© N O O A~ W N =

N = o ©

3

15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30

31

32

How Reinforcement Learning After Next-Token
Prediction Facilitates Learning

Anonymous Author(s)
Affiliation
Address

email

Abstract

To study the success of the current post-training recipe of Large Language Models,
we consider a setting of learning mixture distributions consisting of short and long
“chain-of-thought” sequences encoding the parity of d bits. When long sequences
are rare, we show how reinforcement learning after next-token prediction enables
autoregressive transformers to generalize, whereas mere next-token prediction
requires extreme statistical or computational resources to do so. We further explain
how reinforcement learning leverages increased test-time computation, manifested
in longer responses, to facilitate this learning process. In a simplified setting, we
prove that autoregressive linear models following this training recipe can efficiently
learn to predict the parity of d bits as long as the proportion of long demonstrations
in the data mix is not exponentially small in the input dimension d. Finally, we
demonstrate the same phenomena in less idealized settings with Llama models.

1 Introduction

The application of reinforcement learning techniques to large neural networks has led to many
machine learning advances and successes [38, 39, 15, 13]]. In the realm of Large Language Models
(LLMs), a recent paradigm that leverages reinforcement learning consists of two main ingredients:
training a large model, such as an autoregressive transformer [42]] on diverse types of data (sequences)
from the web with a next-token prediction objective [30]], followed by a fine-tuning stage with a
reinforcement learning algorithm that seeks to improve model generations with respect to a reward
function. When the latter part is applied on a frontier model using a mathematical, logical or
reasoning reward, it leads to rapid increase in the model’s capabilities in related domains and is
often accompanied by a significant length increase in model response. Prominent examples of such
“reasoning” language models include OpenAlI’s ol model [[13] and Deepseek’s R1 model [7]. The
prolonged LLM generation that precedes an answer has been dubbed the “thinking process” of the
model, as it often resembles the “chain-of-thought” [28] |44] of a human expert solving said task.

In this paper, we study how autoregressive models succeed in solving challenging prediction tasks
by following this training recipe (next-token prediction followed by reinforcement learning E]) To
provide a theoretical account, we make a central simplification: we assume that pre-training data
already contain correct and elaborate but perhaps rare demonstrations for a task of interest. Based on
this modeling assumption, we study and explain:

1. Why in certain cases it is difficult for a model to generalize during pre-training.
2. How reinforcement learning (RL) leads to a rapid improvement in terms of samples, and

3. What optimization pressures cause increase in the length of the response.

'In the argot of LLMs, these two stages are often called pre-training and post-training, respectively.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55

56

57
58
59

60

62
63

Pre-training & Post-training curves
Parity, d=50, model=gpt2, depth=4, demp3=128, Nheadgs=4, Pcot=0.25

Data

2
i 38 s
: 2]
T g3 e
oo [N o] e 5o R
gt
H

PRETRAINING
oni

Next-token prediction (pre-training) (nex token oniy)

{'Reinforcement learni
"\

ost-training)

Median length

under greedy decoding

~ Lrevand |

Figure 1: Left: An illustration of our main learning setting: a mixture of long and short sequences
encoding the parity of d bits, along with a representation of pre- and post-training for d=5. Right:
Advantage of next-token prediction followed by reinforcement learning over mere next-token
prediction in predicting the parity of 50 bits with a transformer trained from scratch. The red line
corresponds to pre-training, while blue lines correspond to the same pre-training runs, each followed
by GRPO (with a final token accuracy reward) from a different checkpoint. Lines correspond to
median across 3 seeds. Top: Test accuracy under greedy decoding. Bottom: Median length of model
response under greedy decoding. The inset figures zoom-in on the curves during post-training.

Specifically, we study learning from a distribution that contains both short and long, chain-of-thought-
like, sequences encoding a single task. The main body of the paper is devoted to the task of predicting
the parity of d bits [26, 17,134} 4], while we consider more variations of this learning setup in the
Appendix. Through extensive empirical simulations on transformers trained from scratch, we show
that if the task complexity is high (large input dimension d) and long demonstrations are scarce, then
mere next-token prediction results in a model that fails to predict the parity on unseen examples. On
the other hand, when switching to an RL algorithm with a correctness reward, model performance
improves rapidly and the length of the generated sequences increases. The results hold for a large
array of model choices, problem and optimization hyperparameters, and reinforcement learning
algorithms. Figure[T] (Left: Illustration, Right: Simulations) summarizes the landscape.

In Section [3} we theoretically capture and explain most of the previously observed phenomena in a
simplified setting. Let p.ot, be the proportion of long data in the parity mixture distribution D(pcot).
We analyze pre-training (next-token prediction) with Stochastic Gradient Descent on D(pco) for an
autoregressive architecture that consists of a series of linear models [22], while for post-training, we
consider the STaR algorithm [49] (which is a REINFORCE [46]]-type algorithm) with a reward that
verifies correctness of the whole chain-of-thought. In this setting, we prove that the model: (a) fails
to generalize under greedy decoding during the course of pre-training if long demonstrations are rare
(i-e., if peot < 1/3, which matches the empirical threshold observed with transformers) (Theorem ,
(b) learns fast from long demonstrations and remains length-calibrated (Theorem [I]), and (c) succeeds
in generalizing after the completion of both pre- and post-training in O(poly(d)) SGD iterations,
provided that long demonstrations are not exponentially rare in the data distribution, while this is
accompanied with length increase during RL (Theorem [2). The analysis captures the immediate

progress seen in practice: as we show, only O (log % RL rounds suffice to obtain a generalizing

model. To the best of our knowledge, this suite of results provides the first theoretical separation
between next-token prediction and next-token prediction combined with RL in the autoregressive
setting, as well as the first optimization result demonstrating length increase during RL in LLMs.

2 Experiments on Parity

Setup We study the task of predicting the parity of d bits given access to a source of sequences
D(pcot) which either consist of: (i) input bits and their parity, or (ii) input bits, intermediate compu-
tations and the final parity (Figure[T)). We train decoder-only autoregressive, transformers [42]. In

64
65
66
67
68
69

70

7
72

73

74
75
76
77
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92

93

94
95
96
97
98
99

Parity, model=gpt2, depth=4, demba=128, Nheags=32
Test Accuracy (d=50) Probability of long generation (d=50) Final Accuracy vs pcot (d=25)

100 Lo 100
s I —
sy I OB AP WA ikt NAS -l < °

60 | I~ A A g e o = —|

el RS

Hard for pre-training! Easy for pre-training

Accuracy (%)
Probability

40

w/ greedy decoding

PNV GNP AN =L =N p g Ap A an s

.2 k 60 z
o
00 ﬂ,-.ﬂ_.,.» ________________ 50

10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 0.2 304 0.6 0.8 1
(pre-train) iterations (pre-train) iterations P,

Final Test Accuracy (%)

cot

—— greedy (temp=0.0) —- 221 X100 —— p=0.75 Peot=0.1
== temp=1.0 Peot = Pet=025 = px=0.05

Figure 2: Pre-training of transformers on mixture of long and short sequences encoding the
parity of d bits. Left: Test accuracy during the course of pre-training. Center: The probability that a
model’s generation length is equal to the maximum length present in the training data (which equals
d). Right: Test accuracy with greedy decoding at the end of pre-training vs mixture coefficient pcoy.

the first stage of training (pre-training), we train a GPT2-type model to estimate the probability of
the next token on sequences drawn from D(pcot) [30]]. After several steps of pre-training, we switch
training algorithm and further optimize the model with reinforcement learning methods; S7TaR [49]],
REINFORCE [46] and GRPO [35]. At a high level, all three algorithms seek to maximize the reward
of model generations (see Appendix [B|for details). We focus on two types of rewards:

End-to-end correctness: The reward function assesses whether the last token is equal to the correct

answer: Tee(x,y) = 1 {y[—l] = H?:I zi} , where y[—1] € {£1} denotes the token appearing

right before the <E0S> token in sequence .
Chain-of-thought correctness: The reward function assesses whether the whole sequence is valid:

Teot(X,y) =1 {y = (ml,xlxg, cey H?Zl i, <EOS>) V oy = (Hle Ti, <EOS>>})

Results First, we show results for pre-training (next-token prediction) on data sampled from D(pcot)
for various values of mixture weight p.o¢ in Figure |2l As we can see, performance under greedy
decoding is determined by the value of p..: if the percentage of long sequences in the data is large
enough (e.g. p.ot=0.75), then the model quickly learns to predict the parity of the input correctly
by generating long responses and generalizes perfectly. On the other hand, when long sequences
are rare, the model generates short responses and performs on par with random guessing even after
training on millions of sequences. In fact, the critical threshold is around p.ot=1/3 (Figure(right)).

For the distributions with small p.,; where the models did not manage to generalize during pre-
training, we consider switching to post-training: at some iteration, we stop training with the next-token
objective and resume model training with an RL algorithm. We show results in Figure[3|for pco;=0.25,
where we plot post-training accuracy as a function of RL iterations for all post-train algorithms.
Progress during RL is immediate: after training on only a few sequences, model performance under
greedy decoding grows from random guessing to 100% accuracy. This improvement is accompanied
with increase in the length of the model’s generations, which grows from 1 (min train length) to 50
(max train length). To further emphasize the sample complexity difference between the two paradigms,
we show aggregated results (pre- & post-training combined) in Figure [I| for d=50, peot=0.25 and
post-training with GRPO starting from various checkpoints. Appendix [D.I|contains more discussion
and results. Next, we theoretically elucidate the mechanisms by which RL improves over next-token
prediction in our setting and why this improvement is accompanied by length increase.

