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ABSTRACT

We study the distance estimation problem for high-dimensional distributions.
Given two distributions P and Q over {0,1}", and a parameter ¢, the goal of
distance estimation is to determine the statistical distance between the two distri-
butions up to an additive tolerance +¢. Since exponential lower bounds (in n) are
known for the problem in the standard sampling model, research has focused on
models where one can draw conditional samples.

Among these models, subcube conditioning (SUBCOND), i.e., conditioning on
arbitrary subcubes of the domain, holds the promise of widespread practical adop-
tion owing to its ability to capture the natural behavior of distribution samplers. In
this paper, we present the first polynomial sample distance estimator in the condi-
tional sampling model, and our algorithm makes O(n? /%) SUBCOND queries.'
We implement our algorithm to estimate the distance between distributions arising
from real-life sampling benchmarks, and we find that our algorithm easily scales
beyond the naive method.

1 INTRODUCTION

Given two discrete distributions P and Q over {0, 1}", the total variation (TV) distance between P
and Q, denoted by d7v (P, @), is defined as:

av(P.Q =5 Y IPo)- Q)

oe{0,1}n

In this paper, we are interested in the computation of (e, §)-approximation of drv (P, Q): i.e., we
would like to compute an estimate s such that Pr[dry (P,Q) — e < k < dry(P,Q) + €] >
1 — 4. TV distance is a fundamental notion in probability and finds applications in the diverse
domains of computer science such as generative models (Goodfellow et al., 2014; Ji et al., 2023),
MCMC algorithms (Andrieu et al., 2003; Boyd et al., 2004; Brooks et al., 2011), and probabilistic
programming (Aguirre et al., 2021; Pote & Meel, 2022).

Theoretical investigations into the problem of TV distance computation have revealed the intractabil-
ity of exact computation: In particular, the problem is #P-hard even when P and Q are represented
as product distributions (Bhattacharyya et al., 2023a). Consequently, the focus has been on design-
ing approximation techniques. When P and Q are specified explicitly, randomized polynomial time
approximation schemes are known for some classes of distributions, such as Bayesian networks with
bounded treewidth (Bhattacharyya et al., 2023b). Not every practical application allows explicit rep-
resentation of probability distributions, and often, the output of some underlying process defines
probability distributions. Accordingly, the field of distribution testing is concerned with the design
of algorithmic techniques for different models of access to the underlying processes. Furthermore, in
addition to the classical notion of time complexity, we are also concerned with the query complexity:
how many queries do we make to a given access model?

The earliest investigations focused on the classical model of access where one is only allowed
to access samples from P and Q (Paninski, 2008; Valiant & Valiant, 2011); however, a lower
bound of 2(2"/n) (Valiant & Valiant, 2010; 2011) restricts the applicability of these estima-
tors in practical scenarios. Consequently, there is a need to focus on more powerful models. In

'O will hide log(1 /) factors.
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this work, we will focus on the SUBCOND oracle access model owing to its ability to capture
the behavior of probabilistic processes in several diverse settings (Jerrum et al., 1986; Chaudhuri
et al., 1999; Zhao et al., 2018). Formally, SUBCOND oracle for a distribution P takes in a query

setting p € {0,1,*}” and returns ¢ € S, such that Pr[o is output | = %,
€S,

S, = {o € {0,1}"|Vi, (p; = %)V (0; = p;)}. It is worth remarking that while we use the
name SUBCOND to be consistent with recent literature (Bhattacharyya & Chakraborty, 2018),
there have been algorithmic frameworks since the late 1980s that have relied on the underlying
query model (Jerrum et al., 1986).

wherein

The starting point of our investigation is the observation that, on the one hand, practical applications
of distance estimation rely on heuristic methods and, accordingly, lack guarantees. On the other
hand, no known algorithms, when given access to SUBCOND oracle, make less than O(2"/n)
queries. The primary contribution of our work is to address the mentioned gap: we design the first
algorithm that computes (&, d)-approximation of TV distance and makes only polynomially many
queries to SUBCOND oracle. Formally,

Theorem 1. Given two distributions P and Q over {0,1}", and the parameters ¢ € (0,1), and
6 € (0,1), the algorithm DistEstimate(P, Q, €, d) returns k such that

Prldry(P,Q) —e <k <dry(P,Q) +e] > 14
DistEstimate makes O (n®log(1/5) /%) queries to the SUBCOND oracle.

We now provide a high-level overview of DistEstimate: First observe dry (P, Q) = Y Q(o) -
max(1 —P(0)/Q(c),0) and therefore, we can use the standard approach to sample ¢ from Q and
if we could determine P (o) and Q(c) up to some multiplicative factor, then we could set the value
of the corresponding random variable to be (1 — P(0)/Q(0),0), and accordingly polynomially
many samples would suffice to compute an approximation of dry (P, Q). However, it is unlikely
that it would be possible to approximate the value of Q(o) for arbitrary o with only polynomially
many queries to SUBCOND since Q(o) can be arbitrarily small. The key technical contribution
lies in showing that it suffices to ensure that with high probability, we can estimate Q(c’) and P (o)
with polynomially many queries to SUBCOND oracle where the probability space is defined over
samples from Q.

