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Abstract. Accurate prediction of human papillomavirus (HPV) status
is essential for risk stratification and personalized treatment planning
in head and neck cancer. In this work, we propose a multi-modal deep
learning framework to classify HPV status using the HECKTOR25 Task
3 dataset, which provides 3D FDG-PET and CT scans with clinical data.
Our approach leverages a 3D ResNet-18 architecture for imaging feature
extraction, combined with a fully connected network to encode clini-
cal variables, followed by multimodal fusion for final prediction. To ad-
dress the significant class imbalance problem, we implemented a weighted
cross-entropy loss. On internally held-out test splits, the model achieved
a specificity of 0.9167 and a balanced accuracy of 0.9017, demonstrating
robust intra-dataset performance. However, evaluation on the organiz-
ers external dataset—which contains cases from centers not included in
the training data—yielded reduced performance (validation specificity
0.9048, balanced accuracy 0.6765), highlighting the challenges of cross-
center generalization. These findings underscore the potential of multi-
modal deep learning for HPV status prediction and indicate that further
strategies are required to enhance model robustness to inter-center vari-
ability.
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learning.

1 Introduction

1.1 Motivation

Head and neck cancer (HNC) represents a heterogeneous group of malignan-
cies, with nearly 90% classified as squamous cell carcinomas (HNSCC) [1]. Well-
established risk factors, such as tobacco and alcohol consumption, act synergisti-
cally to markedly increase disease incidence [2, 3]. Despite advances in therapeu-
tic strategies, the overall 5-year survival rate remains poor, particularly among
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patients with advanced disease. Current clinical workflows—primarily based on
TNM staging, imaging, and histopathology—are often insufficient for early de-
tection and accurate prognostication. Although biomarkers such as HPV status
have improved risk stratification, their integration into routine clinical practice
remains limited. Artificial intelligence (AI) offers promising opportunities by
leveraging multimodal data—including medical imaging, radiotherapy dose dis-
tributions, and electronic health records—to enhance diagnostic accuracy and
prognostic modeling. However, progress in AI-driven approaches for HNC has
been constrained by the scarcity of large, diverse, and publicly available datasets,
hindering clinical translation. The Head and Neck Tumor Segmentation and
Outcome Prediction Challenge (HECKTOR 2025) [4] addresses this gap by pro-
viding a large-scale, multi-institutional, multimodal dataset collected from 10
international centers, creating new opportunities for the development and val-
idation of AI methods in tumor detection, segmentation, outcome prediction,
and treatment optimization.

1.2 Dataset

In this study, we focus on the classification task of predicting HPV status using
FDG-PET/CT images in combination with available clinical information. Each
case in both the training and test cohorts consists of a paired 3D FDG-PET vol-
ume and a corresponding 3D CT volume. The clinical variables include center,
gender, age, tobacco and alcohol use, performance status, treatment (radiother-
apy alone or chemoradiotherapy), M-stage (metastasis), and HPV status.

Fig. 1. An example coronal view of a PET image and its corresponding CT image with
the tumor.

The training set comprises 588 cases collected from 6 centers, including 4
in Canada, 1 in France, and 1 in the United States. The test set contains 23
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previously unseen cases from 3 centers and include approximately 80% HPV-
positive and 20% HPV-negative cases. The CT and PET volumes were rigidly
aligned to a common origin but remain heterogeneous in field of view(FOV)
and resolution. Representative examples of CT and PET images, together with
corresponding clinical information, are illustrated in Figures 1 and 2.

Fig. 2. An example of the clinical information subset.

2 Method

2.1 Data Preprocessing

Crop Head and Neck Region Although most of the cases included only the
head and neck region, a subset of cases from several centers consisted of whole-
body scans. Because the analysis focused exclusively on the head and neck, the
axial coverage was standardized by cropping the slice range. The slice range (in
millimeters) was calculated as the product of the number of slices and the voxel
size along the z-axis. A comprehensive review of the image sets indicated that
a coverage of 516 mm was sufficient to cover the entire head and neck region.
Consequently, for scans with an axial coverage exceeding 516 mm, the volume
was cropped to this limit.