3 Theory

Architecture We study an autoregressive model that consists of d+1 linear predictors. We reduce
next-token prediction on D(peot) to a series of binary classification problems. At a high-level, the
feature embedding used in each one of them involves (at most) second-degree monomials of the input,
which is a canonical embedding choice. We denote the induced autoregressive hypothesis class by
HY®. We define GREEDY to be the operation of greedy decoding from the model logits (takes the sign

of each model’s output). By composing each individual component of h € 'Hk}r{ with the sigmoid,

100
101
102

103
104
105

106

107

108

109

110
111

112

113
114

115
116

117

118

119

120

121

122
123
124
125

126

127
128
129
130
131
132
133

we also define the probability measure induced by h, namely 7, (- | x) € A(Y). This corresponds to
sampling from the model with temperature 1. Appendix [F| contains background information, formal
definitions and proofs of all statements. Our first result characterizes the model during pre-training.
Theorem 1. (Pre-training, Informal) Let d > 2, pcot € (0,3/4). Consider running Stochastic
Gradient Descent (SGD) for minimizing the next-token prediction objective with respect to dis-
tribution D(peot) over HL‘“ with an additional {5 regularization term. Then, for any 0 < € <
(d+ 1) min { 1. In }Jrz“’z } and after O(poly(d, 1/e,1/pcot)) iterations, with high prob-
ability over sampling from D(pcot) SGD returns model hpy. € HL‘“ for which the following hold:

X) — Pcot <

In 1 p(‘ot

1. Length calibration: For any input x € {£1}%, it holds:

d
Thpre <<x1, T1T2, ..., Hﬂ%, <E05’>>

~ 67
(H
]- — Fco
<<H:c <Eos>>) -t 5.
2. Failure of greedy decoding: For any x € {£1}<, it holds:
(Ila <EUS>)) ifpcot < 1/37
GREEDY(hpye = . 2
(hpre(x)) {(xl,xlmg, ol Hle T, <EUS>) , otherwise. 2)

That is, test accuracy under greedy decoding is on par with random chance if peoy < 1/3,
and perfect otherwise.

Next, we study RL with (regularized) STaR objective and show the main learning result of the paper.

Theorem 2. (Post-training, Informal) Let hpe be the output of SGD after pre-training under the
conditions of Theorem|I|for peoy < 1/3 and ¢ < co72 ;jctot for a sufficiently small constant cy > 0.
Consider post-training of hyre with the STaR algorithm using reward rco¢. Suppose each STaR round
uses O(poly(d, 1/e,1/peot)) SGD iterations, and let h\™ denote the model after n rounds. Then,

there exists an integer n* = O (log %) such that with high probability over sampling from
D(pcot), and the model-sampled outputs used by STaR in rounds 1,...,n* — 1, the following hold:

1. Length increases: The probability of a long generation increases:

d
T () ((:cl, T1T,y ..., H T, <EUS>> x) — Qn

p” for all n < n* with py = Peot.

Se 3

where |q, — pn| < 2" and ppiq =

2. Perfect generalization: After n* RL rounds, it holds:

d
GREEDY(h("*)(x)) = <x1,x1$2,...7Hxi, <EOS>>) 4)
=1

Remark 1. Consider the case where long demonstrations are very rare, that is p.ot — 0 as d — oo,
which is perhaps the most interesting case. Theorem [2|shows that as long as peot € 2(d™") for some
constant x € N, then we can learn the parity using O(poly(d)) SGD steps. This should be contrasted
with the well-known hardness results on learning parities [[17} 37]].

4 Conclusion

In this work, we introduced a theoretical framework to study the success of reinforcement learning
applied after next-token prediction in Large Language Models. We demonstrated and proved that
when the data contain rare elaborate sequences encoding a challenging target function, RL can help
the model to learn by effectively up-sampling the presence of the long demonstrations in the data mix.
Future work can address the limitations of our setting, by understanding, for example, how noisy
chains of thought affect the conclusions, as well as considering separate pre-train and post-train target
functions. Experiments with LLMs can be found in Appendix[E]and a discussion in Appendix [A]

134

135

137
138

139
140
141

142
143
144
145

146
147
148
149
150

151
152
153
154
155

156
157

159
160
161
162
163
164
165

167
168
169

170
171

172
173
174
175
176
177
178
179
180
181
182
183
184

References

[1] Abbe, E., Adsera, E. B., and Misiakiewicz, T. (2023). SGD learning on neural networks: leap
complexity and saddle-to-saddle dynamics. In Neu, G. and Rosasco, L., editors, The Thirty Sixth
Annual Conference on Learning Theory, COLT 2023, 12-15 July 2023, Bangalore, India, volume
195 of Proceedings of Machine Learning Research, pages 2552-2623. PMLR.

[2] Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, 1., Aleman, F. L., Almeida, D., Al-
tenschmidt, J., Altman, S., Anadkat, S., et al. (2023). Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

[3] Bakhtin, A., Wu, D. J., Lerer, A., Gray, J., Jacob, A. P., Farina, G., Miller, A. H., and Brown, N.
(2023). Mastering the game of no-press diplomacy via human-regularized reinforcement learning
and planning. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023.

[4] Barak, B., Edelman, B. L., Goel, S., Kakade, S. M., Malach, E., and Zhang, C. (2022). Hidden
progress in deep learning: SGD learns parities near the computational limit. In Koyejo, S.,
Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A., editors, Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Processing Systems
2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022.

[5] Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi, D., Fis-
cher, Q., Hashme, S., Hesse, C., J6zefowicz, R., Gray, S., Olsson, C., Pachocki, J., Petrov, M.,
de Oliveira Pinto, H. P, Raiman, J., Salimans, T., Schlatter, J., Schneider, J., Sidor, S., Sutskever,
L., Tang, J., Wolski, F., and Zhang, S. (2019). Dota 2 with large scale deep reinforcement learning.
CoRR, abs/1912.06680.

[6] Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J.,
Hilton, J., Nakano, R., Hesse, C., and Schulman, J. (2021). Training verifiers to solve math word
problems. CoRR, abs/2110.14168.

[7] DeepSeek-Al, Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang,
P, Bi, X., Zhang, X., Yu, X., Wu, Y., Wu, Z. F,, Gou, Z., Shao, Z., Li, Z., Gao, Z., Liu, A., Xue,
B., Wang, B., Wu, B., Feng, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D., Chen,
D, i, D, Li, E., Lin, F,, Dai, F,, Luo, F,, Hao, G., Chen, G., Li, G., Zhang, H., Bao, H., Xu, H.,
Wang, H., Ding, H., Xin, H., Gao, H., Qu, H., Li, H., Guo, J., Li, J., Wang, J., Chen, J., Yuan, J.,
Qiu, J.,, Li, J, Cai, J. L., Ni, J., Liang, J., Chen, J., Dong, K., Hu, K., Gao, K., Guan, K., Huang,
K., Yu, K., Wang, L., Zhang, L., Zhao, L., Wang, L., Zhang, L., Xu, L., Xia, L., Zhang, M., Zhang,
M., Tang, M., Li, M., Wang, M., Li, M., Tian, N., Huang, P., Zhang, P., Wang, Q., Chen, Q., Du,
Q., Ge, R., Zhang, R., Pan, R., Wang, R., Chen, R. J., Jin, R. L., Chen, R., Lu, S., Zhou, S., Chen,
S., Ye, S., Wang, S., Yu, S., Zhou, S., Pan, S., and Li, S. S. (2025). Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning. CoRR, abs/2501.12948.

[8] Deng, Y., Choi, Y., and Shieber, S. M. (2024). From explicit cot to implicit cot: Learning to
internalize cot step by step. CoRR, abs/2405.14838.

[9] Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten,
A., Yang, A., Fan, A., Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sravankumar, A., Korenev, A.,
Hinsvark, A., Rao, A., Zhang, A., Rodriguez, A., Gregerson, A., Spataru, A., Roziere, B., Biron,
B., Tang, B., Chern, B., Caucheteux, C., Nayak, C., Bi, C., Marra, C., McConnell, C., Keller, C.,
Touret, C., Wu, C., Wong, C., Ferrer, C. C., Nikolaidis, C., Allonsius, D., Song, D., Pintz, D.,
Livshits, D., Esiobu, D., Choudhary, D., Mahajan, D., Garcia-Olano, D., Perino, D., Hupkes, D.,
Lakomkin, E., AlBadawy, E., Lobanova, E., Dinan, E., Smith, E. M., Radenovic, F., Zhang, F.,
Synnaeve, G., Lee, G., Anderson, G. L., Nail, G., Mialon, G., Pang, G., Cucurell, G., Nguyen, H.,
Korevaar, H., Xu, H., Touvron, H., Zarov, 1., Ibarra, 1. A., Kloumann, I. M., Misra, 1., Evtimov,
L, Copet, J., Lee, J., Geffert, J., Vranes, J., Park, J., Mahadeokar, J., Shah, J., van der Linde, J.,
Billock, J., Hong, J., Lee, J., Fu, J., Chi, J., Huang, J., Liu, J., Wang, J., Yu, J., Bitton, J., Spisak,
J., Park, J., Rocca, J., Johnstun, J., Saxe, J., Jia, J., Alwala, K. V., Upasani, K., Plawiak, K., Li, K.,
Heafield, K., Stone, K., and et al. (2024). The llama 3 herd of models. CoRR, abs/2407.21783.

185
186
187
188
189

190

191
192

193
194
195
196
197
198
199

201
202
203
204
205

207
208
209

210
211
212
213

214
215
216

217
218

219
220
221

222
223
224

225
226
227

228
229

230
231

232
233

[10] Feng, G., Zhang, B., Gu, Y., Ye, H.,, He, D., and Wang, L. (2023). Towards revealing the
mystery behind chain of thought: A theoretical perspective. In Oh, A., Naumann, T., Globerson,
A., Saenko, K., Hardt, M., and Levine, S., editors, Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

[11] Hastad, J. (1987). Computational Limitations of Small-Depth Circuits. MIT Press (MA).

[12] Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., and Steinhardt,
J. (2021). Measuring mathematical problem solving with the math dataset. NeurIPS.

