature could have larger
neighborhoods (locally, the tangent space approximates well the underlying data shape),
whereas points with high curvature could have smaller neighborhoods (locally, the tangent
space is a loose approximation). We estimate the local Gaussian curvature by computing
an approximation to the local shape operator in terms of the local covariance matrix as
well as the local Hessian matrix. Results on many real-world data sets indicate that the
new kK-NN algorithm may provide superior balanced accuracy compared to the established
k-NN method. This is particularly evident when the number of samples in the training data
is limited, suggesting that the kK-NN is capable of learning more discriminant functions
with less data in some relevant cases.

1 Introduction

Supervised classification stands as a cornerstone in machine learning, providing a foundational concept to
address a myriad of real-world problems. Its training process aims to recognize patterns within labeled data
sets, where each data point is associated with a predefined class (Sen et al., 2020). The algorithm learns
to predict the class of unseen instances based on their features, enabling automated decision-making and
pattern recognition. From medical diagnosis to fraud detection to image recognition and sentiment analysis,
supervised classification empowers data scientists and machine learning practitioners to extract valuable
insights and make informed decisions from large and complex data sets (El Mrabet et al., 2021). Supervised
learning algorithms are broadly divided into parametric and nonparametric methods, each offering distinct
advantages and attributes (Nagdeote and Chiwande, 2020; Mahesh et al., 2023; Gramacki, 2018).

Parametric classifiers assume a specific functional form of the underlying data distribution, with a finite
number of parameters remaining constant regardless of the size of the data set. Parametric classifiers such as
logistic regression and Bayesian classifiers, are characterized by their simplicity and computational efficiency,
being well-suited to scenarios with limited data and well-defined assumptions about the data distribution
(Wen et al., 2023). Conversely, nonparametric classifiers - including k-nearest neighbors, decision trees, and
support vector machines (SVM), do not make explicit assumptions about the underlying data distribution
(Braga-Neto, 2020). Instead, they rely on flexible models that adapt to the complexity of the data, frequently
requiring further computational resources and larger data sets while offering greater flexibility and robustness
(Wang et al., 2023). Understanding the distinctions between parametric and nonparametric classifiers is
crucial for selecting appropriate models that best capture the underlying structure of the data and fulfill the
requirements of the specific problem domain.
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Nonparametric classifiers provide a relevant alternative by providing flexibility, robustness, and adaptability
to complex data sets without imposing strict assumptions on the underlying data distribution (Cai and Wei,
2021). Unlike parametric methods, nonparametric classifiers are not bound by predetermined functional
forms, allowing them to effectively capture intricate patterns and relationships present in diverse data sets.
This inherent flexibility enables nonparametric classifiers to handle non-linear and high-dimensional data,
being well-suited for tasks where the underlying distribution is unknown or difficult to specify a priori
(Modarres, 2023; Chen et al., 2023). In addition, nonparametric classifiers are particularly suitable to handle
noisy data and outliers, due to the fact that they do not rely on strict assumptions on the data distribution
(Trillos et al., 2019; Levada and Haddad, 2021; Sert and Kardiyen, 2023). Overall, the advantages of
nonparametric classifiers lie in their ability to offer versatile and robust solutions for a wide range of machine
learning tasks (Bawono et al., 2020; Ren and Mai, 2022).

The k-nearest neighbor classifier (k-NN) is a nonparametric method known for its simplicity, versatility,
and intuitive approach to classification tasks (Cover and Hart, 1967; Nielsen, 2016). The k-NN algorithm is
well-suited to handling complex, non-linear relationships and high-dimensional data sets where the under-
lying structure may be difficult to specify (Zhang, 2022). Another advantage is its ease of implementation
and interpretability, being the classification decision determined by the majority class among the k-nearest
neighbors of a given data point. Moreover, the k-NN classifier requires minimal training time since it es-
sentially memorizes the training data set, becoming suitable for both online and offline learning scenarios.
Furthermore, the k-NN algorithm adapts dynamically to changes within the data set, being more robust to
noise and outliers (Syriopoulos et al., 2023).

In the k-NN classifier, the parameter k controls the neighborhood size and it plays a crucial role in deter-
mining behavior and performance of the model. This parameter represents the number of nearest neighbors
considered when making predictions for a new data point (Jodas et al., 2022). A smaller k value leads to
a more flexible model with decision boundaries that closely follow the training data, potentially capturing
intricate patterns and local variations. However, smaller k values may also increase the model’s suscepti-
bility to noise and outliers, as it excessively relies on the nearest neighbors for classification (Uddin et al.,
2022). Conversely, larger k values result in a smoother decision boundary and a more generalized model
that is less affected by individual data points. However, exceedingly large k values may cause the model to
overlook local patterns, resulting in an inferior performance - notably in data sets with complex structures.
Therefore, selecting the appropriate k value is pivotal for achieving an appropriate balance between bias and
variance, ensuring optimal generalization and predictive accuracy on testing or new data. The parameter k
is commonly the same for all samples in the data set (Batista and Silva, 2009).

The motivation of the present work is to improve the performance of the k-NN classifier through the incorpo-
ration of a geometric property (local curvature) in the definition of the neighborhood size. A high curvature
sample x⃗i should have a smaller neighborhood, as the patch Pi composed by x⃗ and its closest neighbors
deviates from a linear subspace. Conversely, low curvature samples should have larger neighborhoods, as
the patch Pi is approximately linear. Several works have investigated the incorporation of other distance
functions and adaptive ways to define the parameter k automatically for each data set (Alfeilat et al., 2019;
Zhao and Lai, 2021; Papanikolaou et al., 2021; Daulay et al., 2023). Techniques for the local adaptive es-
timation of the neighborhood size for each sample of a data set have been proposed for the k-NN classifier
(Sun and Huang, 2010; Fan et al., 2023). Nonetheless, most of the literature adopts the optimization of a
local criterion to choose the best value of k from a list of candidates.