In addition, for certain cases—primarily from the CHUS center—where the
CT slice range was smaller than the corresponding PET slice range, the PET
volume was cropped along the z-axis to match the CT slice range, ensuring
consistent spatial alignment between modalities.

Align PET and CT images To fully leverage CT information, spatial align-
ment was performed between PET and CT images. As described above, we first
calculated the field of view (FOV) for PET and CT images, respectively. The
absolute difference between the two FOVs was then computed. If the FOV of
the PET images exceeded that of the CT images, the CT volume was symmet-
rically padded along the x and y axes to match the PET FOV. The number of
padding pixels was determined by dividing the FOV difference by the CT pixel
spacing. After padding, CT images were resampled to match the resolution of
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PET images. In contrast, if the FOV of the PET images was smaller than that
of the CT images, the CT volume was cropped to match the PET FOV before
resampling.

Data Normalization Before intensity rescaling, CT images were adjusted us-
ing a mucosal window (window level = 40 HU, window width = 300 HU) to
enhance soft tissue contrast and improve the conspicuity of small tumors. Sub-
sequently, the intensities of the CT and PET images were independently normal-
ized by dividing each by their respective mean intensities. After normalization,
CT and PET images were concatenated to generate a two-channel input for the
model.

Clinical Information Processing For the clinical data, z-score normalization
was applied to age and gender variables. Tobacco consumption, alcohol consump-
tion, performance status, and M-stage were encoded using one-hot encoding. The
processed clinical features were then concatenated and fed into a fully connected
network to extract high-level clinical representations.

2.2 Model Architecture

Our proposed network consists of two parallel branches designed to jointly lever-
age imaging and clinical information for classification (Fig. 3).

Image Branch The image branch uses a 3D ResNet-18 backbone implemented
by MONAI [5] to extract deep volumetric features from the PET and CT in-
puts. After preprocessing step, the two modalities are concatenated along the
channel dimension to form a two-channel input volume. The 3D ResNet-18 is
an extension of the conventional 2D ResNet-18, with all convolutional and pool-
ing layers replaced by their 3D counterparts, enabling the network to capture
spatial context across three dimensions. The architecture consists of an initial
7×7×7 convolutional layer (stride 2) followed by a 3×3×3 max-pooling layer.
Four residual stages are subsequently stacked, each containing two basic resid-
ual blocks with identity skip connections to facilitate gradient propagation. The
number of filters doubles at each stage (64, 128, 256, 512), progressively enrich-
ing the learned feature representation. A global average pooling layer is applied
to obtain a compact feature vector.

Clinical Branch The clinical branch processes tabular clinical data. Age and
gender are normalized using z-score normalization, while tobacco consumption,
alcohol consumption, performance status, and M-stage are one-hot encoded.
These preprocessed features are passed through a two-layer fully connected net-
work with ReLU activation to extract high-level clinical feature representations.
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Feature Fusion and Classification The feature vectors from the image and
clinical branches are concatenated and fed into a final fully connected layer to
output class probabilities. This design allows the model to jointly learn comple-
mentary information from imaging and clinical data, improving the classification
performance.

Fig. 3. An illustration of the training pipeline for the classification network.

2.3 Loss Function

Because the classification dataset contained 530 HPV-positive and 58 HPV-
negative cases, we adopted a weighted cross-entropy loss to address the severe
class imbalance. This loss extends the standard cross-entropy by incorporating
class-specific weighting factors, thereby increasing the contribution of minority
classes during training.

LWCE = − 1

N

N∑
i=1

C∑
c=1

wc · yi,c log (pi,c) (1)

where wc represents the weight assigned to class c, yi,c is the ground truth
indicator, pi,c is the predicted probability, N is the number of samples, and
C is the number of classes. For each sample, the standard cross-entropy was
multiplied by a class-specific weight, typically set as the inverse of the class
frequency:

wc =
N

C ·Nc
(2)
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where Nc denotes the number of samples in class c.