[13] Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky, A., Low, A., Helyar, A., Madry,
A., Beutel, A., Carney, A., Iftimie, A., Karpenko, A., Passos, A. T., Neitz, A., Prokofiev, A.,
Wei, A., Tam, A., Bennett, A., Kumar, A., Saraiva, A., Vallone, A., Duberstein, A., Kondrich,
A., Mishchenko, A., Applebaum, A., Jiang, A., Nair, A., Zoph, B., Ghorbani, B., Rossen, B.,
Sokolowsky, B., Barak, B., McGrew, B., Minaiev, B., Hao, B., Baker, B., Houghton, B., McKinzie,
B., Eastman, B., Lugaresi, C., Bassin, C., Hudson, C., Li, C. M., de Bourcy, C., Voss, C., Shen,
C., Zhang, C., Koch, C., Orsinger, C., Hesse, C., Fischer, C., Chan, C., Roberts, D., Kappler, D.,
Levy, D., Selsam, D., Dohan, D., Farhi, D., Mely, D., Robinson, D., Tsipras, D., Li, D., Oprica, D.,
Freeman, E., Zhang, E., Wong, E., Proehl, E., Cheung, E., Mitchell, E., Wallace, E., Ritter, E.,
Mays, E., Wang, F., Such, F. P,, Raso, F., Leoni, F., Tsimpourlas, F., Song, F., von Lohmann, F.,
Sulit, F., Salmon, G., Parascandolo, G., Chabot, G., Zhao, G., Brockman, G., Leclerc, G., Salman,
H., Bao, H., Sheng, H., Andrin, H., Bagherinezhad, H., Ren, H., Lightman, H., Chung, H. W.,
Kivlichan, I., O’Connell, I., Osband, L., Gilaberte, I. C., and Akkaya, I. (2024). Openai ol system
card. CoRR, abs/2412.16720.

[14] Jelassi, S., Brandfonbrener, D., Kakade, S. M., and Malach, E. (2024). Repeat after me:
Transformers are better than state space models at copying. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.

[15] Joshi, N., Vardi, G., Block, A., Goel, S., Li, Z., Misiakiewicz, T., and Srebro, N. (2025). A
theory of learning with autoregressive chain of thought. In Haghtalab, N. and Moitra, A., editors,
The Thirty Eighth Annual Conference on Learning Theory, 30-4 July 2025, Lyon, France, volume
291 of Proceedings of Machine Learning Research, pages 3161-3212. PMLR.

[16] Kamath, P., Montasser, O., and Srebro, N. (2020). Approximate is good enough: Probabilistic
variants of dimensional and margin complexity. In Conference on Learning Theory, pages 2236—
2262. PMLR.

[17] Kearns, M. J. (1998). Efficient noise-tolerant learning from statistical queries. J. ACM,
45(6):983-1006.

[18] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio, Y.
and LeCun, Y., editors, 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

[19] Li, Z., Liu, H., Zhou, D., and Ma, T. (2024). Chain of thought empowers transformers to solve
inherently serial problems. In The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024.

[20] Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang, C. (2023). Transformers learn
shortcuts to automata. In The Eleventh International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023.

[21] Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

[22] Malach, E. (2024). Auto-regressive next-token predictors are universal learners. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.

[23] Malach, E. and Shalev-Shwartz, S. (2022). When hardness of approximation meets hardness of
learning. J. Mach. Learn. Res., 23:91:1-91:24.

234
235

237
238

240

241
242

243
244
245

246
247
248
249
250
251
252

253
254

255
256

257
258
259
260

261
262

263
264
265
266

267
268

270
271

272
273

274
275
276
277
278

279
280
281
282

[24] Merrill, W. and Sabharwal, A. (2023). The parallelism tradeoff: Limitations of log-precision
transformers. Trans. Assoc. Comput. Linguistics, 11:531-545.

[25] Merrill, W. and Sabharwal, A. (2024). The expressive power of transformers with chain of
thought. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024.

[26] Minsky, M. and Papert, S. A. (1969). Perceptrons: An Introduction to Computational Geometry.
The MIT Press.

[27] Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of Machine Learning.
Adaptive computation and machine learning. MIT Press.

[28] Nye, M. L., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber, D., Dohan,
D., Lewkowycz, A., Bosma, M., Luan, D., Sutton, C., and Odena, A. (2021). Show your work:
Scratchpads for intermediate computation with language models. CoRR, abs/2112.00114.

[29] Paszke, A., Gross, S., Massa, E., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E. Z., DeVito, Z., Raison, M., Tejani,
A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative
style, high-performance deep learning library. In Wallach, H. M., Larochelle, H., Beygelzimer, A.,
d’Alché-Buc, F, Fox, E. B., and Garnett, R., editors, Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages 8024—8035.

[30] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language
models are unsupervised multitask learners. OpenAl.

[31] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

[32] Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words with
subword units. In Erk, K. and Smith, N. A., editors, Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany.
Association for Computational Linguistics.

[33] Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learning - From Theory
to Algorithms. Cambridge University Press.

[34] Shalev-Shwartz, S., Shamir, O., and Shammah, S. (2017). Failures of gradient-based deep
learning. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 3067-3075. PMLR.

[35] Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Zhang, M., Li, Y. K., Wu, Y., and Guo, D. (2024).
Deepseekmath: Pushing the limits of mathematical reasoning in open language models. CoRR,
abs/2402.03300.

[36] Shen, R., Bubeck, S., Eldan, R., Lee, Y. T., Li, Y., and Zhang, Y. (2023). Positional description
matters for transformers arithmetic. CoRR, abs/2311.14737.

[37] Shoshani, I. and Shamir, O. (2025). Hardness of learning fixed parities with neural networks.
CoRR, abs/2501.00817.

[38] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J.,
Kalchbrenner, N., Sutskever, 1., Lillicrap, T. P., Leach, M., Kavukcuoglu, K., Graepel, T., and
Hassabis, D. (2016). Mastering the game of go with deep neural networks and tree search. Nature,
529(7587):484-489.

[39] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, 1., Huang, A., Guez, A., Hubert, T.,
Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T. P., Hui, E,, Sifre, L., van den Driessche,
G., Graepel, T., and Hassabis, D. (2017). Mastering the game of go without human knowledge.
Nature, 550(7676):354-359.

283
284

285

286
287

289
290

291
292
293

294
295
296
297
298

299
300
301

302
303

304
305
306
307
308
309

310
311

312
313
314
315
316

[40] Su, J., Ahmed, M. H. M., Lu, Y., Pan, S., Bo, W,, and Liu, Y. (2024). Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063.

[41] torchtune maintainers and contributors (2024). torchtune: Pytorch’s finetuning library.

[42] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. In Guyon, 1., von Luxburg, U., Bengio,
S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N., and Garnett, R., editors, Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998—6008.

[43] von Werra, L., Belkada, Y., Tunstall, L., Beeching, E., Thrush, T., Lambert, N., Huang,
S., Rasul, K., and Gallouédec, Q. (2020). Trl: Transformer reinforcement learning. https:
//github.com/huggingface/trl.

[44] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F.,, Chi, E. H., Le, Q. V., and
Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models. In
Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A., editors, Advances in
Neural Information Processing Systems 35: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022.

[45] Wies, N., Levine, Y., and Shashua, A. (2023). Sub-task decomposition enables learning in
sequence to sequence tasks. In The Eleventh International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023.

[46] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229-256.

[47] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,
R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C.,
Le Scao, T., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. (2020). Transformers: State-of-
the-art natural language processing. In Liu, Q. and Schlangen, D., editors, Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations,
pages 38-45, Online. Association for Computational Linguistics.

[48] Wu, J., Bartlett, P. L., Telgarsky, M., and Yu, B. (2025). Benefits of early stopping in gradient
descent for overparameterized logistic regression. CoRR, abs/2502.13283.

[49] Zelikman, E., Wu, Y., Mu, J., and Goodman, N. D. (2022). Star: Bootstrapping reasoning
with reasoning. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A.,
editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022.

https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://github.com/huggingface/trl

317

318

319

320

321

322

324

325

326

327

328

329

330

331

332

333

335

336

337

338

339

341
342
343
344
345

347
348
349
350
351
352
353
354
355

Table of Contents

[A"Discussion| 9
[B- Models and Algorithms| 10
B.I Architecturel 10
[B.2 Pre-training| e 10
[B.3 Post-training|. 10
|C Experimental Details| 12
... 12
(C.2 Number Multiplication| 12
IC3 GSMSBKI . . . o 13
IC.4 MATHI. 14
D Additional experimental results| 15
[D.1 More experiments on main parity setting| 15
[D.2 Partial chainof thought|, 22
|E Experiments with Mathematical Reasoning Benchmarks| 23
[E. Number Multiplication| 24
[E.2 Grade School & High School Mathematics (GSM8K & MATH datasets)| 25
FProofs 44
[F.1 Preliminaries & Setup|. 44
[F2 Pre-training| e 50
[F3° Post-training|. oL 64

A Discussion
Here, we discuss our results and their implications in more detail.

Learning with chain of thought data Recently, a few theoretical works have attempted to capture
the success of autoregressive modeling with LLMs 221 [13]. In particular, Joshi et al. [15], Malach
showed that next-token prediction can lead to computationally efficient learning of any efficiently
computable binary function, which stands in sharp contrast to standard supervised learning where only
a limited class of functions can be learned efficiently. However, these results rely on the assumption
that a learner has access to a dataset with perfect chain of thought data. While this has turned out to
be a very productive assumption for the theoretical study of autoregressive learning, it nonetheless
constitutes a strong assumption. Our work takes a step forward in relaxing this requirement; it
instead assumes that the dataset contains at least a nonzero (possibly polynomially small in the
context length) fraction of chain of thought data. This is arguably a more natural assumption for
modeling the presence of elaborate “good” demonstrations in the vast ocean of internet text. As
we showed in Section [3] this is enough to guarantee efficient learning of the parity function and,
interestingly, the guarantee is achieved through a variation of the popular post-training recipe used
in state-of-the-art LLMs. We believe our proof strategy can be modified to show that pre-training
followed by post-training can lead to efficient learning for other “hard” functions. We leave such a
study for future work.