In the present paper, we introduce an adaptive curvature based k-nearest neighbor classifier to automatically
adjust the number of neighbors for each sample of a data set. The proposed method is named kK-NN due to
the fact that it consists of an k-NN method with k varying locally according to the Gaussian curvature. The
intuition behind the kK-NN classifier is to explore the local curvature to define the size of the neighborhood
k at each vertex of the k-NNG in an adaptive manner. As detailed in Algorithm 1, in the case of points
with a lower curvature values, the tangent plane is commonly closely adjusted to a manifold. The kK-NN
classifier is composed by the training and testing stages (algorithms 2 and 3, respectively). In the training
stage, the first step consists in building the k-NNG from the input feature space using k = log2 n, where n is
the number of samples. Subsequently, it is computed the curvature of all vertices of the k-NNG exploring the
shape operator-based algorithm. The curvatures are then quantized into ten different scores. Considering
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that the scores are based on the local curvatures, the adaptive neighborhood adjustment is performed by
pruning the edges of the k-NNG.

There are three main contributions of the proposed kK-NN algorithm. Firstly, transforming the number of
neighbors spatially-invariant along a k-NN graph in order to avoid both under and over fitting. Secondly,
to control the smoothness of the decision boundaries, depending on the local density in the feature space.
Thirdly, to improve the robustness to noise and outliers through the identification of high curvature points
adopting an approximation for the local shape operator of the data manifold (do Carmo, 2017; Needham,
2021; Boissonnat and Wintraecken, 2022). Computational experiments with 30 real-world data sets indicate
that the proposed kK-NN classifier is capable of improving the balance accuracy compared to the existing
k-NN, especially while dealing with small training data sets.

The results indicate that the kK-NN classifier is consistently superior compared to the regular k-NN. The
rationale behind the capacity of the kK-NN to improve the regular kk-NN may be summarized by three rele-
vant aspects. Firstly, through the use of an adaptive strategy to define the neighborhood sizes, the kK-NN is
capable of avoiding either underfitting or overfitting. Secondly, in more dense regions the decision boundaries
becomes more adjusted to the samples, while in less dense regions the boundaries become smoother - making
the classification rule adaptive to different regions of the feature space. Thirdly, high curvature points are
commonly related to outliers, being the kK-NN classifier capable of isolating such samples by drastically
reducing its neighborhoods. It is worth mentioning that the kK-NN classifier is capable of learning more
discriminant decision functions when the number of training samples is considerably reduced. These results
suggest that the kK-NN algorithm may provide more flexible and adjustable decision boundaries, while
reducing the influence of outliers over the classification process.

The remainder of the paper is organized as follows. Section 2 presents the proposed adaptive curvature-
based kK-NN classifier. Section 3 reports computational experiments and results. Section 4 concludes and
suggests future research possibilities.

2 Adaptive curvature based k-NN classifier

One of the main limitations of the k-NN classifier is related to parameter sensitivity, as the performance of
the k-NN algorithm is highly dependent upon the choice of the parameter k - i.e. the number of nearest
neighbors to consider. Selecting an inappropriate value of k may result in a series of negative effects to its
performance such as (Zhang, 2022; Syriopoulos et al., 2023; Daulay et al., 2023):

• Overfitting and underfitting: The parameter k controls the flexibility of the decision boundary
in the k-NN classifier. A smaller value of k results in a more flexible (less smooth) decision boundary,
which may lead to overfitting - particularly in noisy or high variance data sets. Conversely, a larger
value of k results in a smoother decision boundary, which may lead to underfitting and inappropriate
generalization in the case that the k is too large compared to the data set size or the underlying
structure of the data.

• Bias-variance tradeoff: The choice of k in the k-NN classifier involves a trade-off between bias
and variance. A smaller k leads to low bias but high variance. This means that the classifier might
capture more complex patterns in the data, although it is sensitive to noise and fluctuations. On the
other hand, a larger k reduces variance while increases bias, potentially leading to simpler decision
boundaries that may not capture the true underlying structure of the data.

• Robustness: The sensitivity of the k-NN classifier to the k parameter also affects its robustness to
noisy data points and outliers. A larger k may mitigate the effects of noise by considering a larger
number of neighbors, whereas a smaller k may lead to overfitting - in which case the classifier is
more affected by noisy data points.

• Impact on class-imbalanced data sets: In class-imbalanced data sets, the minority class (i.e.
a class with fewer instances) tends to be underrepresented compared to the majority class. The
choice of the k parameter may influence the classification of minority class instances. A smaller k
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may result in the majority class dominating the prediction for the minority class instances. Since
the nearest neighbors are predominantly from the majority class, the minority class instances might
be misclassified or even ignored. A larger k may incorporate more neighbors, potentially improving
the representation of the minority class. However, it might also introduce noise from the majority
class, leading to misclassification of minority class instances.

2.1 Algorithm to estimate the shape operator curvature

In order to propose our method to compute Gaussian curvatures, suppose that X = {x⃗1, x⃗2, . . . , x⃗n}, where
x⃗i ∈ Rm, denotes the input of the data matrix, in which each column of X represents a sample of the data
set. Given matrix X, we may build a graph from the k-nearest neighbors of each sample (k-nearest neighbor
graph), known as k-NNG. For each sample, calculate its k-nearest neighbors based on a distance metric (e.g.,
Euclidean distance, Manhattan distance, cosine similarity) in the feature space. Then, add an edge linking
each sample to its k-nearest neighbors, creating a graph where each sample is a node, and edges represent
the connections between a pair of nodes (Eppstein et al., 1997). Figure 1 illustrates an example of an k-NNG
created using a real-world data set.

Figure 1: The k-NNG of a data set of handwritten digits with n = 1797 samples (graph nodes) and k = log2 n
neighbors.

