
How Reinforcement Learning After Next-Token
Prediction Facilitates Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

To study the success of the current post-training recipe of Large Language Models,1

we consider a setting of learning mixture distributions consisting of short and long2

“chain-of-thought” sequences encoding the parity of d bits. When long sequences3

are rare, we show how reinforcement learning after next-token prediction enables4

autoregressive transformers to generalize, whereas mere next-token prediction5

requires extreme statistical or computational resources to do so. We further explain6

how reinforcement learning leverages increased test-time computation, manifested7

in longer responses, to facilitate this learning process. In a simplified setting, we8

prove that autoregressive linear models following this training recipe can efficiently9

learn to predict the parity of d bits as long as the proportion of long demonstrations10

in the data mix is not exponentially small in the input dimension d. Finally, we11

demonstrate the same phenomena in less idealized settings with Llama models.12

1 Introduction13

The application of reinforcement learning techniques to large neural networks has led to many14

machine learning advances and successes [38, 39, 5, 3]. In the realm of Large Language Models15

(LLMs), a recent paradigm that leverages reinforcement learning consists of two main ingredients:16

training a large model, such as an autoregressive transformer [42] on diverse types of data (sequences)17

from the web with a next-token prediction objective [30], followed by a fine-tuning stage with a18

reinforcement learning algorithm that seeks to improve model generations with respect to a reward19

function. When the latter part is applied on a frontier model using a mathematical, logical or20

reasoning reward, it leads to rapid increase in the model’s capabilities in related domains and is21

often accompanied by a significant length increase in model response. Prominent examples of such22

“reasoning” language models include OpenAI’s o1 model [13] and Deepseek’s R1 model [7]. The23

prolonged LLM generation that precedes an answer has been dubbed the “thinking process” of the24

model, as it often resembles the “chain-of-thought” [28, 44] of a human expert solving said task.25

In this paper, we study how autoregressive models succeed in solving challenging prediction tasks26

by following this training recipe (next-token prediction followed by reinforcement learning 1). To27

provide a theoretical account, we make a central simplification: we assume that pre-training data28

already contain correct and elaborate but perhaps rare demonstrations for a task of interest. Based on29

this modeling assumption, we study and explain:30

1. Why in certain cases it is difficult for a model to generalize during pre-training.31

2. How reinforcement learning (RL) leads to a rapid improvement in terms of samples, and32

3. What optimization pressures cause increase in the length of the response.33

1In the argot of LLMs, these two stages are often called pre-training and post-training, respectively.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

| | reward | | reward

−1, + 1, + 1, − 1, + 1, + 1,<EOS>
−1, − 1, − 1, + 1, + 1, − 1,<EOS>
−1, + 1, − 1, + 1, + 1, − 1, − 1, + 1, + 1, + 1,<EOS>
+1, − 1, − 1, + 1, + 1, + 1,<EOS>
+1, + 1, + 1, − 1, + 1, − 1,<EOS>
+1, + 1, + 1, + 1, + 1, + 1,<EOS>

Data

Short

Long

x1 x2 … xd
d

∏
i=1

xi <EOS>

x1 x2 … xd
d

∏
i=1

xi <EOS>x1 x1x2 x1x2x3 …

with probability 1 − pcot

with probability pcot

Next-token prediction (pre-training)

Transformer

Reinforcement learning (post-training)

Transformer

+1, + 1, − 1, − 1, + 1, − 1,<EOS>
−1, − 1, − 1, + 1, − 1, − 1,<EOS>
−1, + 1, − 1, − 1, + 1, − 1, − 1, + 1, − 1, − 1,<EOS>
−1, − 1, − 1, + 1, + 1, − 1,<EOS>
+1, − 1, + 1, − 1, + 1, − 1,<EOS>
−1, − 1, + 1, + 1, + 1, + 1,<EOS>

𝒟(pcot)

−1, + 1, − 1, − 1, − 1, + 1,<EOS>
+1, + 1, − 1, − 1, − 1, + 1, + 1, − 1, + 1, − 1,<EOS>
+1, − 1, + 1, + 1, − 1, + 1, − 1, − 1, − 1, + 1,<EOS>
−1, + 1, − 1, + 1, + 1, − 1,<EOS>
+1, − 1, + 1, − 1, + 1, − 1,<EOS>
+1, − 1, − 1, − 1, + 1, − 1,<EOS>

RL iterations

⋮ ⋮ ⋮ Transformer

−1, − 1, − 1, − 1, − 1, − 1, − 1, − 1, − 1, − 1,<EOS>
−1, + 1, − 1, + 1, − 1, − 1, − 1, + 1, + 1, − 1,<EOS>
+1, + 1, − 1, − 1, − 1, + 1, + 1, − 1, + 1, + 1,<EOS>
+1, − 1, − 1, + 1, − 1, + 1, − 1, + 1, + 1, − 1,<EOS>
−1, + 1, + 1, + 1, + 1, − 1, − 1, − 1, − 1, − 1,<EOS>
+1, + 1, − 1, + 1, + 1, + 1, + 1, − 1, − 1, − 1,<EOS>

Training data (=5)d Inference

Inference Inference

| | reward

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=gpt2, depth=4, dembd=128, nheads=4, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

Figure 1: Left: An illustration of our main learning setting: a mixture of long and short sequences
encoding the parity of d bits, along with a representation of pre- and post-training for d=5. Right:
Advantage of next-token prediction followed by reinforcement learning over mere next-token
prediction in predicting the parity of 50 bits with a transformer trained from scratch. The red line
corresponds to pre-training, while blue lines correspond to the same pre-training runs, each followed
by GRPO (with a final token accuracy reward) from a different checkpoint. Lines correspond to
median across 3 seeds. Top: Test accuracy under greedy decoding. Bottom: Median length of model
response under greedy decoding. The inset figures zoom-in on the curves during post-training.

Specifically, we study learning from a distribution that contains both short and long, chain-of-thought-34

like, sequences encoding a single task. The main body of the paper is devoted to the task of predicting35

the parity of d bits [26, 17, 34, 4], while we consider more variations of this learning setup in the36

Appendix. Through extensive empirical simulations on transformers trained from scratch, we show37

that if the task complexity is high (large input dimension d) and long demonstrations are scarce, then38

mere next-token prediction results in a model that fails to predict the parity on unseen examples. On39

the other hand, when switching to an RL algorithm with a correctness reward, model performance40

improves rapidly and the length of the generated sequences increases. The results hold for a large41

array of model choices, problem and optimization hyperparameters, and reinforcement learning42

algorithms. Figure 1 (Left: Illustration, Right: Simulations) summarizes the landscape.43

In Section 3, we theoretically capture and explain most of the previously observed phenomena in a44

simplified setting. Let pcot be the proportion of long data in the parity mixture distribution D(pcot).45

We analyze pre-training (next-token prediction) with Stochastic Gradient Descent on D(pcot) for an46

autoregressive architecture that consists of a series of linear models [22], while for post-training, we47

consider the STaR algorithm [49] (which is a REINFORCE [46]-type algorithm) with a reward that48

verifies correctness of the whole chain-of-thought. In this setting, we prove that the model: (a) fails49

to generalize under greedy decoding during the course of pre-training if long demonstrations are rare50

(i.e., if pcot < 1/3, which matches the empirical threshold observed with transformers) (Theorem 1),51

(b) learns fast from long demonstrations and remains length-calibrated (Theorem 1), and (c) succeeds52

in generalizing after the completion of both pre- and post-training in O(poly(d)) SGD iterations,53

provided that long demonstrations are not exponentially rare in the data distribution, while this is54

accompanied with length increase during RL (Theorem 2). The analysis captures the immediate55

progress seen in practice: as we show, only O
(
log 1−pcot

pcot

)
RL rounds suffice to obtain a generalizing56

model. To the best of our knowledge, this suite of results provides the first theoretical separation57

between next-token prediction and next-token prediction combined with RL in the autoregressive58

setting, as well as the first optimization result demonstrating length increase during RL in LLMs.59

2 Experiments on Parity60

Setup We study the task of predicting the parity of d bits given access to a source of sequences61

D(pcot) which either consist of: (i) input bits and their parity, or (ii) input bits, intermediate compu-62

tations and the final parity (Figure 1). We train decoder-only autoregressive, transformers [42]. In63

2

0 10000 20000 30000 40000 50000
(pre-train) iterations

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Test Accuracy (d=50)

0 10000 20000 30000 40000 50000
(pre-train) iterations

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Probability of long generation (d=50)

0 0.2 1
3 0.4 0.6 0.8 1

pcot

50

60

70

80

90

100

Fin
al

 Te
st

 A
cc

ur
ac

y
(%

)
 w

/ g
re

ed
y

de
co

di
ng

Easy for pre-trainingHard for pre-training

Final Accuracy vs pcot (d=25)

Parity, model=gpt2, depth=4, dembd=128, nheads=32

greedy (temp=0.0)
temp=1.0

pcot + 1
2 × 100

pcot

pcot=0.75
pcot=0.25

pcot=0.1
pcot=0.05

Figure 2: Pre-training of transformers on mixture of long and short sequences encoding the
parity of d bits. Left: Test accuracy during the course of pre-training. Center: The probability that a
model’s generation length is equal to the maximum length present in the training data (which equals
d). Right: Test accuracy with greedy decoding at the end of pre-training vs mixture coefficient pcot.

the first stage of training (pre-training), we train a GPT2-type model to estimate the probability of64

the next token on sequences drawn from D(pcot) [30]. After several steps of pre-training, we switch65

training algorithm and further optimize the model with reinforcement learning methods; STaR [49],66

REINFORCE [46] and GRPO [35]. At a high level, all three algorithms seek to maximize the reward67

of model generations (see Appendix B for details). We focus on two types of rewards:68

End-to-end correctness: The reward function assesses whether the last token is equal to the correct69

answer: re2e(x, y) = 1
{
y[−1] =

∏d
i=1 xi

}
, where y[−1] ∈ {±1} denotes the token appearing70

right before the <EOS> token in sequence y.71

Chain-of-thought correctness: The reward function assesses whether the whole sequence is valid:72

rcot(x, y) = 1
{
y =

(
x1, x1x2, . . . ,

∏d
i=1 xi, <EOS>

)
∨ y =

(∏d
i=1 xi, <EOS>

)}
.73

Results First, we show results for pre-training (next-token prediction) on data sampled from D(pcot)74

for various values of mixture weight pcot in Figure 2. As we can see, performance under greedy75

decoding is determined by the value of pcot: if the percentage of long sequences in the data is large76

enough (e.g. pcot=0.75), then the model quickly learns to predict the parity of the input correctly77

by generating long responses and generalizes perfectly. On the other hand, when long sequences78

are rare, the model generates short responses and performs on par with random guessing even after79

training on millions of sequences. In fact, the critical threshold is around pcot=1/3 (Figure 2 (right)).80

For the distributions with small pcot where the models did not manage to generalize during pre-81

training, we consider switching to post-training: at some iteration, we stop training with the next-token82

objective and resume model training with an RL algorithm. We show results in Figure 3 for pcot=0.25,83

where we plot post-training accuracy as a function of RL iterations for all post-train algorithms.84

Progress during RL is immediate: after training on only a few sequences, model performance under85

greedy decoding grows from random guessing to 100% accuracy. This improvement is accompanied86

with increase in the length of the model’s generations, which grows from 1 (min train length) to 5087

(max train length). To further emphasize the sample complexity difference between the two paradigms,88

we show aggregated results (pre- & post-training combined) in Figure 1 for d=50, pcot=0.25 and89

post-training with GRPO starting from various checkpoints. Appendix D.1 contains more discussion90

and results. Next, we theoretically elucidate the mechanisms by which RL improves over next-token91

prediction in our setting and why this improvement is accompanied by length increase.92

3 Theory93

Architecture We study an autoregressive model that consists of d+1 linear predictors. We reduce94

next-token prediction on D(pcot) to a series of binary classification problems. At a high-level, the95

feature embedding used in each one of them involves (at most) second-degree monomials of the input,96

which is a canonical embedding choice. We denote the induced autoregressive hypothesis class by97

HLin
AR. We define GREEDY to be the operation of greedy decoding from the model logits (takes the sign98

of each model’s output). By composing each individual component of h ∈ HLin
AR with the sigmoid,99

3

we also define the probability measure induced by h, namely πh(· | x) ∈ ∆(Y). This corresponds to100

sampling from the model with temperature 1. Appendix F contains background information, formal101

definitions and proofs of all statements. Our first result characterizes the model during pre-training.102

Theorem 1. (Pre-training, Informal) Let d ≥ 2, pcot ∈ (0, 3/4). Consider running Stochastic103

Gradient Descent (SGD) for minimizing the next-token prediction objective with respect to dis-104

tribution D(pcot) over HLin
AR with an additional ℓ2 regularization term. Then, for any 0 < ε <105

(d+ 1)min
{

1
2 , ln

1+pcot

1−pcot
,
∣∣∣ln 1−pcot

2pcot

∣∣∣} and after O(poly(d, 1/ε, 1/pcot)) iterations, with high prob-106

ability over sampling from D(pcot), SGD returns model hpre ∈ HLin
AR for which the following hold:107

1. Length calibration: For any input x ∈ {±1}d, it holds:108 ∣∣∣∣∣πhpre

((
x1, x1x2, . . . ,

d∏
i=1

xi, <EOS>

)∣∣∣∣∣x
)

− pcot

∣∣∣∣∣ ≲ ε,∣∣∣∣∣πhpre

((
d∏

i=1

xi, <EOS>

)∣∣∣∣∣x
)

− 1− pcot
2

∣∣∣∣∣ ≲ ε.

(1)

2. Failure of greedy decoding: For any x ∈ {±1}d, it holds:109

GREEDY(hpre(x)) =

{
(x1, <EOS>) , if pcot < 1/3,(
x1, x1x2, . . . ,

∏d
i=1 xi, <EOS>

)
, otherwise.

(2)

That is, test accuracy under greedy decoding is on par with random chance if pcot < 1/3,110

and perfect otherwise.111

Next, we study RL with (regularized) STaR objective and show the main learning result of the paper.112

Theorem 2. (Post-training, Informal) Let hpre be the output of SGD after pre-training under the113

conditions of Theorem 1 for pcot < 1/3 and ε ≤ c0
pcot

1−pcot
for a sufficiently small constant c0 > 0.114

Consider post-training of hpre with the STaR algorithm using reward rcot. Suppose each STaR round115

uses O(poly(d, 1/ε, 1/pcot)) SGD iterations, and let h(n) denote the model after n rounds. Then,116

there exists an integer n⋆ = O
(
log 1−pcot

pcot

)
such that with high probability over sampling from117

D(pcot), and the model-sampled outputs used by STaR in rounds 1, . . . , n⋆ − 1, the following hold:118

1. Length increases: The probability of a long generation increases:119 ∣∣∣∣∣πh(n)

((
x1, x1x2, . . . ,

d∏
i=1

xi, <EOS>

)∣∣∣∣∣x
)

− qn

∣∣∣∣∣ ≲ ε, (3)

where |qn − pn| ≲ 2nε and pn+1 = 2pn

1+pn
for all n ≤ n⋆ with p0 = pcot.120

2. Perfect generalization: After n⋆ RL rounds, it holds:121

GREEDY
(
h(n⋆)(x)

)
=

(
x1, x1x2, . . . ,

d∏
i=1

xi, <EOS>

)
. (4)

Remark 1. Consider the case where long demonstrations are very rare, that is pcot → 0 as d → ∞,122

which is perhaps the most interesting case. Theorem 2 shows that as long as pcot ∈ Ω(d−κ) for some123

constant κ ∈ N, then we can learn the parity using O(poly(d)) SGD steps. This should be contrasted124

with the well-known hardness results on learning parities [17, 37].125

4 Conclusion126

In this work, we introduced a theoretical framework to study the success of reinforcement learning127

applied after next-token prediction in Large Language Models. We demonstrated and proved that128

when the data contain rare elaborate sequences encoding a challenging target function, RL can help129

the model to learn by effectively up-sampling the presence of the long demonstrations in the data mix.130

Future work can address the limitations of our setting, by understanding, for example, how noisy131

chains of thought affect the conclusions, as well as considering separate pre-train and post-train target132

functions. Experiments with LLMs can be found in Appendix E and a discussion in Appendix A.133

4

References134

[1] Abbe, E., Adserà, E. B., and Misiakiewicz, T. (2023). SGD learning on neural networks: leap135

complexity and saddle-to-saddle dynamics. In Neu, G. and Rosasco, L., editors, The Thirty Sixth136

Annual Conference on Learning Theory, COLT 2023, 12-15 July 2023, Bangalore, India, volume137

195 of Proceedings of Machine Learning Research, pages 2552–2623. PMLR.138

[2] Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Al-139

tenschmidt, J., Altman, S., Anadkat, S., et al. (2023). Gpt-4 technical report. arXiv preprint140

arXiv:2303.08774.141

[3] Bakhtin, A., Wu, D. J., Lerer, A., Gray, J., Jacob, A. P., Farina, G., Miller, A. H., and Brown, N.142

(2023). Mastering the game of no-press diplomacy via human-regularized reinforcement learning143

and planning. In The Eleventh International Conference on Learning Representations, ICLR 2023,144

Kigali, Rwanda, May 1-5, 2023.145

[4] Barak, B., Edelman, B. L., Goel, S., Kakade, S. M., Malach, E., and Zhang, C. (2022). Hidden146

progress in deep learning: SGD learns parities near the computational limit. In Koyejo, S.,147

Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A., editors, Advances in Neural148

Information Processing Systems 35: Annual Conference on Neural Information Processing Systems149

2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022.150

[5] Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi, D., Fis-151

cher, Q., Hashme, S., Hesse, C., Józefowicz, R., Gray, S., Olsson, C., Pachocki, J., Petrov, M.,152

de Oliveira Pinto, H. P., Raiman, J., Salimans, T., Schlatter, J., Schneider, J., Sidor, S., Sutskever,153

I., Tang, J., Wolski, F., and Zhang, S. (2019). Dota 2 with large scale deep reinforcement learning.154

CoRR, abs/1912.06680.155

[6] Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J.,156

Hilton, J., Nakano, R., Hesse, C., and Schulman, J. (2021). Training verifiers to solve math word157

problems. CoRR, abs/2110.14168.158

[7] DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang,159

P., Bi, X., Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao, Z., Li, Z., Gao, Z., Liu, A., Xue,160

B., Wang, B., Wu, B., Feng, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D., Chen,161

D., Ji, D., Li, E., Lin, F., Dai, F., Luo, F., Hao, G., Chen, G., Li, G., Zhang, H., Bao, H., Xu, H.,162

Wang, H., Ding, H., Xin, H., Gao, H., Qu, H., Li, H., Guo, J., Li, J., Wang, J., Chen, J., Yuan, J.,163

Qiu, J., Li, J., Cai, J. L., Ni, J., Liang, J., Chen, J., Dong, K., Hu, K., Gao, K., Guan, K., Huang,164

K., Yu, K., Wang, L., Zhang, L., Zhao, L., Wang, L., Zhang, L., Xu, L., Xia, L., Zhang, M., Zhang,165

M., Tang, M., Li, M., Wang, M., Li, M., Tian, N., Huang, P., Zhang, P., Wang, Q., Chen, Q., Du,166

Q., Ge, R., Zhang, R., Pan, R., Wang, R., Chen, R. J., Jin, R. L., Chen, R., Lu, S., Zhou, S., Chen,167

S., Ye, S., Wang, S., Yu, S., Zhou, S., Pan, S., and Li, S. S. (2025). Deepseek-r1: Incentivizing168

reasoning capability in llms via reinforcement learning. CoRR, abs/2501.12948.169

[8] Deng, Y., Choi, Y., and Shieber, S. M. (2024). From explicit cot to implicit cot: Learning to170

internalize cot step by step. CoRR, abs/2405.14838.171

[9] Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten,172

A., Yang, A., Fan, A., Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sravankumar, A., Korenev, A.,173

Hinsvark, A., Rao, A., Zhang, A., Rodriguez, A., Gregerson, A., Spataru, A., Rozière, B., Biron,174

B., Tang, B., Chern, B., Caucheteux, C., Nayak, C., Bi, C., Marra, C., McConnell, C., Keller, C.,175

Touret, C., Wu, C., Wong, C., Ferrer, C. C., Nikolaidis, C., Allonsius, D., Song, D., Pintz, D.,176

Livshits, D., Esiobu, D., Choudhary, D., Mahajan, D., Garcia-Olano, D., Perino, D., Hupkes, D.,177

Lakomkin, E., AlBadawy, E., Lobanova, E., Dinan, E., Smith, E. M., Radenovic, F., Zhang, F.,178

Synnaeve, G., Lee, G., Anderson, G. L., Nail, G., Mialon, G., Pang, G., Cucurell, G., Nguyen, H.,179

Korevaar, H., Xu, H., Touvron, H., Zarov, I., Ibarra, I. A., Kloumann, I. M., Misra, I., Evtimov,180

I., Copet, J., Lee, J., Geffert, J., Vranes, J., Park, J., Mahadeokar, J., Shah, J., van der Linde, J.,181

Billock, J., Hong, J., Lee, J., Fu, J., Chi, J., Huang, J., Liu, J., Wang, J., Yu, J., Bitton, J., Spisak,182

J., Park, J., Rocca, J., Johnstun, J., Saxe, J., Jia, J., Alwala, K. V., Upasani, K., Plawiak, K., Li, K.,183

Heafield, K., Stone, K., and et al. (2024). The llama 3 herd of models. CoRR, abs/2407.21783.184

5

[10] Feng, G., Zhang, B., Gu, Y., Ye, H., He, D., and Wang, L. (2023). Towards revealing the185

mystery behind chain of thought: A theoretical perspective. In Oh, A., Naumann, T., Globerson,186

A., Saenko, K., Hardt, M., and Levine, S., editors, Advances in Neural Information Processing187

Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,188

New Orleans, LA, USA, December 10 - 16, 2023.189

[11] Hastad, J. (1987). Computational Limitations of Small-Depth Circuits. MIT Press (MA).190

[12] Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., and Steinhardt,191

J. (2021). Measuring mathematical problem solving with the math dataset. NeurIPS.192

[13] Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky, A., Low, A., Helyar, A., Madry,193

A., Beutel, A., Carney, A., Iftimie, A., Karpenko, A., Passos, A. T., Neitz, A., Prokofiev, A.,194

Wei, A., Tam, A., Bennett, A., Kumar, A., Saraiva, A., Vallone, A., Duberstein, A., Kondrich,195

A., Mishchenko, A., Applebaum, A., Jiang, A., Nair, A., Zoph, B., Ghorbani, B., Rossen, B.,196

Sokolowsky, B., Barak, B., McGrew, B., Minaiev, B., Hao, B., Baker, B., Houghton, B., McKinzie,197

B., Eastman, B., Lugaresi, C., Bassin, C., Hudson, C., Li, C. M., de Bourcy, C., Voss, C., Shen,198

C., Zhang, C., Koch, C., Orsinger, C., Hesse, C., Fischer, C., Chan, C., Roberts, D., Kappler, D.,199

Levy, D., Selsam, D., Dohan, D., Farhi, D., Mely, D., Robinson, D., Tsipras, D., Li, D., Oprica, D.,200

Freeman, E., Zhang, E., Wong, E., Proehl, E., Cheung, E., Mitchell, E., Wallace, E., Ritter, E.,201

Mays, E., Wang, F., Such, F. P., Raso, F., Leoni, F., Tsimpourlas, F., Song, F., von Lohmann, F.,202

Sulit, F., Salmon, G., Parascandolo, G., Chabot, G., Zhao, G., Brockman, G., Leclerc, G., Salman,203

H., Bao, H., Sheng, H., Andrin, H., Bagherinezhad, H., Ren, H., Lightman, H., Chung, H. W.,204

Kivlichan, I., O’Connell, I., Osband, I., Gilaberte, I. C., and Akkaya, I. (2024). Openai o1 system205

card. CoRR, abs/2412.16720.206

[14] Jelassi, S., Brandfonbrener, D., Kakade, S. M., and Malach, E. (2024). Repeat after me:207

Transformers are better than state space models at copying. In Forty-first International Conference208

on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.209

[15] Joshi, N., Vardi, G., Block, A., Goel, S., Li, Z., Misiakiewicz, T., and Srebro, N. (2025). A210

theory of learning with autoregressive chain of thought. In Haghtalab, N. and Moitra, A., editors,211

The Thirty Eighth Annual Conference on Learning Theory, 30-4 July 2025, Lyon, France, volume212

291 of Proceedings of Machine Learning Research, pages 3161–3212. PMLR.213

[16] Kamath, P., Montasser, O., and Srebro, N. (2020). Approximate is good enough: Probabilistic214

variants of dimensional and margin complexity. In Conference on Learning Theory, pages 2236–215

2262. PMLR.216

[17] Kearns, M. J. (1998). Efficient noise-tolerant learning from statistical queries. J. ACM,217

45(6):983–1006.218

[18] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio, Y.219

and LeCun, Y., editors, 3rd International Conference on Learning Representations, ICLR 2015,220

San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.221

[19] Li, Z., Liu, H., Zhou, D., and Ma, T. (2024). Chain of thought empowers transformers to solve222

inherently serial problems. In The Twelfth International Conference on Learning Representations,223

ICLR 2024, Vienna, Austria, May 7-11, 2024.224

[20] Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang, C. (2023). Transformers learn225

shortcuts to automata. In The Eleventh International Conference on Learning Representations,226

ICLR 2023, Kigali, Rwanda, May 1-5, 2023.227

[21] Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization. In 7th International228

Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.229

[22] Malach, E. (2024). Auto-regressive next-token predictors are universal learners. In Forty-first230

International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.231

[23] Malach, E. and Shalev-Shwartz, S. (2022). When hardness of approximation meets hardness of232

learning. J. Mach. Learn. Res., 23:91:1–91:24.233

6

[24] Merrill, W. and Sabharwal, A. (2023). The parallelism tradeoff: Limitations of log-precision234

transformers. Trans. Assoc. Comput. Linguistics, 11:531–545.235

[25] Merrill, W. and Sabharwal, A. (2024). The expressive power of transformers with chain of236

thought. In The Twelfth International Conference on Learning Representations, ICLR 2024,237

Vienna, Austria, May 7-11, 2024.238

[26] Minsky, M. and Papert, S. A. (1969). Perceptrons: An Introduction to Computational Geometry.239

The MIT Press.240

[27] Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of Machine Learning.241

Adaptive computation and machine learning. MIT Press.242

[28] Nye, M. I., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber, D., Dohan,243

D., Lewkowycz, A., Bosma, M., Luan, D., Sutton, C., and Odena, A. (2021). Show your work:244

Scratchpads for intermediate computation with language models. CoRR, abs/2112.00114.245

[29] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,246

Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E. Z., DeVito, Z., Raison, M., Tejani,247

A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative248

style, high-performance deep learning library. In Wallach, H. M., Larochelle, H., Beygelzimer, A.,249

d’Alché-Buc, F., Fox, E. B., and Garnett, R., editors, Advances in Neural Information Processing250

Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,251

December 8-14, 2019, Vancouver, BC, Canada, pages 8024–8035.252

[30] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language253

models are unsupervised multitask learners. OpenAI.254

[31] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy255

optimization algorithms. CoRR, abs/1707.06347.256

[32] Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words with257

subword units. In Erk, K. and Smith, N. A., editors, Proceedings of the 54th Annual Meeting258

of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany.259

Association for Computational Linguistics.260

[33] Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learning - From Theory261

to Algorithms. Cambridge University Press.262

[34] Shalev-Shwartz, S., Shamir, O., and Shammah, S. (2017). Failures of gradient-based deep263

learning. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International Conference264

on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of265

Proceedings of Machine Learning Research, pages 3067–3075. PMLR.266

[35] Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Zhang, M., Li, Y. K., Wu, Y., and Guo, D. (2024).267