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

372

374

375
376
377
378
379
380

381

382
383
384

385
386

387

388
389
390
391
392

393
394
395

Length increase as a learning phenomenon The common wisdom in the literature has been
that the chain of thought during RL grows to enable the approximation of complex algorithmic
tasks. Indeed, some computational problems require large computational depth to be executed
with reasonable resources [[11]] and the standard decoder-only transformer architecture with context
length n appears limited in what it can represent exactly with constant depth. On the other hand, a
transformer augmented with O(poly(n)) chain of thought can simulate any function described by
a circuit of polynomial size [10,[19}24], as the additional chain of thought provides computational
depth to the model. As such, it seems theoretically satisfying that when chain of thought grows during
RL, the model’s performance improves on complex tasks. One shortcoming of this perspective is
that it does not aim to explain why or how optimization pressures lead to length increase, which
was the main focus of our work. On a more abstract level, the approximation advantage of long
responses suggested by prior work is indeed fundamental, as one cannot hope to learn a task without
the capacity to represent iﬂ Nevertheless, the learning advantage we captured in this paper can be
more prevalent as it even appears in cases where representation is not an issue (such as the parity
task we considered). Based on the above, we suggest interpreting the growth of the length during
reinforcement learning of autoregressive models as a bona fide learning phenomenon.

B Models and Algorithms

Herein, we describe the main models and training algorithms we consider in the parity experiments.

B.1 Architecture

A transformer is a sequence-to-sequence neural network, which in its simplest form consists of
layers of self-attention followed by a position-wise feed-forward network. The term “autoregressive”
indicates that the prediction of the model for each new token is conditioned only on tokens that
appeared earlier in the sequence. To obtain a distribution over the next token, it is common to
compose the output of the transformer with a soft-max layer across the vocabulary index, which can
be potentially parameterized by a temperature value.

B.2 Pre-training

The next-token prediction objective consists of the log loss of the model token distribution evaluated at
output positions 1 to d. We omit the first d input positions of the sequence from the loss objective, as
input bits z1, . .., x4 are distributed uniformly at random. If we denote the predicted sequence-level
distribution by 7y (y | x) = H‘jy:ll 79,7 (Y | X,y<;) € (0,1), which is induced by the prediction of
the transformer at each position composed with the soft-max, then training corresponds to:

[yl

mgnE(x,y)ND(pcot) Z —1In 9,5 (yj | X, y<]') ®)
j=1

B.3 Post-training

We consider three main reinforcement learning algorithms: Self-Taught Reasoner (STaR) [49],
REward Increment=Nonnegative Factor times Offset Reinforcement times Characteristic Eligibility
(REINFORCE) [46] and Group Relative Policy Optimization (GRPO) [33]]. Letr : X x Y — {0,1}
be a binary reward function. We consider outcome-based rewards, which assign one reward value per
sequence.

STaR In STaR (Algorithm[I), we first query the pre-trained model to generate responses for inputs.
We then filter out those with O reward and fine-tune the model on the rest using the next-token
prediction objective. We repeat this process for several rounds, each time sampling from the model

The actual situation is a bit more nuanced, as exact representation is not a strict requirement for learn-
ing through approximation (which is the goal in e.g. PAC learning). See [16} 23] for some definitions of
approximation which can be more fruitful for understanding learning.

10

396

397

398

399
400

401

402

403
404
405
406
407

408

returned by the previous round. The algorithm over one round corresponds to:

lyl
minE, pogqmet, | D w45 1% y<) [riey) =1 ©)

YTy (%) [J=1

where ¥y, € RP corresponds to parameters returned in the previous round of the algorithm.
The pseudocode of STaR can be found in Algorithm|[T]

Algorithm 1 Self-Taught Reasoner (STaR) Algorithm

Require: Pre-trained model parameters 1y, RL rounds 7, Fine-tuning epochs per round F, Input
distribution Dy, = Rad(1/2)®4, Reward function 7(x,), Number of samples to generate per
round N.

1: Setd =Y

2: forr =1tondo

3: SetS=10

4: fori:=1to N do

5: Sample x ~ Dx.

6: Sample y ~ 7y (- | x).

7: if 7(x,y) = 1 then

8: SetS =S U{(x,y)}.
9: end if

10: end for
11: for epoch =1 to E do
12: for each (x,y) € S do
13: Update ¢ by taking a gradient step on the next-token prediction loss for (x, y).
14: end for
15: end for
16: end for

17: return Final model parameters .

REINFORCE REINFORCE is a standard policy gradient algorithm. It seeks to maximize the
expected reward of a sequence generated by the model:

max B Rada(1 /224, [r(x,9)] - @)
Y~y (1)
The gradient of the objective function can be written as:
B Rada(1/2)2e, [Vo Inmy (y[x)r(x,y)], (8)
yr~mo (-]x)
which implies that the algorithm can be recast as:
min By raq(1/zee, [-1nmo (y | x)7(x,3)], ©
Y~y (+|x)

where the random variable y is treated as a constant and not as a function of ¥. This is the surrogate
objective that is optimized in practice. Observe the similarities with the STaR objective of (6).
Furthermore, a widely adopted option is to center the rewards in order to reduce the variance of the
updates during the execution of a stochastic optimization algorithm. This leads to the final version of
the REINFORCE method:

lyl

HgnEXNRad(l(/f))@d, z;—h“ﬂm (Wi | %,y<;) A%) | (10)
Yyr~Ty (| X J]=

where A(x,y) = 7(x,y) — E, _gaq(1/2)24, [1(x,y)] is often called the advantage function.

Yy~ (+]x)

11

409
410
411

412

413

414

415

416

417

418

419

420
421
422
423
424
425
426
427

428
429

430
431
432

434

440
441

442
443
444

GRPO Group Relative Policy Optimization, or GRPO for short, is a policy gradient algorithm,
motivated by the class of Proximal Policy Optimization (PPO) algorithms [31], that is widely used
for post-training large language models with reinforcement learning. Its objective amounts to:

N ly |
1 1 . .
B xiraaq2®t |3y > 9] > min{r;; Ay, clip(ri, 1= eaips 1+ €aip) Ai} |
y ., y N ~mora (+]x) i=1 j=1

T(x,y(i))—mean(r(x,y(l)),..A,T(x,y(N)

Std(’l”(x,y(l)),_,,,’r(x,y(N)))
and 7,1q is a predicted distribution that corresponds to an earlier model checkpoint during the
9,5 (yj) IXy(<3)

Told, j (yj(?) |xy2;)

where A; = is a normalized reward, €ip, is a hyperparameter

execution of the algorithm. We defined r; ; := . The term “Group” indicates

sampling of a group of N responses per input.

C Experimental Details

The experiments are implemented using PyTorch [29].

C.1 Parity

We use the Transformers library [47] for our parity experiments.

Architecture The transformer is initialized with context length d’=2d, to be able to process
the whole sequence, where recall d is the number of input bits. The two architectures we con-
sider primarily differ in the type of positional encodings: GPT2 uses absolute positional encod-
ings of the input sequence, while Mistral uses relative positional encodings [40]. We use the
GPT2Config, MistralConfig config classes to define the models. We consider several model
hyperparameters: depth (number of transformer blocks) L € {2,4,8}, embedding dimension
demdb € {128,256}, number of heads npeaqs € {4,32}. By the default convention, each head
has dimension demdb /M heads-

Pre-training We consider distributions with
Peot € {0,0.05,0.1,0.25,0.3,0.32,0.33,0.34,0.35,0.4,0.5,0.6,0.75, 1.0}.

We use the Adam [18] optimizer with learning rate 77pre:10_3 and a batch size B},;.=256. Test
statistics are estimated using 2,560 new samples.

In Figure 2] (right), each bullet corresponds to the final test accuracy with greedy decoding over 3
random seeds. The final accuracy of each run is defined as the average accuracy from the last 5
checkpoints of the pre-trained run (that is, average accuracy at iterations 47,500 to 49,500).

Post-training We continue post-training from the last checkpoint of pre-training. For STaR, we
generate 3, 200 samples per RL iteration and train on the correct ones for 3 epochs with batch size 64.
For REINFORCE and GRPO, we use batch size 64. We found it necessary to use a larger sample size
per RL iteration for STaR. The GRPO experiments use N = 4 rollouts per input and clip parameter
€clip = 0.2. No KL penalty is applied (as outlined in Section @) We use the Adam [18]] optimizer
with learning rate 7,,.=10"". Test statistics are estimated using 640 new samples.

C.2 Number Multiplication

Architecture We use the GPT?2 [30] architecture which contains 124,439,808 parameters and the
default GPT?2 tokenizer that includes a vocabulary of size 50,257 and utilizes Byte Pair Encoding [32].

Pre-training We consider datasets with pcot € {0.1,0.25,0.5, 1}. The dataset and the pre-training
code is based on the public repository of [8]. We train with the next-token prediction objective applied
to the chain of thought (if it exists) and the answer tokens of the sequence. We use the AdamW [21]]

12

445
446
447
448
449
450

451
452
453
454

456
457
458
459
460
461
462

463

464

465

466

467

468

470

471
472
473
474
475
476
477
478
479

481

482

484
485

486
487
488
489
490
491
492

optimizer with learning rate 7,,.=5 - 1075, batch size Bp.=32, and maximum gradient norm equal
to 1.0. We train for 15 epochs for the 4 x 4 task and 50 epochs for 5 x 5 and 7 x 7. All 3 training
datasets consist of 808,000 unique samples. We train each model (3 random seeds per task) in a
single GPU (NVIDIA A100-SXM4-80GB). For 4 x 4, each run takes approximately 3-5 hours to
complete (depending on the value of p..t). For 5 x 5 and 7 x 7, the completion time ranges in 21-38
hours.