As mentioned earlier, our interest in the design of distance estimation techniques for the SUBCOND
model stemmed from its ability to capture the behavior of probabilistic processes in practice. There-
fore, we demonstrate the application of DistEstimate in a real-world setting. Sampling from discrete
domains such as {0, 1}" under constraints is a hard problem; therefore, several heuristic-based sam-
plers have been proposed over the years. We can view a sampler as a probabilistic process, and
consequently, one is interested in measuring how far the distribution of a given sampler is from the
ideal distribution. For our experiments we focus on samplers that sample satisfying assignments of
a CNF, and SUBCOND is particularly well suited for this problem, as a CNF conditioned on a sub-
cube is a CNF. We use a prototype of DistEstimate to evaluate the quality of two CNF samplers for
different benchmarks. Our empirical evaluation demonstrates the promise of scalability: in partic-
ular, DistEstimate can handle benchmarks with n = 70 for which naive techniques would require
~ 10'® queries to samplers — a prohibitively large number.

Organization Section 3 defines the notation we use in most of the paper. We present the paper’s
main contribution, the estimator DistEstimate, along with its proof of correctness in Section 4. In
Section 5, we present the result of the evaluation of our implementation of DistEstimate. Finally,
we conclude in Section 6 and discuss some open problems. In the interest of exposition, we defer
some proofs to the Appendix.

2 RELATED WORK

Distance estimation is one of the many problems in the broader area of distribution testing. Apart
from estimation, there is extensive literature on the problems of identity and equivalence testing.
The problem of identity testing involves returning Accept if dry (P, P*) = 0 and returning Reject
if dpry (P, P*) > €, where P is an unknown distribution and P* is known, i.e. you have a full de-
scription of P*. Equivalence testing is the generalization of identity testing. It is the problem of de-
ciding between dry (P, Q) = 0 and dry (P, Q) > € where both P and Q are unknown. It is worth
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emphasizing that for both identity and equivalence testing problems, any answer from the tester
(Accept or Reject) is considered valid if 0 < dry (P, Q) < e. Provided only sample access, the
sample complexity of identity testing is © (2"/ 2/ 52) (Paninski, 2008; Valiant & Valiant, 2017) and
of equivalence testing is max(22"/3¢=4/3 27/22=2) (Chan et al., 2014; Valiant & Valiant, 2017).
While testing is of theoretical interest, its practical application faces significant limitations primarily
because testers must accept only when two given distributions are identical. In real-world scenarios,
distributions are rarely identical but often exhibit close similarity. Consequently, a simplistic tester
that consistently returns Reject can meet the specifications. A more rigorous definition of a tester is
required to address this limitation, including estimating the distance between the two distributions.
Unfortunately, this introduces a considerable challenge. Valiant & Valiant (2011) demonstrate that
in the classical sampling model, the necessary number of queries increases to 2" /n, a significant
jump from the previous 22"/3

To sidestep the exponential lower bounds on testing, the conditional sampling model, or COND,
was introduced independently by Chakraborty et al. and Canonne et al., and has been successfully
applied to various problems, including identity and equivalence testing. In this model, the sample
complexity of identity testing is ©(¢~2) (independent of n), while for equivalence testing the best-
known upper and lower bounds are O(log n/s~%) (Falahatgar et al., 2015), and Q(1/Iog ) (Acharya
etal., 2014) respectively. A survey by Canonne (2020) provides a detailed view of testing and related
problems in various sampling models.

Our work investigates the distance estimation problem using the SUBCOND model, a restriction
of COND. Unlike COND, which allows conditioning on arbitrary sets, the SUBCOND model al-
lows conditioning only on sets that are subcubes of the domain. While COND significantly im-
proves the sample complexity, it is not easily implementable in practice, as arbitrary subsets may
not be efficiently represented and conditionally sampled. With a view towards plausible conditional
models, Canonne et al. (2015); Bhattacharyya & Chakraborty (2018) came up with the SUBCOND
model, which is particularly suited to the Boolean hypercube {0, 1}". Canonne et al. (2021) used the
SUBCOND model to construct a nearly-optimal ©(+/n) uniformity testing algorithm for {0, 1}",
demonstrating its natural applicability for high-dimensional distributions. Then Chen et al. (2021)
used SUBCOND to study the problems of learning and testing junta distributions supported on
{0, 1}™. Bhattacharyya & Chakraborty (2018) developed a test for equivalence in the SUBCOND
model, with query complexity of O(n?/?). However, before this work, there was no distance esti-
mation algorithm in the SUBCOND oracle model, and indeed even in the general COND model.

Lower Bound The problem of testing with SUBCOND access has a query complexity lower
bound of £2(n/log(n)) as a direct consequence of Theorem 11 of Canonne et al. (2020). For com-
pleteness, we formally state the lower bound and its proof in the appendix Section A.1.

3 NOTATIONS AND PRELIMINARIES

In this paper, we deal with discrete probability distributions over the n-dimensional discrete hyper-
cube {0, 1}™. For any distribution D on {0, 1}" and an element o € {0,1}", D(0) is the probability
of o in distribution D. Similarly, for any set S C {0,1}", D(S) is the total probability of S in D.
Further, o ~ D represents that o is sampled from D. The total variation (T'V) distance of two proba-
bility distributions P and Q is defined as: drv (P, Q) = 3 > oefo,13» |P(0) — Q(0)|. For arandom
variable v, the expectation is denoted as E[v], and the variance as V[v]. We use [n] to represent the
set {1,2...,n}.