Deepseekmath: Pushing the limits of mathematical reasoning in open language models. CoRR,268

abs/2402.03300.269

[36] Shen, R., Bubeck, S., Eldan, R., Lee, Y. T., Li, Y., and Zhang, Y. (2023). Positional description270

matters for transformers arithmetic. CoRR, abs/2311.14737.271

[37] Shoshani, I. and Shamir, O. (2025). Hardness of learning fixed parities with neural networks.272

CoRR, abs/2501.00817.273

[38] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrit-274

twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J.,275

Kalchbrenner, N., Sutskever, I., Lillicrap, T. P., Leach, M., Kavukcuoglu, K., Graepel, T., and276

Hassabis, D. (2016). Mastering the game of go with deep neural networks and tree search. Nature,277

529(7587):484–489.278

[39] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T.,279

Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T. P., Hui, F., Sifre, L., van den Driessche,280

G., Graepel, T., and Hassabis, D. (2017). Mastering the game of go without human knowledge.281

Nature, 550(7676):354–359.282

7

[40] Su, J., Ahmed, M. H. M., Lu, Y., Pan, S., Bo, W., and Liu, Y. (2024). Roformer: Enhanced283

transformer with rotary position embedding. Neurocomputing, 568:127063.284

[41] torchtune maintainers and contributors (2024). torchtune: Pytorch’s finetuning library.285

[42] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,286

and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., von Luxburg, U., Bengio,287

S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N., and Garnett, R., editors, Advances in288

Neural Information Processing Systems 30: Annual Conference on Neural Information Processing289

Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008.290

[43] von Werra, L., Belkada, Y., Tunstall, L., Beeching, E., Thrush, T., Lambert, N., Huang,291

S., Rasul, K., and Gallouédec, Q. (2020). Trl: Transformer reinforcement learning. https:292

//github.com/huggingface/trl.293

[44] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E. H., Le, Q. V., and294

Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models. In295

Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A., editors, Advances in296

Neural Information Processing Systems 35: Annual Conference on Neural Information Processing297

Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022.298

[45] Wies, N., Levine, Y., and Shashua, A. (2023). Sub-task decomposition enables learning in299

sequence to sequence tasks. In The Eleventh International Conference on Learning Representations,300

ICLR 2023, Kigali, Rwanda, May 1-5, 2023.301

[46] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist302

reinforcement learning. Machine Learning, 8:229–256.303

[47] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,304

R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C.,305

Le Scao, T., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. (2020). Transformers: State-of-306

the-art natural language processing. In Liu, Q. and Schlangen, D., editors, Proceedings of the307

2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations,308

pages 38–45, Online. Association for Computational Linguistics.309

[48] Wu, J., Bartlett, P. L., Telgarsky, M., and Yu, B. (2025). Benefits of early stopping in gradient310

descent for overparameterized logistic regression. CoRR, abs/2502.13283.311

[49] Zelikman, E., Wu, Y., Mu, J., and Goodman, N. D. (2022). Star: Bootstrapping reasoning312

with reasoning. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A.,313

editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neural314

Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -315

December 9, 2022.316

8

https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://github.com/huggingface/trl

Table of Contents317

A Discussion 9318

B Models and Algorithms 10319

B.1 Architecture . 10320

B.2 Pre-training . 10321

B.3 Post-training . 10322

C Experimental Details 12323

C.1 Parity . 12324

C.2 Number Multiplication . 12325

C.3 GSM8K . 13326

C.4 MATH . 14327

D Additional experimental results 15328

D.1 More experiments on main parity setting . 15329

D.2 Partial chain of thought . 22330

E Experiments with Mathematical Reasoning Benchmarks 23331

E.1 Number Multiplication . 24332

E.2 Grade School & High School Mathematics (GSM8K & MATH datasets) 25333

F Proofs 44334

F.1 Preliminaries & Setup . 44335

F.2 Pre-training . 50336

F.3 Post-training . 64337

A Discussion338

Here, we discuss our results and their implications in more detail.339

Learning with chain of thought data Recently, a few theoretical works have attempted to capture340

the success of autoregressive modeling with LLMs [45, 22, 15]. In particular, Joshi et al. [15], Malach341

[22] showed that next-token prediction can lead to computationally efficient learning of any efficiently342

computable binary function, which stands in sharp contrast to standard supervised learning where only343

a limited class of functions can be learned efficiently. However, these results rely on the assumption344

that a learner has access to a dataset with perfect chain of thought data. While this has turned out to345

be a very productive assumption for the theoretical study of autoregressive learning, it nonetheless346

constitutes a strong assumption. Our work takes a step forward in relaxing this requirement; it347

instead assumes that the dataset contains at least a nonzero (possibly polynomially small in the348

context length) fraction of chain of thought data. This is arguably a more natural assumption for349

modeling the presence of elaborate “good” demonstrations in the vast ocean of internet text. As350

we showed in Section 3, this is enough to guarantee efficient learning of the parity function and,351

interestingly, the guarantee is achieved through a variation of the popular post-training recipe used352

in state-of-the-art LLMs. We believe our proof strategy can be modified to show that pre-training353

followed by post-training can lead to efficient learning for other “hard” functions. We leave such a354

study for future work.355

9

Length increase as a learning phenomenon The common wisdom in the literature has been356

that the chain of thought during RL grows to enable the approximation of complex algorithmic357

tasks. Indeed, some computational problems require large computational depth to be executed358

with reasonable resources [11] and the standard decoder-only transformer architecture with context359

length n appears limited in what it can represent exactly with constant depth. On the other hand, a360

transformer augmented with O(poly(n)) chain of thought can simulate any function described by361

a circuit of polynomial size [10, 19, 24], as the additional chain of thought provides computational362

depth to the model. As such, it seems theoretically satisfying that when chain of thought grows during363

RL, the model’s performance improves on complex tasks. One shortcoming of this perspective is364

that it does not aim to explain why or how optimization pressures lead to length increase, which365

was the main focus of our work. On a more abstract level, the approximation advantage of long366

responses suggested by prior work is indeed fundamental, as one cannot hope to learn a task without367

the capacity to represent it2. Nevertheless, the learning advantage we captured in this paper can be368

more prevalent as it even appears in cases where representation is not an issue (such as the parity369

task we considered). Based on the above, we suggest interpreting the growth of the length during370

reinforcement learning of autoregressive models as a bona fide learning phenomenon.371

B Models and Algorithms372

Herein, we describe the main models and training algorithms we consider in the parity experiments.373

B.1 Architecture374

A transformer is a sequence-to-sequence neural network, which in its simplest form consists of375

layers of self-attention followed by a position-wise feed-forward network. The term “autoregressive”376

indicates that the prediction of the model for each new token is conditioned only on tokens that377

appeared earlier in the sequence. To obtain a distribution over the next token, it is common to378

compose the output of the transformer with a soft-max layer across the vocabulary index, which can379

be potentially parameterized by a temperature value.380

B.2 Pre-training381

The next-token prediction objective consists of the log loss of the model token distribution evaluated at382

output positions 1 to d. We omit the first d input positions of the sequence from the loss objective, as383

input bits x1, . . . , xd are distributed uniformly at random. If we denote the predicted sequence-level384

distribution by πϑ(y | x) =
∏|y|

j=1 πϑ,j(yj | x, y<j) ∈ (0, 1), which is induced by the prediction of385

the transformer at each position composed with the soft-max, then training corresponds to:386

min
ϑ

E(x,y)∼D(pcot)

 |y|∑
j=1

− lnπϑ,j (yj | x, y<j)

 (5)

B.3 Post-training387

We consider three main reinforcement learning algorithms: Self-Taught Reasoner (STaR) [49],388

REward Increment=Nonnegative Factor times Offset Reinforcement times Characteristic Eligibility389

(REINFORCE) [46] and Group Relative Policy Optimization (GRPO) [35]. Let r : X × Y 7→ {0, 1}390

be a binary reward function. We consider outcome-based rewards, which assign one reward value per391

sequence.392

STaR In STaR (Algorithm 1), we first query the pre-trained model to generate responses for inputs.393

We then filter out those with 0 reward and fine-tune the model on the rest using the next-token394

prediction objective. We repeat this process for several rounds, each time sampling from the model395

2The actual situation is a bit more nuanced, as exact representation is not a strict requirement for learn-
ing through approximation (which is the goal in e.g. PAC learning). See [16, 23] for some definitions of
approximation which can be more fruitful for understanding learning.

10

returned by the previous round. The algorithm over one round corresponds to:396

min
ϑ

Ex∼Rad(1/2)⊗d,
y∼πϑprev (·|x)

 |y|∑
j=1

− lnπϑ,j (yj | x, y<j)

∣∣∣∣∣r(x, y) = 1

 , (6)

where ϑprev ∈ Rp corresponds to parameters returned in the previous round of the algorithm.397

The pseudocode of STaR can be found in Algorithm 1.398

Algorithm 1 Self-Taught Reasoner (STaR) Algorithm
Require: Pre-trained model parameters ϑ0, RL rounds n, Fine-tuning epochs per round E, Input

distribution Dx = Rad(1/2)⊗d, Reward function r(x, y), Number of samples to generate per
round N .

1: Set ϑ = ϑ0

2: for r = 1 to n do
3: Set S = ∅
4: for i = 1 to N do
5: Sample x ∼ Dx.
6: Sample y ∼ πϑ(· | x).
7: if r(x, y) = 1 then
8: Set S = S ∪ {(x, y)}.
9: end if

10: end for
11: for epoch = 1 to E do
12: for each (x, y) ∈ S do
13: Update ϑ by taking a gradient step on the next-token prediction loss for (x, y).
14: end for
15: end for
16: end for
17: return Final model parameters ϑ.

REINFORCE REINFORCE is a standard policy gradient algorithm. It seeks to maximize the399

expected reward of a sequence generated by the model:400

max
ϑ

Ex∼Rad(1/2)⊗d,
y∼πϑ(·|x)

[r(x, y)] . (7)

The gradient of the objective function can be written as:401

Ex∼Rad(1/2)⊗d,
y∼πϑ(·|x)

[∇ϑ lnπϑ(y|x)r(x, y)] , (8)

which implies that the algorithm can be recast as:402

min
ϑ

Ex∼Rad(1/2)⊗d,
y∼πϑ(·|x)

[− lnπϑ (y | x) r(x, y)] , (9)

where the random variable y is treated as a constant and not as a function of ϑ. This is the surrogate403

objective that is optimized in practice. Observe the similarities with the STaR objective of (6).404

Furthermore, a widely adopted option is to center the rewards in order to reduce the variance of the405

updates during the execution of a stochastic optimization algorithm. This leads to the final version of406

the REINFORCE method:407

min
ϑ

Ex∼Rad(1/2)⊗d,
y∼πϑ(·|x)

 |y|∑
j=1

− lnπϑ,j (yj | x, y<j)A(x, y)

 , (10)

where A(x, y) = r(x, y)− Ex∼Rad(1/2)⊗d,
y∼πϑ(·|x)

[r(x, y)] is often called the advantage function.408

11

GRPO Group Relative Policy Optimization, or GRPO for short, is a policy gradient algorithm,409

motivated by the class of Proximal Policy Optimization (PPO) algorithms [31], that is widely used410

for post-training large language models with reinforcement learning. Its objective amounts to:411

E x∼Rad(1/2)⊗d

y(1),...,y(N)∼πold(·|x)

[
1

N

N∑
i=1

1

|y(i)|

|y(i)|∑
j=1

min
{
ri,jAi, clip(ri,j , 1− ϵclip, 1 + ϵclip)Ai

}]
,

where Ai =
r(x,y(i))−mean(r(x,y(1)),...,r(x,y(N)))

std(r(x,y(1)),...,r(x,y(N)))
is a normalized reward, ϵclip is a hyperparameter412

and πold is a predicted distribution that corresponds to an earlier model checkpoint during the413

execution of the algorithm. We defined ri,j :=
πϑ,j

(
y
(i)
j |x,y(i)

<j

)
πold,j

(
y
(i)
j |x,y(i)

<j

) . The term “Group” indicates414

sampling of a group of N responses per input.415

C Experimental Details416

The experiments are implemented using PyTorch [29].417

C.1 Parity418

We use the Transformers library [47] for our parity experiments.419

Architecture The transformer is initialized with context length d′=2d, to be able to process420

the whole sequence, where recall d is the number of input bits. The two architectures we con-421

sider primarily differ in the type of positional encodings: GPT2 uses absolute positional encod-422

ings of the input sequence, while Mistral uses relative positional encodings [40]. We use the423

GPT2Config, MistralConfig config classes to define the models. We consider several model424

hyperparameters: depth (number of transformer blocks) L ∈ {2, 4, 8}, embedding dimension425

demdb ∈ {128, 256}, number of heads nheads ∈ {4, 32}. By the default convention, each head426

has dimension demdb/nheads.427

Pre-training We consider distributions with

pcot ∈ {0, 0.05, 0.1, 0.25, 0.3, 0.32, 0.33, 0.34, 0.35, 0.4, 0.5, 0.6, 0.75, 1.0}.

We use the Adam [18] optimizer with learning rate ηpre=10−3 and a batch size Bpre=256. Test428

statistics are estimated using 2,560 new samples.429

In Figure 2 (right), each bullet corresponds to the final test accuracy with greedy decoding over 3430

random seeds. The final accuracy of each run is defined as the average accuracy from the last 5431

checkpoints of the pre-trained run (that is, average accuracy at iterations 47,500 to 49,500).432

Post-training We continue post-training from the last checkpoint of pre-training. For STaR, we433

generate 3, 200 samples per RL iteration and train on the correct ones for 3 epochs with batch size 64.434

For REINFORCE and GRPO, we use batch size 64. We found it necessary to use a larger sample size435

per RL iteration for STaR. The GRPO experiments use N = 4 rollouts per input and clip parameter436

ϵclip = 0.2. No KL penalty is applied (as outlined in Section B). We use the Adam [18] optimizer437

with learning rate ηpre=10−4. Test statistics are estimated using 640 new samples.438

C.2 Number Multiplication439

Architecture We use the GPT2 [30] architecture which contains 124,439,808 parameters and the440

default GPT2 tokenizer that includes a vocabulary of size 50,257 and utilizes Byte Pair Encoding [32].441

Pre-training We consider datasets with pcot ∈ {0.1, 0.25, 0.5, 1}. The dataset and the pre-training442

code is based on the public repository of [8]. We train with the next-token prediction objective applied443

to the chain of thought (if it exists) and the answer tokens of the sequence. We use the AdamW [21]444

12

optimizer with learning rate ηpre=5 · 10−5, batch size Bpre=32, and maximum gradient norm equal445

to 1.0. We train for 15 epochs for the 4× 4 task and 50 epochs for 5× 5 and 7× 7. All 3 training446

datasets consist of 808,000 unique samples. We train each model (3 random seeds per task) in a447

single GPU (NVIDIA A100-SXM4-80GB). For 4× 4, each run takes approximately 3-5 hours to448

complete (depending on the value of pcot). For 5× 5 and 7× 7, the completion time ranges in 21-38449

hours.450

Post-training We train with GRPO with an end-to-end reward function (that is, 1 if the tokens451

generated after #### correspond to the correct answer3 and 0 otherwise). We use the AdamW [21]452

optimizer with learning rate ηpost=3 · 10−6 (and Huggingface’s Transformers’ [47] default rest453

of hyperparameters), batch size Bpost=16, group size (for GRPO) equal to 4, 2 steps of gradient454

accumulation (which makes the effective batch size equal to 32), no KL penalty, ϵclip = 0.2. We use455

generation temperature τRL = 1.0. We use the TRL library for efficient post-training [43]. We found456

it necessary to implement a wrapper around the model forward’s function to force the model to be in457

evaluation mode during the generation of the rollouts for RL (that is, to turn off any sources of non-458

determinism in the model, such as dropout layers). Otherwise, under TRL’s default implementation,459

the model was not able to generate correct responses, even during the very first RL iteration. We460

perform post-training for each random seed in a single GPU (NVIDIA A100-SXM4-80GB) which461

concludes in about 3.5 hours.462

Test accuracy is estimated using a set of 1000 unseen pairs of numbers.463

Estimate of total GPU hours needed to reproduce the pre-training and post-training results: 900464

C.3 GSM8K465

Our code is based on the torchtune library [41].466

Architecture We use the Llama 3.2 3B base model for our GSM8K experiments.467

We split each dataset into equal parts, perform supervised fine-tuning (SFT) on the first half with the468

next-token prediction objective applied to the answer portion of the sequence, and then switch to RL469

on the second half.470

Supervised fine-tuning We train with the next-token prediction objective applied to the471

chain of thought and answer tokens of the sequence. We structure the data with pream-472

ble prompt (not calculating loss): "A conversation between User and Assistant.473

The user asks a question, and the Assistant solves it. The assistant474

first thinks about the reasoning process in the mind and then provides475

the user with the answer. The reasoning process and answer are enclosed476

within <think></think> and <answer></answer> tags, respectively, i.e.,477

<think>reasoning process here</think> <answer>answer here</answer>. User:478

{question} Assistant: " and structure the following sequence as: <think>cot</think>479

<answer>answer</answer>, where cot is everything that exists before characters #### in the480

original GSM8k dataset. As before, we drop the cot from each sample with probability pcot.481

We use the AdamW [21] optimizer with learning rate ηsft=10−5, batch size Bsft=256, and bf16482

precision. We train for 30 epochs. We consider datasets with pcot ∈ {0.1, 0.25, 0.5, 1}. We use483

PyTorch for distributed training. Each run is performed in 8 GPUs (NVIDIA A100-SXM4-80GB)484

and takes 1.5 hour to complete.485

Post-training We train with GRPO with a reward function that has stepwise structure: 5 points for486

the presence of the answer tag, 5 points for the presence of the thinking tag, 20 points if it contains487

the correct answer in part of the response, and 100 points for a correct answer at the appropriate place.488

We found it important using the math-verify module of Huggingface for simplifying mathematical489

expressions and accurately rewarding generations. We use the AdamW [21] optimizer with learning490

rate ηpost=10−5, cosine learning rate scheduler, batch size Bpost=1, group size (for GRPO) equal to491

32, no KL penalty, ϵclip = 0.2. We use generation temperature τRL = 1.0. We perform post-training492

3That is, “complete number match”.

13

in 8 GPUs (NVIDIA A100-SXM4-80GB) and each run concludes in 31-35hours and 20hours for493

pcot = 0.494

Test statistics are estimated on the test set of GSM8k using 4 generations per question and taking the495

average.496

Estimate of total GPU hours needed to reproduce the pre-training and post-training results: 11k497

C.4 MATH498

Our code is based on the torchtune library [41].499

Architecture We use the Llama 3.2 3B, and 3.1 8B instruct models.500

We split each dataset into equal parts4, perform supervised fine-tuning (SFT) on the first half with the501

next-token prediction objective applied to the answer portion of the sequence, and then switch to RL502

on the second half.503

Supervised fine-tuning We train with the next-token prediction objective applied to the chain504

of thought and answer tokens of the sequence. We structure the data with preamble prompt (not505

calculating loss):506

<|begin of text|><|start header id|>system<|end header id|>507

Cutting Knowledge Date: "508

"December 2023509

Today Date: 26 Jul 2024510

A conversation between User and Assistant. The user "511

"asks a question, and the Assistant solves it. "512

"The assistant first thinks about the reasoning "513

"process in the mind and then provides the user with the answer. "514

"The reasoning process and "515

"answer are enclosed within <think></think> "516

"and <answer></answer> tags, respectively, i.e., "517

"<think>reasoning process here</think> <answer>answer "518

"here</answer>. Inside the answer tag, put only "519

"the answer and no additional commentary. <|eot id|><|start "520

"header id |>user<|end header id|> {question} "521

"<|eot id|><|start header id|>assistant<|end header id|>522

and structure the sequence as: <think>cot</think> <answer>answer</answer>, where cot is523

everything that exists in the original MATH sequence before the boxed answer. We drop the cot with524

probability pcot.525

We use the AdamW [21] optimizer with learning rate ηsft=10−5, batch size Bsft=24 for the 3.2526

3B model and Bsft=16 for the 3.1 8B model, and bf16 precision. We train for 20 epochs. We527

consider datasets with pcot ∈ {0.1, 0.25, 0.5, 1}. We use PyTorch for distributed training. Each run528

is performed in 8 GPUs (NVIDIA A100-SXM4-80GB) and takes 1.5 hour to complete.529

Post-training We train with GRPO with a reward function that has stepwise structure: 5 points for530

the presence of the answer tag, 5 points for the presence of the thinking tag, 20 points if it contains531

the correct answer in part of the response, and 100 points for a correct answer at the appropriate place.532

We found it important using the math-verify module of Huggingface for simplifying mathematical533

expressions and accurately rewarding generations. We use the AdamW [21] optimizer with learning534

rate ηpost=10−5 (and Huggingface’s default rest of hyperparameters), batch size Bpost=1, group535

size (for GRPO) equal to 20, 2 steps of gradient accumulation (which makes the effective batch size536

equal to 2), no KL penalty, ϵclip = 0.2. We use generation temperature τRL = 1.0. We perform537

post-training in 8 GPUs (NVIDIA A100-SXM4-80GB) for 300 steps which concludes in about 14-29538

hours.539

4We split the datasets, since they are of small size and we perform multi-epoch training during SFT.

14

D Additional experimental results540

D.1 More experiments on main parity setting541

Explanation of learning mechanisms in main setting On pre-training vs pre-training and post-542

training: Observe that if post-training starts too early, then it might not lead to a generalizing543

model despite the length increase. However, GRPO, when started from later checkpoint, improves544

performance rapidly, and the number of post-training samples required for generalization is a545

miniscule fraction of the overall number of samples. On the other hand, mere next-token prediction546

does not result in a generalizing model (and the median greedy response remains short) even with547

access to ∼107 training samples. This demonstrates the enormous sample-complexity gap between the548

two approaches for this task. Note that when the input dimension d is smaller, pre-training eventually549

does lead to a well-generalizing model (if we optimize for sufficiently long) and post-training does550

not seem strictly necessary (see Figure 10 for d ∈ {11, 12}). However, for larger values of d, the551

amount of SGD iterations required is unreasonably large. In other words, the transformers’ inability552

to succeed during pre-training does not stem from insufficient model capacity (small number553

of parameters or lack of depth5), but it is rather because next-token prediction on this distribution554

requires many samples to lead to a good predictor. In fact, as the complexity of the task increases,555

so does the advantage of reinforcement learning after next-token prediction over mere next-token556

prediction (Figure 11). Appendix D.1 contains more experimental results for various model and task557

hyperparameters.558

On different speeds of learning & growth of test-time compute: We now describe what makes559

reinforcement learning so effective and why post-training leads to length increase in our simple560

setting. First, notice the curves in Figure 2 that correspond to sampling with temperature 1 during pre-561

training. Even when pcot < 1/3, the accuracy of the models at the end of pre-training is greater than562

50% – Figure 2 (Left). In fact, it is equal to pcot+1
2 × 100% for all cases of pcot. Furthermore, notice563

in the length plot of the same figure (Figure 2 (Center)) that the models are calibrated with respect564

to length, i.e., they generate long responses with probability pcot. These two simple observations565

directly suggest that the models learn the two parts of the mixture “in parallel” during pre-training:566

after a few training iterations, when prompted with d bits x1, . . . , xd, the models learn to generate567

long and correct responses containing the parity
∏d

i=1 xi with probability pcot and short responses568

with probability 1− pcot. As mentioned before, learning from the short sequences requires learning569

the parity of d bits in a single prediction step, which belongs to a class of computationally difficult570

problems [17] and is believed to be hard for standard neural networks to learn in practice [34, 37].571

As a result, we do not expect the model to learn using any reasonable amount of samples, and hence572

it resorts to short, random guessing with probability 1− pcot. Learning from long demonstrations,573

on the other hand, can be performed efficiently [22]. This asymmetric learning difficulty leads to574

accuracy equal to pcot × 100% + (1− pcot)× 50% = pcot+1
2 × 100%.575

The learning process during pre-training sets the stage for what follows in post-training. It is perhaps576

simpler to understand the RL dynamics in the case of the STaR algorithm with the chain-of-thought577

correctness reward rcot (cyan lines in Figure 3). The objective of (6) implements next-token prediction578

solely on model-generated sequences which contain a correct chain of thought and a correct final579

answer. If, at the end of pre-training, the probability of a long, correct generation is pcot and the580

probability of a short, correct one is (1− pcot) /2 (as suggested by Figure 2), then the model fits581

a data mixture which contains both long and short, correct sequences with proportions equal to582

p1 := pcot

pcot+(1−pcot)/2
and (1−pcot)/2

pcot+(1−pcot)/2
, respectively. If, further, the model succeeds in fitting583

them, then the conditional distribution of model generations at the end of the first round of STaR has584

the same weights, provided the model remains length-calibrated and did not manage to learn from the585

short sequences. Continuing inductively, at the start of the n’th round, we effectively sample from586

distribution D(pn), where p0 = pcot and pn = 2pn−1

1+pn−1
converges to 1 exponentially fast. Once the587

effective coefficient pn becomes larger than 1
3 (which happens when accuracy with temp. 1 exceeds588

1/3+1
2 = 2

3 – red dashed line in Figure 3), the model starts generating long, correct responses with589

greedy decoding, thus generalizing perfectly at the task. This is the mechanism that causes length590

increase in model response, which in turns allows the model to learn to generalize.591

5A shallow transformer can approximate the parity function for any input dimension d; uniform attention for
aggregating the bit values and a 2-layer MLP for computing their XOR – see Lemma 6 in [20].

15

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0

200

400

600

Se
qu

en
ce

s

Lengths (GRPO (e2e), temp=1.0)

40
50
60
70
80
90

100
Ac

cu
ra

cy
 (%

)

Test Accuracy

0

200

400

600

Se
qu

en
ce

s

Lengths (GRPO (e2e), temp=1.0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
RL Iterations

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
RL Iterations

0

200

400

600

Se
qu

en
ce

s

Lengths (GRPO (e2e), temp=1.0)

1

25

50

Le
ng

th

1

25

50

Le
ng

th

1

25

50

Le
ng

th

RL=
0.7

5

RL=
1.0

RL=
1.5

Parity, pcot=0.25, Post-training@20k, d=50, model=gpt2, depth=4, dembd=128, nheads=32

greedy (temp=0.0) temp=1.0 STaR (e2e) STaR (cot) REINFORCE (e2e) GRPO (e2e)

Figure 3: Post-training of transformers on mixture of long and short sequences encoding the
parity of d bits with various RL methods and generation temperatures (τRL). Left: Test accuracy
during the course of post-training with greedy decoding (solid lines) and sampling with temperature
1 (dashed lines) for various RL methods. Figure shows average and 1 standard deviation across 3
seeds. Right: Length of generated response (sampled with temperature 1) during the course of a
post-training run (GRPO with end-to-end reward) for 640 test inputs, after 20k pre-training iterations.
Note: The sample size n of each RL iteration differs amongst the RL algorithms: n=64 for GRPO,
REINFORCE and n=3,200 sequences for STaR.