Post-training We train with GRPO with an end-to-end reward function (that is, 1 if the tokens
generated after #### correspond to the correct answeIE] and O otherwise). We use the AdamW [21]]
optimizer with learning rate 7p05t=3 - 107¢ (and Huggingface’s Transformers’ [47] default rest
of hyperparameters), batch size B,,s=16, group size (for GRPO) equal to 4, 2 steps of gradient
accumulation (which makes the effective batch size equal to 32), no KL penalty, €5, = 0.2. We use
generation temperature 7ry, = 1.0. We use the TRL library for efficient post-training [43]. We found
it necessary to implement a wrapper around the model forward’s function to force the model to be in
evaluation mode during the generation of the rollouts for RL (that is, to turn off any sources of non-
determinism in the model, such as dropout layers). Otherwise, under TRL’s default implementation,
the model was not able to generate correct responses, even during the very first RL iteration. We
perform post-training for each random seed in a single GPU (NVIDIA A100-SXM4-80GB) which
concludes in about 3.5 hours.

Test accuracy is estimated using a set of 1000 unseen pairs of numbers.

Estimate of total GPU hours needed to reproduce the pre-training and post-training results: 900

C.3 GSMSK

Our code is based on the torchtune library [41].

Architecture We use the Llama 3.2 3B base model for our GSM8K experiments.

We split each dataset into equal parts, perform supervised fine-tuning (SFT) on the first half with the
next-token prediction objective applied to the answer portion of the sequence, and then switch to RL
on the second half.

Supervised fine-tuning We train with the next-token prediction objective applied to the
chain of thought and answer tokens of the sequence. We structure the data with pream-
ble prompt (not calculating loss): "A conversation between User and Assistant.
The user asks a question, and the Assistant solves it. The assistant

first thinks about the reasoning process in the mind and then provides

the user with the answer. The reasoning process and answer are enclosed
within <think></think> and <answer></answer> tags, respectively, i.e.,
<think>reasoning process here</think> <answer>answer here</answer>. User:
{question} Assistant: " and structure the following sequence as: <think>cot</think>
<answer>answer</answer>, where cot is everything that exists before characters #### in the
original GSMS8k dataset. As before, we drop the cot from each sample with probability pcot.

We use the AdamW [21]] optimizer with learning rate ny;=107>, batch size By;=256, and bf16
precision. We train for 30 epochs. We consider datasets with p.o; € {0.1,0.25,0.5,1}. We use
PyTorch for distributed training. Each run is performed in 8 GPUs (NVIDIA A100-SXM4-80GB)
and takes 1.5 hour to complete.

Post-training We train with GRPO with a reward function that has stepwise structure: 5 points for
the presence of the answer tag, 5 points for the presence of the thinking tag, 20 points if it contains
the correct answer in part of the response, and 100 points for a correct answer at the appropriate place.
We found it important using the math-verify module of Huggingface for simplifying mathematical
expressions and accurately rewarding generations. We use the AdamW [21]] optimizer with learning
rate npost=10’5, cosine learning rate scheduler, batch size Byost=1, group size (for GRPO) equal to
32, no KL penalty, €.1i, = 0.2. We use generation temperature 7ry, = 1.0. We perform post-training

3That is, “complete number match”.

13

493
494

496

497

498

500

501
502
503

504
505
506

507
508
509
510
511
512

514
515
516
517
518
519
520
521
522

523
524
525

526
527
528
529

530
531

533
534
535
536
537
538
539

in 8 GPUs (NVIDIA A100-SXM4-80GB) and each run concludes in 31-35hours and 20hours for
Pcot = 0.

Test statistics are estimated on the test set of GSM8k using 4 generations per question and taking the
average.

Estimate of total GPU hours needed to reproduce the pre-training and post-training results: 11k

C4 MATH

Our code is based on the torchtune library [41].

Architecture We use the Llama 3.2 3B, and 3.1 8B instruct models.

We split each dataset into equal partﬂ perform supervised fine-tuning (SFT) on the first half with the
next-token prediction objective applied to the answer portion of the sequence, and then switch to RL
on the second half.

Supervised fine-tuning We train with the next-token prediction objective applied to the chain
of thought and answer tokens of the sequence. We structure the data with preamble prompt (not
calculating loss):

<|begin of text|><|start header id|>system<|end header id|>
Cutting Knowledge Date: "

"December 2023

Today Date: 26 Jul 2024

A conversation between User and Assistant. The user "

"asks a question, and the Assistant solves it. "

"The assistant first thinks about the reasoning "

"process in the mind and then provides the user with the answer.
"The reasoning process and "

"answer are enclosed within <think></think> "
"and <answer></answer> tags, respectively, i.e.,
"<think>reasoning process here</think> <answer>answer "
"here</answer>. Inside the answer tag, put only "

"the answer and no additional commentary. <|eot id|><|start "
"header id |>user<|end header id|> {question} "

"<|eot id|><|start header id|>assistant<|end header id|>

and structure the sequence as: <think>cot</think> <answer>answer</answer>, where cot is
everything that exists in the original MATH sequence before the boxed answer. We drop the cot with
probability peot-

We use the AdamW [21] optimizer with learning rate n,=10"5, batch size Byy=24 for the 3.2
3B model and Bg=16 for the 3.1 8B model, and bf16 precision. We train for 20 epochs. We
consider datasets with p.ot € {0.1,0.25,0.5,1}. We use PyTorch for distributed training. Each run
is performed in 8 GPUs (NVIDIA A100-SXM4-80GB) and takes 1.5 hour to complete.

Post-training We train with GRPO with a reward function that has stepwise structure: 5 points for
the presence of the answer tag, 5 points for the presence of the thinking tag, 20 points if it contains
the correct answer in part of the response, and 100 points for a correct answer at the appropriate place.
We found it important using the math-verify module of Huggingface for simplifying mathematical
expressions and accurately rewarding generations. We use the AdamW [21]] optimizer with learning
rate 7p0s:=10"° (and Huggingface’s default rest of hyperparameters), batch size Byost=1, group
size (for GRPO) equal to 20, 2 steps of gradient accumulation (which makes the effective batch size
equal to 2), no KL penalty, e.;p = 0.2. We use generation temperature gy, = 1.0. We perform
post-training in 8 GPUs (NVIDIA A100-SXM4-80GB) for 300 steps which concludes in about 14-29
hours.

*We split the datasets, since they are of small size and we perform multi-epoch training during SFT.

14

540

541

542
543
544
545
546
547
548
549
550
551
552
553

555
556
557
558

559
560
561
562
563
564
565
566
567
568
569

571
572
573
574
575

576
577
578
579
580

582
583

584
585
586

587

588

589
590

D Additional experimental results

D.1 More experiments on main parity setting

Explanation of learning mechanisms in main setting On pre-training vs pre-training and post-
training: Observe that if post-training starts too early, then it might not lead to a generalizing
model despite the length increase. However, GRPO, when started from later checkpoint, improves
performance rapidly, and the number of post-training samples required for generalization is a
miniscule fraction of the overall number of samples. On the other hand, mere next-token prediction
does not result in a generalizing model (and the median greedy response remains short) even with
access to ~107 training samples. This demonstrates the enormous sample-complexity gap between the
two approaches for this task. Note that when the input dimension d is smaller, pre-training eventually
does lead to a well-generalizing model (if we optimize for sufficiently long) and post-training does
not seem strictly necessary (see Figure for d € {11, 12}). However, for larger values of d, the
amount of SGD iterations required is unreasonably large. In other words, the transformers’ inability
to succeed during pre-training does not stem from insufficient model capacity (small number
of parameters or lack of depth?)), but it is rather because next-token prediction on this distribution
requires many samples to lead to a good predictor. In fact, as the complexity of the task increases,
so does the advantage of reinforcement learning after next-token prediction over mere next-token
prediction (Figure [IT). Appendix [D.I]contains more experimental results for various model and task
hyperparameters.

On different speeds of learning & growth of test-time compute: We now describe what makes
reinforcement learning so effective and why post-training leads to length increase in our simple
setting. First, notice the curves in Figure 2] that correspond to sampling with temperature 1 during pre-
training. Even when pcot < 1/3, the accuracy of the models at the end of pre-training is greater than
50% — Figure(Left). In fact, it is equal to %ﬂ x 100% for all cases of p..t. Furthermore, notice
in the length plot of the same figure (Figure 2] (Center)) that the models are calibrated with respect
to length, i.e., they generate long responses with probability p..;. These two simple observations
directly suggest that the models learn the two parts of the mixture “in parallel” during pre-training:
after a few training iterations, when prompted with d bits z1, . . ., z4, the models learn to generate

long and correct responses containing the parity H‘f:l x; with probability p..t and short responses
with probability 1 — p..¢. As mentioned before, learning from the short sequences requires learning
the parity of d bits in a single prediction step, which belongs to a class of computationally difficult
problems [[17] and is believed to be hard for standard neural networks to learn in practice [34, [37]].
As aresult, we do not expect the model to learn using any reasonable amount of samples, and hence
it resorts to short, random guessing with probability 1 — p..¢. Learning from long demonstrations,
on the other hand, can be performed efficiently [22]]. This asymmetric learning difficulty leads to
accuracy equal to peos X 100% + (1 — peot) X 50% = % x 100%.