The k-NNG in Figure 1 adopts the Euclidean distance in the computation of the nearest neighbors of each
sample x⃗i. Let ηi be the neighbors of x⃗i. Then, a patch Pi may be defined as the set {x⃗i ∪ ηi}. It is worth
noticing that the cardinality of this set is k + 1. In matrix notation, the patch Pi is given by:

Pi = [x⃗i, x⃗i1, x⃗i2, ..., x⃗ik] =



xi(1) xi1(1) . . . xik(1)
xi(2) xi1(2) . . . xik(2)

...
... . . . ...

...
... . . .

...
xi(m) xi1(m) . . . xik(m)


m×(k+1)

(1)
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In the proposed method, we approximate the local metric tensor at a point x⃗i as the inverse of the local
covariance matrix, Σ−1

i , estimated from the patch Pi. Our motivations for this choice are listed below,
following (Li and Tian, 2018; Wang and Sun, 2015; Hair-Jr. et al., 2018):

• Positive-definiteness: The covariance matrix is positive-definite, implying that it defines a
positive-definite inner product on the space of the data. Similarly, its inverse retains this prop-
erty, ensuring that it represents a valid metric tensor.

• Measurement of distances: The elements of the inverse covariance matrix (i.e., precision matrix)
provide information about the distances between points in the feature space. A larger value in the
inverse covariance matrix indicates a smaller distance between the corresponding features, while a
smaller value indicates a larger distance. This information reflects the relationships and correlations
between features in the data set.

• Directional sensitivity: Similarly to a metric tensor in differential geometry, the inverse covariance
matrix is sensitive to changes in the direction within the feature space. It quantifies how distances
between points change as one moves along different directions in the space, capturing the curvature
and geometry of the data manifold.

• Mahalanobis distance: The inverse covariance matrix is closely related to the Mahalanobis dis-
tance, which is a non-isotropic distance between vectors, considering the correlations between fea-
tures. The role of the inverse covariance matrix in the Mahalanobis distance is to allow different
degrees of deformations of the space. It has been applied in various statistical and machine learning
problems related to outlier detection, clustering, and classification.

Hence, a discrete approximation for the metric tensor at x⃗i is given by the inverse of the local covariance
matrix Σi:

Σi = E[(x⃗j − x⃗i)(x⃗j − x⃗i)T ] = 1
k

∑
xj∈Pi

(x⃗j − x⃗i)(x⃗j − x⃗i)T (2)

where x⃗i is the central sample. Our approximation consists in setting the first fundamental form at a given
point x⃗i as Ii ≈ Σ−1

i for every sample in the k-NNG.

To compute a discrete approximation for the second fundamental form, we use a mathematical result that
states that II is related to the Hessian matrix through the parametrization of the surface, and the scalar-
valued function representing the surface itself. The coefficients of the second fundamental form may be
expressed in terms of the second partial derivatives of the components of the surface parametrization function.
The second fundamental form is then proportional to the Hessian, which is the matrix of second order partial
derivatives (Kuhnel, 2015). Thus, our approach is based in the strategy adopted by the manifold learning
algorithm known as Hessian eigenmaps (Donoho and Grimes, 2003). Considering the case of m = 2 - meaning
that the feature vectors are 2D, the Xi is defined as the matrix composed by the following columns:

Xi =
[
1, U1, U2, U2

1 , U2
2 , (U1 × U2)

]
(3)

where Ui denotes the i-th eigenvector of the local covariance matrix, computed from the samples belonging
to the patch Pi. The notation Ui × Uj denotes the pointwise product between vectors Ui and Uj .

When m > 2, the matrix Xi must have 1 + m + m(m + 1)/2 columns, in which the first column is a vector
of 1′s, the next m columns are the eigenvectors of Σi, and the final m(m + 1)/2 columns are the square
eigenvectors followed by the several cross products between them. For example, if m = 3, the matrix Xi is
given by:

Xi =
[
1, U1, U2, U3, U2

1 , U2
2 , U2

3 , (U1 × U2), (U1 × U3), (U2 × U3)
]

(4)
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The main problem is that the columns of Xi are not orthogonal. It is then necessary to orthogonalize them
by applying the Gram-Schmidt orthogonalization algorithm (Leon et al., 2013), preparing a new matrix X̃i.
The Hi is then defined as the matrix with the last m(m + 1)/2 columns of Xi transposed:

(Hi)r,l =
(
X̃i

)
l,1+m+r

(5)

A final step consists of transforming the Hessian estimator into a square m ×m matrix. The local second
fundamental form at sample x⃗i, denoted by Hi, is then given by:

Hi = HiH
T
i (6)

Our approximation becomes IIi ≈ Hi. Both estimators for I and II are square m×m matrices. Lastly, our
approximation to the local shape operator at x⃗i is given by:

Si = −IIi(Ii)−1 = −HiΣi (7)

Therefore, the determinant of Si is the desired Gaussian curvature at point x⃗i. With the proposed method,
it is possible to assign a curvature for each sample of the data set. Algorithm 1 details the pseudocode of
the proposed shape operator curvature estimation method.

Algorithm 1 Shape operator based curvatures
function Shape-Operator-Curvatures(X, k)

// X: the n×m data matrix (each row is a sample)
// k: the number of neighbors in the kNN-graph
A← kNN-graph(X, k) ▷ Builds the kNN-graph
for i← 1; i < n; i + + do

neighbors← N(x⃗i) ▷ Neighborhood of sample x⃗i

Σi ← cov-matrix(neighbors) ▷ Local covariance matrix
U ← eigenvectors(Σi) ▷ Eigenvectors = columns of U
Compute the matrix Xi with 1 + m + m(m + 1)/2 columns
X̂i ← Gram-Schmidt(Xi) ▷ Gram-Schmidt orthogonalization
Compute the matrix Hi: the last m(m + 1)/2 columns of X̂i

Hi ← ĤiĤ
T
i ▷ Second fundamental form

Si ← −HiΣi ▷ Shape operator
Ki ← det(Si) ▷ Curvature at point x⃗i

end for
return K ▷ Vector of curvatures

end function

2.2 Curvature-based kK-NN classifier

The intuition behind the new kK-NN classifier is to explore the local curvature to define the size of the
neighborhood (k) at each vertex of the k-NNG in an adaptive fashion. In the case of points with a lower
curvature values, the tangent plane tend to be tightly adjusted to a manifold as the geometry is relatively flat
in the neighborhood of that point. This means that a larger parameter k should be considered. Conversely,
points with high curvature values lead to a relevant bending or deformation of the manifold. In those cases,
it is challenging to approximate accurately with a flat tangent plane. The tangent plane may be loosely
adjusted to the surface in such regions, which means that a smaller parameter k should be considered.