If o is a string of length n > 0, then o; denotes the it" element of &, and for 1 < Jj < n, o<, denotes
the substring of o from 1to j — 1,0 = 01 ---0,_1; similarly 0<; = 01 - - 0}, and 01 denotes
the empty (length 0) string, which we will also use ¢ to denote. For any string p with 0 < |p| < n,
the subcube S, is defined as S, := {w € {0,1}"|w< |, = p}

Definition 1. A subcube conditioning oracle SUBCOND(D, p) takes as input a distribution D sup-
ported on {0,1}", and a query string p with 0 < |p| < n, and returns a sample w € {0,1}" with
probability D(w)/D(S,) ifw € S, and 0 otherwise.
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Since Sy = {0,1}", SUBCOND(D, ¢) returns a sample w € {0, 1}" as per the distribution D. For
any distribution D, the distribution D}* denotes the marginal distribution of SUBCOND(D, p) in

the |p| + 1" dimension, i.e. for b € {0,1}, D' (b) = Pry~susconD(p,p)[Wip|+1 = D]

Distance approximation We adapt the distance approximation algorithm of Bhattacharyya et al.
(2020), that takes as input two distributions P and Q, and provides an (6, §) estimate of drv (P, Q).
The algorithm has sample access to the two distributions and assumes the ability to approximately
query the probability of any element o of the domain in P and Q. Formally,

Lemma 1. (Theorem 3.1 in (Bhattacharyya et al., 2020)) For 4,0 € (0, 1) and any distribution P,
Do is called a 0-estimate of P(0), if 1—0 < p, /P (0) < 14-0. Then, for any two distributions P and
Q, given a set of samples S from P, along with the 0-estimates p, and q, for each o € S, let Z be the
estimate 7 = ﬁ Y ics lao>py (1 — ’q’—z). If|S| > %, then dpy (P, Q) +46/(1 —0) <
Z <drvy(P, Q)+ 40/(1 — 0) with probability 1 — 4.

We defer the proof to appendix Section A.2.

3.1 TAMING DISTRIBUTIONS

To estimate the probability of an element ¢ in a distribution D using the SUBCOND oracle, the
query complexity will turn out to be 2(1/Dg"  (o¢)). The query complexity can hence be arbitrarily
high since we don’t have any lower bound on the marginal Dg". ,(0¢). To bound the complexity,
we show a distribution D’ defined over {0,1}™ that is close to D and has the property that all of
its marginals are not too small. To this end, we adapt the 6-balancing trick, devised for product
distributions in (Canonne et al., 2020, Thm. 6), to show that for § € (0,1/2) we can modify D to
get D’ such that D" (o) € [0, 1 — 6], for every £ and every o. Thus we can avoid the problem of
very small marginals by simulating access to a different but close distribution.

Definition 2. A distribution D’ is called 0-tamed if for all o € {0,1}™ and for all £ € |n], we have
DI (o) €[0,1—46].

T<e

Given any distribution D, we will now show there exists a f-tamed distribution D’ such that
dry(D,D') < 6n. Furthermore given SUBCOND access to D we can also make SUBCOND
queries on the distribution D’. First, we present a randomized process that generates o ~ D’.

Given a distribution D and § € (0, 1/2), consider a randomized procedure that generates an element
o ~ {0,1}"™ as follows: for all i > 1, having generated the substring o ;, set o; = 0 with probability
(1-20)D;" . (0)+6 and o; = 1 with probability (1—260)D7"  (1)+0. The distribution corresponding
to the above randomized procedure is the distribution D’.

Note that for all £ € [n], ¢ € {0,1}, and p € {0,1}*~*, we have D'}’ (c) = (1 — 20)Dy(c) + 6.
Thus to implement the SUBCOND query D}™, with probability 1 — 26 return the result of D}, or
else with probability 20 draw a sample uniformly from {0, 1}.

Lemma 2. For 6 € (0,1/2), distribution D, and its 6-tamed version D', we have drv (D, D’) < 6n.

The proof of Lemma 2 is deferred to the appendix Section C.

4 DistEstimate: AN ALGORITHM TO ESTIMATE THE DISTANCE BETWEEN
DISTRIBUTIONS USING SUBCOND

We first present the pseudocode of our algorithm DistEstimate, and the SubToEval and
DistEstimateCore subroutines.
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Algorithm 1: DistEstimate(P, Q, ¢, 6) Algorithm 3: DistEstimateCore(P, Q, ¢)
K + 481og(1/5) 10 ¢/(c+43)
Z/jE[ﬁ]weTKO] 4 2 ;’L <—£é 1— Q(leog)(80/3)/892
orall j 0 3 T <« 48log(4m
| 7; < DistEstimateCore(P, Q,¢) 4 S [0]*m
return Median;(r;) s P’ < Tame(g/10n,P)
¢ forall© = 1¢0o m do
Algorithm 2: SubToEval(D, ¢, o) 7 o < SUBCOND(Q, ¢)
k< [4n/e? 8 forall j =140 T do
thr i 15/(8712/521 9 Dij < SubTOEva|(77'7 9, U)
C 0 10 gi; < SubToEval(Q, 0, 0)
Viemz; 0 | pi ¢ Median;(p;;)
f(irall -Je n] do 12 ¢i < Median;(g;;)
¢ i 0 13 if q; > p; then
while £ <  do w || Sl 1= pifa
Ce 1 15 return ), 1 S[i]/m
T < T +1

a < SUBCOND(D, o)
if C' > thr then return 0
ifCtj =0y thent «+— t+1
return [[7_, k/z;

We will now give a high-level overview of the two algorithms, followed by a formal analysis.