The learning process during pre-training sets the stage for what follows in post-training. It is perhaps
simpler to understand the RL dynamics in the case of the STaR algorithm with the chain-of-thought
correctness reward 7co¢ (cyan lines in Figure[3). The objective of (€)) implements next-token prediction
solely on model-generated sequences which contain a correct chain of thought and a correct final
answer. If, at the end of pre-training, the probability of a long, correct generation is pco¢ and the
probability of a short, correct one is (1 — peot) /2 (as suggested by Figure , then the model fits
a data mixture which contains both long and short, correct sequences with proportions equal to

e —— (’icj;' 573 and o Ei_(fi’;)_/ ?) 735 respectively. If, further, the model succeeds in fitting
them, then the conditional distribution of model generations at the end of the first round of STaR has
the same weights, provided the model remains length-calibrated and did not manage to learn from the

short sequences. Continuing inductively, at the start of the n’th round, we effectively sample from

distribution D(p,,), where py = pcot and p,, = 12&”"_11 converges to 1 exponentially fast. Once the
effective coefficient p,, becomes larger than % (which happens when accuracy with temp. 1 exceeds

/341 % —red dashed line in Figure, the model starts generating long, correct responses with

2
greedy decoding, thus generalizing perfectly at the task. This is the mechanism that causes length
increase in model response, which in turns allows the model to learn to generalize.

5A shallow transformer can approximate the parity function for any input dimension d; uniform attention for
aggregating the bit values and a 2-layer MLP for computing their XOR — see Lemma 6 in [20].

15

592
593
594

595
596
597
598
599
600
601
602
603

605
606
607
608
609
610
611
612
613
614
615

616
617
618

Parity, pcot=0.25, Post-training@20k, d=50, model=gpt2, depth=4, dempa=128, Nheads=32
Test Accuracy Lengths (GRPO (e2e), temp=1.0)

1%
Accuracy (%)
Sequences

g
Accuracy (%)
Sequences

Test Accuracy

........... 3=
N

- \—\
P e e

0 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 14 15 16 17 18 19 20
RL Iterations RL Iterations

—— greedy (temp=0.0) —~— temp=1.0 —— STaR (e2e) STaR (cot) REINFORCE (e2e) —— GRPO (e2e)

Sequences

4
Accuracy (%)

Figure 3: Post-training of transformers on mixture of long and short sequences encoding the
parity of d bits with various RL methods and generation temperatures (7ry,). Left: Test accuracy
during the course of post-training with greedy decoding (solid lines) and sampling with temperature
1 (dashed lines) for various RL methods. Figure shows average and 1 standard deviation across 3
seeds. Right: Length of generated response (sampled with temperature 1) during the course of a
post-training run (GRPO with end-to-end reward) for 640 test inputs, after 20k pre-training iterations.
Note: The sample size n of each RL iteration differs amongst the RL algorithms: n=64 for GRPO,
REINFORCE and n=3,200 sequences for STaR.

In Appendix [D.2] we consider a variation of our setting, where the data include a third type of
sequence consisting of a partial cot. We demonstrate how this affects length distributions at the end
of RL, and the effectiveness of length penalties during RL as a function of prior pre-train iterations.

Model hyperparameters ablation We present aggregated results for pre-training and post-training
on D(peot), Peot=0.25 for GPT2 and Mistral architectures of varying embedding dimension and
number of heads in Figure @] (depth L=2), Figure 5] (depth L=4) and Figure [6] (depth L=8). Post-
training uses GRPO with end-to-end reward function 7.2, and sampling temperature 7ry,=1.0 for all
configurations. Notice that the Mistral architecture exhibits more unstable learning (pre-training)
than GPT2. We observe that pre-training alone does not induce a model capable of consistent
generalization in any of the cases. We plot number of training sequences on the x-axis (as opposed to,
say, SGD iterations to allow a simpler comparison with post-training). For the number of post-train
samples, we take the multiplicity of GRPO samples into consideration.

Comparison of RL algorithms for more values of p..; In Figure[3] we presented test accuracy and
response length during post-training for all RL algorithms (STaR, REINFORCE, GRPO) and for a few
different values of sampling temperature used for generating training sequences for p.o;=0.25. We
show now additional results for distributions where data are even more rare (p.o:=0.1 and p..=0.05).
In Figure[7] we observe that all RL algorithms induce generalization for most values of sampling
temperature (post-training starts after 20k pre-training iterations) when p.o,;=0.1. On the other hand,
when pcot s even smaller (p.ot=0.05), post-training after 20k iterations does not reliably lead to
well-generalizing models for any of the RL algorithms (Figure [§). If, instead, we consider more
pre-training iterations (50k) before the start of post-training, then we observe greater probability of
success with all RL algorithms for reasonable (~1) sampling temperatures (Figure[9). This illustrates,
amongst others, that the learning behaviors of STaR, REINFORCE and GRPO are similar in our
simple setting.

Smaller input dimension In Figure[T0] we demonstrate that pre-training sometimes leads to a
generalizing model if we wait long enough (example seeds shown for d=11 and d=12). However, as
d increases, this waiting time becomes prohibitive.

16

Pre-training & Post-training curves Pre-training & Post-training curves
Parity, d=50, model=gpt2, depth=

, demb

=128, Nheass=4, Peo Parity, d=50, model=mistral, depth=2, dempa=128, Nheads=4, Peor
S 2 v PRS0 o 0200 S—— 2 o ey o G20
|mextioken + i) < [nextoken s k) g 7YY
<38 w0 g 38 % g
s st trai g ost-trar
S8 5 Fost 2ot train Postrain < €8 5 fosetrarostarain Posttrain <
2% o e s z3 [ohee sare
> [&10 ters 20 ters 5 fters 20k ters
82 e c! @ 82w Y,
53 5% o |
3w g9 s
<o <o
B B oo
30 30 Lnext1ol
00 oz 74 3] o) o0 oz 0 3 s To 2
5 o5
£ £
£ Lengihs. temp=10 (Post tran 6206) 5 Lengths, temp=10 (Post ran 620K
£Saw G500 £S4w
58 FOSTIRATING § 58 PSRRI
23 Jen't) g0 23 (e ok + 1)
S>3 &, S>3
2 3
< <]
53 53 A arssors
o Fostiron e st
starts fistarts starts I tarts fistarts starts
=3 o5k terf @0k ers O30kt =g S e G0k hers e rRETEE
S ; go ;
s / S
00 0z 04 06 08 To 12 00 02 04 3 08 10 12
#train sequences e #train sequences e
— xttoken only W Lengtn = 1 —nexttokenonly B Length = 1
et token & 1 Length = 50 et token & Length = 50
Pre-training & Post-training curves Pre-training & Post-training curves
Parity, d=50, model=gpt2, depth=2, demba=128, Nheads=32, Pcor=0.25 Parity, d=50, model=mistral, depth=2, dembs=128, Nheads=32, Pcot=0.25
100 o] = o oS o 0200 10 e 2 g LRy o 0200
o (e R < —yr= rexttoten * Al 2
2 % z =+ temp=10) ° g
° 3 - 3
N g ST w0 H
28 ostri i 88 postrai H
T8 arts - Posttrain Post-rain T 1 % % @ o 38 5 s Post-train Post-train
Fld Sk terflot3rts starts AL terations >0 Tt rers, stats starts
> o* (010K iters 20k iters. I> e - @10k iters ©20k iters
£3 i 7 £3) /
5% \ L 5%)
geg 1 gg = '
<o i <o ¥
s 40 i H a0 PRETRAI
H e oven o)
20 ; 0
o0) o 3 s o T o0 oz o 3 s T 2
) o250
2 2
£ £ Lengihs,temp=10 Post ran 620K
£8aw =8 § 500
58 PSRRI 58 ST £
235 [mextoken + 1) 23 [mexttoken + 1) S
@G> 5> H
=g g ik % oh e
59 58 R iterations
go% posttrain gor : posttrain
T starts fistarts. starts. T tarts | fstarts starts.
=g ke Giok ters 020k ers =3 Skt G0k hers e | CrRETEA
2w) ; g 7
5 / 5 /
00 02 3 08 1o 12 00 02 04 3 08 10 12
#train sequences e #train sequences e
= st token only B Lengt — cxttoken only M Length = 1
s next.token 1 Lengt s next token 1 Length = 50
Pre-training & Post-training curves Pre-training & Post-training curves
Parity, d=50, model=gpt2, depth=2, dempa=256, Nheads=4, Peotr=0.25 Parity, d=50, model=mistral, depth=2, demps=256, Nheass=4, Peor=0.25
o o (et ioken + 7
2% 2w
38w N
g =8
28 Postrain posttrain Postrain £ Postrain posttrain Posttfain
7o " (stons | stans starts >0 s L o starts
iters| @10k eers 20 ters i itrs ters
g3 w i van g gz e & ?” / Pk l
g9 w0 o 39 s
5 5
< = 40 < = 40
H H
» 30 |
00 02 7a 05 s)) 00 0z [[[o 2
o350)
£ £
£ Lengihs, temp=10 (osttran 6206) =
sge B0 550
TG H s T
23 23]
&> H S
s o e o) 8>3
<9 =8
8 R erations 58 |
o &2 Post-train Post-train Post-train E o2 | ostiilbinilipsttri Post-train
] starts | starts starts T tar s starts.
=5 o5k ters! oo ers Soners =g | Rk Saokiers
g1 i 2w I 2
E / / / s | |
00 0z 04 05 o8 To 12 00 02 04 3 08 10 12
#train sequences e #train sequences e
et token only M Length = 1 — exttoken only W Lengih = 1
et oken & 1 Lengtn = 50 et token & Length = 50
Pre-training & Post-training curves Pre-training & Post-training curves
Parity, d=50, model=gpt2, depth=2, dempa=256, Nheads=32, Peor=0.25 Parity, d=50, model=mistral, depth=2, demps=256, Nheads=32, Peor=0.25
100 2 o EoLeCcy ostran 0200 100 —— -
o (et totan ¢ 5 < o (ot iotan + 5 <
£ § £ H
Fw sEw
g 3 Post-train L g 54 | POSELIBIN pogt train Post-train <
S o o S S PR S
9 iter B10k iters @20k iters iters| ers P -
g§ 60 Y % e! @ §§ 50 Vi @10 i 2ok
5 5 UL A
H Sl gix ™
= 40 ' = 40
H H
30 30
) 0z % 3 3 T 2 oo o0z % 3 3 0 12
107 17
- gul |
£ £
£ Lengths, temp=1.0 (ostain G20K) £
£ £3| |
g H g
23 FOSTTRANIG H 23 FOSTIT
23 [extoken s k) g 235 | (et ioken + r)
RS H S
=g] 2T
8 8
59 Rierations 58 |
§o% | Posttzain go¥ | Posttrain
o tarts fstarts starts o istarts. starts. starts
=g | Bt e e CRET =3 [S o ers
g | / i go || / /
> | / > ||
oo 02 04 3 08 10 12 oo 02 04 3 08 10 12
#train sequences e #train sequences wr
— exttoken only W Length = 1 et tokenonly B Leng
et token & Length - 50 s next.oken & Lengu

Figure 4: Pre-training and post-training curves combined on the parity task for GPT2 and
Mistral architectures. We vary the embedding dimension and the number of heads. Depth L=2.