In Appendix D.2, we consider a variation of our setting, where the data include a third type of592

sequence consisting of a partial cot. We demonstrate how this affects length distributions at the end593

of RL, and the effectiveness of length penalties during RL as a function of prior pre-train iterations.594

Model hyperparameters ablation We present aggregated results for pre-training and post-training595

on D(pcot), pcot=0.25 for GPT2 and Mistral architectures of varying embedding dimension and596

number of heads in Figure 4 (depth L=2), Figure 5 (depth L=4) and Figure 6 (depth L=8). Post-597

training uses GRPO with end-to-end reward function re2e and sampling temperature τRL=1.0 for all598

configurations. Notice that the Mistral architecture exhibits more unstable learning (pre-training)599

than GPT2. We observe that pre-training alone does not induce a model capable of consistent600

generalization in any of the cases. We plot number of training sequences on the x-axis (as opposed to,601

say, SGD iterations to allow a simpler comparison with post-training). For the number of post-train602

samples, we take the multiplicity of GRPO samples into consideration.603

Comparison of RL algorithms for more values of pcot In Figure 3, we presented test accuracy and604

response length during post-training for all RL algorithms (STaR, REINFORCE, GRPO) and for a few605

different values of sampling temperature used for generating training sequences for pcot=0.25. We606

show now additional results for distributions where data are even more rare (pcot=0.1 and pcot=0.05).607

In Figure 7, we observe that all RL algorithms induce generalization for most values of sampling608

temperature (post-training starts after 20k pre-training iterations) when pcot=0.1. On the other hand,609

when pcot is even smaller (pcot=0.05), post-training after 20k iterations does not reliably lead to610

well-generalizing models for any of the RL algorithms (Figure 8). If, instead, we consider more611

pre-training iterations (50k) before the start of post-training, then we observe greater probability of612

success with all RL algorithms for reasonable (≈1) sampling temperatures (Figure 9). This illustrates,613

amongst others, that the learning behaviors of STaR, REINFORCE and GRPO are similar in our614

simple setting.615

Smaller input dimension In Figure 10, we demonstrate that pre-training sometimes leads to a616

generalizing model if we wait long enough (example seeds shown for d=11 and d=12). However, as617

d increases, this waiting time becomes prohibitive.618

16

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=gpt2, depth=2, dembd=128, nheads=4, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=mistral, depth=2, dembd=128, nheads=4, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=gpt2, depth=2, dembd=128, nheads=32, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=mistral, depth=2, dembd=128, nheads=32, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=gpt2, depth=2, dembd=256, nheads=4, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=mistral, depth=2, dembd=256, nheads=4, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100
Ac

cu
ra

cy
 (%

) Test accuracy (Post-train @20k)
temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=gpt2, depth=2, dembd=256, nheads=32, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=mistral, depth=2, dembd=256, nheads=32, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

Figure 4: Pre-training and post-training curves combined on the parity task for GPT2 and
Mistral architectures. We vary the embedding dimension and the number of heads. Depth L=2.

17

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=gpt2, depth=4, dembd=128, nheads=4, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=mistral, depth=4, dembd=128, nheads=4, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=gpt2, depth=4, dembd=128, nheads=32, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=mistral, depth=4, dembd=128, nheads=32, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=gpt2, depth=4, dembd=256, nheads=4, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=mistral, depth=4, dembd=256, nheads=4, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100
Ac

cu
ra

cy
 (%

) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=gpt2, depth=4, dembd=256, nheads=32, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=mistral, depth=4, dembd=256, nheads=32, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

Figure 5: Pre-training and post-training curves combined on the parity task for GPT2 and
Mistral architectures. We vary the embedding dimension and the number of heads. Depth L=4.

18

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=gpt2, depth=8, dembd=128, nheads=4, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=mistral, depth=8, dembd=128, nheads=4, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=gpt2, depth=8, dembd=128, nheads=32, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=mistral, depth=8, dembd=128, nheads=32, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=gpt2, depth=8, dembd=256, nheads=4, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters Post-train

starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=mistral, depth=8, dembd=256, nheads=4, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100
Ac

cu
ra

cy
 (%

) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=gpt2, depth=8, dembd=256, nheads=32, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 w
/ g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters

PRE-TRAINING
(next-token only)

POST-TRAINING
(next-token + RL)

Parity, d=50, model=mistral, depth=8, dembd=256, nheads=32, pcot=0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#train sequences 1e7

0

10

20

30

40

50

M
ed

ia
n

le
ng

th

 u
nd

er
 g

re
ed

y
de

co
di

ng

Post-train
starts
@5k iters

Post-train
starts
@10k iters

Post-train
starts
@20k iters PRE-TRAINING

(next-token only)

POST-TRAINING
(next-token + RL)

1 10 20 30 40 50
RL Iterations

0

50

100

Ac
cu

ra
cy

 (%
) Test accuracy (Post-train @20k)

temp=0.0
temp=1.0

1 10 20 30 40 50
RL Iterations

0

250

500

Se
qu

en
ce

s

Lengths, temp=1.0 (Post-train @20k)

Pre-training & Post-training curves

next-token only
next-token & rl

Length = 1
Length = 50

Figure 6: Pre-training and post-training curves combined on the parity task for GPT2 and
Mistral architectures. We vary the embedding dimension and the number of heads. Depth L=8.

19

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0

200

400

600

Se
qu

en
ce

s

Lengths (STaR (e2e), temp=1.0)

40
50
60
70
80
90

100
Ac

cu
ra

cy
 (%

)
Test Accuracy

0

200

400

600

Se
qu

en
ce

s

Lengths (STaR (e2e), temp=1.0)

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0

200

400

600

Se
qu

en
ce

s

Lengths (STaR (e2e), temp=1.0)

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0

200

400

600

Se
qu

en
ce

s

Lengths (STaR (e2e), temp=1.0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
RL Iterations

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
RL Iterations

0

200

400

600

Se
qu

en
ce

s

Lengths (STaR (e2e), temp=1.0)

1

25

50

Le
ng

th

1

25

50

Le
ng

th

1

25

50

Le
ng

th

1

25

50

Le
ng

th

1

25

50

Le
ng

th

RL=
0.5

RL=
0.7

5

RL=
1.0

RL=
1.2

5

RL=
1.5

Parity, pcot=0.1, Post-training@20k, d=50, model=gpt2, depth=4, dembd=128, nheads=32

greedy (temp=0.0) temp=1.0 STaR (e2e) STaR (cot) REINFORCE (e2e) GRPO (e2e)

Figure 7: Post-training of transformers on mixture of long and short sequences encoding the
parity of d bits with various RL methods and generation temperatures (τRL). Mixture coefficient:
pcot=0.1. Pre-training iterations: 20k.

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0

200

400

600

Se
qu

en
ce

s

Lengths (STaR (e2e), temp=1.0)

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0

200

400

600

Se
qu

en
ce

s

Lengths (STaR (e2e), temp=1.0)

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0

200

400

600

Se
qu

en
ce

s

Lengths (STaR (e2e), temp=1.0)

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0

200

400

600

Se
qu

en
ce

s

Lengths (STaR (e2e), temp=1.0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
RL Iterations

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
RL Iterations

0

200

400

600

Se
qu

en
ce

s

Lengths (STaR (e2e), temp=1.0)

1

25

50

Le
ng

th

1

25

50
Le

ng
th

1

25

50

Le
ng

th

1

25

50

Le
ng

th

1

25

50

Le
ng

th

RL=
0.5

RL=
0.7

5

RL=
1.0

RL=
1.2

5

RL=
1.5

Parity, pcot=0.05, Post-training@20k, d=50, model=gpt2, depth=4, dembd=128, nheads=32

greedy (temp=0.0) temp=1.0 STaR (e2e) STaR (cot) REINFORCE (e2e) GRPO (e2e)

Figure 8: Post-training of transformers on mixture of long and short sequences encoding the
parity of d bits with various RL methods and generation temperatures (τRL). Mixture coefficient:
pcot=0.05. Pre-training iterations: 20k.

20

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0

200

400

600

Se
qu

en
ce

s

Lengths (STaR (e2e), temp=1.0)

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0

200

400

600

Se
qu

en
ce

s

Lengths (STaR (e2e), temp=1.0)

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0

200

400

600

Se
qu

en
ce

s

Lengths (STaR (e2e), temp=1.0)

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0

200

400

600

Se
qu

en
ce

s

Lengths (STaR (e2e), temp=1.0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
RL Iterations

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
RL Iterations

0

200

400

600
Se

qu
en

ce
s

Lengths (STaR (e2e), temp=1.0)

1

25

50

Le
ng

th

1

25

50

Le
ng

th

1

25

50

Le
ng

th

1

25

50

Le
ng

th

1

25

50

Le
ng

th

RL=
0.5

RL=
0.7

5

RL=
1.0

RL=
1.2

5

RL=
1.5

Parity, pcot=0.05, Post-training@50k, d=50, model=gpt2, depth=4, dembd=128, nheads=32

greedy (temp=0.0) temp=1.0 STaR (e2e) STaR (cot) REINFORCE (e2e) GRPO (e2e)

Figure 9: Post-training of transformers on mixture of long and short sequences encoding the
parity of d bits with various RL methods and generation temperatures (τRL). Mixture coefficient:
pcot=0.05. Pre-training iterations: 50k.

0 20000 40000 60000 80000 100000
Iteration

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Accuracy
temp=0.0
temp=1.0
pCOT + 1

2

20000 40000 60000 80000 100000
Iteration

0

500

1000

1500

2000

2500

Se
qu

en
ce

s

Lengths Distribution (temp=0.0)

20000 40000 60000 80000 100000
Iteration

0

500

1000

1500

2000

2500

Se
qu

en
ce

s

Lengths Distribution (temp=1.0)

0 20000 40000 60000 80000 100000
Iteration

0

20

40

60

80

100

Pr
op

or
tio

n
(%

)

Proportion of answer length (temp=1.0)
length 11
pCOT

2

4

6

8

10

Le
ng

th

2

4

6

8

10

Le
ng

th

Parity, pcot=0.25, d=11, model=gpt2, depth=4, dembd=128, nheads=32, seed=43

0 20000 40000 60000 80000 100000
Iteration

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Accuracy
temp=0.0
temp=1.0
pCOT + 1

2

20000 40000 60000 80000 100000
Iteration

0

500

1000

1500

2000

2500

Se
qu

en
ce

s

Lengths Distribution (temp=0.0)

20000 40000 60000 80000 100000
Iteration

0

500

1000

1500

2000

2500

Se
qu

en
ce

s

Lengths Distribution (temp=1.0)

0 20000 40000 60000 80000 100000
Iteration

0

20

40

60

80

100

Pr
op

or
tio

n
(%

)

Proportion of answer length (temp=1.0)
length 12
pCOT

2

4

6

8

10

12

Le
ng

th

2

4

6

8

10

12

Le
ng

th

Parity, pcot=0.25, d=12, model=gpt2, depth=4, dembd=128, nheads=32, seed=43

Figure 10: Pre-training on the parity task leads to a generalizing model after many iterations.
The average response is short (length equal to 1). Top row: d=11. Bottom row: d=12.

21

6 7 8 9 10 11 12
input dimension d

104

105

106

107

108

Ga
p

(in
 se

qu
en

ce
s)

Post-training Benefit (Parity, pcot={0.25}, model=gpt2, depth=4)

Figure 11: Sample complexity advan-
tage of pre-training & post-training
over mere pre-training vs input di-
mension. Note the logarithmic scale in
the y-axis. The figure shows mean and
one standard deviation across 3 random
seeds.

Sample complexity gap We design an experiment to619

try estimating the sample complexity gap between the620

two paradigms (next-token only vs next-token followed621

by RL). We consider a GPT2 architecture of depth 4,622

number of heads 32 and embedding dimension equal to623

128. We fix pcot=0.25 and we vary the input dimension624

d ∈ {6, 8, 10, 11, 12}. We train for at most 100,000 iter-625

ations (of batch size 256) and we consider switching to626

post-training (GRPO with e2e reward) at several check-627

points. We consider a checkpoint to be successful if its test628

accuracy is greater than 95%. In Figure 11, we show the629

gap between the number of samples required for any pre-630

trained checkpoint to generalize vs the number of samples631

required by any pre- and post-trained model (combined)632

for several input dimensions d. For the number of post-train samples, we take the multiplicity of633

GRPO samples into consideration. This gap seems to be growing exponentially fast. Some limitations634

of this simple experiment: the pre-trained checkpoints from which we consider starting post-training635

are at iterations {1000, 1500, 2000, 2500, 3000, 5000, 10000, 15000, 20000, 30000, 50000, 100000}.636

Also, for d=12, only one of three seeds ended up generalizing during pre-training (so by definition637

we could only calculate the gap for that seed and we discarded the rest).638

D.2 Partial chain of thought639

The purpose of this subsection is to relax our main setting, and consider a more complex variation640

which might better capture “real-world” data. In particular, we consider a setting, where the data641

include a third type of sequence consisting of a medium-sized chain of thought, in addition to short642

and long sequences.643

We consider the distribution D3(pcot, podd) over {±1}d × {±1, <EOS>}∗, parameterized by644

pcot, podd ∈ (0, 1), such that: x1, . . . , xd ∼ Rad(1/2) and645

(y1, . . . , yd+1) =


(
x1, x1x2, . . . ,

∏d
i=1 xi, <EOS>

)
, w.p. pcot,(

x1, x1x2x3, x1x2x3x4x5, . . . ,
∏d

i=1 xi, <EOS>
)
, w.p. podd,(∏d

i=1 xi, <EOS>
)
, w.p. 1− pcot − podd.

(11)

The medium-sized sequence consists of the same random variables as before in input positions 1 to d,646

while the chain of thought skips the intermediate computations that involve partial parities ending647

at an even position (with the exception of the final parity, if d is even). This results in sequences648

that contain a partial chain of thought with omitted reasoning steps. The purpose of this sequence is649

to provide the model with some samples of intermediate complexity between the two extremes of650

D(pcot). Indeed, learning to predict each term of the chain of thought after the first position requires651

a leap [1] of order 2, as opposed to either leap 1 or d for short and long sequences, respectively. For652

instance, predicting x1x2x3 from the history of the sequence (x1, . . . , xd, x1) is a leap of order 2. The653

leap between terms characterizes the additional sample complexity for learning each (sub)function.654

We repeat pre-training and post-training on this distribution and present results in Figure 12 for d=15655

and (pcot, podd)=(0.1, 0.1).656

Pre-training staircase As before, improvement during pre-training happens in stages: early at657

training, model accuracy under sampling with temperature 1 is around 50%, yet it suddenly jumps to658
pcot+1

2 × 100% as the model learns from the long demonstrations. Later in training, there is another659

phase transition indicating the model has learned the medium-sized sequences, as the accuracy leaps660

to pcot+podd+1
2 × 100%. As before, if pcot, podd are not large enough, then the models under greedy661

decoding do not generalize in reasonable time.662

Pre-training checkpoints & length penalties In this setting, the point when we switch to post-663

training, can not only affect the eventual success of RL, but also the length distribution of the model664

responses at the end of it:665

22

5 10 15 20
RL Iterations

40

60

80

100
Ac

cu
ra

cy
 (%

)
Test Accuracy

temp=0.0
temp=1.0

5 10 15
RL Iterations

0

20

40

60

80

100

Pr
op

or
tio

n
(%

)

Proportion of responses by length

length 15
length 7
length 1

0 20 40 60 80 100
RL Iterations

40

60

80

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

temp=0.0
temp=1.0

0 20 40 60 80 100
RL Iterations

0

20

40

60

80

100

Pr
op

or
tio

n
(%

)

Proportion of responses by length
length 15
length 7
length 1

0 10000 20000 30000 40000 50000
Iteration

40

60

80

100

Ac
cu

ra
cy

 (%
)

Pre-training
acc w/ temp=0.0
acc w/ temp=1.0

(pcot + 1)/2
(pcot + podd + 1)/2

0 20 40 60 80 100
RL Iterations

40

60

80

100

Ac
cu

ra
cy

 (%
)

Test Accuracy
temp=0.0
temp=1.0

0 20 40 60 80 100
RL Iterations

0

20

40

60

80

100

Pr
op

or
tio

n
(%

)

Proportion of responses by length

length 15
length 7
length 1

0 20 40 60 80 100
RL Iterations

40

60

80

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

temp=0.0
temp=1.0

0 20 40 60 80 100
RL Iterations

0

20

40

60

80

100

Pr
op

or
tio

n
(%

)

Proportion of responses by length

length 15
length 7
length 1

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Pr(length=15)
Pr(length=7)

REINFORCE(e2e)@5k REINFORCE(e2e)@50k

REINFORCE(e2e w/ penalty)@5k REINFORCE(e2e w/ penalty)@50k

Parity, Medium chain of thought, (pcot, podd)=(0.1, 0.1), d=15, depth=4, seed=44

Figure 12: Parity with partial chain of thought data and effectiveness of length penalties. Post-
training experiments using REINFORCE with (bottom row) and without (top row) a length penalty
on pre-trained models that correspond to the training shown in the middle. Notice that leaps in
accuracy during pre-training control length distributions at the end of post-training and success of
length-penalized RL.

- Post-training at 5k iterations yields a model that generalizes, yet it learns to almost exclu-666

sively generate long responses (Figure 12, top left).667

- Post-training at 50k iterations, on the other hand, results in a model that not only manages668

to reach 100% test accuracy but also has more diversity in its length distribution, generating669

both long and medium-sized responses (Figure 12, top right).670

The previous observation is both good and bad news: good news, as the 50k checkpoint ends up being671

cheaper at inference than the post-trained 5k counterpart; but bad news, as the model could have672

been even faster at inference without sacrificing accuracy. Indeed, after 50k pre-training iterations673

the model has learned to generate correct medium-sized responses, hence, in principle, it need not674

learn from the long self-generated ones. To test this, we consider reinforcement learning with a675

length-penalized reward. In particular, we consider the following length-penalized reward:676

re2e,λlen
(x, y) = 1

{
y[−1] =

d∏
i=1

xi

}
− λlen

|y|
d
, λlen ∈ [0, 1]. (12)

We use λlen=0.4. As we confirm in Figure 12 (bottom row), a length penalty applied during post-677

training of a late checkpoint is effective, as it leads to a model that is both accurate and fast. On the678

contrary, if we apply the same length penalty at an earlier checkpoint, post-training fails. This is679

because the pre-trained model has not managed to learn from the medium-sized sequences early in680

pre-training.681

E Experiments with Mathematical Reasoning Benchmarks682

A shortcoming of the previous sections is that they are devoted to the study of a computationally683

shallow problem. The parity of d bits can be represented by a small, shallow transformer [20],684

yet the current post-training paradigm targets tasks that appear to require greater computational685

depth, involving sequences of dependent operations that cannot be collapsed into a single “step”. To686

accommodate such tasks, the iterative application of the transformer in the form of the autoregressive687

23

generation process enhances the computational depth of the model. Without this generated chain-of-688

thought, models may fail to approximate solutions to certain tasks as context length grows [10, 25, 19].689

Can reinforcement learning after next-token prediction be effective when learning from mixture690

distributions that encode such deeper problems? In other words, can RL be as effective when691

representation, in addition to learning, is also an issue?692

To study this question, we now consider less idealized settings (including pre-trained models)693

and computationally deeper tasks, such as the multiplication of 5-digit numbers and mathematical694

reasoning benchmarks.695

E.1 Number Multiplication696

First, we study the task of multiplying n-digit numbers. It has been reported that even LLMs as capable697

as GPT4 [2] have struggled with accurate multiplication of 4-digit numbers [36] without the use of an698

external calculator program6. We encode the task in sequences of characters, including the n digits699

of the multiplier and multiplicand (both in reversed order), the execution trace of the grade-school700

multiplication algorithm, and the final answer. Prior work has reported that reversing the input order701

helps transformers with absolute positional embeddings generalize better on arithmetic tasks [36].702

Number Multiplication

Long: 5 6 3 2 * 7 4 3 4 || 5 5 5
6 1 + 0 0 6 4 9 0 (5 5 1 1 1 1)
+ 0 0 5 9 0 7 0 (5 5 6 0 2 8 0)
+ 0 0 0 0 6 4 9 0 #### 5 5 6 0 8 2
0 1

Short: 5 6 3 2 * 7 4 3 4 || ####
5 5 6 0 8 2 0 1.

Figure 13: Example of a 4x4 sequence,
encoding 2365*4374 (digits appear in
reverse order). Top row: long format
with full sequence. Bottom row: short
format without chain of thought.

Following our previous setup, we construct datasets that703

contain the n digits of the multiplier and multiplicand,704

together with the execution trace of the grade-school mul-705

tiplication algorithm and the final answer, with probability706

pcot, and just question, answer with probability 1− pcot707

(Figure 13).708

We pre-train randomly initialized GPT2 transformers on709

either 4× 4, 5× 5 or 7× 7 datasets for multiple epochs710

over a training set of 808k examples using the next-token711

prediction objective. At various checkpoints, we switch712

to reinforcement learning (with GRPO) and compare per-713

formance during pre-training vs post-training. Full exper-714

imental details are provided in Appendix C.2.715

Figures 15 to 17 show pre-training results for all values716

of n ∈ {4, 5, 7} and pcot ∈ {0, 0.1, 0.25, 0.5, 1.0}. When717

pcot=1.0 (i.e., the algorithm’s trace is included in all sam-718

ples), models during pre-training quickly learn to answer correctly with long responses, leveraging719

the intermediate calculations present in the training data. By contrast, when pcot is small, models720

struggle to generalize: performance under greedy decoding remains close to 0% throughout training.721

In some runs, we observe sudden increase in accuracy under sampling with temperature 1.0, jumping722

to approximately pcot × 100%. This outcome is consistent with the parity experiments: the objective723

enforces length calibration and, once the model learns from long sequences, its output becomes a724

mixture of short random guesses (with probability of success 10−2×n) and long correct responses725

(with probability of success 1). Similar to the parity experiments, we observed unstable behavior726

under greedy decoding when training with pcot close to the critical threshold (which is close to 0.5727

here).728

After switching to reinforcement learning (Figure 14 (left) for (n=5, pcot=0.25) and Figure 18 for729

the rest of the values), the model’s accuracy improves rapidly and the average response length730

increases, provided the pre-training checkpoint has developed some correlation with the target. These731

observations hold for most values of n and pcot. For the most challenging setting we considered732

(largest n, smallest pcot – (n, pcot) = (7, 0.1)), the model failed to learn from long sequences under733

any of the 3 random seeds, even after 38 GPU hours, preventing post-training from being successful734

in this case. Note that this section provides an example of a task where the capability obtained during735

RL (accuracy under greedy decoding on task of multiplication) appears to be almost absent during736

pre-training (accuracy goes from ≈ 0 to 100%) – for example, when pcot is equal to 0.1 or 0.25.737

6Otherwise, the problem reduces to copying input (from the calculator program) to output and transformers
are well-suited for it [14].

24

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1e7

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

w/
 g

re
ed

y
de

co
di

ng

Numbers Multiplication, 5×5, model=gpt2, pcot = 0.25

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
train sequences 1e7

0

20

40

60

80

Av
er

ag
e

Le
ng

th
un

de
r g

re
ed

y
de

co
di

ng

next-token only next-token & rl

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
 w

/ t
em

p=
1.

0 ep
. 1

ep
. 5

ep
. 1

0

ep
. 1

5

ep
. 2

0

ep
. 2

5

ep
. 3

0

GSM8K, model=Llama 3.2 3B (base), pcot = 0.05

0 50000 100000 150000 200000 250000
train sequences

0

50

100

150

200

250

300

350

Av
er

ag
e

Le
ng

th
 (t

ok
en

s)

sft & rl sft checkpoints sft acc w/ pcot = 1.0 sft length w/ pcot = 1.0

Figure 14: Advantage of next-token prediction followed by reinforcement learning over mere
next-token prediction in (Left) multiplying two 5-digit numbers with a GPT2 model trained from
scratch, and in (Right) solving grade-school math problems with Llama 3.2 3B (base). Left: Red
line: pre-training on a 5x5 dataset with pcot=0.25 using next-token prediction. Blue lines: the same
pre-training runs, each followed by GRPO from a different checkpoint. Top: median test accuracy
under greedy decoding (3 seeds). Bottom: median average response length (median over seeds,
averaged over sequences). Right: ⋆ markers: supervised fine-tuning checkpoints on GSM8k with
pcot=0.05 (epochs 1–30). Colored curves: GRPO post-training from these checkpoints. Training
sequences are reused across epochs; during post-training, multiple generations per input are counted.

E.2 Grade School & High School Mathematics (GSM8K & MATH datasets)738

Finally, we experiment with pre-trained LLMs and mathematical reasoning benchmarks. We train739

Llama pre-trained models [9] on variations of two standard mathematical benchmarks (GSM8k [6]740

and MATH [12]). We format the data by surrounding the chain of thought of each sample with741

special “thinking” tokens. As previously, the chain of thought is replaced by the empty string with742

probability pcot, creating a mixture distribution of long and short reasoning sequences. We first743

perform supervised fine-tuning (SFT) on these mixture datasets, and then switch to RL with GRPO744

and a reward that assesses both correctness of the response and consistency with the specified data745

format. For experimental details, see Appendices C.3, C.4.746

We plot results for Llama 3.2 3B (base) on GSM8k, pcot=0.05, in Figure 14 (right). We show test747

accuracy and average response length for the SFT checkpoints (stars) and the post-training curves748

starting from these checkpoints. As a baseline, we also plot the best SFT model trained with full749

chain of thought data; the pcot=1.0 runs can be found in Figure 19. Early in SFT, accuracy is low750

and the average length of the model response is much smaller than the baseline. As training with751

the next-token objective continues, accuracy improves and length increases, but accuracy does not752

reach the baseline and appears to saturate at a lower value. Once we switch to RL with GRPO, the753

model rapidly reaches baseline accuracy while increasing its average response length. Notice how754

few samples RL requires to reach the baseline, even when starting from the first epoch checkpoint.755

This sample count should be contrasted with the number of SFT updates needed to reach comparable756

accuracy. Furthermore, in Figures 22 to 24, we provide examples of model completions during757

RL for this first checkpoint. We observe that early on, the model respects the SFT format but758

primarily generates short responses (Figure 22). As RL progresses, the model learns to produce759

longer responses with greater probability (Figure 23), eventually reaching a point where it consistently760

generates correct elaborate responses that mimic the chain of thoughts in the long-form part of the761

training distribution (Figure 24). These training patterns are consistent with the mechanisms observed762

in the parity setting of the previous sections. In Figure 19, we repeat this experiment for various pcot763

values.764

Beyond the point where accuracy exceeds the SFT baseline, the model continues to improve and its765

response length grows even further. This phase of post-training differs from the situations observed in766

the previous sections and is likely due to the model leveraging pre-training data. Indeed, in Figure 25,767

we show that model generations at the end of RL are qualitatively different from the train sequences.768

25

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=0.0)

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000

Se
qu

en
ce

s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000

Se
qu

en
ce

s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy
temp=0.0
temp=1.0
pcot

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000
Se

qu
en

ce
s

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000

Se
qu

en
ce

s

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

length 59
length 13
pcot

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

p co
t=

1.0

p co
t=

0.5

p co
t=

0.2
5

p co
t=

0.1

Numbers Multiplication 4x4, seed=42

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=0.0)

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000
Se

qu
en

ce
s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000

Se
qu

en
ce

s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy
temp=0.0
temp=1.0
pcot

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000

Se
qu

en
ce

s

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000

Se
qu

en
ce

s

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

length 59
length 13
pcot

20

30

40

50

Le
ng

th
20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50
Le

ng
th

p co
t=

1.0

p co
t=

0.5

p co
t=

0.2
5

p co
t=

0.1

Numbers Multiplication 4x4, seed=43

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=0.0)

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000

Se
qu

en
ce

s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000

Se
qu

en
ce

s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy
temp=0.0
temp=1.0
pcot

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000

Se
qu

en
ce

s

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000

Se
qu

en
ce

s

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

length 59
length 13
pcot

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

20

30

40

50

Le
ng

th

p co
t=

1.0

p co
t=

0.5

p co
t=

0.2
5

p co
t=

0.1

Numbers Multiplication 4x4, seed=44

Figure 15: Pre-training of GPT2 transformers on mixture of long and short sequences encoding
the multiplication of 4-digits numbers for 3 different seeds and for various values of pcot.
Left: Test accuracy during the course of pre-training, under greedy decoding and sampling with
temperature 1. Center, Left: The length of the greedy response for 1000 test samples during the
course of pre-training. Center, Right: The length of the sampled response (temperature of 1) for 1000
test samples during the course of pre-training. Right: The probability that the length of a model’s
autoregressive generation equals the maximum or minimum length present in the training distribution.