4.1.1 OUTLINE OF THE DistEstimate AND DistEstimateCore ROUTINES

The pseudocode of DistEstimate and DistEstimateCore is given in Algorithm 1 and 3 respectively.
DistEstimate takes as input two distributions P and Q defined over the support {0, 1}", along with
the parameter ¢ for tolerance and the parameter § for confidence, and returns an e-approximate
estimate of dy (P, Q) with probability at least 1 — §. The DistEstimateCore subroutine call returns
an e-approximate estimate of dpy (P, Q) with probability at least 5/6, and DistEstimate calls the
DistEstimateCore subroutine K = log(1/4) times to boost the overall probability to 1 — § with the
help of the median trick.

DistEstimateCore starts by computing the constants 6, m, and T', where m and T" are the numbers of
iterations of the outer and inner loop, respectively, and they solely depend on &. DistEstimateCore
then calls the subroutine Tame(Line 5) on the input P to simulate another distribution P’, that is
£/10 close to P in TV distance, and has the property that all of the marginal probabilities are
lower bounded by Q(1/n). This property of P’ is crucial for the polynomial query complexity of
DistEstimateCore. The construction of P/, and claimed guarantee, is discussed in Section 3.1.

DistEstimateCore then draws m samples o ~ Q, and for each sample o, calls SubToEval T times
to find the (1 + 6) estimates of Q(c) and P’(o). The value of T is chosen to be high enough
to ensure that the medians of the estimates, p; and ¢;, are correct with the required confidence.
DistEstimateCore then computes the distance using these estimates as given in Lemma 1.

4.1.2 OUTLINE OF THE SubToEval SUBROUTINE

The SubToEval subroutine takes as input an element o € {0, 1}", a distribution D over {0, 1}" and
a parameter ¢, and it provides +e estimate of D (o) with high probability.

Lemma 3. The subroutine SubToEval(D, e, o) takes as input a distribution D over {0,1}", an
element o € {0,1}", and € € (0,1/2) and makes at most 15[8n? /2] calls to SUBCOND oracle.
It returns D(o), such that Pr[D(o) € (1 £¢)D(0)] > 3/5.

The proof of the aforementioned lemma will be detailed in Section 4.2.1. This section provides a
concise description and an informal discussion of the algorithm. The probability D(c) can be ex-
pressed as a product of marginals, D(o) = [;_; D7 , (o), by applying the chain rule of probability.
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Essentially, the subroutine approximates each marginal D" (o) by k/x; for each j € [n], utilizing
the SUBCOND oracle. The product H?Zl k/x; is then employed as the final estimate for D(o).

In this context, the variable z; represents the total count of SUBCOND(D, o) queries executed
until k occurrences of o; are observed. Given that D} (b) = Pry.susconp(p,p)[Wp|+1 = b] for
any p (as discussed in Section 3), the ratio k/x; is an intuitive choice as an estimator for [R5 (o).
Moreover, the subroutine monitors the total number of calls to the SUBCOND oracle in the variable
C. If this count exceeds the threshold thr = 15[8n? /2] at any point, the subroutine terminates and
returns 0.

To estimate D(0), it is essential to estimate each of the n marginals, D" (o), to within an error

margin of approximately 1 + £/n. Naively, this would require at least n?/ Dy, (o) queries for each
marginal, not accounting for the dependence on €. Consequently, the total expected query complex-
ity would sum up to Y~ n?/DJ" (o). This quantity is at least Q(n?), but it could potentially be
unbounded as Dy’ (o) can take arbitrary values. In the forthcoming section, we reduce this com-
plexity to O(n?) through a more nuanced analysis.

4.2.1 ANALYSIS OF SubToEval

In this section, we prove Lemma 3 which is the main technical content of the pa-
per. To prove Lemma 3, we consider the subroutine SubToEval'(D,e,0) as follows:

Algorithm 4: SubToEval'(D, ¢, 0)
k « [4n/e?]
vje[n]xj 0
forall j € [n] do
t+0
while ¢t < k do
Tj < Ty +1
o « SUBCOND(D, o)
ifa; =o;thent <t 41
return [[7_, k/x;

We now differentiate between the subroutines SubToEval(D, ¢, ) and SubToEval'(D, ¢, o). The
behavior of SubToEval' (D, ¢, o) mirrors that of SubToEval(D, ¢, o) except in one key aspect: in
SubToEval(D, ¢, o), when the number of calls to the SUBCOND oracle surpasses a certain threshold
15[8n?/£?], the subroutine immediately returns 0 and terminates. In contrast, SubToEval'(D, ¢, o)
does not impose such a limit, allowing an unlimited number of calls to the SUBCOND oracle. This
modification is critical for our analysis because it results in the variable z; in SubToEval'(D, ¢, o)
following the well-known negative binomial distribution.

In Lemma 5, we demonstrate that SubToEval’(D, €, o) correctly returns the +¢ estimate of D(o)
with high probability. Following this, Lemma 6 establishes an upper bound on the expected number
of calls to the SUBCOND oracle within the subroutine. Concluding this section, we present the
detailed proof of our main Lemma 3.

We now turn our attention to proving Lemma 5. Consider a discrete r.v. that takes the value v with
probability p. The count of trials required to observe r instances of v follows a negative binomial
distribution, denoted as NB(r, p). It is important to note that the expected value E[NB(r, p)] is r/p,
and its variance VINB(r,p)] is r(1 — p)/p?. In our case, the r.v. z; in Algorithm 4 follows the
distribution NB(k, D" (0;)). This is explicitly designed in lines 5-8 of Algorithm 4. The rationale

is that in SubToEval’, z; is a discrete r.v. representing the count of SUBCOND queries made to Dy
before k occurrences of o; are encountered. We will formalize this observation in the upcoming
lemma, the proof of which we relegate to the appendix section D.