17

Pre-training & Post-training curves Pre-training & Post-training curves
Parity, d=50, model=gpt2, depth=4, dems

=128, Nheass=4, Peo Parity, d=50, model=mistral, depth=4, dempa=128, Nheats=4, Peor
S 2 v PRS0 o 020K i S—— 5 1o Sy o G209
|mextioken + i) < = i [nextoken s k) g ==
=% w =% w
53+ g 5 ost.tra g
9 4 Post.rain =8 5 tarts - JPosttrain Posttrain
2o Sh sta Z° sk terdfstarks starts
° terf@iok ters G20 ers > o1 ers @20k kers
g3 e 7 ! % g5« N %
38w —r 3¢ s
5 > A !
< 3® (E 0 : ! e
w N | | [nextoen
00 oz 74 3] o) o0 oz 0 3 s To 2
5 o5
£ £
£ Lengths, temp=10 Gostroin 0200 5 Lengths, temp=10 (Post ran 20K
£ g g 58w
58 FOSTIRATING § 58 PSRRI
23 Jen't) H 23 (e ke +)
2 >30 a 9 >30
2 3
< < T o nn o
53 53 f A arssors
gox Posttrain 3o i Posttrain
5 tarts fstarts starts I starts | fistarts starts
=3 Sk iter @10k iters 20k ters =g 2 tardl 10 rers @20k iters [PRETRD
S ; go) ;
s l/ E I
00 02 04 06 08 10 12 00 02 0.4 0.6 08 10 12
#train sequences e #train sequences e
— xttoken only W Lengtn = 1 —nexttokenonly B Length = 1
et token & 1 Length = 50 et token & Length = 50
Pre-training & Post-training curves Pre-training & Post-training curves
Parity, d=50, model=gpt2, depth=4, demba=128, Nheads=32, Pcor=0.25 Parity, d=50, model=mistral, depth=4, dembs=128, Nheags=32, Pcot=0.25
100 o] = o oL o 0200 10 | 2 1o LRy ot 0200
o (e R < —yr=n) ! (nexttoken * 2
2 % z =+ temp=10) ° i g
° 3 - i 3
N 3 =8 w0 | 3
88 H 88 post.rain H
<9 Post-train T 1 2 3 4 % <3 OSELIaN post.train st-Arain
58 7 tarts fctorts s R terations 25 stars {Zfan sy
[y Sk e o10k ters @30k iers 2w @kiters! Q10K ers Sookiers
g g Nl v ©
5% ’ 5% £
Sg s = Al ge s
5 &
D ST w 1 e
H £ :
20 0 ;
o0) o 3 s o T o0 oz o 3 s T 2
) o250
£ £
35 3
£8aw =8
58 PSRRI 58 T
23 [mextoken + 1) 23 [mexttoken + 1)
2 >30- @ >30
<9 =8
g9 se |
go% posttrain gor posttrain
T starts fistarts. starts. T starts.
=g ke Giok ters 020k ers =3 e rRETA
2w) ; g 7
5 / 5 /
00 02 04 3 08 1o 12 00 02 04 3 08 10 12
#train sequences e #train sequences e
= st token only B Lengt — cxttoken only M Length = 1
s next.token 1 Length = 50 s next token 1 Length = 50
Pre-training & Post-training curves Pre-training & Post-training curves
Parity, d=50, model=gpt2, depth=4, demba=256, Nheads=4, Pcot=0.25 Parity, d=50, model=mistral, depth=4, dembq=256, Nheads=4, Pcot=0.25
100 2 LSO o 030K 100 = o LS osran 0200
o lnexttoken'+)| < o (et ioken + 7 £ —
2w 2 2 % z
s e = £ 50 = temp=0.0 S
-3 £ -3 g He
S8 w g g w g
£ Posttr < £8 | IPOSE-train post.tr 0 30
<8 ostrain <3 osttroint posttrain posttran
S8 istarts Wstarts starts >35 70 | lstats loans starts
35w o5k terd G ers Showiters 33 el || leienElokies Sk ers
[y / [/ /) £3 | ; /
59 ~a 59 A s o
g9 w0 o s v
2w 2o [W
: =2 R
18 [nent token o)
» 30 1 8
00 02 7a 05 s)) 00 0z [[[o 2
o350)
£ £
5 3
8 £S4w
28 ARG 59 POSTTRANING
23 en's k) 23 [nextoken s k)
Sz 83
<9 =8
g s9
g postrain 8o® posttain Posttrain Posttrain
] starts fstarts starts T istarts | starts starts.
=g o3 terd o0k ers S20kiters =g G5 ters| @10k ters ok eers
g1 i 2w 2
E / / E
00 0z 04 05 o8 To 12 00 02 04 3 08 10 12
#train sequences e #train sequences e
et token only M Length = 1 — exttoken only W Lengih = 1
et oken & 1 Lengtn = 50 et token & Length = 50
Pre-training & Post-training curves Pre-training & Post-training curves
Parity, d=50, model=gpt2, depth=4, dempa=256, Nheads=32, Peor=0.25 Parity, d=50, model=mistral, depth=4, demps=256, Nheads=32, Peor=0.25
100 S—— 2 o LSy Fostran 0200 100 —— -
o (et totan ¢ 5 < o (ot iotan + 5 <
£ § £ H
-3 g -3 £
gg” gg” ot
To Post-train o ost-trairBpost-train Post-train
>5 tarts g starts >5 ipans starts. starts
82w Skiter @10k iters @l ers 82w &5k terd 10k ters Gl e
28 s 39 At AAN
25 Y 25
T 2w
E E ‘
30 30 |
) 0z % 3 3 T 2 oo o0z % 3 3 0 12
107 17
50 @50 ‘
£ £
£ Lengins, tamp=10 (Post-rain 6206) £ Lengins emp=10 Fost-rain 6206)
<840 § 500 <840 €500
23 FOSTTRANIG H 23 FOSTIT H
23 [extoken s k) g 2o (et ioken + r) g
RS H S H
o) =8 | S
59 Rierations 58 Rierations
22 » Post-train 22 > Post-train
o tarts fstarts starts o istarts. starts. starts
=3 Sefotocres | ke o =3 Eo e I b
g / i e / ;
5 / S
oo 02 04 3 08 10 12 oo 02 04 3 o8 10 12
#train sequences e #train sequences wr
— exttoken only W Length = 1 et tokenonly B Leng
et token & Length - 50

s next.token & rl Lengtt

Figure 5: Pre-training and post-training curves combined on the parity task for GPT2 and
Mistral architectures. We vary the embedding dimension and the number of heads. Depth L=4.

18

Pre-training & Post-training curves Pre-training & Post-training curves
Parity, d=50, model=gpt2, depth=8, demn,