3 Experiment Setup

We utilized the HECKTOR25 Task 3 dataset and randomly divided it into five
folds after holding out 20% test set, training a separate model for each fold.
No additional data or pre-trained models were used. All input volumes were
resized to 192 × 192 × 192 to accommodate GPU memory constraints. Model
training was performed using the AdamW optimizer with an initial learning rate
of 2 × 10−4, which was gradually reduced to zero by the end of training via a
cosine annealing scheduler. Each model was trained for 100 epochs with a batch
size of 1 on a single NVIDIA GeForce RTX 3090 GPU (24 GB).

4 Results

Table 1. Table captions should be placed above the tables.

Fold Best Validation Accuracy Test Accuracy Balanced Accuracy Sensitivity Specificity
1 0.8941 0.8559 0.8090 0.8679 0.7500
2 0.9529 0.8644 0.8876 0.8585 0.9167
3 0.8824 0.8305 0.8687 0.8208 0.9167
4 0.9059 0.8898 0.9017 0.8868 0.9167
5 0.9286 0.8559 0.8459 0.8585 0.8333

Based on our data splits, the results of a single-run 5-fold cross-validation
are summarized in Table 1. The evaluation metrics include the best validation
accuracy, test accuracy, balanced accuracy, sensitivity, and specificity. Validation
and test accuracies were computed as the number of correctly classified cases
divided by the total number of cases in the corresponding dataset. Specificity,
sensitivity, and balanced accuracy were calculated as:

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

balanced accuracy =
specificity + sensitivity

2
(5)

where TN , FP , TP , and FN denote true negatives, false positives, true
positives, and false negatives, respectively. As indicated by the challenge orga-
nizers, the official ranking is the balanced accuracy. Therefore, we selected the
fold-4 model for final validation and testing submissions. The test results re-
main undisclosed, while on the validation set we achieved a specificity of 0.9048



Title Suppressed Due to Excessive Length 7

and a balanced accuracy of 0.6765, suggesting that the model performs well at
correctly identifying HPV-negative cases but struggles to detect HPV-positive
cases. This imbalance in performance may reflect the skewed class distribution
in the training data and indicates that additional strategies—such as more ag-
gressive class rebalancing, data augmentation, or cost-sensitive learning—may
be required to improve sensitivity without sacrificing specificity.

5 Conclusion and Discussion

In this work, we developed a multimodal classification framework for HPV status
prediction using the HECKTOR25 Task 3 dataset, which contains 3D PET/CT
images and available clinical information. The proposed model, based on a 3D
ResNet-18 backbone with a parallel clinical feature branch, was trained using
a weighted cross-entropy loss to mitigate class imbalance. Our five-fold cross-
validation results demonstrated high specificity (0.9048) but relatively low sen-
sitivity, resulting in a balanced accuracy of 0.6765 on the validation set. These
findings suggest that the model performs well in identifying HPV-negative cases
but requires further improvement for detecting HPV-positive cases.

We investigated the potential reasons why the model performed well on
the internal training dataset but showed reduced performance on the exter-
nal dataset. One contributing factor may be that some centers in the external
dataset were not included in the training data.

We further analyzed the distribution of HPV-negative cases and misclassified
instances across different centers.

Table 2. Distribution of HPV negative and wrong prediction cases in Task 3 dataset
across different centers.

Center Total Cases HPV Negative %HPV Negative Wrong Prediction %Wrong Prediction
CHUM 22 1 4.55% 5 23%
CHUP 58 37 63.97% 4 7%
CHUS 33 8 24.24% 6 18%
HGJ 38 10 26.32% 7 18%
HMR 2 0 0.00% 0 0%
MDA 435 2 0.46% 1 0%

Centers such as HMR and MDA, with very few negative cases, and CHUP,
with a relatively balanced class distribution, showed higher model performance.
In contrast, CHUM, CHUS, and HGJ centers, which have both limited total
cases and low numbers of negative cases, showed reduced performance. These
findings underscore the importance of accounting for class distribution not only
at the dataset level but also within each center. Future work should incorporate
strategies such as data resampling, reweighting, or selective sampling to mitigate
center-specific imbalances, thereby enhancing the model generalizability across
heterogeneous clinical settings.
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