26

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=0.0)

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000

Se
qu

en
ce

s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000

Se
qu

en
ce

s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy
temp=0.0
temp=1.0
pcot

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000
Se

qu
en

ce
s

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000

Se
qu

en
ce

s

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

length 89
length 15
pcot

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

p co
t=

1.0

p co
t=

0.5

p co
t=

0.2
5

p co
t=

0.1

Numbers Multiplication 5x5, seed=42

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=0.0)

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000
Se

qu
en

ce
s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000

Se
qu

en
ce

s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy
temp=0.0
temp=1.0
pcot

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000

Se
qu

en
ce

s

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000

Se
qu

en
ce

s

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

length 89
length 15
pcot

20

40

60

80

Le
ng

th
20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80
Le

ng
th

p co
t=

1.0

p co
t=

0.5

p co
t=

0.2
5

p co
t=

0.1

Numbers Multiplication 5x5, seed=43

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=0.0)

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000

Se
qu

en
ce

s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000

Se
qu

en
ce

s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy
temp=0.0
temp=1.0
pcot

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000

Se
qu

en
ce

s

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000

Se
qu

en
ce

s

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

length 89
length 15
pcot

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

20

40

60

80

Le
ng

th

p co
t=

1.0

p co
t=

0.5

p co
t=

0.2
5

p co
t=

0.1

Numbers Multiplication 5x5, seed=44

Figure 16: Pre-training of GPT2 transformers on mixture of long and short sequences encoding
the multiplication of 5-digits numbers for 3 different seeds and for various values of pcot.
Left: Test accuracy during the course of pre-training, under greedy decoding and sampling with
temperature 1. Center, Left: The length of the greedy response for 1000 test samples during the
course of pre-training. Center, Right: The length of the sampled response (temperature of 1) for 1000
test samples during the course of pre-training. Right: The probability that the length of a model’s
autoregressive generation equals the maximum or minimum length present in the training distribution.

27

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=0.0)

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000

Se
qu

en
ce

s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000

Se
qu

en
ce

s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy
temp=0.0
temp=1.0
pcot

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000
Se

qu
en

ce
s

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000

Se
qu

en
ce

s

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

length 167
length 19
pcot

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

p co
t=

1.0

p co
t=

0.5

p co
t=

0.2
5

p co
t=

0.1

Numbers Multiplication 7x7, seed=42

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=0.0)

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000
Se

qu
en

ce
s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000

Se
qu

en
ce

s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy
temp=0.0
temp=1.0
pcot

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000

Se
qu

en
ce

s

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000

Se
qu

en
ce

s

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

length 167
length 19
pcot

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150
Le

ng
th

p co
t=

1.0

p co
t=

0.5

p co
t=

0.2
5

p co
t=

0.1

Numbers Multiplication 7x7, seed=43

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=0.0)

0
200
400
600
800

1000

Se
qu

en
ce

s

Lengths (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000

Se
qu

en
ce

s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

(pre-train) iterations
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy

0
200
400
600
800

1000

Se
qu

en
ce

s

0
200
400
600
800

1000

Se
qu

en
ce

s

(pre-train) iterations
0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Test Accuracy
temp=0.0
temp=1.0
pcot

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000

Se
qu

en
ce

s

100000 200000 300000
(pre-train) iterations

0
200
400
600
800

1000

Se
qu

en
ce

s

100000 200000 300000
(pre-train) iterations

0

25

50

75

100

Pr
op

or
tio

n
(%

)

Probability of long/short (temp=1.0)

length 167
length 19
pcot

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

50

100

150

Le
ng

th

p co
t=

1.0

p co
t=

0.5

p co
t=

0.2
5

p co
t=

0.1

Numbers Multiplication 7x7, seed=44

Figure 17: Pre-training of GPT2 transformers on mixture of long and short sequences encoding
the multiplication of 7-digits numbers for 3 different seeds and for various values of pcot.
Left: Test accuracy during the course of pre-training, under greedy decoding and sampling with
temperature 1 . Center, Left: The length of the greedy response for 1000 test samples during the
course of pre-training. Center, Right: The length of the sampled response (temperature of 1) for 1000
test samples during the course of pre-training. Right: The probability that the length of a model’s
autoregressive generation equals the maximum or minimum length present in the training distribution.

28

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

w/
 g

re
ed

y
de

co
di

ng

Numbers Multiplication, 4×4, model=gpt2, pcot = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
train sequences 1e7

0

20

40

60

Av
er

ag
e

Le
ng

th
un

de
r g

re
ed

y
de

co
di

ng

next-token only next-token & rl

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

w/
 g

re
ed

y
de

co
di

ng

Numbers Multiplication, 4×4, model=gpt2, pcot = 0.25

0.0 0.2 0.4 0.6 0.8 1.0
train sequences 1e7

0

20

40

60

Av
er

ag
e

Le
ng

th
un

de
r g

re
ed

y
de

co
di

ng

next-token only next-token & rl

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

w/
 g

re
ed

y
de

co
di

ng

Numbers Multiplication, 4×4, model=gpt2, pcot = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
train sequences 1e7

0

20

40

60

Av
er

ag
e

Le
ng

th
un

de
r g

re
ed

y
de

co
di

ng

next-token only next-token & rl

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1e7

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

w/
 g

re
ed

y
de

co
di

ng

Numbers Multiplication, 5×5, model=gpt2, pcot = 0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
train sequences 1e7

0

20

40

60

80
Av

er
ag

e
Le

ng
th

un
de

r g
re

ed
y

de
co

di
ng

next-token only next-token & rl

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1e7

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

w/
 g

re
ed

y
de

co
di

ng

Numbers Multiplication, 5×5, model=gpt2, pcot = 0.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
train sequences 1e7

0

20

40

60

80

Av
er

ag
e

Le
ng

th
un

de
r g

re
ed

y
de

co
di

ng

next-token only next-token & rl

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1e7

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

w/
 g

re
ed

y
de

co
di

ng

Numbers Multiplication, 7×7, model=gpt2, pcot = 0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
train sequences 1e7

0

50

100

150

Av
er

ag
e

Le
ng

th
un

de
r g

re
ed

y
de

co
di

ng

next-token only next-token & rl

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1e7

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

w/
 g

re
ed

y
de

co
di

ng

Numbers Multiplication, 7×7, model=gpt2, pcot = 0.25

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
train sequences 1e7

0

50

100

150

Av
er

ag
e

Le
ng

th
un

de
r g

re
ed

y
de

co
di

ng

next-token only next-token & rl

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1e7

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

w/
 g

re
ed

y
de

co
di

ng

Numbers Multiplication, 7×7, model=gpt2, pcot = 0.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
train sequences 1e7

0

50

100

150

Av
er

ag
e

Le
ng

th
un

de
r g

re
ed

y
de

co
di

ng

next-token only next-token & rl

Figure 18: Pre-training and post-training combined of a randomly initialized GPT2 on numbers
multiplication for various values of numbers of digits n and fraction of chain of thought data pcot in
the mix.

29

Based on these observations, we hypothesize that the initial steep phase of RL reflects in-distribution769

learning (where the model “mines” SFT data), while the later phase reflects out-of-distribution gains.770

MATH results with the instruct version of Llama 3.1 8B and Llama 3.2 3B models are presented771

in Figures 20 and 21. As in the GSM8k experiments, we observe that SFT on a dataset with small772

pcot does not enable the model to generalize as well as SFT with full chain-of-thought data. During773

RL, checkpoints with smaller pcot benefit the most in terms of relative performance gains, which774

are accompanied by an increase in response length. However, we also find quantitative evidence775

that this improvement is sometimes (Figures 26 and 27) (but not always Figures 28 to 31) due to776

out-of-distribution gains, as model completions can differ significantly from the SFT dataset. We777

believe that these models were heavily finetuned on the MATH dataset prior to its release, introducing778

additional confounding factors.779

30

0

20

40

60

80

100
Te

st
 A

cc
ur

ac
y

(%
)

 w
/ t

em
p=

1.
0 ep

. 1

ep
. 5

ep
. 1

0

ep
. 1

5

ep
. 2

0

ep
. 2

5

ep
. 3

0

GSM8K, model=Llama 3.2 3B (base), pcot = 0.0

0 50000 100000 150000 200000 250000
train sequences

0

50

100

150

200

250

300

350

Av
er

ag
e

Le
ng

th
 (t

ok
en

s)

sft & rl sft checkpoints sft acc w/ pcot = 1.0 sft length w/ pcot = 1.0

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
 w

/ t
em

p=
1.

0 ep
. 1

ep
. 5

ep
. 1

0

ep
. 1

5

ep
. 2

0

ep
. 2

5

ep
. 3

0

GSM8K, model=Llama 3.2 3B (base), pcot = 0.01

0 50000 100000 150000 200000 250000
train sequences

0

50

100

150

200

250

300

350

Av
er

ag
e

Le
ng

th
 (t

ok
en

s)

sft & rl sft checkpoints sft acc w/ pcot = 1.0 sft length w/ pcot = 1.0

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
 w

/ t
em

p=
1.

0 ep
. 1

ep
. 5

ep
. 1

0

ep
. 1

5

ep
. 2

0

ep
. 2

5

ep
. 3

0

GSM8K, model=Llama 3.2 3B (base), pcot = 0.1

0 50000 100000 150000 200000 250000
train sequences

0

50

100

150

200

250

300

350

Av
er

ag
e

Le
ng

th
 (t

ok
en

s)

sft & rl sft checkpoints sft acc w/ pcot = 1.0 sft length w/ pcot = 1.0

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
 w

/ t
em

p=
1.

0 ep
. 1

ep
. 5

ep
. 1

0

ep
. 1

5

ep
. 2

0

ep
. 2

5

ep
. 3

0

GSM8K, model=Llama 3.2 3B (base), pcot = 0.9

0 50000 100000 150000 200000 250000
train sequences

0

50

100

150

200

250

300

350

Av
er

ag
e

Le
ng

th
 (t

ok
en

s)

sft & rl sft checkpoints sft acc w/ pcot = 1.0 sft length w/ pcot = 1.0

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
 w

/ t
em

p=
1.

0 ep
. 1

ep
. 5

ep
. 1

0

ep
. 1

5

ep
. 2

0

ep
. 2

5

ep
. 3

0

GSM8K, model=Llama 3.2 3B (base), pcot = 1.0

0 50000 100000 150000 200000 250000
train sequences

0

50

100

150

200

250

300

350

Av
er

ag
e

Le
ng

th
 (t

ok
en

s)

sft & rl sft checkpoints sft acc w/ pcot = 1.0 sft length w/ pcot = 1.0

Figure 19: SFT and GRPO of Llama 3.2 3B (base) on the GSM8k dataset for various values
of pcot. Some observations: For pcot=0, only two checkpoints succeed to generalize during RL.
Interestingly, the length does not grow in these cases. The model obviously leverages some kind
of pre-training data. For pcot=0.01, we observe length increase for almost all checkpoints and
accompanying performance gains. When the length does not grow (SFT epochs 1 and 10), test
accuracy plateaus to a small value (in comparison to the other checkpoints). RL consistently induces
generalizing models for larger values of pcot. We observe that test accuracy and average token length
are very similar across these checkpoints.

31

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)
 w

/ t
em

p=
1.

0 ep
. 1

ep
. 5

ep
. 1

0

ep
. 1

5

ep
. 2

0

MATH, model=Llama3.1 3B (instruct), pcot=0.0

0 20000 40000 60000 80000 100000 120000 140000 160000
train sequences

0
50

100
150
200
250
300
350
400

M
ed

ia
n

Le
ng

th
 (t

ok
en

s)

sft & rl sft checkpoints sft acc w/ pcot = 1.0 sft length w/ pcot = 1.0

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)
 w

/ t
em

p=
1.

0 ep
. 1

ep
. 5

ep
. 1

0

ep
. 1

5

ep
. 2

0

MATH, model=Llama3.1 3B (instruct), pcot=0.01

20000 40000 60000 80000 100000 120000 140000
train sequences

0
50

100
150
200
250
300
350
400

M
ed

ia
n

Le
ng

th
 (t

ok
en

s)

sft & rl sft checkpoints sft acc w/ pcot = 1.0 sft length w/ pcot = 1.0

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)
 w

/ t
em

p=
1.

0 ep
. 1

ep
. 5

ep
. 1

0

ep
. 1

5

ep
. 2

0
MATH, model=Llama3.1 3B (instruct), pcot=0.05

20000 40000 60000 80000 100000 120000 140000
train sequences

0
50

100
150
200
250
300
350
400

M
ed

ia
n

Le
ng

th
 (t

ok
en

s)

sft & rl sft checkpoints sft acc w/ pcot = 1.0 sft length w/ pcot = 1.0

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)
 w

/ t
em

p=
1.

0 ep
. 1

ep
. 5

ep
. 1

0

ep
. 1

5

ep
. 2

0

MATH, model=Llama3.1 3B (instruct), pcot=0.8

20000 40000 60000 80000 100000 120000 140000
train sequences

0
50

100
150
200
250
300
350
400

M
ed

ia
n

Le
ng

th
 (t

ok
en

s)

sft & rl sft checkpoints sft acc w/ pcot = 1.0 sft length w/ pcot = 1.0

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)
 w

/ t
em

p=
1.

0 ep
. 1

ep
. 5

ep
. 1

0

ep
. 1

5

ep
. 2

0

MATH, model=Llama3.1 3B (instruct), pcot=1.0

0 20000 40000 60000 80000 100000 120000 140000
train sequences

0
50

100
150
200
250
300
350
400

M
ed

ia
n

Le
ng

th
 (t

ok
en

s)

sft & rl sft checkpoints sft acc w/ pcot = 1.0 sft length w/ pcot = 1.0

Figure 20: SFT and GRPO of Llama 3.2 3B (instruct) on the MATH dataset for various values
of pcot. The situation is similar to the GSM8k experiments, yet RL gains might be due to out of
distribution gains – see qualitative analysis. We early stopped the curves before the RL runs collapse,
which we attribute to large learning rate.

32

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)
 w

/ t
em

p=
1.

0 ep
. 1

ep
. 5

ep
. 1

0

ep
. 1

5

ep
. 2

0

MATH, model=Llama3.1 8B (instruct), pcot=0.0

0 20000 40000 60000 80000 100000 120000 140000
train sequences

0
50

100
150
200
250
300
350
400

M
ed

ia
n

Le
ng

th
 (t

ok
en

s)

sft & rl sft checkpoints sft acc w/ pcot = 1.0 sft length w/ pcot = 1.0

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)
 w

/ t
em

p=
1.

0 ep
. 1

ep
. 5

ep
. 1

0

ep
. 1

5

ep
. 2

0

MATH, model=Llama3.1 8B (instruct), pcot=0.01

20000 40000 60000 80000 100000 120000 140000
train sequences

0
50

100
150
200
250
300
350
400

M
ed

ia
n

Le
ng

th
 (t

ok
en

s)

sft & rl sft checkpoints sft acc w/ pcot = 1.0 sft length w/ pcot = 1.0

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)
 w

/ t
em

p=
1.

0 ep
. 1

ep
. 5

ep
. 1

0

ep
. 1

5

ep
. 2

0
MATH, model=Llama3.1 8B (instruct), pcot=0.05

20000 40000 60000 80000 100000 120000 140000
train sequences

0
50

100
150
200
250
300
350
400

M
ed

ia
n

Le
ng

th
 (t

ok
en

s)

sft & rl sft checkpoints sft acc w/ pcot = 1.0 sft length w/ pcot = 1.0

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)
 w

/ t
em

p=
1.

0 ep
. 1

ep
. 5

ep
. 1

0

ep
. 1

5

ep
. 2

0

MATH, model=Llama3.1 8B (instruct), pcot=0.8

0 20000 40000 60000 80000 100000 120000 140000
train sequences

0
50

100
150
200
250
300
350
400

M
ed

ia
n

Le
ng

th
 (t

ok
en

s)

sft & rl sft checkpoints sft acc w/ pcot = 1.0 sft length w/ pcot = 1.0

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)
 w

/ t
em

p=
1.

0 ep
. 1

ep
. 5

ep
. 1

0

ep
. 1

5

ep
. 2

0

MATH, model=Llama3.1 8B (instruct), pcot=1.0

20000 40000 60000 80000 100000 120000 140000
train sequences

0
50

100
150
200
250
300
350
400

M
ed

ia
n

Le
ng

th
 (t

ok
en

s)

sft & rl sft checkpoints sft acc w/ pcot = 1.0 sft length w/ pcot = 1.0

Figure 21: SFT and GRPO of Llama 3.1 8B (instruct) on the MATH dataset for various values
of pcot. The situation is similar to the GSM8k experiments, yet RL gains might be due to out of
distribution gains – see qualitative analysis. We early stopped the curves before the RL runs collapse,
which we attribute to large learning rate.

33

GSM8k Completions (pcot = 0.05, epoch=1, RL step=1)

Question: In four years, Peter will be twice as old as Harriet. If Peter’s age is currently
half of his mother’s age, who is 60, how old is Harriet now?
Ground truth cot: If Peter’s age is currently half of his mother’s age, who is 60,
Peter is 1/2*60 = <<30=30>>30 years old. In four years, Peter will be 30+4 =
<<30+4=34>>34 years old. Since Peter’s age in four years will be twice Harriet’s age,
Harriet will be 34/2 = <<34/2=17>>17 years old in four years. Currently, Harriet is
17-4 = <<17-4=13>>13 years old. Answer: 13

Generation 1; reasoning process here</think> <answer>32</answer> Reward: 10
Generation 2; reasoning process here</think> <answer>35</answer> Reward: 10
Generation 3; ...]</think> <answer>24</answer> Reward: 10
Generation 4; reasoning process here</think> <answer>34</answer> Reward: 10
Generation 5; ?</think> <answer>40</answer> Reward: 10
Generation 6; processing online </think> <answer>35</answer> Reward: 10
Generation 7; reasoning process here</think> <answer>18</answer> Reward: 10
Generation 8; 2020-11-23T11:49:57.397405+00:00</think> <answer>40</answer> Reward: 10
Generation 9; thinking... </think> <answer>21</answer> Reward: 10
Generation 10; Harriet’s age right now =</think> <answer>2</answer> Reward: 10
Generation 11; reasoning process here</think> <answer>32</answer> Reward: 10
Generation 12; 2016-09-19T00:00:00Z</think> <answer>24</answer> Reward: 10
Generation 13; 3</think> <answer>36</answer> Reward: 10
Generation 14; reasoning process here</think> <answer>40</answer> Reward: 10
Generation 15; Harriet = 4</think> <answer>84</answer> Reward: 10
Generation 16; reasoning process here</think> <answer>48</answer> Reward: 10
Generation 17; </think> <answer>25</answer> Reward: 10
Generation 18; For Peter to be twice as old as Harriet, Harriet’s age has to be half
the current age of Peter. Start with the current age of Peter as x years. Then
half of x is half of mother’s age=60, or x

2
= 60 ⇒ x = 60 × 2 = 120[0] Harriet’s

age=x − 2 = 120 − 2 = 118[1] Harriet’s age is 118 years, and Peter is 120 years. The
answer is 118. [2]November 6, 2021 Reward: 0
Generation 19; (please wait a few seconds)</think> <answer>18</answer> Reward: 10
Generation 20; my reasonning here</think> <answer>18</answer> Reward: 10
Generation 21; </think> <answer>20</answer> Reward: 10
Generation 22; could not solve the problem</think> <answer>13</answer> Reward: 100
Generation 23; 2016-03-11 20:54:37</think> <answer>36</answer> Reward: 10
Generation 24; reasoning process here</think> <answer>40</answer> Reward: 10
Generation 25; IN FOUR YEARS, PETER WILL BE TWICE AS OLD</think> <answer>8</answer> Reward:
10
Generation 26; He is fourty years now</think> <answer>35</answer> Reward: 10
Generation 27; 10</think> <answer>25</answer> Reward: 10
Generation 28; Harriet’s current age?</think> <answer>24</answer> Reward: 10
Generation 29; Why is Harriet’s age h? Who is w? Who is d? <think> <answer>37</answer>
Reward: 5
Generation 30; </think> <answer>36</answer> Reward: 10
Generation 31; include forgive-me.fr</think> <answer>32</answer> Reward: 10
Generation 32; Ernesto thought about reasoning process here </think> <answer>42</answer>
Reward: 10

Figure 22: Llama 3.2 3B completion on a GSM8k prompt for pcot = 0.05, SFT epochs=1, RL step=1.
Most completions are short (following the SFT format of </think><answer>ANS</answer>) and
inaccurate.

34

GSM8k Completions (pcot = 0.05, epoch=1, RL step=58)

Question: Mrs. Watson is grading 120 final exams from her American History class. On
Monday, she grades 60% of the exams. On Tuesday, she grades 75% of the remaining
exams. On Wednesday, how many more exams does she need to grade?
Ground truth cot: On Monday, Mrs. Watson grades 120 x 60% =
<<120*60*.01=72>>72 final exams. At the end of Monday, she has 120 - 72
= <<120-72=48>>48 exams left to grade. On Tuesday, she grades 48 x 75%
= <<48*75*.01=36>>36 final exams. On Wednesday, she has 48 - 36 = <<48-
36=12>>12 exams left to grade.
Answer: 12

Generation 1; ...</think> <answer>30</answer> Reward: 10
Generation 2; She graded 60% of 120 = 72 exams on Monday.</think> <answer>24</answer>
Reward: 10
Generation 3; ...</think> <answer>15</answer> Reward: 10
Generation 4; Let’s get a variable for Mrs. Watson’s total number of exams.</think>
<answer>30</answer> Reward: 10
Generation 5; 120 final exams are left to grade, or 30. She grades 60% of them on
Monday, which is 18.</think> <answer>12</answer> Reward: 100
Generation 6; Mrs. Watson needs to grade 30% of the exams</think> <answer>40</answer>
Reward: 10
Generation 7; ...</think> <answer>30</answer> Reward: 10
Generation 8; She’s finished 60% of the total. How many are left? We have 100*60=60
exams left. Next, on Tuesday, she grades another 75% of those. She now has finished
60+75=135 out of 120 exams. So how many exams are left? There are 120-135=15 exams
left.</think> <answer>45</answer> Reward: 10
[...]
Generation 22; There is a 60% completion rate of all exams. On Monday, 60% of all
grades were given. This means that 60% of 120, or 72, were graded so far. Thus, 48
have yet to be graded. 75% of the remaining exams that haven’t been graded will be
graded on Tuesday. There are then 48%×75% = 36 more exams to be graded.</think>
<answer>36</answer> Reward: 10
Generation 23; ...</think> <answer>10</answer> Reward: 10
Generation 24; 120</think> <answer>30</answer> Reward: 10
Generation 25; That’s a really easy word problem. It’s a good thing I worked through so
many examples last night.</think> <answer>30</answer> Reward: 10
Generation 26; She has graded them at a rate of 60% and then 75% of them remaining, so
she will need to grade...</think> <answer>30</answer> Reward: 10
Generation 27; ...once she grades 60% of the exams, she grades the remaining...</think>
<answer>30</answer> Reward: 10
Generation 28; Well, we know that we have 120 exams that need to be graded. Mrs. Watson
graded 60% on Monday so that was 60 exams. That means that she graded 60 120 = 60
exams on Monday.</think> <answer>30</answer> Reward: 10
Generation 29; Let’s see....</think> <answer>15</answer> Reward: 10
Generation 30; ...</think> <answer>15</answer> Reward: 10
Generation 31; ...</think> <answer>20</answer> Reward: 10
Generation 32; He asked how many more exams she needs to grade...wish she had thought of
this one...</think> <answer>6</answer> Reward: 10

Figure 23: Llama 3.2 3B completion on a GSM8k prompt for pcot = 0.05, SFT epochs=1, RL
step=58. The model starts generating longer responses that mimic the long SFT demonstrations,
while continuing to respect the SFT answering format.

35

GSM8k Completions (pcot = 0.05, epoch=1, RL step=118)

Question: Ethan is reading a sci-fi book that has 360 pages. He read 40 pages on
Saturday morning and another 10 pages at night. The next day he read twice the total
pages as on Saturday. How many pages does he have left to read?
Ground truth cot: Ethan read a total of 40 pages + 10 pages = <<40+10=50>>50 pages
on Saturday. On the next day, he read a total of 50 pages x 2 = <<50*2=100>>100
pages. The total number of pages that Ethan had read is 50 pages + 100 pages
= <<50+100=150>>150 pages. Therefore, Ethan has 360 pages - 150 pages =
<<360-150=210>>210 pages left to read.
Answer: 210

Generation 1; Ethan was reading a sci-fi book that had 360 pages.Ethan read 40 pages on
Saturday morning and then another 10 pages on Saturday night.So far he had read 50
pages on Saturday.So the next day he read 2*50 = 100 more pages So far he had read 50
+ 100 = 150 pages So the next day he has read a total of 150 pages.Ethan has 360 - 150
= 210 pages left to read.</think> <answer>210</answer> Reward: 100
Generation 2; Our book had 360 pages in total.Ethan read 40 pages on Saturday so there
are 320 pages left. Ethan read 10 more pages at night so there are now 330 pages
left. So far he has read 50 pages in 2 days. So if he read one day on Saturday
then he must have read 25 on Sunday. So now there are 320-25 = 295 pages left to
read.</think> <answer>295</answer> Reward: 10
Generation 3; Ethan is reading a sci fi book that has 360 pages. He read 40 pages
on Saturday morning and 10 pages at night. So the total number of pages he read on
Saturday was 40 + 10 = 50 pages. The next day he read twice the number of pages he
read on Saturday. So the number of pages he read on Sunday was 2 * 50 = 100. So the
total number of pages he read on Saturday and Sunday was 50 + 100 = 150 pages. So the
total number of pages he read was 50 + 100 = 150. So the remaining number of pages
were 360 - 150 = 210 pages. </think> <answer>210</answer> Reward: 100
[...]
Generation 30; Ethans book has 360 pages.Ethan read 40 pages on Saturday morning.Ethan
read an additional 10 pages at night.Ethan read on Saturday 50 pages = 40 + 10 =
50.Ethans book has on the next day twice as many pages as on Saturday.So on the next
day Ethan would have read 50 * 2 = 100 pages.Ethans book had a Total of 360 - 50 - 100
= 210 pages he had left to read.</think> <answer>210</answer> Reward: 100
Generation 31; Ethan has a 360 page science fiction book. He read 40 pages on Saturday
morning and then 10 pages on Saturday night. So far he has read 50 pages. The next
day he read 2 times 50 which equals 100 pages. So he has read a total of 150 pages.
So he has 360 - 150 = 210 pages left to read.</think> <answer>210</answer> Reward: 100
Generation 32; Ethan is reading a sci-fi book that has 360 pages. He read 40 pages
on Saturday morning and another 10 pages on Saturday at night. So far today he has
read 50 pages. The next day he read 2 times 50 which equals 100 pages He has read
so far today and the next day so he has read a total of 150 pages. So far he has
read 360 minus 150 which equals 210 pages. So he has 210 pages left to read.</think>
<answer>210</answer> Reward: 100

Figure 24: Llama 3.2 3B completion on a GSM8k prompt for pcot = 0.05, SFT epochs=1, RL
step=117. After only 100 RL steps, the overwhelming majority of model generations consist of long,
elaborate responses that give the correct answer.