The kK-NN classifier is composed by two phases, namely training and testing. In the training stage, the first
step consists in building the k-NNG from the input feature space using k = log2 n, where n is the number of
samples. Then, it is computed the curvature of all vertices of the k-NNG exploring the shape operator based

6



Under review as submission to TMLR

algorithm detailed in the previous section. Subsequently, the curvatures are quantized into 10 different scores
- from zero to nine. Given the scores based on the local curvatures, the adaptive neighborhood adjustment
is performed by pruning the edges of the k-NNG as detailed below.

Suppose that k = 11 and sample x⃗i have a curvature score ci = 4. The edges are then disconnected, linking
the sample x⃗i and its four farthest neighbors, reducing the neighborhood to only seven neighbors. In the
case of k < ci, the sample x⃗i remains connected to its nearest neighbor. In the testing stage, the new sample
z⃗i is included to be classified by the k-NNG, linking it to its k nearest neighbors and computing its local
curvature. Then, the curvature of the new point is added into the curvatures vector, generating its curvature
score ci through a quantization process. Lastly, its farthest k − ci neighbors are pruned while assigning the
label that occurs in the adjusted neighborhood most frequently. The algorithm 2 presents the pseudocode
for the training stage of the proposed kK-NN classifier.

Algorithm 2 kK-NN classifier training
function kKNN-train(train_set, train_labels, k)

curvatures ← Shape-Operator-Curvatures(train_set, k)
return curvatures

end function

The computational complexity of the function kKNN-train is equivalent to the complexity of the function to
compute the curvatures using local shape operators. Subsequently, the algorithm 3 details the pseudocode
for the testing stage of the kK-NN classifier.

Algorithm 3 kK-NN classifier testing
function kkNN-test(test_samples, train_labels, curvatures, k)

n ← size(test_samples)
predictions ← zeros(n)
for i← 0; i < n; i + + do

patch ← Find_Neighbors(test_samples[i], k)
new_curvature ← Shape-Operator-Curvatures(patch, k)
curvatures ← concatenate(curvature, new_curvature)
scores ← quantize(curvatures, 10)
new_score ← scores[-1] ▷ Last score is from the new test sample
neighborhood ← Adjust_Neighbors(patch, new_score)
predictions[i] ← Majority_Vote(train_labels[neighborhood])

end for
return predictions

end function

In the Shape-Operator-Curvatures, the main loop iterates n times, where n is the number of samples in the
training set. The complexity of selecting the k-nearest neighbors is O(nmk), where m is the dimensionality.
The covariance matrix computation has cost O(nm2), while the regular eigendecomposition methods amounts
to a total cost O(m3). The Gram-Schmidt orthogonalization of a set of n m-dimensional vectors is O(mn2).
As the number of columns in Hi is m(m + 1)/2, which is O(m2) then the complexity becomes O(mm4),
which results in O(m5). The regular matrix product between two m×m matrices has cost O(m3), and the
the computation of the determinant of a m×m matrix is also O(m3). Therefore, the total cost for our shape
operator based algorithm for curvature computation is:

O(n2mk) + O(n2m2) + O(nm5) (8)
illustrating that it may be expressed as O(nm(nk + nm + m4)). In practice, the complexity analysis reveals
that the proposed algorithm scales better to an arbitrary increase in the number of samples compared to an
arbitrary increase in the number of features. For this reason, for data sets with a large number of features, a
dimensionality reduction method such as principal component analysis (PCA) might be required before the
computation of the local curvatures.
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The computational complexity of the function kkNN-test is also dominated by the computation of the
curvatures. The function Shape-Operator-Curvatures is responsible for the computation of the the curvature
of a simple point. Nonetheless, due to the fact that is inside a FOR loop of size n, the global cost is equivalent
to the function employed in the training phase. In comparison with the regular k-NN, the proposed adaptive
kK-NN classifier shows a significantly higher computational cost. However, as reported in the subsequent
sections, the new kK-NN classifier is capable of improving the classification performance in several data
sets, particularly when the number of samples in the training set is limited. The fact that the bottleneck of
the kK-NN classifier is the curvature estimation algorithm, may be considered as a caveat of the proposed
method.

3 Results

To evaluate the proposed method, computational experiments are performed to compare the balanced ac-
curacy, Kappa coefficient, Jaccard index, and F1-score between the regular k-NN and the adaptive kK-NN
classifier. Several real-world data sets are collected from the public repository openml.org. Table 1 reports
the names, number of samples, number of features, and number of classes of 30 data sets used in the first
round of experiments. It is worth mentioning that those data sets have a wide range of number of samples,
features, and classes.

Table 1: Number of samples, features, and classes of the selected openML data sets for the first round of
experiments.