Lemma 4. For j € [n|, the random variable x; (in Algorithm 4) is distributed as NB(k, D" (o))

Note that D(0) = [[;_, Dy, (o). Our estimator for the marginal D} (o;) is k/x;, and z; is

i=1 T o<y

distributed as NB(k, D3 (o).
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Lemma 5. The subroutine SubToEval'(D, e, o) takes as input a distribution D over {0,1}", an
element o € {0,1}", and e € (0,1/2). It returns D(c), such that Pr[D(o) € (1 £ &)D(0)] > 2/3.

Proof. We use Chebyshev’s bound to prove the lemma, using a variance reduction technique intro-
duced by Dyer & Frieze (1991). We start by defining a random variable Z = H?Zl k/xj, where x;

and k refer to their values in Algorithm 4. Since D(o) = H;L:1 Dy’ (o), and k/z; is an estimator
for D7 (o), the product ([[}_, k/z;) is the estimator for D(o).

Furthermore,

VLo zi/k B0 2/k)% (rEl/0)% 1 V[z /K \
BT, o/~ Bl o 1L (o)
Substituting, V{x; /k] and E[z;/k]?, we have

E[H?_lxj/k]fjl:[l(H (k/p)2/k2 ) 1—H<1+ ) 1§':

Substituting value of k, we have

VITT? .z /k 2\ " 2 2
Mzt (L 2V o (2) 1<
BN, z,/kP i 1 3
The last inequality comes from the fact that for x € (0,1),k > 1, exp (ki“) <1+ % Then, from

Chebyshev’s inequality,
Pr([E[Z] - 2| > E(Z]€] < V[2)/%E [2)* < 1/3

Since Z was the estimate D(c), we have shown that Pr[D(c) € (1 +¢)D(0)] > 2/3. O

We will now show an upper bound on the query complexity of SubToEval’. The number of
SUBCOND queries made by SubToEval’ is a distribution that depends upon the input D, ¢, and
0. We define a random variable QC(SubToEval’(D, ¢, ¢)), that represents the query complexity of
the SubToEval’ routine. The following lemma asserts that when o ~ D, the query complexity of
SubToEval’ with input D is in expectation [8n?/e2].

Lemma 6. For a distribution D defined over {0,1}", ¢ € (0, 1),
Eo~p [E [QC(SubToEval'(D, ¢, 0))]] = [8n’e~?]
where the inner expectation is over the internal randomness of SubToEval’

We defer the proof to the appendix Section E.

Proof of Lemma 3. From Lemma 5, we have that the expected number of queries of the subroutine
SubToEval'(D, ¢, 0) is [8n2c~2]. Therefore, by Markov’s inequality, the probability that the sub-
routine SubToEval' (D, €, o) makes 15[8n2c~2] queries is at most 1/15. Further, from Lemma 5,

the returned value D(o) satisfies D(o) € (1 + )D(o) with probability 2/3. Thus by union bound,
with probability at least 2/3 — 1/15 > 3/5, the SubToEval’(D, ¢, o) makes at most 15[8n%c~2]

queries and additionally, the returned value D(c) satisfies D(c') € (1 + £)D(c). This implies that
the subroutine SubToEval(D, ¢, ) returns D(o ), such that Pr[D(c) € (1 £ )D(0)] > 3/5. O
4.2.2 ANALYSIS FOR DistEstimateCore AND DistEstimate

Theorem 2. Given two distributions P and Q over {0,1}", and the parameters ¢ € (0,1), the
algorithm DistEstimateCore(P, Q, €) returns k such that

Pr[dTv('P, Q) —e<k< dTv(P, Q) + z’:‘] > 5/6
DistEstimateCore makes O (n®/<®) queries to the SUBCOND oracle.
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Proof. Let Good be the event that DistEstimateCore returns an approximately correct x, i.e.
dry (P, Q) —e <k < dry(P, Q) + . We want to show that Pr[Good] > 5/6.

Recall that P’ (Line 5 of Alg. 3) is a tamed version of P. Then for all ¢ € [m], let Bad” be the event

that in the *" iteration of the inner loop (Line 11) of DistEstimateCore, p; ¢ (1 £ 6)P’(o) , and
similarly let Bad be the event that ¢; ¢ (1 +6)Q(c). Then let Bad = | J (Bad? UBad}), be the

event that at least one of the estimates is incorrect.

i€[m]

From the value of T'(Line 3), and our choice of approximation parameter 6 (on Lines 9,10), and
from Lemma 3 we know that in iteration j of the inner loop, Pr[p;; € P’(¢)(1£6)] > 2/3 and also
that Pr[g;; € Q(o)(1 + 0)] > 2/3. We use the median trick to find the higher confidence estimates
pi <+ Median;(p;;) and ¢; + Median;(g;;), such that Vi € [m], Pr[Bad’], Pr[Bad}] < 1/12m.
Then,

1
Pr[Bad] =P Bad? UBad?)| < Pr[Bad?| + Pr[Bad?]) = —
fBed] =Pr | | (BadfUBad)| < 3 (Prbec] + PlBadf]) = 15

From Lemma 1, setting § = €/(40/9 + ¢), and the choice of m (Line 2) tell us that the estimate
>_iefm) Slil/m (on Line 15 of Alg. 3) is a £9¢/10 estimate of drv (P’, Q), with probability at least