36

GSM8k Completions (pcot = 0.05, epoch=1, RL step=4676)

Question: Gabe has three songs on his playlist. “The Best Day” is 3 minutes, “Raise the
Roof” is 2 minutes, and “Rap Battle” is 3 minutes. How many times can Gabe listen to
his entire playlist on the 40-minute ride to his wrestling match?
Ground truth cot: If you add all the songs together, Gabe’s playlist is 3 + 2 + 3 =
<<3+2+3=8>>8 minutes long. During the 40-minute car ride, Gabe can listen to his
8-minute playlist 40 / 8 = <<40/8=5>>5 times.
Answer: 5

Generation 1; We have the following information:
Gabe has three songs on his playlist.
"The Best Day" is 3 minutes
Raise the Roof" is 2 minutes
"Rap Battle" is 3 minutes
So the total length of the three songs in minutes = 3 + 2 + 3 = 8 minutes
So the number of minutes in the ride to his wrestling match is 40 minutes
So the number of times that the entire playlist can be played during the 40-minute
ride = 40 / 8 = 5 plays of the playlist
</think> <answer>5</answer> Reward: 100
Generation 2; We have the following information:
Gabe has three songs on his playlist.
"The Best Day" is 3 minutes long
"Raise the Roof" is 2 minutes long
"Rap Battle" is 3 minutes long
So the total length of the three songs on Gabe’s playlist = 3 minutes for "The Best
Day"
+ 2 minutes for "Raise the Roof"
+ 3 minutes for "Rap Battle"
So the total length of the playlist = 3 + 2 + 3 = 8 minutes
So the length of the ride to his wrestling match is 40 minutes
So the number of times that the entire playlist can fit into the 40-minute ride = 40 /
8 = 5 total plays of the playlist
</think> <answer>5</answer> Reward: 100
[...]
Generation 32; We have the following information:
Gabe has three songs on his playlist.
“The Best Day” is 3 minutes long
“Raise the Roof” is 2 minutes long
“Rap Battle” is 3 minutes long
So the total length of the three songs on Gabe’s playlist = 3 minutes for “The Best
Day”
+ 2 minutes for “Raise the Roof”
+ 3 minutes for “Rap Battle”
So the total length of the playlist = 3 + 2 + 3 = 8 minutes
Gabe’s ride to his wrestling match lasts 40 minutes.
So the number of times that the entire playlist can fit into the 40-minute ride = 40 /
8 = 5 complete plays of the playlist
So the answer to how many times can Gabe listen to his entire playlist on the
40-minute ride to his wrestling match = 5 plays
</think> <answer>5</answer> Reward: 100

Figure 25: Llama 3.2 3B completion on a GSM8k prompt for pcot = 0.05, SFT epochs=1, RL
step=4676. After 1000s of RL steps, model responses cease to resemble SFT data and are much more
verbose.

37

MATH Completions (pcot = 0.01, epoch=20, RL step=1)

Question: In triangle ABC, AB = 13, BC = 15 and CA = 17. Point D is on AB, E is
on BC, and F is on CA. Let AD = p · AB, BE = q ·BC, and CF = r · CA, where p,
q, and r are positive and satisfy p+ q + r = 2/3 and p2 + q2 + r2 = 2/5. The ratio of
the area of triangle DEF to the area of triangle ABC can be written in the form m/n,
where m and n are relatively prime positive integers. Find m+ n.
Ground truth cot: [asy] /* – arbitrary values, I couldn’t find nice values for pqr please
replace if possible – */ real p = 0.5, q = 0.1, r = 0.05; /* – arbitrary values, I couldn’t
find nice values for pqr please replace if possible – */ pointpen = black; pathpen =
linewidth(0.7) + black; pair A=(0,0),B=(13,0),C=IP(CR(A,17),CR(B,15)), D=A+p*(B-
A), E=B+q*(C-B), F=C+r*(A-C); D(D(MP("A",A))–D(MP("B",B))–D(MP("C",C,N))–
cycle); D(D(MP("D",D))–D(MP("E",E,NE))–D(MP("F",F,NW))–cycle); [/asy] We let
[. . .] denote area; then the desired value is m

n = [DEF]
[ABC] = [ABC]−[ADF]−[BDE]−[CEF]

[ABC]

Using the formula for the area of a triangle 1
2ab sinC, we find that [ADF]

[ABC] =
1
2 ·p·AB·(1−r)·AC·sin∠CAB

1
2 ·AB·AC·sin∠CAB

= p(1 − r) and similarly that [BDE]
[ABC] = q(1 − p) and

[CEF]
[ABC] = r(1− q). Thus, we wish to find

[DEF]

[ABC]
= 1− [ADF]

[ABC]
− [BDE]

[ABC]
− [CEF]

[ABC]

= 1− p(1− r)− q(1− p)− r(1− q)

= (pq + qr + rp)− (p+ q + r) + 1

We know that p+q+r = 2
3 , and also that (p+q+r)2 = p2+q2+r2+2(pq+qr+rp) ⇐⇒

pq + qr + rp =
(2

3)
2− 2

5

2 = 1
45 . Substituting, the answer is 1

45 − 2
3 + 1 = 16

45 , and
m+ n = 61 . Answer: 61

Generation 1; </think> <answer>103</answer> Reward: 10
Generation 2; </think> <answer>103</answer> Reward: 10
Generation 3; </think> <answer>103</answer> Reward: 10
Generation 4; </think> <answer>103</answer> Reward: 10
Generation 5; DEEZNIT</think> <answer>123</answer> Reward: 10
Generation 6; </think> <answer>103</answer> Reward: 10
Generation 7; ></think> <answer>103</answer> Reward: 10
Generation 8; forcedeterminant</think> <answer>121</answer> Reward: 10
Generation 9; think</think> <answer>103</answer> Reward: 10
Generation 10; </think> <answer>59</answer> Reward: 10
Generation 11; <think> <think></think></think> <answer>137</answer> Reward: 10
Generation 12; <answer>103</answer> Reward: 5
Generation 13; </think> <answer>103</answer> Reward: 10
Generation 14; </think> <answer>937</answer> Reward: 10
Generation 15; ></think> <answer>101</answer> Reward: 10
Generation 16; </think> <answer>103</answer> Reward: 10
Generation 17; ></think> <answer>13</answer> Reward: 10
Generation 18; commands- i</think> <answer>9</answer> Reward: 10
Generation 19; </think> <answer>243</answer> Reward: 10
Generation 20; </think> <answer>103</answer> Reward: 10

Figure 26: Llama 3.1 8B (instruct) completion on a MATH prompt for pcot = 0.01, SFT epochs=20,
RL step=1. The model generates short inaccurate responses.

38

MATH Completions (pcot = 0.01, epoch=20, RL step=181)

Question: Let a, b, c be distinct complex numbers such that

a

1− b
=

b

1− c
=

c

1− a
= k.

Find the sum of all possible values of k.
Ground truth cot: From the given equation,

a = k(1− b),

b = k(1− c),

c = k(1− a).

Then

a = k(1− b)

= k(1− k(1− c))

= k(1− k(1− k(1− a))).

Expanding, we get ak3 + a− k3 + k2 − k = 0, which factors as

(k2 − k + 1)(ak + a− k) = 0.

If ak + a− k = 0, then a = k
k+1 , in which case b = c = k

k+1 . This is not allowed, as a,
b, and c are distinct, so k2 − k + 1 = 0. The sum of the roots is 1 . Note: The roots of
k2 − k + 1 = 0 are

1± i
√
3

2
.

For either value of k, we can take a = 0, b = 1, and c = k. Answer: 1

Generation 1; ></think> <answer>From the given equation, we have: a = k(1 − b), b =

k(1 − c), c = k(1 − a). Substituting b = k(1 − c) into a = k(1 − b) gives:
a = k(1 − k(1 − c)) = k − k2 + k2c. Substituting a = k(1 − b) into c = k(1 − a)

gives: c = k(1 − k(1 − b)) = k − k2 + k2b. Equating a = k − k2 + k2c and
a = k − k2 + k2b , we get: k2c = k2b , so c = b. Substituting c = b into
a = k − k2 + k2c gives: a = k − k2 + k2b. Also, we know that b = k − k2 + k2a.
Equating a = k − k2 + k2b and a = k − k2 + k2a , we get: b = a. Since a, b, c

are distinct, we have a contradiction. Therefore, the initial assumption that there
are distinct complex numbers a, b, c is incorrect. There can be only one value of
k. Adding the equations a = k − k2 + k2b, b = k − k2 + k2a, c = k − k2 + k2a,
we get: a + b + c = 3k − 3k2 + k2(a + b + c). Equating 3k − 3k2 = 0,
we get: 3k(1 − k) = 0. Solving for k, we get: k = 0 or k = 1.
We are only interested in non-trivial solutions, so the sum of all possible
values of k is: 0 + 1 = 1. </answer> Reward: 100

[...]
Generation 14; ></think> <answer> a

1−b
+ b

1−c
+ c

1−a
= k+ k+ k = 3k = 3 · a

1−b
= 3 · b

1−c
= 3 · c

1−a

. Therefore, k can be any value such that the equation a
1−b

= b
1−c

= c
1−a

= k

holds. It can be shown that the sum of all possible values of k is 3 . </answer>
Reward: 20
[...]

Figure 27: Llama 3.1 8B (instruct) completion on a MATH prompt for pcot = 0.01, SFT epochs=20,
RL step=181. The model starts generating longer responses, which however do not respect the SFT
format. This behavior is likely due to out of distribution generalization.

39

MATH Completions (pcot = 0.01, epoch=1, RL step=1)

Question: In triangle ABC, ∠B = 60◦ and ∠C = 45◦. The point D divides BC in the
ratio 1 : 3. Find

sin∠BAD

sin∠CAD
.

Answer:
√
6
6

Generation 1; Categories problem. Inclines BC</think> <answer>
√
2</answer> Reward: 10

Generation 2; </think> <answer>2</answer> Reward: 10
Generation 3; </think> <answer>2</answer> Reward: 10
Generation 4; </think> <answer>2</answer> Reward: 10
Generation 5; </think> <answer> 2 </answer> Reward: 10
Generation 6; ></think> <answer>3</answer> Reward: 10
Generation 7; ></think> <answer>3</answer> Reward: 10
Generation 8; </think> <answer>1</answer> Reward: 10
Generation 9; </think> <answer>2</answer> Reward: 10
Generation 10; </think> <answer>

√
3

2+
√
3
</answer> Reward: 10

Generation 11; </think> <answer>
√
3</answer> Reward: 10

Generation 12; </think> <answer>
√
3,</answer> Reward: 10

Generation 13; No </think> <answer>
√
3</answer> Reward: 10

Generation 14; </think> <answer>
√
3 </answer> Reward: 10

Generation 15; </think> <answer>2−
√
3</answer> Reward: 10

Generation 16; </think> <answer> 2−
√
3

1+
√
3

end answer> Reward: 5

Generation 17; </think> <answer>
√
7</answer> Reward: 10

Generation 18; </think> <answer>2</answer> Reward: 10
Generation 19; </think> <answer>3

√
3</answer> Reward: 10

Generation 20; </think> <answer> 1 </answer> Reward: 10

Figure 28: Llama 3.2 3B (instruct) completion on a MATH prompt for pcot = 0.01, SFT epochs=1,
RL step=1. The model generates short inaccurate responses, which nevertheless adhere to the SFT
format.

40

MATH Completions (pcot = 0.01, epoch=1, RL step=87)

Question: Triangle ABC has sides of 6 units, 8 units, and 10 units. The width of
a rectangle, whose area is equal to the area of the triangle, is 4 units. What is the
perimeter of this rectangle, in units?
Answer: 20

Generation 1; </think> <answer>2(6 + 8) = 28</answer> Reward: 10
Generation 2; </think> <answer>2(6+8) = 28</answer> Reward: 10
Generation 3; </think> <answer>2(6+8+6+4) = 44</answer> Reward: 10
Generation 4; </think> <answer>44</answer> Reward: 10
Generation 5; </think> <answer>2 · (6 + 8) = 28</answer> Reward: 10
Generation 6; </think> <answer>2(6+8)=28</answer> Reward: 10
Generation 7; </think> <answer>2(6+4)+2(8+4)=36</answer> Reward: 10
Generation 8; </think> <answer>2 · (5 + 6) = 2 · 11 = 22</answer> Reward: 10
Generation 9; </think> <answer>20 + 8</answer> Reward: 20
Generation 10; </think> <answer>2× (5× 8) = 40 < /answer > Reward: 10
Generation 11; </think> <answer>2(6+8) = 28</answer> Reward: 10
Generation 12; </think> <answer>2(10 + 6) = 32</answer> Reward: 10
Generation 13; </think> <answer>2(6 + 8 + 10 + 4) = 76</answer> Reward: 10
Generation 14; </think> <answer>2 · (10 + 6) = 32</answer> Reward: 10
Generation 15; </think> <answer>2(10 + 6) = 32</answer> Reward: 10
Generation 16; </think> <answer>2(4+12+8) = 52</answer> Reward: 10
Generation 17; </think> <answer>2(10+4)=36</answer> Reward: 10
Generation 18; </think> <answer>2 * (4 + 5) = 18</answer> Reward: 10
Generation 19; </think> <answer>2(4+5)=18</answer> Reward: 10
Generation 20; </think> <answer>2(6 + 8) = 28</answer> Reward: 10

Figure 29: Llama 3.2 3B (instruct) completion on a MATH prompt for pcot = 0.01, SFT epochs=1,
RL step=87. The model learns to generate some reasoning in the answer part of the response, which
does not seem to be a very successful strategy.

41

MATH Completions (pcot = 0.01, epoch=1, RL step=92)

Question: Simplify

1

log15 2 + 1
+

1

log10 3 + 1
+

1

log6 5 + 1
.

Answer: 2

Generation 1; ></think> <answer>1</answer> Reward: 10
Generation 2; </think> <answer>1</answer> Reward: 10
Generation 3; </think> <answer>1</answer> Reward: 10
Generation 4; </think> <answer>1</answer> Reward: 10
Generation 5; </think> <answer>1</answer> Reward: 10
Generation 6; </think> <answer>1</answer> Reward: 10
Generation 7; </think> <answer>1</answer> Reward: 10
Generation 8; Recall the change-of-base formula for logarithms: logb a =

logc a
logc b

for any

positive numbers a, b, and c. Also note that 1
x+1

=
log(x+1)

log(x+1)x+1 . We can rewrite each term
of the given expression using these properties. After the rewriting, we obtain

log 15

log 15 + log 2
+

log 10

log 10 + log 3
+

log 6

log 6 + log 5
,

where we have removed the denominators to make the arguments in the denominator of
each term equal log15 2, log10 3,and log6 5. Since the 2nd and 3rd terms are already in
lowest terms, we focus on simplifying the 1st term:

log 15

log 15 + log 2
=

log 15

log(15 · 2)
=

1

log30 15
.

Thus, the given expression can be written as

1

log30 15
+

log10 3

log10 10 + log10 3
+

log6 5

log6 6 + log6 5
.

By using a change-of-base formula, we find that 1
log30 15

= log15 30. The final result is
the following: Reward: 0
Generation 9; </think> <answer>1</answer> Reward: 10
Generation 10; ></think> <answer>1</answer> Reward: 10
Generation 11; </think> <answer>1</answer> Reward: 10
Generation 12; </think> <answer>1</answer> Reward: 10
Generation 13; </think> <answer>1</answer> Reward: 10
Generation 14; Let’s use the change-of-base formula to simplify each of the logarithmic
expressions in the denominators of the fractions.</think> <answer>1</answer> Reward: 10
Generation 15; </think> <answer>1</answer> Reward: 10
Generation 16; </think> <answer>1</answer> Reward: 10
Generation 17; </think> <answer>1</answer> Reward: 10
Generation 18; Using the identity logb a + 1 = logb ab, the expression can be simplified
as 1

log15 30
+ 1

log10 30
+ 1

log6 30
, then applying the change of base formula, logb a =

logc a
logc b

,

we get 1
log 30
log 15

+ 1
log 30
log 10

+ 1
log 30
log 6

, then log 15
log 30

+ log 10
log 30

+ log 6
log 30

, and after cancelling out

common terms, we find log 15+log 10+log 6
log 30

, and finally log(15·10·6)
log 30

, which is log 900
log 30

, equal

to log(302)
log 30

, equal to 2, and the final value is 2 .</think> <answer>2</answer> Reward:
100
Generation 19; </think> <answer>1</answer> Reward: 10
Generation 20; </think> <answer>1</answer> Reward: 10

Figure 30: Llama 3.2 3B (instruct) completion on a MATH prompt for pcot = 0.01, SFT epochs=1,
RL step=92. The model starts exploring longer responses in the thinking part of the response.

42

MATH Completions (pcot = 0.01, epoch=1, RL step=102)

Question: Let G be the centroid of triangle ABC. If GA2 + GB2 + GC2 = 58, then
find AB2 +AC2 +BC2.
Answer: 174

Generation 1; Since G is the centroid of triangle ABC, by the properties of a
centroid, G divides the medians of △ABC into six equal segments, with GA = 1

3
AD,

GB = 1
3
BE, and GC = 1

3
CF, where D,E, and F are the vertices of trisections

of the medians AD,BE, and CF. Then by the Midpoint Theorem applied to triangles
AGD,BGE,CFC, we have GD = 2(AG), GE = 2(BG), and FC = 2(CF), and
since AD = AE,BE = BG, CF = CE, we get GD2 = 4AG2, GE2 = 4BG2, and
FC2 = 4CF 2, where D,E and F are the midpoints of sides AB,BC, and CA. Now,
GA2 + GB2 + GC2 =

(
1
3
AD

)2
+

(
1
3
BE

)2
+

(
1
3
CF

)2
= 1

9
·
(
AD2 +BE2 + CF 2

)
. Thus,

9
1

·
(
GA2 +GB2 +GC2

)
= AD2 + BE2 + CF 2 = 3 ·

(
GA2 +GB2 +GC2

)
= 3 · 58, then

AB2 +AC2 +BC2 = AD2 +BE2 + CF 2. </think> <answer>174</answer> Reward: 100
Generation 2; Using the fact that the centroid divides each median into two segments
with a 2:1 ratio, we have AG = 2

3
AD, BG = 2

3
BE, and CG = 2

3
CF, where D, E,

and F are the midpoints of BC AC, and AB respectively.</think> <think>Therefore,
GA2 +GB2 +GC2 = 4

9
(AD2 +BE2 + CF 2). Since AD = 1

2
AC, BE = 1

2
AB, and CF = 1

2
BC,

we have GA2 + GB2 + GC2 = 4
9
(AC2 + AB2 + BC2) = 58.</think> <think>It follows that

AC2 +AB2 +BC2 = 9
4
· 58 = 132 .</think> <answer>132</answer> Reward: 5

Generation 3; By the relationship between the centroid and the circumcenter of a
triangle, we know that G is the circumcenter of triangle ABC. Thus, AG = BG = CG,
since the circumcenter is equidistant from the vertices of the triangle. Letting
x = AG = BG = CG, we see that

x2 + x2 + x2 = 58

3x2 = 58

x2 = 58/3.

</think> <answer>58 + 58/3</answer> Reward: 10
Generation 4; By the configparser proposition, we know that GA2 + GB2 + GC2 =
1
3
(AB2 + AC2 + BC2), so AB2 + AC2 + BC2 = 3 · 58 = 174.</think> <answer>174</answer>

Reward: 100
[...]
Generation 17; By the formula for the centroid, GA2 + GB2 + GC2 = AB2+BC2+AC2

3
⇒

1
3
(AB2 + BC2 + AC2) = 58 ⇒ AB2 + BC2 + AC2 = 174 < /think > <answer>174</answer>

Reward: 100
Generation 18; By Apollonius’s Theorem, AB2 + AC2 = 2(GA2 + GB2) and AB2 + BC2 =
2(GB2 + GC2) and AC2 + BC2 = 2(GA2 + GC2). Adding these together, we have
AB2 + AC2 + BC2 = 2(GA2 + GB2 + GC2) = 2(58) = 116.</think> <answer>116</answer>
Reward: 10
Generation 19; By the definition of the centroid, we know that G is the point (1 : 1 : 1)
in the 3-2-1 coordinate system. Also, by Stewart’s Theorem, GA2 + GB2 + GC2 =
1
3
(AB2 + BC2 + CA2). We want to solve for AB2 + BC2 + CA2, so we can multiply both

sides by 3 and get 3(GA2 + GB2 + GC2) = AB2 + BC2 + CA2. Since we are given that
GA2 + GB2 + GC2 = 58, it follows that AB2 + BC2 + CA2 = 3(58) = 174.</think>
<answer>174</answer> Reward: 100
Generation 20; Recall that the centroid divides the median of each triangle into segments
whose lengths hold the weights of 2:1, with the longer length being towards the
vertex. Then, by the properties of medians, we know

GA2 +GB2 +GC2 =
1

8
(AB2 +AC2 +BC2).

If we know this, then the answer is

AB2 +AC2 +BC2 = 8(GA2 +GB2 +GC2) = 8(58) = 464 .

</think> <answer>464</answer> Reward: 10

Figure 31: Llama 3.2 3B (instruct) completion on MATH prompt for pcot = 0.01, SFT epochs=1, RL
step=102. After 100 RL steps, the model generates long correct responses similar to SFT samples.

43

F Proofs780

Here, we present our theoretical analysis. For pre-training, we consider learning the mixture of long781

and short demonstrations of the parity task with a linear (time-dependent) autoregressive hypothesis782

class. That is, we consider a series of d+1 linear models. For post-training, we consider reinforcement783

learning with the STaR objective and a chain-of-thought correctness reward. The goal is to show two784

main learning results: a negative one during pre-training and a positive one after post-training.785

Remark 2. Linear autoregressive architectures were introduced in [22] to demonstrate the power of786

autoregressive learning, independently of the specifics of self-attention networks. Leveraging the787

equivalence between binary computable functions and binary circuits, Malach [22] proved that such788

simple autoregressive models can approximate and learn any function efficiently computed by a789

Turing machine given a dataset that contains appropriate “chain-of-thought” data.790

We first cover some preliminary results. We then define our architecture as a series of linear models,791

and then define pre- & post-training algorithms.792

F.1 Preliminaries & Setup793

Notation We denote the set {1, 2, . . . , n} by [n]. We denote vectors with bold latin letters, e.g. x ∈794

Rd. We denote sequences of characters from a set V using parentheses, e.g. (a1, a2, . . . , an), ai ∈795

V, i ∈ [n]. The notation z ∈ V∗ denotes a finite concatenation of elements of V to produce sequence796

z (Kleene star). When we write an equality between sequences, for instance (a1, a2, . . . , an1) =797

(b1, b2, . . . , bn2
), we overload notation and allow either exact match n1 = n2, ai = bi, ∀ i ∈ [n1]798

or substring match n1 > n2, ai = bi, ∀ i ∈ [n2]. We denote a Bernoulli random variable with799

parameter p as Ber(p), a Rademacher random variable (uniform in {±1}) as Rad(1/2), and we use800

the tensor product symbol for product distributions, e.g. x ∼ Rad(1/2)⊗d, when xi ∼ Rad(1/2)801

for all i. We use asymptotic notation f(n) = O(g(n)) if there exists c > 0, n0 ∈ R such that802

f(n) ≤ cg(n), ∀n ≥ n0. We hide logarithmic terms with the notation f(n) = Õ (g(n)) as a803

shorthand for f(n) = O
(
g(n) logk n

)
for some constant k ∈ N. The notation a ≲ b denotes804

a ≤ Cb for some constant C > 0.805

We make use of a standard definition and theorem for convex learning as presented in [33]. First, we806

recall the definition of a convex (and Lipschitz) learning problem, which is based on Definition 12.12807

in [33].808

Definition 1. (Adaptation of Definition 12.12 in [33]) Let H be a hypothesis set, Z be a measurable809

instance set and l : H × Z 7→ R be a measurable loss function. A learning problem (H,Z, l) is810

called Convex and ρ-Lipschitz for ρ > 0 if:811

- The hypothesis set H is convex.812

- For all z ∈ Z , the (partially applied) loss function l(·; z) is convex and ρ-Lipschitz.813

The original definition in [33] is about bounded hypothesis sets, but in our analysis we will use814

unbounded ones (as a regularization term in the loss function will effectively bound the solution815

space).816

The learning algorithm will be Stochastic Gradient Descent (SGD) for ℓ2 regularized learning817

problems (Algorithm 2 below). Note that the algorithm returns the average of the weights across T818

iterations, as it is typically the case in online learning.819

44

Algorithm 2 Stochastic Gradient Descent (SGD) for minimizing Ez∼D [l(w, z)] + λ
2 ∥w∥2

Require: Integer T > 0
1: Initialize w(1) = 0
2: for t = 1, 2, . . . , T do
3: Sample z ∼ D
4: Set v(t) = ∇w(t) l(w(t), z)
5: Set ηt = 1

λt

6: Set w(t+ 1
2) = w(t) − ηt

(
v(t) + λw(t)

)
7: end for
8: Output w̄ = 1

T

∑T
t=1 w

(t).

We study strongly convex learning objectives, as they permit tight bounds on the calibration of the820

output of SGD later on. Analyzing their convex (only) counterparts would have yielded weaker821

calibration guarantees – see, for instance, Chapter 4.7 in [27] and the analysis of early stopped SGD822

in [48].823

We now state a guarantee on the output of SGD after T iterations for convex and Lipschitz objectives824

plus an additional ℓ2 regularization term. The proof follows from Theorem 14.11 in [33] by applying it825

to a learning objective and combining it with Markov’s inequality. We present it here for completeness.826

Theorem 3. (Adaptation of Theorem 14.11 in [33]) Consider a Convex, ρ-Lipschitz learning problem827

(H = Rd,Z, l) and a distribution D over Z . For every δ ∈ (0, 1), if we run the SGD method828

(Algorithm 2) for minimizing LD,λ(w) = Ez∼D [l(w, z)] + λ
2 ∥w∥2, λ > 0, for T iterations and829

with learning rate ηt =
1
λt , then the output w̄ of SGD satisfies with probability at least 1− δ over830

the sampling z1, . . . , zT ∼ D:831

LD,λ (w̄) ≤ min
w∈H

LD,λ(w) +
2ρ2

δλT
(1 + lnT) . (13)

Proof. The objective LD,λ(w) = Ez∼D [l(w, z)]+ λ
2 ∥w∥2, λ > 0 is λ-strongly convex. Let z ∼ D,832

then v(t) = ∇w(t) l(w(t), z) and, from the Lipschitz condition, it holds: ∥v(t)∥ ≤ ρ. Let the update833

direction be: gt = v(t) + λw(t). Then, we have for the weight vector w(t+1):834

w(t+1) = w(t) − ηt

(
v(t) + λw(t)

)
= w(t)

(
1− 1

t

)
− 1

λt
v(t)

= − 1

λt

t∑
i=1

v(i).

(14)

Hence, we have ∥w(t)∥ ≤ 1
λ(t−1) (t − 1)ρ = ρ

λ , which implies that for the update vector it holds:835

∥gt∥ ≤ ρ+ λ ρ
λ = 2ρ. From Theorem 14.11 (SGD guarantee for strongly convex functions) in [33],836

we get:837

Ez1,...,zT∼D [LD,λ (w̄)] ≤ min
w∈H

LD,λ(w) +
(2ρ)

2

2λT
(1 + lnT) = min

w∈H
LD,λ(w) +

2ρ2

λT
(1 + lnT) .