# Data sets # samples # features # classes
1 vowel 990 13 11
2 zoo 101 16 7
3 thyroid-new 215 5 3
4 lawsuit 264 4 2
5 arsenic-male-bladder 559 4 2
6 tecator 240 124 2
7 sonar 208 60 2
8 ionosphere 351 34 2
9 prnn_crabs 200 7 2
10 monks-problem-1 556 6 2
11 diggle_table_a2 310 8 9
12 user-knowledge 403 5 5
13 tic-tac-toe 958 9 2
14 parkinsons 195 22 2
15 glass 214 9 6
16 breast-tissue 106 9 4
17 Smartphone-Based_Recognition 180 66 6
18 FL2000 67 15 5
19 fishcatch 158 7 2
20 biomed 209 8 2
21 kidney 76 6 2
22 anneal 898 38 5
23 mfeat-fourier (25%) 500 76 10
24 mfeat-karhunen (25%) 500 64 10
25 letter (10%) 2000 16 26
26 satimage (25%) 1607 36 6
27 pendigits (25%) 2748 16 10
28 texture (25%) 1375 40 11
29 digits (25%) 449 64 10
30 Olivetti_Faces (10 LDA features) 400 10 40
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In the first round of experiments, the methodology adopts a holdout strategy to divide the samples into the
training and test data sets. The training partition varies from 10% of the total samples to 90% of the total
samples, using increments of 5% - leading to a total of 17 possible divisions in training and testing. Both the
regular k-NN and the proposed kK-NN are trained in each one of the 17 training sets, while testing them in
the respective test partition. The median balanced score, Kappa coefficient, Jaccard index, and F1-score are
computed over the 17 executions. The objective is to test the behavior of the classifier in all possible scenarios
- small, medium, and large training data sets. The results are reported in Table 2. The proposed kK-NN
classifier outperforms the regular k-NN by a significant margin, considering all the evaluation metrics.

Table 2: Median of measures after 17 executions adopting the holdout strategy with training data sets of
different sizes: from 10% to 90% of the number of samples with increments of 5%

k-NN kK-NN
# Bal. Acc. Kappa Jacc. F1 Bal. Acc. Kappa Jacc. F1
1 0.5314 0.4679 0.343 0.4978 0.8860 0.8732 0.7999 0.8828
2 0.5622 0.6898 0.6592 0.7136 0.8809 0.9113 0.8924 0.9337
3 0.7525 0.7077 0.8039 0.8840 0.8746 0.8628 0.8927 0.9417
4 0.5555 0.1889 0.8701 0.9070 0.8758 0.7517 0.9382 0.9662
5 0.5000 0.0000 0.9137 0.9354 0.7884 0.6095 0.9354 0.9599
6 0.7779 0.5698 0.6479 0.7843 0.8308 0.6689 0.7142 0.8333
7 0.7227 0.4547 0.5712 0.7240 0.8285 0.6599 0.7121 0.8315
8 0.7326 0.5146 0.6568 0.7839 0.8205 0.6824 0.7484 0.8534
9 0.8097 0.6196 0.6806 0.8099 0.9677 0.9334 0.9354 0.9666
10 0.7083 0.4112 0.5438 0.7044 0.8140 0.6188 0.6748 0.8055
11 0.8446 0.8316 0.7576 0.8530 0.9376 0.9341 0.9047 0.9436
12 0.5371 0.6021 0.5498 0.6791 0.5872 0.6661 0.6085 0.7405
13 0.6619 0.3828 0.5927 0.7261 0.7146 0.4468 0.6398 0.7710
14 0.7324 0.5573 0.7558 0.8510 0.9441 0.8336 0.8938 0.9430
15 0.3938 0.4112 0.4238 0.5692 0.5429 0.4746 0.4581 0.6194
16 0.3731 0.1666 0.3175 0.4567 0.4802 0.2557 0.3631 0.5227
17 0.8720 0.8327 0.7712 0.8635 0.9126 0.8971 0.8503 0.9161
18 0.3144 0.2000 0.3948 0.5270 0.4251 0.4819 0.5647 0.7005
19 0.9555 0.9141 0.9192 0.9578 0.9813 0.9626 0.9646 0.9819
20 0.8472 0.7448 0.8036 0.8884 0.8750 0.7976 0.8375 0.9104
21 0.6589 0.3132 0.4859 0.6536 0.7652 0.4976 0.5793 0.7333
22 0.5703 0.7461 0.8307 0.8945 0.7719 0.7996 0.8577 0.9187
23 0.6725 0.6481 0.5596 0.6890 0.6837 0.6573 0.5809 0.6961
24 0.8566 0.8494 0.7700 0.8649 0.8640 0.8595 0.7817 0.8735
25 0.6210 0.6002 0.456 0.6120 0.6901 0.6740 0.5359 0.6873
26 0.7977 0.7954 0.7303 0.8309 0.8405 0.8236 0.7638 0.8557
27 0.9579 0.9546 0.9221 0.9589 0.9830 0.9821 0.9687 0.9839
28 0.9123 0.9087 0.8525 0.9165 0.9429 0.9412 0.9023 0.9468
29 0.8851 0.8731 0.8097 0.8855 0.9261 0.9175 0.8686 0.9251
30 0.7821 0.7029 0.5857 0.6402 0.9949 0.9935 0.9885 0.9936

Mean 0.6966 0.5886 0.6660 0.7687 0.8143 0.7489 0.7719 0.8546
Median 0.7276 0.6109 0.6699 0.7971 0.8523 0.7986 0.8187 0.8966
Smallest 0.3144 0.0000 0.3175 0.4567 0.4251 0.2557 0.3631 0.5227
Largest 0.9579 0.9546 0.9221 0.9589 0.9949 0.9935 0.9885 0.9936

Figure 2 illustrates the curves of the balanced accuracies obtained for the data sets vowel and
Olivetti_Faces. This is to visualize how the proposed method performs in a single data set. The kK-
NN classifier is consistently superior compared to the regular k-NN. The rationale behind the capacity of
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the proposed method to improve the regular k-NN may be summarized by three relevant aspects. Firstly,
through the use of an adaptive strategy to define the neighborhood sizes, the kK-NN is more successful in
avoiding both underfitting and overfitting. Secondly, in more dense regions the decision boundaries become
more adjusted to the samples, while and in less dense regions the boundaries become smoother - making
the classification rule adaptive to different regions of the feature space. Thirdly, high curvature points are
commonly related to outliers, being the kK-NN classifier capable of isolating such samples by drastically
reducing its neighborhoods - which, consequently, decreases its overall sensitivity to outliers.