1—1/12 (assuming Bad). We denote the estimate as s, then k —9¢/10 < dry (P’, Q) < k+9¢/10.
Furthermore, since P’ is a £/10n-tamed version of P (Line 5 of Alg 3), from Lemma 2 we know
that dry (P’, P) < £/10. Then, from the triangle inequality, we have two bounds on drv (P, Q):

dry(P,Q) <dry(P', Q) +drv(P,P) <k +9/10+¢/10 =k + ¢
drv (P, Q) > drv(P',Q) —dry(P',P) > k—9¢/10 — /10 =k — ¢

Thus, from the union bound, we have that Pr[Good] > 1—1/12 — Pr[Bad] = 1—-2/12=5/6. O

Using the standard median trick, DistEstimate boosts the success probability from 5/6 (in
DistEstimateCore) to 1 — §. We show this in the proof of Theorem 1 in the appendix Section B.

5 APPLICATION: MEASURING THE QUALITY OF SAMPLERS

We demonstrate the practical utility of DistEstimateCore by focusing on one use case: evaluating
the quality of constrained samplers. Constrained samplers are fundamental objects in the field of
constraint solving. In particular, a sampler takes in a set of constraints, which can be viewed as
representing a function f : {0,1}"™ — {0, 1}, and we are interested in drawing uniform samples
from the set {o | f(o) = 1}: another interpretation is that we are interested in sampling from the
set of all the assignments that satisfy the given set of constraints. It is worth remarking that even
determining whether the set {o | f(0) = 1} is non-empty is the prototypical NP-complete problem.
Therefore, it is often the case that constrained samplers that can scale to large instances are often
complex heuristic-based systems that are not amenable to theoretical analysis. Accordingly, there
is a significant interest in designing techniques that can evaluate the quality of such samplers. We
will focus on two state-of-the-art samplers: STS (Ermon et al., 2012) and CMSGen (Soos et al.,
2020). We seek to evaluate the quality of these samplers with respect to a reference sampler WAPS,
which is an exact sampler, i.e., provides rigorous theoretical guarantees of uniformity; however, such
guarantees are attained at the cost of scalability. It is worth remarking that SUBCOND is a natural
query model in the context of constrained samplers, as every query string can be represented as a
conjunction of constraints.

We choose the experiment’s tolerance parameter to be ¢ = 0.5. The experiments were conducted
on a cluster with AMD EPYC 7713 CPU cores. For each benchmark, we use 32 cores with 4GB of
memory. We evaluate our implementation on two datasets comprising Boolean formulas: (1) scalable
and (2) real-world. The scalable benchmarks consist of random 3-CNFs defined over n variables
where n € {30,35,...,70}. The real-world instances were drawn from a publicly available set of
circuits that have been used in the benchmarking of and samplers (Meel, 2020).
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Figure 1: TV Distance as returned by DistEstimateCore, for STS and CMSGen.

Results We find that DistEstimateCore terminated with a result on all benchmarks. We present
the results of our experiments on real-world instances in Table 1. The first column indicates the
benchmark’s name, the second the number of dimensions of the support, and the following four
columns display the number of samples and the time required for the test for STS and CMSGen,
respectively.

We present the TV distance, as computed by DistEstimateCore, in Figure 1. We use scalable in-
stances for this experiment. As seen in the graph, the distance of both CMSGen and STS, from
WAPS, increases with the number of dimensions.

Table 1: The sample complexity and runtime performance of DistEstimateCore on 7 real-world
instances.

Benchmark  Dimensions STS CMSGen
# of samples time (ins) # of samples time (in s)

s1196a_32 33 1.8e+09 4.1e+05 1.9e+09 5.3e+05
53.sk 432 33 1.7e+09 2.5e+05 1.9e+09 1.6e+06
s1238a_32 33 1.8e+09 4.0e+05 1.9e+09 5.5e+05
27.sk 3.32 33 1.7e+09 1.9e+05 1.9e+09 1.0e+06
s1196a_7_4 33 1.8e+09 4.6e+05 1.9e+09 5.5e+05
s420_15_7 35 2.1e+09 4.2e+05 2.3e+09 4.0e+05
111.sk_2_36 37 2.2e+09 3.5e+05 8.3e+08 6.6e+05

6 CONCLUSION

This paper focused on the distance estimation problem in the SUBCOND model. We sought to
alleviate the two major weaknesses of the prior state of the art: the estimators required a prohibitively
large number of queries, and they could only test equivalence in polynomially many queries. Our
primary contribution, DistEstimateCore, enables distance estimation and requires only O(n?/)
queries. An interesting direction of future work would be to close the gap between the O(n?/e®)
upper bound and the Q2(n/log(n)) lower bound.
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A APPENDIX

A.1 LOWER BOUND

To complement the upper bound shown in the main paper, we show that the best-known lower bound
for the problem in Theorem 1, is (n/log(n)). This bound is from Canonne et al. (2020).

Theorem 3 (Theorem 11 in (Canonne et al., 2020)). An absolute constant €y < 1 exists, such as the
following holds. Any algorithm that, given a parameter ¢ € (0, 0], and sample access to product
distributions P, Q over {0, 1}™, distinguishes between drvy (P, Q) < € and dry (P, Q) > 2¢, with
probability at least 2/3, requires (n/ log(n)) samples. Moreover, the lower bound still holds in the
case where Q is known, and provided as an explicit parameter.