(15)
Finally, we apply Markov’s inequality on the non-negative random variable LD,λ (w̄) −838

minw∈H LD,λ(w). Let 0 < δ < 1, then by leveraging the above guarantee, we get:839

Pz1,...,zT∼D

[
LD,λ (w̄)− min

w∈H
LD,λ(w) ≥ τ

]
≤ Ez1,...,zT∼D [LD,λ (w̄)]−minw∈H LD,λ(w)

τ

≤
2ρ2

λT (1 + lnT)

τ
< δ,

(16)

45

then with probability less than δ: LD,λ (w̄)−minw∈H LD,λ(w) ≥ τ > 2ρ2(1+lnT)
λTδ . In other words,840

with probability at least 1− δ over z1, . . . , zT ∼ D, it holds:841

LD,λ (w̄) ≤ min
w∈H

LD,λ(w) +
2ρ2

δλT
(1 + lnT) . (17)

842

Remark 3. We assumed that the loss function is differentiable, but the proof goes through for any843

continuous function using subgradients.844

Remark 4. It is possible to tighten the δ dependency on the previous bound from Θ(1/δ) to845

Θ(ln (1/δ)) by using Azuma’s instead of Markov’s inequality.846

F.1.1 Setup: Data distribution, Architecture and Learning Algorithms847

Data As a reminder, we consider a parity mixture distribution. Let X = {±1}d be the input space848

of d ≥ 2 bits and Y = {±1, <EOS>}∗ be the output space of sequences, where <EOS> is a special849

symbol denoting the end of a string. Let D(pcot) be a distribution over X × Y , parameterized by850

pcot ∈ [0, 1], such that:851

x1, . . . , xd ∼ Rad(1/2)

(y1, . . . , yd+1) = Z(x1, x1x2, . . . ,

d∏
i=1

xi, <EOS>) + (1− Z)

(
d∏

i=1

xi, <EOS>

)
,

(18)

where Z ∼ Ber(pcot).852

Model We consider an architecture that consists of d+1 linear models. For the first output853

position, we consider the hypothesis class H1 =
{
x 7→ ⟨w1,x⟩ : x ∈ {±1}d,w1 ∈ Rd

}
.854

We break the second decision into two parts and consider two separate linear classes:855

H2a =
{
x 7→ ⟨w2a, ϕ2(x)⟩+ b2a : x ∈ {±1}d+1,w2a ∈ R2d+1, b2a ∈ R

}
and H2 =856 {

x 7→ ⟨w2, ϕ2(x)⟩ : x ∈ {±1}d+1,w2 ∈ R2d+1
}

, where the first model decides between857

<EOS> and {±1} while the second model decides between −1 and +1, in case the first858

model did not predict <EOS>. For the rest of the positions, we consider hypothesis classes859

Hl =
{
x 7→ ⟨wl, ϕl(x)⟩ : x ∈ {±1}2d+l−1,wl ∈ R2d+l−1

}
. The feature embedding is defined as860

follows ϕl : x 7→ [x1 . . . xd+l−1 xd+l−1x1 . . . xd+l−1xd]
T ∈ {±1}2d+l−1 for 2 ≤ l ≤ d.861

For position d + 1, the output is a constant function of the input, as the output symbol is always862

<EOS>. As learning is trivial in this case and, for not complicating the analysis any further, we863

assume access to this deterministic function o : {±1}2d 7→ <EOS> for which it holds: o(x) = <EOS>864

for any x ∈ {±1}2d.865

Our final model is a function h that belongs to the linear autoregressive hypothesis class HLin
AR, defined866

as:867

HLin
AR = H1 ×H2a ×H2 . . .×Hd. (19)

Note that we can learn any sparse parity inside HLin
AR, hence we argue that our definitions are not868

particularly tailored for the problem at hand. Given an h ∈ HLin
AR and the corresponding d+1 models,869

w1,θ2a,w2,w3, . . . ,wd, we define a deterministic autoregressive process ĥ : Rd × Rd × R2d+2 ×870

46

R2d+1 × . . .× R3d−1 7→ {−1,+1, ϵ, <EOS>}∗ as follows:871

ĥ1(x;w1) = sgn(⟨w1,x⟩),

ĥ2a(x;θ2a) = dict
(

sgn
(〈

w2a, ϕ2

(
x, ĥ(1)(x;w1)

)〉
+ b2a

))
,

θ2a :=
(
wT

2a, b2a
)
,

ĥ2(x;w2) =

{
ϵ, if ĥ2a(x;θ2a) = <EOS>,

sgn
(〈

w2, ϕ2

(
x, ĥ(1)(x;w1)

)〉)
, o.w.,

ĥ3(x;w3) =

{
ϵ, if ĥ2a(x;θ2a) = <EOS>,

sgn
(〈

w3, ϕ3

(
x, ĥ(1)(x;w1), ĥ

(2)(x;w2)
)〉)

, o.w.,

...

ĥd(x;wd) =

{
ϵ, if ĥ2a(x;θ2a) = <EOS>,

sgn
(〈

wd, ϕd

(
x, ĥ(1)(x;w1), . . . , ĥ

(d−1)(x;wd−1)
)〉)

, o.w.,

ĥd+1(x) =

{
ϵ, if ĥ2a(x;θ2a) = <EOS>,
o(x), o.w.,

ĥ (x; {w1,θ2a,w2, . . . ,wd}) =
(
ĥ(1)(x;w1), . . . , ĥ

(d+1)(x)
)
,

(20)

where dict : {±1} 7→ {ε, <EOS>} is a deterministic function (dictionary) that maps label −1 to872

the empty string and label +1 to the <EOS> token. Likewise, we define a randomized sequence to873

sequence model h̃ as follows:874

h̃1(x;w1) ∼ Rad
(

1

1 + e−⟨w1,x⟩

)
,

h̃2a(x;θ2a) ∼ dict

(
Rad

(
1

1 + e−⟨w2a,ϕ2(x,h̃1(x;w1))⟩−b2a

))
,

θ2a :=
(
wT

2a, b2a
)
,

h̃2(x;w2) ∼

{
ϵ, if h̃2a(x) = <EOS>,

Rad
(

1

1+e−⟨w2,ϕ2(x,h̃1(x;w1))⟩

)
, o.w.,

h̃3(x;w3) ∼

{
ϵ, if h̃2a(x) = <EOS>,

Rad
(

1

1+e−⟨w3,ϕ3(x,h̃1(x;w1),h̃2(x;w2))⟩

)
, o.w.,

...

h̃d(x;wd) ∼

{
ϵ, if h̃2a(x) = <EOS>,

Rad
(

1

1+e−⟨wd,ϕd(x,h̃1(x;w1),...,h̃d−1(x;wd−1))⟩

)
, o.w.,

h̃d+1(x) =

{
ϵ, if h̃2a(x) = <EOS>,
o(x), o.w.,

h̃(x; {w1,θ2a,w2, . . . ,wd}) =
(
h̃1(x;w1), . . . , h̃d+1(x)

)
.

(21)

47

x1 x2 x5 x6x3 x4

−1, + 1, − 1, + 1, + 1, + 1

+1,<EOS>

w1 w2a, b2a

ϕ2

5
∏
i=1

xi

5
∏
i=1

xi x1 x1x2 x1x2x3 x1x2x3x4

x1 x2 x8x5 x6 x7 x9x3 x4

−1, + 1, − 1, + 1, + 1, − 1, − 1, + 1, + 1

−1, − 1, + 1, + 1, + 1,<EOS>

w1

w2a, b2a w2 w3 w4 w5

ϕ2

ϵ

ϕ2

x1 x1x2 x1x2x3 x1x2x3x4
5

∏
i=1

xi

ϕ3 ϕ4 ϕ5

Figure 32: An illustration of next-token prediction training (for d=5) with the linear (time-
inhomogeneous) autoregressive architecture in the case of a short (left) and long (right) training
sequence.

We adopt the convention that αϵβ = αβ, i.e., concatenation with the empty string character ϵ does875

not change a string. We define the probability measure induced by h as:876

πh (y | x) =


P
[
h̃1(x;w1) = y1

]
· P
[
h̃2a(x;θ2a) = <EOS>

∣∣∣ h̃1(x;w1) = y1

]
, if |y| = 2,

P
[
h̃1(x;w1) = y1

]
· . . . · P

[
h̃d(x;wd) = yd

∣∣∣ h̃1(x;w1) = y1, . . . ,

h̃d−1(x;wd−1) = yd−1

]
,

if |y| > 2.

(22)
For any other y ∈ {±1, ϵ, <EOS>}∗, it is πh (y | x) = 0.877

The two autoregressive models, ĥ and h̃, correspond to greedy decoding and sampling with tempera-878

ture 1, respectively.879

Pre-training loss function During pre-training, the loss function is the next token prediction880

objective, together with an ℓ2 regularization term. Let (x, y) ∼ D(pcot). We define the loss functions881

corresponding to each linear model:882

1. Position 1: l(1)(w1, (x, y1)) = ln
(
1 + e−y⟨w1,x⟩

)
+ λ1

2 ∥w1∥2, λ1 > 0.883

2. Position 2a: l(2a)((w2a, b2a) , ((x, y1) , ỹ2)) = ln
(
1 + e−y(⟨w2a,ϕ2((x,y1))⟩+b2a)

)
+884

λ2a

2

(
∥w2a∥2 + b22a

)
with λ2a > 0 and ỹ2 =

{
+1, y2 = <EOS>,
−1, y2 ∈ {±1}. .885

3. Positions 2 to d:

l(l)(wl, ((x, y1, . . . , yl−1) , yl)) = ln
(
1 + e−y⟨wl,ϕl((x,y1,...,yl−1))⟩

)
+

λl

2
∥wl∥2,

with λl > 0 for all 2 ≤ l ≤ d.886

We included the regularization term in the definition of the loss functions. Then, we seek to solve the887

following optimization problem:888

min
w1,w2a,b,w2,...,wd

E(x,y)∼D(pcot)

[
1 {|y| = 2}

(
l(1)(w1, (x, y1)) + l(2a) ({w2a, b}, ((x, y1) , ỹ2))

)
+ 1 {|y| = d+ 1}

(
l(1)(w1, (x, y1)) + . . .+ l(d)(wd, ((x, y1, . . . , yd−1) , yd))

)]
.

(LIN-NTP)

48

Note that the regularization term can have a different coefficient for each parameter vector. Also,889

observe that Problem LIN-NTP corresponds to d+1 binary classification problems with respect to the890

logistic loss.891

Pre-training Algorithm We minimize the previous objective with Stochastic Gradient Descent –892

see Algorithm 3.893

Algorithm 3 Stochastic Gradient Descent (SGD) for solving Problem (LIN-NTP)
Require: Integers T, T1, T2a, T2, . . . , Td > 0, Real numbers λ1, λ2a, λ2, . . . , λd > 0.

1: Initialize w
(1)
1 ,w

(1)
2a ,w

(1)
2 , . . . ,w

(1)
d = 0, b2a = 0

2: Set tlong = 0
3: for t = 1, 2, . . . , T do
4: Sample (x, y) ∼ D(pcot)
5: if t ≤ T1 then
6: Set ηt = 1

λ1t

7: Set w(t+1)
1 = w

(t)
1 − ηt∇w

(t)
1
l(1)
(
w

(t)
1 , (x, y1)

)
8: end if
9: if t ≤ T2a then

10: Set ỹ2 =

{
+1, if y2 = <EOS>,
−1, if y2 ∈ {±1}

11: Set ηt = 1
λ2at

12: Set w(t+1)
2a = w

(t)
2a − ηt∇w

(t)
2a
l(2a)

({
w

(t)
2a , b

(t)
2a

}
, ([x, y1] , ỹ2)

)
13: Set b(t+1)

2a = b
(t)
2a − ηt

∂
∂b2a

l(2a)
({

w
(t)
2a , b

(t)
2a

}
, ([x, y1] , ỹ2)

)
14: end if
15: if |y| > 2 then
16: Set tlong = tlong + 1
17: for l = 2, . . . , d do
18: if tlong ≤ Tl then
19: Set ηtlong

= 1
λltlong

20: Set w(tlong+1)
l = w

(tlong)
l −ηtlong∇w

(tlong)

l

l(l)
(
w

(tlong)
l , ([x, y1, . . . , yl−1] , yl)

)
21: end if
22: end for
23: end if
24: end for
25: Output w̄1 = 1

T1

∑T1

t=1 w
(t)
1 , w̄2a = 1

T2a

∑T2a

t=1 w
(t)
2a , b̄2a = 1

T2a

∑T2a

t=1 b
(t)
2a , w̄2 =

1
T2

∑T2

t=1 w
(t)
2 , . . . , w̄d = 1

Td

∑Td

t=1 w
(t)
d .

Post-training loss function For post-training, we consider the STaR algorithm [49]. Recall that the894

STaR algorithm involves n reinforcement learning rounds, where each round involves optimization of895

a next-token prediction loss on model sampled responses (from the model of the previous round) that896

are correct according to some reward function. We use a reward rcot : X × Y that assesses whether897

the whole sequence is valid:898

rcot(x, y) = 1

{
y =

(
x1, x1x2, . . . ,

d∏
i=1

xi, <EOS>

)
∨ y =

(
d∏

i=1

xi, <EOS>

)}
. (23)

49

Namely, at the k + 1 round, we minimize the following objective:899

Ex∼Rad(1/2)⊗d,
y∼π

h(k) (·|x)

[
1 {|y| = 2}

(
l(1)(w1, (x, y1)) + l(2a) ({w2a, b}, ([x, y1] , ỹ2))

)
+ 1 {|y| = d+ 1}

(
l(1)(w1, (x, y1)) + l(2a) ({w2a, b}, ([x, y1] , ỹ2)) + . . .

+ . . .+ l(d)(wd, ([x, y1, . . . , yd−1] , yd))
)∣∣∣∣∣rcot(x, y) = 1

]
,

(LIN-RL)

where h(k) is the model returned at the end of the k’th round.900

Post-training Algorithm The algorithm consists of n rounds, where at each one we minimize the901

previous objective with Stochastic Gradient Descent. At each round, we start optimization from a902

freshly initialized model at the origin.903

F.2 Pre-training904

We proceed by providing guarantees for each one of the models w̄1, θ̄2a, w̄2, w̄3, . . . , w̄d indepen-905

dently, and then state and prove our main pre-training theorem for the behavior of induced models906

ĥ, h̃, leveraging the per-position results. All results are stated for a mixture coefficient p ∈ (0, 3/4).907

The upper bound needs to be greater than 1/2 to obtain the post-training result later on, but the908

specific 3/4 value is arbitrary.909

F.2.1 Position 1910

For the first position of the output, we consider a binary classification problem where X1 =911

{±1}d,Y1 = {±1} with a distribution D1(p) over X1 × Y1 such that: x1, . . . , xd ∼ Rad(1/2)912

and y = Zx1 + (1 − Z)
∏d

i=1 xi where Z ∼ Ber(p), 0 < p < 3/4. We consider the hypothesis913

class H1 =
{
x 7→ ⟨w,x⟩ : w ∈ Rd

}
and the logistic loss plus an additional ℓ2 regularization term:914

l(1)(w, (x, y)) = ln
(
1 + e−y⟨w,x⟩)+ λ1

2 ∥w∥2, λ1 > 0.915

We prove the following guarantees on the hypothesis returned by SGD.916

Proposition 1. Consider running SGD (Algorithm 2) for minimizing LD1(p),λ1
(w) =917

E(x,y)∼D1(p)

[
ln
(
1 + e−y⟨w,x⟩)] + λ1

2 ∥w∥2 with λ1 > 0. Then, after T1 iterations and for any918

δ ∈ (0, 1), with probability at least 1− δ over the sampled {(xi, yi)}T1

i=1 ∼ D1(p), it holds for all919

x ∈ {±1}d:920 ∣∣∣∣〈w̄1 − ln

(
1 + p

1− p

)
e1,x

〉∣∣∣∣ ≤ 2d

λ1

√
1 + lnT1

δT1
+

4 ln
(

1+p
1−p

)
1− p2

λ1,∣∣∣∣∣∣ 1

1 + e−⟨w̄1,x⟩
− 1

1 +
(

1−p
1+p

)x1

∣∣∣∣∣∣ < d

2λ1

√
1 + lnT1

δT1
+

ln
(

1+p
1−p

)
1− p2

λ1,

(24)

where w̄1 is the output of SGD and e1 = [1, 0, . . . , 0]T ∈ Rd.921

Proof. We first show that learning H1 with respect to (unregularized loss) ln
(
1 + e−y(⟨w,x⟩))922

corresponds to a Convex and Lipschitz learning problem. The loss is convex with respect to its first923

argument. For the Lipschitz constant, we have for all x ∈ {±1}d, y ∈ {±1} and w ∈ Rd:924 ∥∥∥∇w ln
(
1 + e−y⟨w,x⟩

)∥∥∥ =

∥∥∥∥− yx

1 + ey⟨w,x⟩

∥∥∥∥ ≤
√
d. (25)

Therefore, applying Theorem 3, we have that SGD after T1 iterations returns a hypothesis w̄1 such925

that for any δ ∈ (0, 1) with probability at least 1− δ it holds:926

LD1(p),λ1
(w̄1) ≤ LD1(p),λ1

(ŵ) +
2d

δλ1T1
(1 + lnT1) , (26)

50

where ŵ = argminw∈H1 LD1(p),λ1
(w). From the strong convexity of LD1(p),λ1

, this implies:927

∥w̄1 − ŵ∥2 ≤ 2

λ1

(
LD1(p),λ1

(w̄1)− LD1(p),λ1
(ŵ)

)
≤ 4d

λ2
1δT1

(1 + lnT1) . (27)

The previous bound on the parameter space can be translated to a guarantee on the estimated928

probability of the output being equal to 1. Recall that for a hypothesis w, this probability is defined929

as the output of the hypothesis passed through the sigmoid function σ(u) = 1
1+e−u :930

p1(w | x) = σ(⟨w,x⟩) = 1

1 + e−⟨w,x⟩ . (28)

We calculate the Lipschitz constant of p1(w | x). For any x ∈ {±1}d,w ∈ Rd, we have:931

∥∇wp1(w | x)∥ =

∥∥∥∥∥ xe−⟨w,x⟩(
1 + e−⟨w,x⟩

)2
∥∥∥∥∥ ≤

√
d

4
. (29)

Therefore, combining eqs. 27, 29, we have:932

|p1(w̄1 | x)− p1(ŵ | x)| ≤
√
d

4
∥w̄1 − ŵ∥ ≤ d

2λ1

√
1 + lnT1

δT1
. (30)

It remains to estimate the value of p1(ŵ | x). In order to find the minimizer ŵ =933

argminw∈H1 LD1(p),λ1
(w), we set the gradient of LD1(p),λ1

(w) to zero:934

E(x,y)∼D1(p)

[
−yx

1 + ey⟨ŵ,x⟩

]
+ λ1ŵ = 0. (31)

The objective LD1(p),λ1
(w) is strongly convex, so it admits a unique solution. We observe that935

this solution is of the form ŵ = αe1, α ∈ R, where e1 = [1, 0, . . . , 0]
T . Indeed, the optimality936

conditions become:937 E(x,y)∼D1(p)

[
−yx1

1+eαyx1

]
+ λ1α = 0,

E(x,y)∼D1(p)

[
−yxi

1+eαyx1

]
= 0, i = 2, . . . , d.

(32)

The last d−1 equations are satisfied as E(x,y)∼D1(p) [yxi] = 0 for all i = 2, . . . , d. The first equation938

simplifies to:939

g(α) :=
1

1 + e−α
+ λ1α− p+ 1

2
= 0. (33)

This equation has, indeed, a unique root as g is continuous, g′(u) = e−u

(1+e−u)2
+ λ1 > 0 for all940

λ1 > 0, u ∈ R and limu→−∞ g(u) = −∞, limu→+∞ g(u) = +∞. Furthermore, g(0) = −p
2 < 0,941

hence α > 0. This proves that ŵ = αe1, where α > 0 is such that g(α) = 0. Furthermore,942

let α0 = ln
(

1+p
1−p

)
be the weight of the unregularized solution ŵ0; that is, α0 is the solution of943

g(α0) = 0 for λ1 = 0. We have g(α)− g(α0) = −λ1α < 0 which implies that α < α0. From the944

mean value theorem there exists ξ ∈ (α, α0) such that:945

σ′(ξ) =
σ(α0)− σ(α)

α0 − α
=

λ1α

α0 − α
. (34)

But, observe that for any u ∈ [0, α0], the derivative of the sigmoid is bounded as follows: 1−p2

4 ≤946

σ′(u) ≤ 1
4 . Therefore, for any λ1 > 0, it holds:947

|α− α0| ≤
4α

1− p2
λ1 <

4α0

1− p2
λ1 =

4 ln
(

1+p
1−p

)
1− p2

λ1.
(35)

Given the above, we can bound the calibration of ŵ. For any λ1 > 0 and x ∈ {±1}d we have:948 ∣∣∣∣ 1

1 + e−αx1
− 1

1 + e−α0x1

∣∣∣∣ ≤ 1

4
|α− α0|

<
ln
(

1+p
1−p

)
1− p2

λ1.

(36)

51

Combining the above with (30), we finally obtain that for any λ1 > 0 and x ∈ {±1}d, it holds:949 ∣∣∣∣∣∣ 1

1 + e−⟨w̄1,x⟩
− 1

1 +
(

1−p
1+p

)x1

∣∣∣∣∣∣ = |p1(w̄ | x)− p1(ŵ0 | x)|

≤ |p1(w̄ | x)− p1(ŵ | x)|+ |p1(ŵ | x)− p1(ŵ0 | x)|

<
d

2λ1

√
1 + lnT1

δT1
+

ln
(

1+p
1−p

)
1− p2

λ1.

(37)

Furthermore, for the optimality of w̄1 in parameter space, we have:950

|⟨w̄1 − α0e1,x⟩| = |⟨w̄1 − αe1,x⟩ − ⟨α0e1 − αe1,x⟩|

≤
√
d∥w̄1 − ŵ∥+ |α− α0| .

(38)

From eqs. 27 and 35, we obtain:951

|⟨w̄1 − α0e1,x⟩| ≤
2d

λ1

√
1 + lnT1

δT1
+

4 ln
(

1+p
1−p

)
1− p2

λ1. (39)

952

The guarantees of (24) quantify the calibration of the model returned by SGD and its proximity to the953

best-in-class model in parameter space. We obtain the following explicit corollary on the calibration954

and “hard” prediction of the model.955

Corollary 1. Consider running SGD (Algorithm 2) for minimizing LD1(p),λ1
(w) =956

E(x,y)∼D1(p)

[
ln
(
1 + e−y⟨w,x⟩)]+ λ1

2 ∥w∥2. Then, for any ε > 0, if λ1 = Θ̃

(
d1/2

δ1/4T
1/4
1

)
, and after957

T1 = Õ
(

d2

δε4

)
iterations, with probability at least 1− δ over the sampled {(xi, yi)}T1

i=1 ∼ D1(p), it958

holds:959 ∣∣∣∣∣∣ 1

1 + e−⟨w̄1,x⟩
− 1

1 +
(

1−p
1+p

)x1

∣∣∣∣∣∣ < ε, (40)

for all x ∈ {±1}d. If, additionally, ε < ln
(

1+p
1−p

)
, then with probability 1− δ:960

sgn (⟨w̄1,x⟩) = x1, (41)

for all x ∈ {±1}d.961

Proof. Recall that from eq. (24), with probability 1− δ we have:962 ∣∣∣∣〈w̄1 − ln

(
1 + p

1− p

)
e1,x

〉∣∣∣∣ ≤ 2d

λ1

√
1 + lnT1

δT1
+

4 ln
(

1+p
1−p

)
1− p2

λ1,∣∣∣∣∣∣ 1

1 + e−⟨w̄1,x⟩
− 1

1 +
(

1−p
1+p

)x1

∣∣∣∣∣∣ < d

2λ1

√
1 + lnT1

δT1
+

ln
(

1+p
1−p

)
1− p2

λ1.

(42)

To instantiate the bounds, first observe that for any 0 < p < 3/4, it holds:
ln(1+p

1−p)
1−p2 < 16 ln 7

7 .963

Furthermore, the first bound is always larger than the second one. We set λ1 =

√
d
(

1+lnT1
T1

)1/2

32 ln 7
7

to964

bound the two terms and solve the following inequality for T1:965

d1/2
(
1 + lnT1

δT1

)1/4(
512 ln 7

7

)1/2

< ε

T1

1 + lnT1
>

5122

49
(ln 7)

2 d2

δε4
.

(43)

52

This proves the first part of the claim. For the decision term sgn (⟨w̄1,x⟩), we have:966

sgn (⟨w̄1,x⟩) = sgn

(〈
w̄1 − ln

(
1 + p

1− p

)
e1,x

〉
+

〈
ln

(
1 + p

1− p

)
e1,x

〉)
= sgn

(〈
w̄1 − ln

(
1 + p

1− p

)
e1,x

〉
+ x1 ln

(
1 + p

1− p

))
.