Figure 2: The balanced accuracy curves built by the holdout strategy for the regular k-NN and proposed
kK-NN classifiers using different partition sizes, from 10% to 90% of the total number of samples. Top-left:
vowel data set. Top-right: Olivetti_Faces data set. Bottom-left: ionosphere data set. Bottom-right:
parkinsons data set.

In the second round of experiments, the objective is to compare the behavior of the regular k-NN and the
proposed kK-NN when the training set is reduced. The results indicate an interesting feature of the adaptive
curvature based classifier, namely its capacity of learning from a limited number of samples. Table 3 reports
the selected data sets and their number of samples, features, and classes.

Table 3: Number of samples, features, and classes of the selected openML data sets for the second round of
experiments.

# Data sets # samples # features # classes
1 UMIST_Faces_Cropped 575 10304 20
2 variousCancers_final 383 54675 9
3 micro-mass 360 1300 10
4 collins 500 22 2

10
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In the first three data sets in Table 3, the number of features is much larger than the number of samples. Due
to the computational complexity of the proposed curvature estimation method, the direct application of the
kK-NN classifier is not an option for the raw data. To reduce the number of features, a Linear Discriminant
Analysis (LDA) is then applied to extract the maximum possible number of features - i.e., the number of
classes minus one.

Figure 3: The balanced accuracy curves built by the holdout strategy for the regular k-NN and the proposed
kK-NN classifiers using different partition sizes, from 5% to no more than 40% of the total number of
samples. Top-left: UMIST_Faces_Cropped data set. Top-right: variousCancers_final data set. Bottom-
left: micro-mass data set. Bottom-right: collins data set.

The same strategy as before is performed, but in this round focusing on training sets with no more than
25% of the total number of samples. Figure 3 shows the results for these four data sets. The proposed
kK-NN classifier is capable of learning more discriminant decision functions when the number of training
samples is significantly reduced, indicating that the proposed method may do more with less. These results
indicate that the kK-NN algorithm is able to produce more flexible and adjustable decision boundaries while
reducing the influence of outliers over the classification process.

4 Conclusion

In the present work, we introduce a new curvature-based classification method. The kK-NN consists of an
adaptive approach to overcome relevant limitations of the widely adopted k-NN classification algorithm. The
rationale behind the new kK-NN is to adapt the neighborhood size locally, leveraging the curvature infor-
mation inherent in the data set to improve classification accuracy. Our theoretical analysis and experimental
results provide relevant insights into the effectiveness and versatility of the proposed method. Our main
findings over 30 real-world data sets may be summarized into three main methodological improvements.

The first methodological improvement concerns a curvature-based adaptation, in which the embodiment of
curvature information into the k-NN framework may improve classification performance. By dynamically
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adjusting the neighborhood size based on local curvature characteristics, the kK-NN exhibits adaptability
to different regions of the feature space. The second methodological improvement refers to robustness
and generalization. The kK-NN classifier exhibits robustness to noise and outliers, indicating its ability
to handle complex and real-world data sets more effectively. Moreover, the proposed approach showcases
promising generalization capabilities across different domains, emphasizing its potential for a wide range
of applications. Thirdly, extensive experiments exploring diverse data sets have shown that the kK-NN
outperforms established k-NN classifiers in various scenarios. The adaptive nature of the kK-NN allows it
to excel in situations where the local density of samples and curvature patterns vary significantly.

Thus, the adaptive curvature-based approach adopted in the kK-NN introduces a promising advancement
within k-NN classification methods. Empirical evidence supports its efficacy in diverse scenarios, indicating
relevant avenues for future research and applications in machine learning, pattern recognition, computer
vision, among other domains. The incorporation of curvature information into classification frameworks
offers a nuanced perspective that unfolds new possibilities for enhancing the adaptability and robustness of
classification algorithms.

Suggestion of future extensions include further theoretical investigations into the properties of curvature-
adaptive classifiers that should provide a deeper understanding of its underlying mechanisms. Analyzing the
convergence properties and establishing theoretical bounds on the performance of kK-NN under different
conditions would contribute to the theoretical foundations of curvature-based classification. In addition,
the curvature-based adaptation of the kK-NN could be applied to image processing tasks, particularly
in scenarios where local variations and intricate patterns play a central role. Moreover, as the principles
underlying kK-NN are rooted in curvature analysis, the new method may find applications in dimensionality
reduction and metric learning.
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Appendix

A Shape operator and curvatures

Differential geometry provides a framework to study properties that are invariant under smooth mappings,
preserving differentiability. It focuses on studying geometric objects such as curves and surfaces, while
understanding their properties regarding differential calculus (do Carmo, 2017; Needham, 2021). Potential
applications across various domains include physics, engineering, computer science, robotics, among many
more. In physics, it is applied to describe the geometry of spacetime in general relativity, whereas in computer
graphics it is employed to model and manipulate smooth surfaces (Tu, 2017). The mathematical concepts
and tools of differential geometry provide a powerful framework to understand the intrinsic geometry of
spaces as well as their applications in diverse fields of knowledge (Oprea, 2007). The notion of surface in R3

is generalized to higher dimensions by the definition of manifold.

Definition 1 (Manifold). Let M be a topological space. Then, M is an n-dimensional smooth manifold if
it satisfies the following conditions:

• Locally Euclidean: for every point p ∈ M , there exists an open neighborhood U of p such that U
is homeomorphic to an open subset of Rn. Formally, there exists a homeomorphism ϕ : U → V ,
where V is an open subset of Rn.