The lower bound is shown for the case where the tester has access to samples from a product distri-
bution P and Q(over {0,1}™). As observed by Bhattacharyya & Chakraborty (2018), SUBCOND
access is no stronger than SAMP when it comes to product distributions. Thus we have the following
lower bound:

Corollary 1. Let S(e1,e2,P, Q) be any algorithm that has SUBCOND access to distribution P,
and explicit knowledge of Q (defined over {0,1}"), and distinguishes between drv (P, Q) < &1
and drv (P, Q) > eo with probability > 2/3. Then, S makes Q(n/log(n)) SUBCOND gqueries.

12
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A.2 PROOF OF LEMMA 1

Lemma 1. (Theorem 3.1 in (Bhattacharyya et al., 2020)) For 6,0 € (0, 1) and any distribution P,
Do is called a 0-estimate of P(0), if 1—0 < p, /P(0) < 14-0. Then, for any two distributions P and
Q, given a set of samples S from P, along with the 0-estimates p, and q, for each o € S, let Z be the

estimate Z = |S| > ies Lao>ps (1 — z—z). If|S| > %, then dpy (P, Q) +460/(1 —0) <
Z <dpy (P, Q)+ 460/(1 — 0) with probability 1 — 6.

Proof. Let p, and ¢, be the (1 & 0) estimates of P (o) and Q(o) respectively, then

drv(P,Q) = Z Lo(o)>P(o) ( 73(?) Q(o)

oe{0,1} Qo)
pI PR (1 - p") Q(o) (1)
oce{0,1}n o
P .
£ 3 (tawere (1 50 ) 00) - Loy, (1-27) 0(0)
ocef{0,1}n o

The first summand of (1) can be written as E, ..o []lqa >po (1 - ’q’—")]

To bound | A|, we will split the domain into three sets, By = {2 : 1o(o)>p(0) = Llg,>p, }» B2 =
{2 1o@)>p(0) > Lg,>p, } and By = {2 : 1o()>P(0) < lg,>p, }-

7) (o Do
=] > @Qw»mw(l—QL§>Q@)—LMWUO—-)Q@O
oce{0,1}™ o
P g Do
= Z (19(0)>P(0) (1 - QE“;) Qo) — 1y, >p, (1 - ) Q(U)>‘
oe{0,1}n 4o
P(o)  po P(o)
= Z Lo(o)>P(0) — = Qo) + Z Lo@)y>P@) | 1— Qo)
o€EB; (O—) 4o oEBy Q(O—)
+ 3 A, (1-27) 000)
UEBS qg’
P(o o P(o .
For o € By, |gigy — be| < 12—099(5 i-g- Foro € By, QE; ,1—m—%,and
foro € Bg, 1— an; <1- L‘_z - 1+9 e 1 9 (o )+ZU€BQ 1+0 Q(0) +

ZUeBg 176 -Q(0) < 1+0 Plugging the bounds on |A| back into (1), we get

- 20
ir(P.0) & [t (1-22) ]| < 25

And hence, E []lqa>po ( - Z—Z)} — 2% <drv(P,Q) <E |:]IQG>pa ( - &)} + 5.

9o

The distance estimation algorithm draws |.S| samples to estimate E []lqa >po ( - q—)] We will
use Z to denote the empirical estimate of E {]lqa>pa (1 - p—")} . Since each sample o is drawn in-

dependently, and 1, -, ( — <T) is bounded in [0, 1], we can use the Hoeffding bound as follows,

Do 20 20 \?
PI'|:Z—]E|:]].q”>pU<1—qU>:H>1_0:|>1—26Xp< 2|S|< 9) :1—6

Hence, with probability at least 1 — 4§, Z — 1= < drv (P, Q) < 7+ 4—9 O

13
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B PROOF OF THEOREM 1

Theorem 1. Given two distributions P and Q over {0,1}", and the parameters ¢ € (0,1), and
6 € (0,1), the algorithm DistEstimate(P, Q, ¢, §) returns k such that

Prldry(P,Q) —e <k <dpy(P,Q) +e] > 14

DistEstimate makes O (n®log(1/6)/<%) queries to the SUBCOND oracle.

Proof. From Thm 2 we know that each call to DistEstimateCore returns an estimate « that is within
+e of the actual dpy (P, Q) with probability at least 5/6. We use the standard median trick to
boost this probability to 1 — § at the cost of K = 48log(1/0) independent repetitions (Line 1
of Alg. 1). Now we can analyze the overall query complexity of the algorithm. There are atmost

0) (n3/55) SUBCOND queries in each call to DistEstimateCore, and since DistEstimateCore is
called O(log(1/4)) times, the total number of queries is in O (n®log(1/6)/°). O

C PROOF OF LEMMA 2

Lemma 2. For 6 € (0,1/2), distribution D, and its 6-tamed version D', we have drv (D, D’) < 6n.

Proof. Recall the definition of subcube S, = {w € {0,1}" : w<), = p} and of the distribu-
tion D, (defined in Lemma 6). We again state the definition of D, here for convenience. For any

distribution D, string p (with 1 < |p| < n) and w € {0,1}"I°I, the distribution D, denotes the
marginal distribution of SUBCOND(D, p) in the remaining dimensions, i.e. for any w € {0, 1}~ 17l
Dp(w) = Pry~suBconn(p,p)[w = pw].