(44)

If
∣∣∣x1 ln

(
1+p
1−p

)∣∣∣ >
∣∣∣〈w̄1 − ln

(
1+p
1−p

)
e1,x

〉∣∣∣, then the following holds: sgn (⟨w̄1,x⟩) =967

sgn
(
x1 ln

(
1+p
1−p

))
= x1. For this to happen, we additionally require having ε < ln

(
1+p
1−p

)
.968

F.2.2 Position 2969

Position 2a We consider a binary classification problem where X2a = {±1}d+1,Y2a = {±1}970

with a distribution D2a(p) over X2a × Y2a such that: x1, . . . , xd ∼ Rad(1/2) and (xd+1, y) =971

Z(x1,−1)+(1−Z)
(∏d

i=1 xi,+1
)

where Z ∼ Ber(p), 0 < p < 3/4. The −1 label should be inter-972

preted as the empty string ϵ, while the +1 output corresponds to the <EOS> symbol. We consider a non-973

homogeneous linear hypothesis class H2a =
{
x 7→ ⟨w, ϕ2(x)⟩+ b : w ∈ R2d+1, b ∈ R

}
, where974

the feature map ϕ2 : x 7→ [x1 . . . xd+1 x1xd+1 x2xd+1 . . . xdxd+1]
T ∈ {±1}2d+1 aug-975

ments the input with the second degree monomials that involve the inputs bits and the bit from the976

previous position. In this way, the linear model is capable of approximating the target via the x1xd+1977

feature which can help predict whether the generation is on the “long” or “short” path. Note that the978

dimension of the feature map – O(d) – is still polynomial in the input dimension. The bias term is979

crucial for representing the best-in-class conditional probabilities. We consider learning with the980

ℓ2-regularized logistic loss:981

l(2a)(θ = {w, b}, (x, y)) = ln
(
1 + e−y(⟨w,ϕ2(x)⟩+b)

)
+

λ2a

2

(
∥w∥2 + b2

)
, λ2a > 0. (45)

Proposition 2. Consider running SGD (Algorithm 2) for minimizing LD2a(p),λ2a
(θ = {w, b}) =982

E(x,y)∼D2a(p)

[
ln
(
1 + e−y(⟨w,ϕ2(x)⟩+b)

)]
+ λ2a

2

(
∥w∥2 + b2

)
, λ2a > 0. Then, after T2a iterations983

and for any δ ∈ (0, 1), with probability at least 1− δ over the sampled {(xi, yi)}T2a

i=1, it holds for all984

x ∈ {±1}d+1 with x1xd+1 = −1:985

1

1 + e⟨w̄2a,x⟩+b̄2a
<

2(d+ 1)

λ2a

√
1 + lnT2a

δT2a
+

√
λ2a

1− p
, (46)

while for x ∈ {±1}d+1 such that x1xd+1 = +1, it holds:986 ∣∣∣∣ 1

1 + e−⟨w̄2a,x⟩−b̄2a
− 1− p

1 + p

∣∣∣∣ < 2(d+ 1)

λ2a

√
1 + lnT2a

δT2a
+

λ2a(1 + p)
∣∣∣ln(2p

1−p

)∣∣∣
8p(1− p)

,

∣∣∣⟨w̄2a − â0ed+2, ϕ2(x)⟩+ b̄2a − b̂0

∣∣∣ < 8(d+ 1)

λ2a

√
1 + lnT2a

δT2a
+

λ2a(1 + p)
∣∣∣ln(2p

1−p

)∣∣∣
2p(1− p)

,

(47)

where w̄2a, b̄2a is the output of SGD and â0, b̂0 ∈ R such that: â0 + b̂0 = ln
(

1−p
2p

)
.987

Proof. We first show that learning H2a with respect to the unregularized loss988

ln
(
1 + e−y(⟨w,ϕ2(x)⟩+b)

)
corresponds to a Convex and Lipschitz learning problem. We989

will abuse notation and write θ ∈ H2a for θ = (w, b), where (w, b) ∈ H2a. The loss is convex990

with respect to θ. For the Lipschitz constant, we bound the gradient with respect to θ. For all991

x ∈ {±1}d+1, y ∈ {±1}, we have:992

∇wl(2a) (θ, (x, y)) = − yϕ2 (x)

1 + ey(⟨w,ϕ2(x)⟩+b)
, (48)

and for the bias term:993

∂

∂b
l(2a) (θ, (x, y)) = − y

1 + ey(⟨w,ϕ2(x)⟩+b)
. (49)

53

As a result, we have for the Lipschitz constant:994 ∥∥∥∇θl
(2a) (θ, (x, y))

∥∥∥2 =

∥∥∥∥− yϕ2 (x)

1 + ey(⟨w,ϕ2(x)⟩+b)

∥∥∥∥2 + (− y

1 + ey(⟨w,ϕ2(x)⟩+b)

)2

≤ (2d+ 1) + 1

(50)

which implies that the function is
√
2d+ 2-Lipschitz with respect to θ. Therefore, applying Theo-995

rem 3, we have that SGD after T2a iterations returns a hypothesis θ̄2a such that for any δ ∈ (0, 1)996

with probability at least 1− δ it holds:997

LD2a(p),λ2a
(θ̄2a) ≤ LD2a(p),λ2a

(θ̂) +
4(d+ 1)

λ2aδT2a
(1 + lnT2a) , (51)

where θ̂ = argminθ∈H2a
LD2a(p),λ2a

(θ). From the strong convexity of LD2a(p),λ2a
, this implies:998 ∥∥∥θ̄2a − θ̂

∥∥∥2 ≤ 2

λ2a

(
LD2a(p),λ2a

(θ̄2a)− LD2a(p),λ2a
(θ̂)
)
≤ 8(d+ 1)

λ2
2aδT2a

(1 + lnT2a) . (52)

We characterize now the loss minimizer θ̂ =
{
ŵ, b̂

}
by setting the gradient of LD2a(p),λ2a

to zero:999 E(x,y)∼D2a(p)

[
−yϕ2(x)

1+ey(⟨w,ϕ2(x)⟩+b)

]
+ λ2aŵ = 0,

E(x,y)∼D2a(p)

[
− y

1+ey(⟨w,ϕ2(x)⟩+b)

]
+ λ2ab̂ = 0.

(53)

The objective LD2a(p),λ2a
(θ) is strongly convex, so it admits a unique solution. We observe that this1000

solution is of the form ŵ = âed+2, â ∈ R, where ed+2 = [0, . . . , 0, 1, 0, . . . , 0]
T and b̂ ∈ R. Indeed,1001

the optimality conditions yield:1002 
1

1+e−(â−b̂)
+ λ2a

1−p

(
â− b̂

)
= 0,

2p

1+e−(â+b̂)
+ p−1

1+eâ+b̂
+ λ2a

(
â+ b̂

)
= 0.

(54)

The functions g1(u) = 1
1+e−u +λu, λ > 0 and g2(u) =

2p
1+e−u + p−1

1+eu +λu, λ > 0 are continuous,1003

monotonically increasing and limu→−∞ g1(u) = limu→−∞ g2(u) = −∞, limu→+∞ g1(u) =1004

limu→+∞ g2(u) = +∞, hence they have unique roots. This proves that, indeed, ŵ = âed+2, where1005

â, b̂ are such that g1(â − b̂) = 0 and g2(â + b̂) = 0. We will now bound the error in the predicted1006

probabilities, depending on what region of the distribution the input lies. We consider the following1007

cases:1008

• If x1xd+1 = −1, then we have:1009

p−1

(
θ̄2a

∣∣∣x1xd+1 = −1
)
=

1

1 + e⟨w̄2a,ϕ2(x)⟩+b̄2a

=
1

1 + e⟨w̄2a,ϕ2(x)⟩+b̄2a
− 1

1 + e⟨ŵ,ϕ2(x)⟩+b̂
+

1

1 + e⟨ŵ,ϕ2(x)⟩+b̂

<

√
2(d+ 1)

4

∥∥∥θ̄2a − θ̂
∥∥∥+ 1

1 + e⟨ŵ,ϕ2(x)⟩+b̂

≤ 2(d+ 1)

λ2a

√
1 + lnT2a

δT2a
+

1

1 + e⟨ŵ,ϕ2(x)⟩+b̂
,

(55)
where we used (52) and the Lipschitzness of the logistic function. For the bias error term,1010

we have:1011

1

1 + e⟨ŵ,ϕ2(x)⟩+b̂
=

1

1 + eâx1xd+1+b̂

=
1

1 + e−(â−b̂)

= − λ2a

1− p

(
â− b̂

)
(from (54))

<

√
λ2a

1− p
,

(56)

54

as the solution â− b̂ of the g1(u) = 0 equation lies in
(
−
√

1−p
λ2a

, 0
)

.1012

• If x1xd+1 = 1, then denote by â0 + b̂0 the solution of the unregularized problem g2(â0 +1013

b̂0) = 0 for λ = 0 or, equivalently from (54), â0 + b̂0 = ln
(

1−p
2p

)
. We bound the distance1014

between the model-induced probabilities and the best in-class probabilities:1015 ∣∣∣p1 (θ̄2a∣∣∣x1xd+1 = +1
)
− p1

(
θ̂0

∣∣∣x1xd+1 = +1
)∣∣∣

≤
∣∣∣p1 (θ̄2a∣∣∣x1xd+1 = +1

)
− p1

(
θ̂
∣∣∣x1xd+1 = +1

)∣∣∣
+
∣∣∣p1 (θ̂∣∣∣x1xd+1 = +1

)
− p1

(
θ̂0

∣∣∣x1xd+1 = +1
)∣∣∣

=

√
2(d+ 1)

4

∥∥∥θ̄2a − θ̂
∥∥∥+ 1

4

∣∣∣(â+ b̂
)
−
(
â0 + b̂0

)∣∣∣ .
(57)

It remains to show that the distance
∣∣∣(â+ b̂

)
−
(
â0 + b̂0

)∣∣∣ is bounded. Let us denote the1016

unregularized part of g2 as ḡ, that is ḡ(u) = 2p
1+e−u +

p−1
1+eu . First, observe that g2(0) = 3p−1

2 ,1017

which means that the sign of â+ b̂ depends on the value of p. It will be easier to treat these1018

three subcases separately:1019

– If p < 1/3, then g2(0) < 0 and g2(â0 + b̂0) = λ
(
â0 + b̂0

)
> 0, so it holds1020

0 < â+ b̂ < â0+ b̂0. From the mean value theorem, there exists ξ ∈
(
â+ b̂, â0 + b̂0

)
1021

such that:1022

ḡ′(ξ) =
λ2a

(
â+ b̂

)
(
â0 + b̂0

)
−
(
â+ b̂

) . (58)

But, ḡ′(u) = (p+1)eu

(1+eu)2
and, in particular, ḡ′

(
â0 + b̂0

)
= ḡ′

(
ln
(

1−p
2p

))
= 2p(1−p)

1+p .1023

This implies that for any u ∈
(
0, ln

(
1−p
2p

))
, it holds: 2p(1−p)

1+p ≤ ḡ′(u) ≤ 1+p
4 . Thus,1024

(
â0 + b̂0

)
−
(
â+ b̂

)
=

λ2a

(
â+ b̂

)
ḡ′(ξ)

<
λ2a(1 + p)

(
â0 + b̂0

)
2p(1− p)

=
λ2a(1 + p) ln

(
1−p
2p

)
2p(1− p)

.

(59)

– If p = 1/3, then â+ b̂ = 0 as g2(0) = 0 and, also, â0 + b̂0 = ln
(

1−p
2p

)
= 0. Hence,1025

the bias error term is 0.1026

– If p > 1/3, then g2(0) > 0, g2(â0+ b̂0) = λ2a

(
â0 + b̂0

)
< 0, so â0+ b̂0 < â+ b̂ < 0.1027

From the mean value theorem, there exists ξ ∈
(
â0 + b̂0, â+ b̂

)
such that:1028

ḡ′(ξ) = −
λ2a

(
â+ b̂

)
(
â+ b̂

)
−
(
â0 + b̂0

) < −
λ2a

(
â0 + b̂0

)
(
â+ b̂

)
−
(
â0 + b̂0

) , (60)

which, further implies:1029

∣∣∣(â+ b̂
)
−
(
â0 + b̂0

)∣∣∣ < λ2a(1 + p)
(
ln
(

2p
1−p

))
2p(1− p)

, (61)

from the same bound on ḡ′ as before.1030

55

Therefore, we showed that for any 0 < p < 3/4, we have:1031 ∣∣∣(â+ b̂
)
−
(
â0 + b̂0

)∣∣∣ < λ2a(1 + p)
∣∣∣ln(2p

1−p

)∣∣∣
2p(1− p)

. (62)

Combining this guarantee with the bound of (57) and the parameter space guarantee of (52),1032

we finally have:1033 ∣∣∣∣p1 (θ̄2a∣∣∣x1xd+1 = +1
)
− 1− p

1 + p

∣∣∣∣ < 2(d+ 1)

λ2a

√
1 + lnT2a

δT2a
+

λ2a(1 + p)
∣∣∣ln(2p

1−p

)∣∣∣
8p(1− p)

.

(63)

Furthermore, for the optimality of θ̄2a in parameter space, we have:1034 ∣∣∣⟨w̄2a − â0ed+2, ϕ2(x)⟩+ b̄2a − b̂0

∣∣∣
=
∣∣∣⟨w̄2a − âed+2, ϕ2(x)⟩+ b̄− b̂−

(
⟨â0ed+2 − âed+2, ϕ2(x)⟩+ b̂0 − b̂

)∣∣∣
≤
√

2 (d+ 1)∥θ̄2a − θ̂∥+
∣∣∣(â0 + b̂0

)
−
(
â+ b̂

)∣∣∣
<

8(d+ 1)

λ2a

√
1 + lnT2a

δT2a
+

λ2a(1 + p)
∣∣∣ln(2p

1−p

)∣∣∣
2p(1− p)

.

(64)

where the last inequality follows from eqs. 62, 52.1035

As before, we obtain the following explicit corollary on the calibration and “hard” prediction of the1036

second linear model.1037

Corollary 2. Consider running SGD (Algorithm 2) for minimizing LD2a(p),λ2a
(w) =1038

E(x,y)∼D2a(p)

[
ln
(
1 + e−y(⟨w,ϕ2(x)⟩+b)

)]
+ λ2a

2

(
∥w∥2 + b2

)
. Then, for any ε > 0, after T2a =1039

Õ
(
max

{
d2

δε6 ,
d2

p2δε4

})
iterations with λ2a = Θ̃

(
min

{
d

1
2 p

1
2

δ1/4T
1/4
2a

, d2/3

δ1/3T
1/3
2a

})
, with probability at1040

least 1− δ over the sampled {(xi, yi)}T2a

i=1 ∼ D2a(p), it holds:1041 ∣∣∣∣ 1

1 + e−⟨w̄2a,x⟩−b̄2a
− 1− p

1 + p

∣∣∣∣ < ε, ∀ x ∈ {±1}d+1 s.t. x1xd+1 = +1,

1

1 + e⟨w̄2a,x⟩+b̄2a
< ε,∀ x ∈ {±1}d+1 s.t. x1xd+1 = −1.

(65)

If additionally ε <
∣∣∣ln(1−p

2p

)∣∣∣, then with probability at least 1− δ we have:1042

sgn
(
⟨w̄2a, ϕ2(x)⟩+ b̄2a

)
= sgn

(
ln

(
1− p

2p

))
=

{
−1, if p ≥ 1/3,

+1, if p < 1/3,
(66)

for all x ∈ {±1}d+1 with x1xd+1 = 1.1043

Proof. Recall that from eqs. 46, 47, we have: for all x ∈ {±1}d+1 with x1xd+1 = −1:1044

1

1 + e⟨w̄2a,x⟩+b̄2a
<

2(d+ 1)

λ2a

√
1 + lnT2a

δT2a
+

√
λ2a

1− p

<
2(d+ 1)

λ2a

√
1 + lnT2a

δT2a
+
√
2λ2a := Qa(λ2a, T2a),

(67)

while for x ∈ {±1}d+1 such that x1xd+1 = +1, it holds:1045 ∣∣∣∣ 1

1 + e−⟨w̄2a,x⟩−b̄2a
− 1− p

1 + p

∣∣∣∣ < 2(d+ 1)

λ2a

√
1 + lnT2a

δT2a
+

λ2a(1 + p)
∣∣∣ln(2p

1−p

)∣∣∣
8p(1− p)

,

∣∣∣⟨w̄2a − â0ed+2, ϕ2(x)⟩+ b̄2a − b̂0

∣∣∣ < 8(d+ 1)

λ2a

√
1 + lnT2a

δT2a
+

λ2a(1 + p)
∣∣∣ln(2p

1−p

)∣∣∣
2p(1− p)︸ ︷︷ ︸

Qb(λ2a,T2a)

.

(68)

56

We want to upper bound all three quantities by ε ∈ (0, 1). In (68), the second inequality upper1046

bounds the first one. Thus, it suffices to only consider that one. Let λa, λb be the optimal λ2a’s for the1047

two previous expressions (i.e., quantities Qa(λ2a, T2a), Qb(λ2a, T2a)) and Ta, Tb the corresponding1048

number of iterations to get the expressions less than ε. We have: λa = Θ̃
(

d2/3

δ1/3T
1/3
a

)
, while1049

λb = Θ̃

(
p

1
2 d

1
2

δ1/4T
1/4
b

)
(by balancing the two terms of each of Qa, Qb). For these values of λa, λb, the1050

two expressions are equal to:1051

Qa(λa, Ta) = Θ̃

(
d1/3

δ1/6T
1/6
a

)
,

Qb(λb, Tb) = Θ̃

(
d1/2

p
1
2 δ1/4T

1/4
b

)
.

(69)

This implies that it is sufficient to take Ta = Õ
(

d2

δε6

)
and Tb = Õ

(
d2

p2δε4

)
to satisfy1052

Qa(λa, Ta) < ε and Qb(λb, Tb) < ε, respectively. In other words, it is sufficient to take1053

λ2a = Θ̃

(
min

{
d

1
2 p

1
2

δ1/4T
1/4
2a

, d2/3

δ1/3T
1/3
2a

})
and T2a = Õ

(
max

{
d2

δε6 ,
d2

p2δε4

})
. This proves the first1054

part of the claim. For the decision term sgn (⟨w̄2a, ϕ2(x)⟩+ b2a), we have:1055

sgn (⟨w̄2a, ϕ2(x)⟩+ b2a) = sgn
(
⟨w̄2a − â0ed+2, ϕ2(x)⟩+ b̄2a − b̂0 + ⟨â0ed+2, ϕ2(x)⟩+ b̂0

)
= sgn

(
⟨w̄2a − â0ed+2, ϕ2(x)⟩+ b̄2a − b̂0 + â0x1xd+1 + b̂0

)
.

(70)

In particular, when x1xd+1 = 1, we have:1056

sgn (⟨w̄2a, ϕ2(x)⟩+ b2a) = sgn
(
⟨w̄2a − â0ed+2, ϕ2(x)⟩+ b̄2a − b̂0 + â0 + b̂0

)
= sgn

(
⟨w̄2a − â0ed+2, ϕ2(x)⟩+ b̄2a − b̂0 + ln

(
1− p

2p

))
.

(71)

If
∣∣∣ln(1−p

2p

)∣∣∣ >
∣∣∣⟨w̄2a − â0ed+2, ϕ2(x)⟩+ b̄2a − b̂0

∣∣∣, then the following holds:1057

sgn (⟨w̄2a, ϕ2(x)⟩+ b2a) = sgn
(
ln
(

1−p
2p

))
= sgn (1/3− p). For this to happen, it suf-1058

fices to additionally have ε <
∣∣∣ln(1−p

2p

)∣∣∣.1059

1060

Position 2b For the second part of position 2, we consider a binary classification problem where1061

all the data come from the “long” path. As this is similar to positions 3 to d, we treat all of these1062

positions together next. We will denote the second part of position 2 simply as position 2 in the next1063

subsubsection for ease of presentation.1064

F.2.3 Positions 2 to d1065

For the l’th position of the output, 2 ≤ l ≤ d, we consider a binary classification prob-1066

lem where Xl = {±1}d+l−1,Yl = {±1} with a distribution Dl(p) over Xl × Yl such that:1067

x1, . . . , xd ∼ Rad(1/2), (xd+1, . . . , xd+l−1) =
(
x1, . . . ,

∏l−1
i=1 xi

)
and y =

∏l
i=1 xi. We con-1068

sider a linear hypothesis class Hl =
{
x 7→ ⟨w, ϕl(x)⟩ : w ∈ R2d+l−1

}
, where the feature map1069

ϕl : x 7→ [x1 . . . xd+l−1 xd+l−1x1 . . . xd+l−1xd]
T ∈ {±1}2d+l−1 augments the input with1070

the second degree monomials that involve the inputs bits and the bit from the previous (l − 1’th)1071

position. We consider learning with the logistic loss plus an additional ℓ2 regularization term:1072

l(l)(w, (x, y)) = ln
(
1 + e−y⟨w,ϕl(x)⟩

)
+ λl

2 ∥w∥2, λl > 0.1073

57

Proposition 3. For any l ∈ {2, . . . , d}, consider running SGD (Algorithm 2) for minimizing1074

LDl(p),λl
(w) = E(x,y)∼Dl(p)

[
ln
(
1 + e−y⟨w,ϕl(x)⟩

)]
+ λl

2 ∥w∥2 with λl > 0. Then, after Tl it-1075

erations and for δ ∈ (0, 1), with probability at least 1− δ over the sampled {(xi, yi)}Tl

i=1, it holds:1076

1

1 + e−⟨w̄l,ϕl(x)⟩
<

2d+ l − 1

2λl

√
1 + lnTl

δTl
+
√
λl, (72)

for all x ∈ {±1}d+l−1 such that xd+l−1 =
∏l−1

i=1 xi ∧
∏l

i=1 xi = −1, and1077

1

1 + e⟨w̄l,ϕl(x)⟩
<

2d+ l − 1

2λl

√
1 + lnTl

δTl
+
√
λl, (73)

for all x ∈ {±1}d+l−1 such that xd+l−1 =
∏l−1

i=1 xi ∧
∏l

i=1 xi = 1, where w̄l is the output of SGD.1078

Proof. We first show that learning Hl with respect to l(l)(w, (x, y)) = ln
(
1 + e−y⟨w,ϕl(x)⟩

)
+1079

λl

2 ∥w∥2 corresponds to a Convex and Lipschitz learning problem. The loss is λl-strongly convex1080

with respect to its first argument. For the Lipschitz constant, we have for all x, y and w ∈ R2d+l−1:1081 ∥∥∥∇w ln
(
1 + e−y⟨w,ϕl(x)⟩

)∥∥∥ =

∥∥∥∥− yϕl(x)

1 + ey⟨w,ϕl(x)⟩

∥∥∥∥ ≤
√
2d+ l − 1. (74)

Therefore, applying Theorem 3, we have that SGD after Tl iterations returns a hypothesis w̄l such1082

that for any δ ∈ (0, 1) with probability at least 1− δ it holds:1083

LDl(p),λl
(w̄l) ≤ LDl(p),λl

(ŵl) +
2 (2d+ l − 1)

λlδTl
(1 + lnTl) , (75)

where ŵl = argminw∈Hl
LDl(p),λl

(w). From the strong convexity of LDl(p),λl
, this implies:1084

∥w̄l − ŵl∥2 ≤ 2

λl

(
LDl(p),λl

(w̄l)− LDl(p),λl
(ŵl)

)
≤ 4 (2d+ l − 1)

λ2
l δTl

(1 + lnTl) . (76)

The previous bound on the parameter space can be translated to a guarantee on the calibration of the1085

model. First, we find the optimal solution ŵl = argminw∈Hl
LDl(p),λl

(w). We set the gradient of1086

LDl(p),λl
(w) to zero:1087

E(x,y)∼Dl(p)

[
−yϕl(x)

1 + ey⟨ŵl,ϕl(x)⟩

]
+ λlŵl = 0. (77)

The objective LDl(p),λl
(w) is strongly convex, so it admits a unique solution. We observe that this1088

solution is of the form ŵl = αed+2l−1, α ∈ R, where ed+2l−1 = [0, . . . , 0, 1, 0, . . . , 0]
T 7. Indeed,1089

the optimality conditions become:1090 Ex1,...,xd∼Rad(1/2)

[
−

∏l
i=1 xi

∏l
i=1 xi

1+eα
∏l

i=1
xi

∏l
i=1

xi

]
+ λlα = 0,

Ex1,...,xd∼Rad(1/2)

[
−ϕl(x)j

∏l
i=1 xi

1+eα
∏l

i=1
xi

∏l
i=1

xi

]
= 0, j ̸= d+ 2l − 1.

(78)

All but the d+ 2l − 1’th equation are satisfied as Ex1,...,xd∼Rad(1/2)

[∏l
i=1 xiϕl(x)j

]
= 0 (there is1091

always at least one zero-mean bit that survives in the product). The d+ 2l − 1’th equation can be1092

simplified to:1093

g(α) :=
1

1 + eα
− λlα = 0. (79)

7One way to “guess” the optimal solution is the following. Suppose the solution had an additional non-
zero coefficient: ŵl = αed+2l−1 + βej , j ̸= d + 2l − 1. Take, for concreteness, j = 1 (the argument is

invariant to the choice of j). Then, the optimality conditions yield: Ex

[
−

∏l
i=1 xi

∏l
i=1 xi

1+e

∏l
i=1

xi(α
∏l

i=1
xi+βx1)

]
+λlα = 0,

and Ex

[
−x1

∏l
i=1 xi

1+e

∏l
i=1

xi(α
∏l

i=1
xi+βx1)

]
+ λlβ = 0. By summing up and subtracting the equations, we get:

1
1+eα+β − λl(α+ β) = 0 and 1

1+eα−β − λl(α− β) = 0. However, since the equation 1
1+eu

− λlu = 0 has a
unique root for any λl > 0, it must be: α+ β = α− β, or equivalently, β = 0.

58

This equation has, indeed, a unique root as g is continuous and g′(u) = − e−α

(1+e−α)2
− λl < 0 for1094

all λl > 0, u ∈ R. Furthermore, g(0) = 1 > 0, while g
(√

1
λl

)
= 1

1+e

√
1
λl

−
√
λl < 0, as for any1095

λl > 0 it holds: 1 + e

√
1
λl ≥

√
1
λl

+ 2 >
√

1
λl

. From the intermediate value theorem, we get that1096

α ∈
(
0,
√

1
λ

)
. Hence, for the output probabilities of the optimal model ŵl, we have:1097

p1(ŵl | x) = σ(⟨ŵl, ϕl(x)⟩) =
1

1 + e−⟨ŵl,ϕl(x)⟩
=

1

1 + e−α
∏l

i=1 xi
,

p−1(ŵl | x) = σ(⟨ŵl, ϕl(x)⟩) =
1

1 + e⟨ŵl,ϕl(x)⟩
=

1

1 + eα
∏l

i=1 xi
.

(80)

For any x ∈ {±1}d+l−1 with xd+l−1 =
∏l−1

i=1 xi, the above together with eq. (79) imply:1098

p1

(
ŵl

∣∣∣∣∣
l∏

i=1

xi = −1

)
=

1

1 + eα
= λlα <

√
λl,

p−1

(
ŵl

∣∣∣∣∣
l∏

i=1

xi = 1

)
=

1

1 + eα
= λlα <

√
λl

(81)

Finally, combining with eq. (76), we have:1099

p1

(
w̄l

∣∣∣∣∣
l∏

i=1

xi = −1

)
=

1

1 + e⟨w̄l,ϕl(x)⟩

=
1

1 + e⟨w̄l,ϕl(x)⟩
− 1

1 + e⟨ŵl,ϕl(x)⟩
+

1

1 + e⟨ŵl,ϕl(x)⟩

<

√
2d+ l − 1

4
∥w̄l − ŵl∥+

√
λl

≤ 2d+ l − 1

2λl

√
1 + lnTl

δTl
+
√
λl,

(82)

and, similarly:1100

p−1

(
w̄l

∣∣∣∣∣
l∏

i=1

xi = 1

)
<

2d+ l − 1

2λl

√
1 + lnTl

δTl
+
√
λl. (83)

1101

We obtain the following corollary on the calibration and “hard” prediction of the hypothesis returned1102

by SGD for the l’th position of the output.1103

Corollary 3. Consider running SGD (Algorithm 2) for minimizing LDl(p),λl
(w) =1104

E(x,y)∼Dl(p)

[
ln
(
1 + e−y⟨w,x⟩)]+ λl

2 ∥w∥2. Then, for any ε > 0, if λl = Θ̃

(
d2/3

δ1/3T
1/3
l

)
, and after1105

Tl = Õ
(

d2

δε6

)
iterations, with probability at least 1− δ over the sampled {(xi, yi)}Tl

i=1 ∼ Dl(p), we1106

have:1107

1

1 + e−⟨w̄l,x⟩
< ε, ∀ x ∈ {±1}d+l−1 s.t. xd+l−1 =

l−1∏
i=1

xi ∧
l∏

i=1

xi = −1,

1

1 + e⟨w̄l,x⟩
< ε, ∀ x ∈ {±1}d+l−1 s.t. xd+l−1 =

l−1∏
i=1

xi ∧
l∏

i=1

xi = 1.