• Smoothness: The collection of such local homeomorphisms ϕ forms an atlas on the manifold M . A
smooth manifold M is equipped with a smooth structure, which consists of an atlas whose transition
maps (maps between overlapping neighborhoods) are all smooth, meaning that they have continuous
derivatives of all orders.

• Hausdorff and second-countable: The manifold M is required to be a Hausdorff space, meaning
that for any two distinct points in M , there exist disjoint open sets containing each point. Moreover,
M must be second-countable, which means that its topology has a countable basis.

Manifolds serve as a fundamental framework for studying spaces with intrinsic geometry, finding applications
in many areas of mathematics, including data analysis and machine learning, where they are employed to
model complex data sets and high-dimensional spaces (Gorban and Tyukin, 2018; Fefferman et al., 2016).

A tangent space is a fundamental concept in differential geometry, providing an understanding of the local
behavior of a manifold at a particular point. The tangent space to a manifold at a point captures the notion
of “infinitesimal” directions at that point. Tangent vectors represent directions and rates of change at a
point on the manifold. Intuitively, in a smooth surface such as a sphere or curve, the tangent vectors at a
particular point represent possible directions to move along the surface or the direction of velocity if it is
passing through that point.

Definition 2 (Tangent space). Let M be a smooth manifold and p a point in M . The tangent space TpM
to M at p is defined as the set of all tangent vectors at p.

• Basis of tangent space: The tangent space TpM is a vector space, which basis consisting of
tangent vectors corresponding to coordinate curves passing through p. In local coordinates, these
basis vectors are frequently denoted as ∂/∂xi, where i ranges over the n dimensions of the manifold
M .

The tangent space captures the local geometry of the manifold at a specific point, being instrumental in
defining notions such as tangent bundles, differential forms, and differential operators on manifolds. Another
mathematical object that plays an important role in the computation of inner products and arc lengths in
a manifold is the metric tensor, also known as the first fundamental form.
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Definition 3 (First fundamental form or metric tensor). Let M be a smooth manifold. The first fundamental
form on M , denoted by I or g, is a smoothly varying collections of inner products defined on the tangent
spaces of M , such that for each point p ∈ M the metric tensor defines an inner product gp to the tangent
space TpM . The metric tensor g is a symmetric, non-degenerate, and smoothly varying bilinear form on the
tangent bundle of the manifold. This means that for any two tangent vectors X, Y at a point p on M , the
metric tensor g assigns a real number gp(X, Y ) that satisfies:

• Symmetry: gp(X, Y ) = gp(Y, X) for all the tangent vectors at p.

• Linearity: gp is linear in each argument, thus for any tangent vectors X, Y Z and scalars α, β, we
have:

gp(αX + βY, Z) = αgp(X, Z) + βgp(Y, Z) (9)
gp(X, αY + βZ) = αgp(X, Y ) + βgp(X, Z) (10)

• Non-degeneracy: The metric tensor is non-degenerate, meaning that for any non-zero tangent
vector X at p, there exists another tangent vector Y such that gp(X, Y ) ̸= 0.

Intuitively, the first fundamental form enables the computation of distances along the paths within the
surface. It is known as an intrinsic metric due to the fact that is a Riemannian metric of the manifold. The
second fundamental form of a manifold is a geometric object that characterizes the extrinsic curvature of
a submanifold within a higher-dimensional manifold. This is also known as the Euler-Schouten embedding
curvature. Commonly, the submanifold M with m dimensions is embedded in an Euclidean space Rn, with
n > m (see Nash embedding theorems).

The second fundamental form is a pivotal instrument in the study of submanifolds (Chen, 2019), providing
important geometric information about their shape and curvature within the ambient manifold. It plays a
significant role in various areas of mathematics, including differential geometry, geometric analysis, mathe-
matical physics, and computer vision (Yilmaz and Shah, 2005).

Definition 4 (Second fundamental form). Let M be a smooth manifold. The second fundamental form of
M , denoted by II, is a bilinear form defined on the tangent space of M at each point. Basically, it is related
to the curvature of the normal section along a direction v⃗ at the point p. In simpler terms, it measures how
curved the trajectory should be if it is moving along the direction v⃗. The second fundamental form reveals
how fast the manifold moves away from the tangent plane).

The second fundamental form describes how curved the embedding is, indicating how the manifold is located
within the ambient space. It is a type of derivative of the unit normal along the surface. Equivalently, it is
the rate of change of the tangent planes taken in various directions, consisting of an extrinsic quantity.

Definition 5 (Shape operator and curvatures). The shape operator of a manifold M with first fundamental
form I and second fundamental for II is given by P = −II · I−1.

• The Gaussian curvature KG is the determinant of the shape operator P .

• The mean curvature KM is the trace of the shape operator P .

• The principal curvatures are the eigenvalues of the shape operator P .

Considering the definitions above, we introduce an algorithm for curvature estimation through a nonpara-
metric approximation for the shape operator. This new algorithm adopts local curvatures to adjust the
neighborhoods within the k-NN classifier through an adaptive approach.
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B The k-nearest neighbor classifier

The k-nearest neighbor (k-NN) classifier is a simple yet effective algorithm employed in supervised learning.
It belongs to the family of instance-based learning or lazy learning methods, where the algorithm does not
build an explicit model during the training phase. Instead, it memorizes the entire training data set to
perform predictions based on the similarity of new instances compared to the training data set (Taunk et al.,
2019).