Consider the induction hypothesis that dry (D, D’) < 6i if D is supported on {0, 1}%. To verify
the hypothesis for ¢ = 1, wlog assume that D(0) < D(1), then dry (D, D) = D(1) — D'(1) =
20D(1) — 6 < 6. Assume the hypothesis holds for all ¢ € [n — 1]. Now, we show the hypothesis is
true for i = n.

Consider a distribution D over {0, 1}™ and its #-tamed counterpart D', then:

qvD.D) =5 3 Do) -Dell=y S Y D) - D)

ce{0,1}n pe{0,1} we{0,1}7—1

- % Z Z ID(Sp)Dp(w) — D/(SP)DIP(W)‘

pe{0,1} we{0,1}—1

=2 X ID(S)D,(w) — DIS,)DY(w) + D(S,)D)(w) — D/ (5,)D)(w)
p€{0,1} we{0,1}~1

<2 Y Y D)D) ~ DIS,Dyw)] + [D(S,)D(w) — /(5,10 (w)

pef0,1} we{0,1}n—1

:% S Y DS)Dy(w) — Dy(w)| + Dy(w)|D'(S,) — D(S,)

p€{0,1} we{0,1}n—1

1 / 1 /
=5 2 (D(S,)2rv(D,, D)) +5 Do [D'(S,) —D(S))]
pe{0,1} pe{0,1}
< > (D(S)0(n—1))+0=0n
pe{0,1}

We use |a + b| < |a| + |b] in the first inequality. In the second, we use the induction hypothesis to
bound the first summand, and for the second, we observe that for c € {0,1},|D'(c)—D(¢)| < 60. O
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D PROOF OF LEMMA 4

Lemma 4. For j € [n|, the random variable x; (in Algorithm 4) is distributed as NB(k, D" (0;))

Proof. Fix any j € [n]. In Algorithm 4, the r.v ; takes the value o; with probability D7 (o).
Note that while the value of x; increments by one in every iteration of the loop (lines 5-8), the value

of ¢ increases by one only when a; = ;. Since the loop (lines 5-8) runs until the value of ¢ is &, the
distribution of z; is NB(k, D" (0)). O

E PROOF OF LEMMA 6

Lemma 6. For a distribution D defined over {0,1}", ¢ € (0, 1),
E,~p [E [QC(SubToEval'(D, ¢, 0))]] = [8n’e~?]

where the inner expectation is over the internal randomness of SubToEval’

Proof. The number of SUBCOND calls made by SubToEval’ in the j'" iteration is captured by ;.
The total query complexity is the sum of z; over the n iterations,

QC(SubToEval' (D, ¢, o) ij

Recall from Lemma 4 that x; is modeled as a random variable coming from the negative binomial
distribution NB(k, D, (0;)). Hence, we have E[z;] = k/Dy". (o). Then, the expected sample
. . . J <J
complexity is given as,
n n 3 n 1
E [aC(SubToEval' (D, e,0))] = E ij ZE zl = —— DgL o = [4ne—?] ZW
j=1 j=1 j=1 <J j=1 <J
2
In the last equality, we substitute k from Line 1 of SubToEval’.

We now introduce some notation that will be used throughout this lemma. For any distribution D,
and strings p (with 1 < [p| < n)and w € {0,1}"~17], the distribution D, denotes the marginal dis-
tribution of SUBCOND(D, p) in the remaining dimensions, i.e. for any w € {0,1}"~1°I, D,(w) =
Pr. suBconD(p,p) [T = pw] Also, recall the definition of subcube S, = {7 € {0,1}" : 7<|,| = p}.
Now, we will determine the expectation of the expected sample complexity over the distribution D,

n

Eo~p [E [QC(SubToEval'(D,z,0))]] = E_|[4ne™2]> ml

o~D = D&, (95)
oy 1 - D(o)
= [4ne~? E [4 _Z\9)
[ ne “ . o~D Dgl _(0'])‘| e Z Z Da (Uj)
j=1 <j j=1loe{0,1}n <j

g O D(pw
DYDY D;,Efwf)

3=1pe{0,1}9 -1 we{0,1}n—i+1

Sy Y D) Y 22 (since D) = D(S,)D,(w)

j=1pe{0,1}i-1 we{0,1}n—i+1 Dy (wi)
ISR Dy (w1)
—ne Y Y DS) Y o
N P D (wl)
j=1pe{0,1}3-1 wie{0,1} P

= |—4n5_2—‘ Z Z 2D(Sp)

=1 pe{0,1}i—1
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= [4ne™?] Z 2 = [8n%e?]

F ADDITIONAL EXPERIMENTS

F.1 CALIBRATION

In this experiment, we compare our algorithm against the naive learning-based distance estimator,
which we consider as the ground truth. We run our estimator with € = 0.3, which indicates that the
result is expected to be within 0.3 of the ground truth. We run the study on 10 benchmarks. In the
following plots, we present the output of DistEstimateCore against the ground truth. We find that in
all cases, our estimate was within the tolerance used for the estimate.

Ground truth TV Distance
§ Estimates with Error Bars T

0.6 4

044

TV Distance
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Figure 2: In this figure, we plot the distance of the distribution generated by CMSGen. The blue
lines are the range of the error, which we have setto ¢ = 0.3
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Figure 3: In this figure, we plot the distance of the distribution generated by STS. The blue lines are
the range of the error, which we have set to ¢ = 0.3.
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