(84)

If additionally, ε < 1/2, then with probability at least 1− δ, we have:1108

sgn (⟨w̄l, ϕl(x)⟩) =
l∏

i=1

xi, (85)

for all x ∈ {±1}d+l−1 with xd+l−1 =
∏l−1

i=1 xi.1109

59

Proof. Recall that from (72), we have:1110

1

1 + e−⟨w̄l,x⟩
<

2d+ l − 1

2λl

√
1 + lnTl

δTl
+
√
λl, ∀x ∈ {±1}d s.t.

l∏
i=1

xi = −1,

1

1 + e⟨w̄l,x⟩
<

2d+ l − 1

2λl

√
1 + lnTl

δTl
+
√
λl, ∀x ∈ {±1}d s.t.

l∏
i=1

xi = 1,

(86)

Let λl =
(
2d+l−1

2

)2/3 (1+lnTl

Tl

)1/3
, then the upper bound becomes:1111

2d+ l − 1

2λl

√
1 + lnTl

δTl
+
√
λl = 2

(
2d+ l − 1

2

)1/3(
1 + lnTl

δTl

)1/6

. (87)

The first claim follows by solving the following inequality for Tl:1112

2

(
2d+ l − 1

2

)1/3(
1 + lnTl

δTl

)1/6

< ε. (88)

For the second claim, observe that by a standard property of the logistic function, we have:1113

sgn (⟨w̄l, ϕl(x)⟩) = sgn

(
1

1 + e−⟨w̄l,ϕl(x)⟩
− 1

2

)
. (89)

Assume that ε < 1/2, then we consider the cases:1114

- If
∏l

i=1 xi = −1, then we have:1115

1

1 + e−⟨w̄l,ϕl(x)⟩
< ε < 1/2, (90)

which implies: sgn
(

1

1+e−⟨w̄l,ϕl(x)⟩ − 1
2

)
= −1.1116

- If
∏l

i=1 xi = 1, then we have:1117

1

1 + e⟨w̄l,ϕl(x)⟩
< ε < 1/2, (91)

which implies:1118

sgn

(
1

1 + e−⟨w̄l,ϕl(x)⟩
− 1

2

)
= sgn

(
1

1 + e−⟨w̄l,ϕl(x)⟩
− 1 + 1− 1

2

)
= sgn

(
− 1

1 + e⟨w̄l,ϕl(x)⟩
+

1

2

)
= 1.

(92)

Therefore, for all x ∈ {±1}d+l−1 with xd+l−1 =
∏l−1

i=1 xi, it holds:1119

sgn (⟨w̄l, ϕl(x)⟩) =
l∏

i=1

xi. (93)

1120

F.2.4 End-to-end pre-training result1121

Theorem 4. Let d ≥ 2, 0 < ϵ, δ < 1 and 0 < p < 3/4. Let D(p) be a (parameterized)1122

distribution over sequences defined as in (18). Consider SGD (Algorithm 3) with per-position1123

iterations T1 = Õ
(

d7

δε4

)
, T2a = Õ

(
max

{
d9

δε6 ,
d7

p2δε4

})
, T2, . . . , Tl = Õ

(
d9

δε6

)
, total iter-1124

ations T = max
{
T1, T2a,

2maxl∈{2,...,d} Tl

p , 8
p ln

2
δ

}
and with regularization coefficients λ1 =1125

60

Θ̃

(
d3/4

δ1/4T
1/4
1

)
, λ2a = Θ̃

(
min

{
d

3
4 p

1
2

δ1/4T
1/4
2a

, d

δ1/3T
1/3
2a

})
, λl = Θ̃

(
d

δ1/3T
1/3
l

)
for all 2 ≤ l ≤ d.1126

Then, with probability at least 1 − δ, SGD returns hypotheses w̄1 ∈ H1, θ̄2a ∈ H2a, w̄2 ∈1127

H2, . . . , w̄d ∈ Hd that induce h ∈ HLin
AR for which for all x ∈ {±1}d it holds:1128 ∣∣∣∣∣πh

((
x1, x1x2, . . . ,

d∏
i=1

xi, <EOS>

)∣∣∣∣∣x
)

− p

∣∣∣∣∣ ≲ ε,∣∣∣∣∣πh

((
d∏

i=1

xi, <EOS>

)∣∣∣∣∣x
)

− 1− p

2

∣∣∣∣∣ ≲ ε.

(94)

Furthermore, if ε < (d+ 1)min
{

1
2 , ln

1+p
1−p ,

∣∣∣ln 1−p
2p

∣∣∣}, then it holds:1129

ĥ
(
x; {w̄1, θ̄2a, w̄2, . . . , w̄d}

)
=

{
(x1, <EOS>) , if p < 1/3,(
x1, x1x2, . . . ,

∏d
i=1 xi, <EOS>

)
, otherwise.

(95)

Proof. The proof strategy is to bound the probability of either not sampling enough ‘long’ sequences1130

or of SGD returning a ‘problematic’ hypothesis at some position. We invoke Corollaries 1 to 3 for1131

ε
d+1 ,

2
2(d+1) . From Corollary 1, after T ≥ T1

(
ε

d+1 ,
δ

2(d+1)

)
iterations for λ1 = Θ̃

(
d3/4

δ1/4T
1/4
1

)
,1132

SGD returns w̄1 such that the following hold with probability less than δ
2(d+1) :1133 ∣∣∣∣P [h̃1(x; w̄1) = x1

]
− 1 + p

2

∣∣∣∣ ≥ ε

d+ 1
,∣∣∣∣∣P

[
h̃1(x; w̄1) =

d∏
i=1

xi

]
− 1

2

∣∣∣∣∣
=

∣∣∣∣∣12
(
P

[
h̃1(x; w̄1) = −x1

∣∣∣∣∣
d∏

i=1

xi = −x1

]
+ P

[
h̃1(x; w̄1) = x1

∣∣∣∣∣
d∏

i=1

xi = x1

])
− 1

2

∣∣∣∣∣
≥ ε

d+ 1
,

(96)

and, since ε
d+1 < ln 1+p

1−p :1134

ĥ1(x; w̄1) = sgn (⟨w̄1,x⟩) = x1. (97)

From Corollary 2, after T ≥ T2a

(
ε

d+1 ,
δ

2(d+1)

)
iterations for λ2a =1135

Θ̃

(
min

{
d

3
4 p

1
2

δ1/4T
1/4
2a

, d

δ1/3T
1/3
2a

})
, SGD returns w̄2a, b̄2a such that, it holds with probability1136

less than δ
2(d+1) :1137 ∣∣∣∣P [h̃2a(x; θ̄2a) = ϵ

∣∣∣h̃1(x; w̄1) = x1

]
− 2p

1 + p

∣∣∣∣ ≥ ε

d+ 1
, (98)

and, since ε
d+1 <

∣∣∣ln 1−p
2p

∣∣∣:1138

sgn
(
⟨w̄2a, ϕ2 (x)⟩+ b̄2a

)
= sgn

(
ln

(
1− p

2p

))
=

{
−1, if p ≥ 1/3,

+1, if p < 1/3
, (99)

for all x ∈ {±1}d+1 with x1xd+1 = 1.1139

Let z1, . . . , zT ∼ D(p) and let Tlong =
∑T

i=1 1 {|zi| > d+ 2} be the count of “long” samples. By1140

the definition of D(p), it is: E [Tlong] = Tp. By the multiplicative Chernoff bound, it holds:1141

P
[
Tlong ≤ Tp

2

]
≤ e−

Tp
8 , (100)

61

hence with probability at least 1− δ
2 , we have:1142

Tlong >
Tp

2
, (101)

as long as T > 8
p ln

2
δ . If further, T ≥ 2maxl∈{2,...,d}Tl

p , then with probability at least 1 − δ
2 :1143

Tlong > Tl for all l ∈ {2, . . . , d}. From Corollary 3, after Tlong ≥ Tl

(
ε

d+1 ,
δ

2(d+1)

)
iterations for1144

λl = Θ̃

(
d

δ1/3T
1/3
l

)
, SGD returns w̄l such that, with probability less than δ/2d:1145 ∣∣∣∣∣P

[
h̃l(x; w̄l) =

l∏
i=1

xi

∣∣∣∣∣h̃1(x; w̄1) = x1, . . . , h̃l−1(x; w̄l−1) = xl−1

]
− 1

∣∣∣∣∣ ≥ ε

d+ 1
, (102)

and, since ε
d+1 < 1

2 :1146

sgn (⟨w̄l, ϕl (x)⟩) =
l∏

i=1

xi (103)

for all x ∈ {±1}d+l−1 with xd+1 =
∏l−1

i=1 xi. Let ELONG denote the event that Tlong > Tl for all1147

2 ≤ l ≤ d and denote by Pi the event that the above guarantees hold for position i. Then, by union1148

bound, we have:1149

P [ELONG ∧ P1 ∧ P2a ∧ P2 ∧ . . . Pd] = P [ELONG]P [P1 ∧ P2a ∧ P2 ∧ . . . Pd|ELONG]

≥
(
1− δ

2

)
(1− P [∃i ∈ {1, 2a, 2, . . . , d} : ¬Pi])

≥
(
1− δ

2

)1−
∑

i∈{1,2a,2,...,d}

δ

2(d+ 1)

 ≥ 1− δ.

(104)

Thus, with probability at least 1− δ, SGD returns a hypothesis h whose probability of correct, long1150

and short, sequences is:1151

πh

((
x1, x1x2, . . . ,

d∏
i=1

xi, <EOS>

)∣∣∣∣∣x
)

=

= P
[
h̃1(x;w1) = x1

]
· . . . · P

[
h̃d(x;wd) =

d∏
i=1

xi

∣∣∣∣∣h̃1(x; w̄1) = x1, . . . , h̃l−1(x; w̄l−1) = xl−1

]

=

(
1 + p

2
+ ξ1

)(
2p

1 + p
+ ξ2a

)
(1− ξ2) . . . (1− ξd) ,

(105)

and:1152

πh

((
d∏

i=1

xi, <EOS>

)∣∣∣∣∣x
)

= P

[
h̃1(x; w̄1) =

d∏
i=1

xi

]
P

[
h̃2(x; w̄2) = <EOS>

∣∣∣∣∣h̃1(x; w̄1) =

d∏
i=1

xi

]

= P

[
h̃1(x; w̄1) =

d∏
i=1

xi

](
P
[
h̃2(x; w̄2) = <EOS>

∣∣∣h̃1(x; w̄1) = x1

]
P
[
h̃1(x; w̄1) = x1

]
+ P

[
h̃2(x; w̄2) = <EOS>

∣∣∣h̃1(x; w̄1) = −x1

]
P
[
h̃1(x; w̄1) = −x1

])

=

(
1

2
+ ξ1

)[(
1− p

1 + p
+ ξ2a

)(
1 + p

2
+ ξ1

)
+ (1− ξ2a)

(
1− p

2
− ξ1

)]
,

(106)

62

0 1
6

1
3

1
2

2
3

5
6 1

p

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fu
nc

tio
n

va
lu

e

min{1
2 , ln (1 + p

1 p), |ln 1 p
2p |} vs p

1
2

ln (1 + p
1 p)

|ln 1 p
2p |

min{1
2 , ln (1 + p

1 p), |ln 1 p
2p |}

Figure 33: The functional form of the error term ε vs p ∈ (0, 1) in Theorem 4.

where |ξ1|, . . . , |ξd| ∈ O(ε/d). In other words,1153 ∣∣∣∣∣πh

((
x1, x1x2, . . . ,

d∏
i=1

xi, <EOS>

)∣∣∣∣∣x
)

− p

∣∣∣∣∣ ≲ ε. (107)

and1154 ∣∣∣∣∣πh

((
d∏

i=1

xi, <EOS>

)∣∣∣∣∣x
)

− 1− p

2

∣∣∣∣∣ ≲ ε. (108)

Furthermore, from eqs. 97, 99, 103, for all x ∈ {±1}d, we have:1155

• ĥ1(x; w̄1) = sgn (⟨w̄1,x⟩) = x1,1156

•

sgn
(〈

w̄2a, ϕ2

(
x, ĥ(1)(x; w̄1)

)〉
+ b̄2a

)
= sgn

(
ln

(
1− p

2p

))
=

{
−1, if 1/2 > p ≥ 1/3,

+1, if p < 1/3
,

(109)

hence

ĥ2a(x; θ̄2a) =

{
<EOS>, if 1/2 > p ≥ 1/3,

ϵ, if p < 1/3,

and1157

• ĥl(x; w̄l) =

{∏l
i=1 xi, if ĥ2a(x; θ̄2a) ̸= <EOS>,

ϵ, if ĥ2a(x; θ̄2a) = <EOS>,
for 2 ≤ l ≤ d.1158

This implies:1159

ĥ
(
x; {w̄1, θ̄2a, w̄2, . . . , w̄d}

)
=

{
(x1, <EOS>) , if p < 1/3,(
x1, x1x2, . . . ,

∏d
i=1 xi, <EOS>

)
, otherwise.

(110)

1160

Theorem 1 in the main text follows as a corollary by Theorem 4 for p = pcot. See Figure 33 for the1161

functional form of the error term ε(p). In particular, the functional form also explains the difficulties1162

faced in training transformers for pcot ≈ 1/3.1163

63

F.3 Post-training1164

We complement the analysis of the previous subsection to show now a positive learning result on1165

the combined pre- & post-training procedure. Precisely, we show that, when pcot < 1/3 which is1166

the hard regime for pre-training, only O
(
log 1−pcot

pcot

)
RL rounds suffice for the pre-trained model to1167

reach perfect accuracy. Furthermore, we prove that the length of the answer grows in a predictable1168

way.1169

Theorem 5. Let d ≥ 2, δ ∈ (0, 1) and pcot ∈ (0, 1/3). Let D(pcot) be a (parameterized) distribution1170

over sequences defined as in (18). Let ε ≤ c0
pcot

1−pcot
for some constant c0 > 0. Consider pre-training1171

(Algorithm 3) per-position iterations T1 = Õ
(

d7

δε4

)
, T2a = Õ

(
max

{
d9

δε6 ,
d7

p2δε4

})
, T2, . . . , Tl =1172

Õ
(

d9

δε6

)
, total iterations T = max

{
T1, T2a,

2maxl∈{2,...,d} Tl

p , 8
pcot

ln 2
δ

}
and with regularization1173

coefficients λ1 = Θ̃

(
d3/4

δ1/4T
1/4
1

)
, λ2a = Θ̃

(
min

{
d

3
4 p

1
2
cot

δ1/4T
1/4
2a

, d

δ1/3T
1/3
2a

})
, λl = Θ̃

(
d

δ1/3T
1/3
l

)
for1174

all 2 ≤ l ≤ d. Furthermore, consider post-training with the STaR algorithm solving Problem LIN-RL1175

at each round and denote by h(n) ∈ HLin
AR the model returned at the end of the n-th STaR round. Then,1176

there exists n⋆ = O
(
log 1−pcot

pcot

)
, such that, if:1177

1. SGD steps per-position per-STaR round are as follows: T1 = Õ
(

d7

δε4

)
,1178

T2a = Õ
(
max

{
d9

δε6 ,
d7

p2
cotδε

4

})
, T2, . . . , Tl = Õ

(
d9

δε6

)
and total iterations T =1179

max

{
T1, T2a,

2maxl∈{2,...,d} Tl

pcot
, 8
pcot

ln
2 log(1−pcot

pcot
)

δ

}
, and1180

2. Regularization strengths per-position per-STaR round are as follows: λ1 = Θ̃

(
d3/4

δ1/4T
1/4
1

)
,1181

λ2a = Θ̃

(
min

{
d

3
4 p

1
2
cot

δ1/4T
1/4
2a

, d

δ1/3T
1/3
2a

})
, λl = Θ̃

(
d

δ1/3T
1/3
l

)
for all 2 ≤ l ≤ d,1182

with probability at least 1 − δ over sampling from D(pcot) (during pre-training) and over sam-1183

pling from models h̃0, . . . , h̃n⋆ (during post-training), post-training returns w̄
(1)
1 , . . . , w̄

(n⋆)
1 ∈1184

H1, θ̄
(1)
2a , . . . , θ̄

(n⋆)
2a ∈ H2a, w̄

(1)
2 , . . . , w̄

(n⋆)
2 ∈ H2, . . . , w̄

(1)
d , . . . , w̄

(n⋆)
d ∈ Hd that induce1185

h(1), . . . , h(n⋆) ∈ HLin
AR : X 7→ Y for which for all x ∈ X it holds:1186 ∣∣∣∣∣πh(n)

((
x1, x1x2, . . . ,

d∏
i=1

xi, <EOS>

)∣∣∣∣∣x
)

− qn

∣∣∣∣∣ ≲ ε, (111)

where |qn − pn| ≲ 2nε and pn+1 = 2pn

1+pn
for all n ≤ n⋆ with p0 = pcot, and also:1187

ĥ(n⋆)
(
x;
{
w̄

(n⋆)
1 , θ̄

(n⋆)
2a , w̄

(n⋆)
2 , . . . , w̄

(n⋆)
d

})
=

(
x1, x1x2, . . . ,

d∏
i=1

xi, <EOS>

)
. (112)

Proof. The proof proceeds in two main steps. We first observe that the STaR objective for the1188

n’th round can be re-written as next-token prediction with respect to a shifted version D(qn) of the1189

original distribution D(pcot), where 0 < qn < 1. We then bound the deviation of sequence qn from a1190

“noise-less” sequence pn that describes the evolution of the proportion of long data in the data mix,1191

and whose closed form is available.1192

From Theorem 4, for p = pcot and δ = δ/2, with probability at least 1 − δ/2, we obtain model1193

h(0) ∈ HLin
AR, such that:1194 ∣∣∣∣∣πh(0)

((
x1, x1x2, . . . ,

d∏
i=1

xi, <EOS>

)∣∣∣∣∣x
)

− pcot

∣∣∣∣∣ ≲ ε,∣∣∣∣∣πh(0)

((
d∏

i=1

xi, <EOS>

)∣∣∣∣∣x
)

− 1− pcot
2

∣∣∣∣∣ ≲ ε,

(113)

64

and1195

ĥ(0)
(
x; {w̄1, θ̄2a, w̄2, . . . , w̄d}

)
= (x1, <EOS>) . (114)

Recall the form of the STaR problem for the first round:1196

min
w1,w2a,b,w2,...,wd

L ≡ Ex∼Rad(1/2)⊗d,
y∼π

h(0) (·|x)
[1 {|y| = 2}Lshort + 1 {|y| = d+ 1}Llong|rcot(x, y) = 1]

(115)

where Lshort = l(1)(w1, (x, y1)) + l(2a) ((w2a, b) , ([x, y1] , ỹ2)) and Llong = l(1)(w1, (x, y1)) +1197

l(2a) ({w2a, b}, ((x, y1) , ỹ2)) + . . .+ l(d)(wd, ((x, y1, . . . , yd−1) , yd)). Note that, with probability1198

at least 1− δ/2, the objective can be re-written as:1199

L = πh(0)

((
x1, x1x2, . . . ,

d∏
i=1

xi, <EOS>

)∣∣∣∣∣x, rcot(x, y) = 1

)
E x1,...,xd∼Rad(1/2),

y=(x1,x1x2,...,
∏d

i=1 xi,<EOS>)
[Llong]

+ πh(0)

((
d∏

i=1

xi, <EOS>

)∣∣∣∣∣x, rcot(x, y) = 1

)
Ex1,...,xd∼Rad(1/2),

y=(
∏d

i=1 xi,<EOS>)
[Lshort]

=
p0 + ζ0

p0+1
2 + ζ0 + ξ0

E x1,...,xd∼Rad(1/2),

y=(x1,x1x2,...,
∏d

i=1 xi,<EOS>)
[Llong]

+

(
1− p0 + ζ0

p0+1
2 + ζ0 + ξ0

)
Ex1,...,xd∼Rad(1/2),

y=(
∏d

i=1 xi,<EOS>)
[Lshort]

= E(x,y)∼D(q1) [1 {|y| = 2}Lshort + 1 {|y| = d+ 1}Llong] ,
(116)

where q1 := p0+ζ0
p0+1

2 +ζ0+ξ0
with |ζ0|, |ξ0| ≲ ε. In other words, we showed that the reinforcement1200

learning risk with reward rcot during the first round of STaR is equal to a next-token prediction risk,1201

where the distribution is the mixture of long and short strings but with shifted mixture weight q1.1202

Thus, from Theorem 4 for p = q1 and δ = δ1 ∈ (0, 1) with probability (1− δ1) (1− δ/2), SGD1203

returns model h(1) ∈ HLin
AR, such that:1204 ∣∣∣∣∣πh(1)

((
x1, x1x2, . . . ,

d∏
i=1

xi, <EOS>

)∣∣∣∣∣x
)

− q1

∣∣∣∣∣ ≲ ε,∣∣∣∣∣πh(1)

((
d∏

i=1

xi, <EOS>

)∣∣∣∣∣x
)

− 1− q1
2

∣∣∣∣∣ ≲ ε,

(117)

and1205

ĥ(1)
(
x; {w̄1, θ̄2a, w̄2, . . . , w̄d}

)
=

{
(x1, <EOS>) , if q1 < 1/3,(
x1, x1x2, . . . ,

∏d
i=1 xi, <EOS>

)
, otherwise.

. (118)

Therefore, by induction, as long as qn < 1/2, invoking Theorem 1 n times for δ = δi ∈ (0, 1)1206

and p = qi, with probability at least
∏n

i=0 (1− δi) ≥ 1 −
∑n

i=0 δi, post-training returns model1207

h(n) ∈ HLin
AR such that:1208 ∣∣∣∣∣πh(n)

((
x1, x1x2, . . . ,

d∏
i=1

xi, <EOS>

)∣∣∣∣∣x
)

− qn

∣∣∣∣∣ ≲ ε,∣∣∣∣∣πh(n)

((
d∏

i=1

xi, <EOS>

)∣∣∣∣∣x
)

− 1− qn
2

∣∣∣∣∣ ≲ ε,

(119)

and1209

ĥ(n)
(
x; {w̄1, θ̄2a, w̄2, . . . , w̄d}

)
=

{
(x1, <EOS>) , if qn < 1/3,(
x1, x1x2, . . . ,

∏d
i=1 xi, <EOS>

)
, otherwise,

(120)

65

where qn+1 = 2(qn+ζn)
qn+1+2(ζn+ξn)

with |ζn|, |ξn| ≲ ε with q0 = p0.1210

We now analyze the perturbed sequence qn. Let f(qn, ζn, ξn) := qn+1 = 2(qn+ζn)
qn+1+2(ζn+ξn)

. We Taylor1211

expand f around (qn, 0, 0):1212

f(qn, ζn, ξn) = f(qn, 0, 0) + ζn
∂f

∂ζn

∣∣∣∣∣
(qn,0,0)

+ ξn
∂f

∂ξn

∣∣∣∣∣
(qn,0,0)

+Rf (u, ζn, ξn)

=
2qn

qn + 1
+ ζn

2− 2qn
(qn + 1)2

+ ξn
−4qn

(qn + 1)2
+Rf (u, ζn, ξn)

=
2qn

qn + 1
+

2ζn − 2ζnqn − 4ξnqn
(qn + 1)2

+Rf (u, ζn, ξn),

(121)

where we used the Lagrange form of the remainder: Rf (u, ζn, ξn) =
1
2H(0,u)

(
ζ2n + ξ2n

)
, where1213

u ∈ R2 such that: |u1| < |ζn| and |u2| < |ξn| and H(q, ζn, ξn) is the Hessian of f evaluated at1214

(q, ζn, ξn). We now bound the deviation of the perturbed sequence qn+1 from the un-perturbed one1215

pn+1:1216

|qn+1 − pn+1| =
∣∣∣∣f(qn, ζn, ξn)− 2pn

pn + 1

∣∣∣∣
=

∣∣∣∣ 2qn
qn + 1

+
2ζn − 2ζnqn − 4ξnqn

(qn + 1)2
+Rf (u, ζn, ξn)−

2pn
pn + 1

∣∣∣∣
≤
∣∣∣∣ 2qn
qn + 1

− 2pn
pn + 1

∣∣∣∣+ ∣∣∣∣2ζn − 2ζnqn − 4ξnqn
(qn + 1)2

∣∣∣∣+ |Rf (u, ζn, ξn)|

≤ 2 |qn − pn|+
∣∣∣∣2ζn − 2ζnqn − 4ξnqn

(qn + 1)2

∣∣∣∣+ |Rf (u, ζn, ξn)| , provided qn > 0.

(122)

Since qn < 1 and |ζn|, |ξn| ∈ O(ε) and |Rf (u, ζn, ξn)| ≲ ε2, if we denote the error sequence by1217

en = |qn − pn|, then:1218

en+1 − 2en ≲ ε. (123)

Since e0 = 0, this implies that the error at step n is bounded as:1219

en ≲ 2nε. (124)

We want to find an integer n⋆ such that model h(n⋆) generates long answers. For this, it suffices to1220

have qn > 1/3, or equivalently:1221

pn⋆ − 2n
⋆

C ′ε >
1

3
. (125)

We show that the unperturbed sequence pn = 2pn−1

pn−1+1 admits a closed form solution. Let un = 1
pn

,1222

then:1223

un =
un−1 + 1

2
= 1 +

u0 − 1

2n
, (126)

or, for the original sequence pn:1224

pn =

(
1 +

1

2n

(
1

p0
− 1

))−1

=
2np0

2np0 + 1− p0
=

p0
p0 + (1− p0) 2−n

. (127)

Returning back to (125), we seek n⋆ ≥ 1 such that:1225

p0
p0 + (1− p0) 2−n⋆ − 2n

⋆

C ′ε >
1

3
. (128)

Assume that 2n
⋆

C ′ε < 1
15 for some ε to be specified later. Then, it suffices to have:1226

p0
p0 + (1− p0) 2−n⋆ − 1

15
>

1

3
, (129)

66

or1227

n⋆ > log

(
2(1− p0)

3p0

)
. (130)

In that case, the error parameter ε needs to be as small as:1228

ε <
1

C

p0
1− p0

, (131)

for some C > 0. Finally, we pick the smallest n⋆ such that qn⋆ > 1/3 + µ, where µ ≥ ω(e−d)8.1229

Note that pn < 1/3 =⇒ pn+1 < 1/2, hence Theorem 4 can be invoked for qn⋆ < 3/4 if C is1230

sufficiently small. We set δ0 = δ/2 and δ1, . . . , δn⋆ = δ
2n⋆

9, then with probability at least 1− δ, we1231

have:1232

ĥ(n⋆)
(
x;
{
w̄

(n⋆)
1 , θ̄

(n⋆)
2a , w̄

(n⋆)
2 , . . . , w̄

(n⋆)
d

})
=

(
x1, x1x2, . . . ,

d∏
i=1

xi, <EOS>

)
. (132)

1233

Remark 5. Note that the guarantees of Theorem 5 for the number of SGD iterations required per1234

STaR round are very pessimistic: 1) they depend on the original mixture weight pcot rather than the1235

per-round updated weight qn, and 2) they assume that the models are re-initialized at the origin prior1236

to each STaR round, whereas of course in practice we continue fine-tuning the previously obtained1237

model which speeds up convergence.1238

Remark 6. One can also analyze an (almost offline) version of REINFORCE algorithm with no1239

reward normalization, instead of STaR, by noting that its loss also corresponds to the next-token1240

prediction objective but scaled by a different per-round coefficient.1241

In particular, if the proportion of long data in the data mixture is not exponentially small, i.e., there1242

exists constant κ ∈ N such that: pcot ∈ Ω(d−κ), then by following the previous pre- & post-training1243

recipe on data coming from D (pcot), we can obtain a model that emits a long, correct sequence and1244

predicts the parity of d bits after O (poly(d)) SGD iterations.1245

8We require qn⋆ to not be exponentially close to 1/3, so that we do not pay 1/ε sample complexity for
ε < (d+ 1) ln

2qn⋆

1−qn⋆
≍ (d+ 1) (qn⋆ − 1/3)

9Note that for δi = δ
2n⋆ the regularization terms and SGD iterations grow together with a factor

O
(
ln 1−pcot

pcot

)
, but this gets suppressed by the Õ(·) notation.

67

	Introduction
	Experiments on Parity
	Theory
	Conclusion
	Discussion
	Models and Algorithms
	Architecture
	Pre-training
	Post-training

	Experimental Details
	Parity
	Number Multiplication
	GSM8K
	MATH

	Additional experimental results
	More experiments on main parity setting
	Partial chain of thought

	Experiments with Mathematical Reasoning Benchmarks
	Number Multiplication
	Grade School & High School Mathematics (GSM8K & MATH datasets)

	Proofs
	Preliminaries & Setup
	Pre-training
	Post-training