The k-NN may be understood as the Bayesian classifier when the conditional class densities are estimated
using a nonparametric approach (Webb and Copsey, 2011). From probability theory, we know that the
probability of a sample x⃗ be in a region of interest of volume V (x⃗), centered on x⃗ is given by:

θ =
∫

V (x⃗)
p(x⃗)dx⃗ (11)

which is a generalization of the area under the curve defined by the probability density function (PDF).
In the case of multiple dimensions, a volume is calculated instead of an area. However, for a small volume
V (x⃗), we have the following approximation:

θ ≈ p(x⃗)V (x⃗) (12)

as the the volume of the box may be computed as the volume of the region times the height (i.e., probability).
The probability θ may be approximated by the proportion of samples that belong to the region of volume
V (x⃗). In the case there are k samples from a total of n that belong to such a region, then:

θ ≈ k

n
(13)

which is a proportion and therefore belongs to the interval [0, 1]. Combining equations 12 and 13, we have
an approximation for p(x⃗):

p(x⃗) = k

nV (x⃗) (14)

Hence, we may estimate the conditional probability of the class ωj in a nonparametric manner as follows:

p(x⃗|ωj) = kj

njVR
(15)

where kj denotes the number of samples in class ωj in the region of interest, nj denotes the total number of
samples in class ωj , and VR represents the volume of the region of interest. Similarly, the prior probability
of class ωj is given by:

p(ωj) = nj

n
(16)

where n denotes the total number of samples. Therefore, by the maximum a posteriori criterion (MAP), we
must assign the sample x⃗ to the class ωj if:

p(ωj |x⃗) > p(ωi|x⃗) ∀i ̸= j (17)
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which leads to:

kj

njVR

nj

n
>

ki

niVR

ni

n
∀i ̸= j (18)

and after some simplifications, it is reduced to:

kj > ki ∀i ̸= j (19)

This means that the sample x⃗ should be assigned to the most representative class in its k nearest neighbors.
Algorithms 4 and 5 detail the pseudocodes of the regular k-NN classifier.

Algorithm 4 Get the k nearest neighbors of a given sample
function get_neighbors(train_set, test_row, k)

distances ← [ ]
indices ← [ ]
for each train_row in train_set do

dist ← EuclDist(test_row, train_row[:-1]) ▷ Last feature is the class label
distances.append(train_row)

end for
Sort the tuples in distances in ascending order of dist
neighbors ← [ ]
for (i = 0; i < k; i++) do

neighbors.append(distances[i][0])
end for
return neighbors

end function

Algorithm 5 k-NN classification
function knn_classification(train_set, test_row, k)

neighbors ← get_neighbors(train_set, test_row, k)
labels ← [row[-1]] for row in neighbors] ▷ Last feature is the label
prediction ← mode(labels) ▷ The label that occurs more often
return prediction

end function

It has been reported that the probability of error in the k-NN classifier is directly related to the probability
of error in the Bayesian classifier - which is the lowest among supervised classifiers (Cover and Hart, 1967):

Pknn ≤ P ∗
(

2− c

c− 1P ∗
)

(20)

where c denotes the number of classes and P ∗ is the probability of error in the Bayesian classifier. The
computational complexity of an k-NN prediction according to Algorithm 4 is O(mn log n + mk), where n is
the number of samples, m is the number of features, and k is the number of neighbors. Due to the presence
of a sorting procedure, it is possible to perform an k-NN prediction in O(n(m + k)).

It is worth noticing that there is an intrinsic relation between the k-NN classifier and Voronoi tessellation.
This relation lies in their geometric interpretation as well as adoption of partitioning the feature space
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(Mérigot et al., 2010). Figure 4, originally from (Fortmann-Roe, 2012), depicts an example of a Voronoi
diagram in the partition of an 2D feature space.

Figure 4: The k-NN decision boundary and the Voronoi tesselation in an 2D feature space (Fortmann-Roe,
2012)

The decision boundary obtained by the k-NN classifier is the union of several piece-wise linear edges of the
Voronoi tesselation, which frequently leads to a complex nonlinear behavior.

B.1 Balloon and sample-point estimator

Adopting only one bandwidth may provide suboptimal results when considering the whole domain. This
approach may induce to oversmoothing in high density neighbourhoods. Conversely, in the case of small
sample sizes, it may lead to undersmoothing in the neighbourhood of the extreme regions of the distribution
(tails). Without a relevant understanding of the density function, it is challenging to select the ideal band-
width. To mitigate this issue, locally adaptive approaches empower the bandwidth to vary over the domain
of the PDF (Jarosz, 2008). One of such locally adaptive approaches refers to the balloon estimator, which
was originally proposed as a k-NN estimator (Loftsgaarden and Quesenberry, 1965). A general form of the
balloon estimator is detailed as follows:

p̂(x⃗) = 1
Nh(x⃗)

N−1∑
i=0

K

[
x⃗− x⃗i

h(x⃗)

]
(21)

where N is the number of samples, h(x⃗) is the bandwidth as a function of x⃗, and K refers to its kernel.
Nonetheless, the balloon estimator is subject to several inefficiencies, particularly regarding univariate data.
Whether applied globally, its estimate commonly does not integrate to one over the domain. An additional
issue refers to the fact that the bandwidth consists of a discontinuous function, which affects the associated
PDF (Terrell and Scott, 1992).

A further local bandwidth estimator is the sample-point estimator, which general form is detailed as follows:

p̂(x⃗) = 1
N

N−1∑
i=0

1
h(x⃗i)

K

[
x⃗− x⃗i

h(x⃗i)

]
(22)
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The difference between the balloon and sample-point estimator lies in the bandwidth h(x⃗i), which is a
function of x⃗i instead of x⃗. In the sample-point estimator approach, every data point is assigned a kernel.
However, the size of such kernels may change across data points. The sample-point estimator exhibits
advantages compared to the balloon estimator. Considering that each kernel is normalized, the estimator
consists of an PDF that integrates to one. Moreover, the sample-point estimator may be entirely continuous
due to the fact that it adopts the differential attributes of the respective kernel functions (Jarosz, 2008).

6


	Introduction
	Adaptive curvature based k-NN classifier
	Algorithm to estimate the shape operator curvature
	Curvature-based kK-NN classifier

	Results
	Conclusion
	Shape operator and curvatures
	The k-nearest neighbor classifier
	Balloon and sample-point estimator