=128, Nheass=4, Peo Parity, d=50, model=mistral, depth=8, dempa=128, Nheats=4, Peor
S 2 v PRy o 0200 S—— 2 1o LRy Grran 0200
|mextioken + i) < [nextoken s k) g
<38 w0 g 38 % g
B
2% . Postarain < g8, post-raifiposttrain Postarain <
5% ictars " fetors sars 53 sars e stars
> o5k rerf @10k ters @70 ters - e iters s
83 e sk rere) & 82 w0 i v
53 Y 5% y N
S0 s == 39 s
<o <o
B B oo
30 30 Lnext1ol
00 oz 74 3] o) o0 oz 0 3 s To 2
5 o5
£ £
£ Lengths,temp=1.0 Postran €200 5 Lengihs, temp=10 Post ran 620K
£ g g & 58w
58 FOSTIRATING § 58 PSRRI
23 Jen't) H 23 [ocsoeen s i)
2 >30 a 9 >30
2 3
< < HEE)
53 53 A arssors
o Fostiron e st
starts fistarts starts I tarts fistarts starts
=3 o5k terf @0k ers O30kt =g S e G0k hers Sl rRETE
S ; go ;
s / S
00 0z 04 06 08 To 12 00 02 04 3 08 10 12
#train sequences e #train sequences e
— xttoken only W Lengtn = 1 —nexttokenonly B Length = 1
et token & 1 Length = 50 et token & Length = 50
Pre-training & Post-training curves Pre-training & Post-training curves
Parity, d=50, model=gpt2, depth=8, dempg=128, Nheads=32, Pcor=0.25 Parity, d=50, model=mistral, depth=8, dembs=128, Nheats=32, Pcot=0.25
100 FOSTTRANIG 5 1gp FELECURCY Postiran @20K) 100 — 3 1o FELECCURCY Postran 200)
° iy) [P P o [nextoken s k) 2
2 % z =+ temp=10) ° g
° 3 - 3
N H =8 w0 3
53 g 5 g
£8 . tain posttran T % % @ 3, Posttoin Posttrain Posttrain
>3 o N Soots R terations 53 s s
iterd @10k ters 830K ters Sk hers, @10k fers rers
£3 e % % £3 e vi >
S0 / S0 A v
Sg s s ge s
<o <o
s 40 H a0 | PRETRAI
e oven o)
20 30 |
o0) o 3 s o T oo oz o 3 s T 2
) o250
2 2
£ £ Lengihs, temp=10 (Posttrain @20K)
£8aw =8 § 500
58 PSRRI 58 ST £
235 o roren i) 23 [soeen s AL S
@G> 5> H
=g g ST %
59 58 | R iterations
go% posttrain gor okt rai Postrain posttrain
T starts fistarts. starts. T tarts | starts starts.
=g ke Giok ters 020k ers =3 B G0k ers e rRETA
2w) ; g i 7
5 / 5 | /
00 02 3 08 1o 12 00 02 04 3 08 10 12
#train sequences e #train sequences e
— exttokenonly m Lengt — cxttoken only M Length = 1
s next.token 1 Lengt s next token 1 Length = 50
Pre-training & Post-training curves Pre-training & Post-training curves
Parity, d=50, model=gpt2, depth=8, dempa=256, Nheads=4, Peor=0.25 Parity, d=50, model=mistral, depth=8, demps=256, Nheass=4, Peor=0.25
100 100 ; ; 2 g Ry Porran G20
o pertiken’s . : | [oaiokens. <
£ £ [g
F8w ge ™ ! Postrain
28 Posttrain pocttrain posttrain £8 . arts posttrain b
>3 {5 st s 58 otk ters HN
e o3kt 35 s @20 ters 2w ¢
S0 3 A So
go s Y ge s
5 5
< = 40 < = 40
H H
» 30
00 02 7a 78 s o) 00 0z [[[o 2
o350)
£ £
£ Lengths,temp=1.0 Postroin 620 =
8 B0 8w
59 TANG. g 83 FOSTTRANG
- ken + RL| g0 o |inext-token + RL)|
&> H S
28" » 20 30 s0 28
8 =8
8 R erations 58 I
9% Post.train| Post.train Postirain 8o pstitrolipost train Posttrain
] starts | starts starts T starts. starts.
=5 o5k ters! oo ers Soners =g i e Giokies prRET
o B] ;
E / / / 5 (N
00 0z 04 05 o8 To 12 00 02 04 3 08 10 12
#train sequences e #train sequences e
et token only M Length = 1 — exttoken only W Lengih = 1
et oken & 1 Lengtn = 50 et token & Length = 50
Pre-training & Post-training curves Pre-training & Post-training curves
Parity, d=50, model=gpt2, depth=8, dempa=256, Nheads=32, Peor=0.25 Parity, d=50, model=mistral, depth=8, demps=256, Nheads=32, Peor=0.25
100 2 o e ostran 0200 100 —— -
o (et totan ¢ 5 < o (ot iotan + 5 <
£ § £ H
SE gEw
g8 osttrain ot ain Posttran 2 g9 Posttran <
zs S e b EE i
3 ok e s @0k ters iters
g8 w0 Rl A 7 £ w0 %
38 w0 o 2% o A ~
25 25
T 2w
E E
30 30
) 0z % 3 3 T 2 oo o0z % 3 3 0 12
107 17
o5 o550
£ £
£ Lengins, tamp=10 (Post-rain 6206) £ Lengtn
<840 € 500 2 <840 i
23 FOSTTRANIG H 23 FOSTIT H
23 [extoken s k) g 235 [ecioken s k) H
RS H 3> 1 =
=g o S e)
59 | Rierations 58 | Rierations
22 » | Post-train 22 > Post-train
o tarts fstarts starts o tarts starts. starts
=5, | 0% COTSE E T =g, Sefaiociers | ONknes o
2 C 7 st ten o) g 7 7 [ment ten o)
s / S
oo 02 04 3 08 10 12 oo 02 04 3 o8 10 12
#train sequences e #train sequences wr
— exttoken only W Length = 1 et tokenonly B Leng
et token & Length - 50 s next.oken & Lengu

Figure 6: Pre-training and post-training curves combined on the parity task for GPT2 and
Mistral architectures. We vary the embedding dimension and the number of heads. Depth L=8.

19

Parity, pcot=0.1, Post-training@20k, d=50, model=gpt2, depth=4, dempg=128, Npeads=32

Test Accuracy Lengths (STaR (e2e), temp=1.0)
— 100 600
X 0
< 90 [l
o
> 80 2 400
9
o 70 g
3 3 200
6’9 S 0 - . - o-e—p=nt &
e 3= e = =
A
?100
S 90 4]
> 80 g
“» © 70 g
A £
Q- 3 60 T
7 o L
2 50§ [
<~ <
< 100
S 90 4]
o T 2
NS g0 g
7 S 60 =
g S K
g 50 wn
Test Accuracy
= 100 —— — ——
gl g
7 © 70 < 3
< 3 60 e g
& 50 v
Test Accuracy Lengths (STaR (e2e), temp=1.0)
=100
N S 9 3
- o O
Y > 80 i SRS R
K © 70 e % 2
3 60 o)
& 50 - <4 0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 9 10 11 12 13 14 15 16 17 18 19 20
RL Iterations RL Iterations
—— greedy (temp=0.0) —— temp=1.0 —— STaR (e2e) STaR (cot) REINFORCE (e2e) ~—— GRPO (e2e)

Figure 7: Post-training of transformers on mixture of long and short sequences encoding the
parity of d bits with various RL methods and generation temperatures (7ry1,). Mixture coefficient:
Deot=0.1. Pre-training iterations: 20k.

Parity, pcot=0.05, Post-training@20k, d=50, model=gpt2, depth=4, dempa=128, Npeads=32

Test Accuracy Lengths (STaR (e2e), temp=1.0)

© 8
S8

©
8
S
8
3

8
2
g
N
3
S

Accuracy (%)
3
Sequences

o

= 2 -
= =

N,
s

%

Test Accuracy Lengths (STaR (e2e), temp=1.0)

© 9
88
a
g
S

©
g
S
8
3

>

Accuracy (%)

E
3

5
3
Sequences
4
8
8

a
g

Lengths (STaR (e2e), temp=1.0)

?100 —
3\, 90 g =
> 80 g =
Q o 252
O & % e
N o S = Q
A= = K
& o 1
& 509 v
1
S0
— 100
X I
(7 S 90 I =
2 > 80 e £
N 5] 252
M <] ES g
5
Sy o 60 o) =
g so v
»—0\100
o Z e 2 c
Pad > 80 & 200 B= =)
~ 2 o j=J
S g 7 S c
3 60 g K
o L
g 50 v

1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 9 10 11 12 13 14 15 16 17 18 19 20
RL Iterations RL Iterations

—— greedy (temp=0.0) == temp=1.0 —— STaR (e2e) STaR (cot) REINFORCE (e2e) ~—— GRPO (e2e)
Figure 8: Post-training of transformers on mixture of long and short sequences encoding the

parity of d bits with various RL methods and generation temperatures (7ry,). Mixture coefficient:
Peot=0.05. Pre-training iterations: 20k.

20

Parity, pcot=0.05, Post-training@50k, d=50, model=gpt2, depth=4, dempa=128, Nheads=32

Test Accuracy Lengths (STaR (e2e), temp=1.0)
— 100 600
2 w0 4]
2 8 2 400
© v
(” é ;’.;200
P =g = AT A e ook gy W
< o
Test Accuracy Lengths (STaR (e2e), temp=1.0)
g 8
> 80 2
o g g
NS =
N o 60 e 1]
/&(g et S S 2odmpmd3od 0

Test Accuracy

Lengths (STaR (e2e), temp=1.0)

5o
<100 — -
g g .
3 g 3
'\,.0 8 g 25 ¢
7 S5 T _— K
< S &
<
1
Test Accuracy
3 | PR e T v 3 I
o < aees 18 c
Vo - c S
N AN) / > b =)
] S S
< 3 g =
o 2]
<
I
o 3
A g s
7 [0 s <)
N o
iy c =2]
5 - =3
g == $ -
£ - ee—C=e=sTe=3—2= ¥

1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 9 10 11 12 13 14 15 16 17 18 19 20
RL Iterations RL Iterations

—— greedy (temp=0.0) —— temp=1.0 —— STaR (e2e) STaR (cot) REINFORCE (e2e) —— GRPO (e2e)

Figure 9: Post-training of transformers on mixture of long and short sequences encoding the
parity of d bits with various RL methods and generation temperatures (7r1,). Mixture coefficient:
DPeot=0.05. Pre-training iterations: 50k.

Parity, peor=0.25, d=11, model=gpt2, depth=4, dembs=128, Nheaas=32, seed=43
Accuracy Lengths Distribution (temp=0.0)

100] e temp=0.0 m—
-10

Lengths Distribution (temp=1.0) _ Proportion of answer length (temp=1.0)

2500
100 — length 11

== peor
2000

Length

Lengtn

Aceuracy (%)

Propartion (%)

Aotk A

" o o[Vi ~
2 >
eration eration eration eration
Parity, peor=0.25, d=12, model=gpt2, depth=4, dempg=128, Nheads=32, seed=43
Accuracy Lengths Distribution (temp=0.0) Lengths Distribution (temp=1.0) _ Proportion of answer length (temp=10)

vy

2500
— length 12
== por
0
2000

£, § 1500 ° 1500 Lo,
g IR g . B
fw &0 1000 T ofe
© = e v —
2 .
o
FET T TR om0 400 om0 1000 10000 w0 oo oo fob0 10woo R N)
eraton eraton Reraton eraion

Figure 10: Pre-training on the parity task leads to a generalizing model after many iterations.
The average response is short (length equal to 1). Top row: d=11. Bottom row: d=12.

21

619
620
621
622
623
624
625
626
627
628
629
630

632
633
634
635
636
637
638

639

640
641
642
643

644
645

646
647
648

650
651
652
653
654

655
656

657
658
659
660
661
662

663
664
665

LoiPosttraining Benefit (Parity, peor={0.25}, model=gpt2, depth=4)

Sample complexity gap We design an experiment to
try estimating the sample complexity gap between the
two paradigms (next-token only vs next-token followed
by RL). We consider a GPT2 architecture of depth 4,
number of heads 32 and embedding dimension equal to
128. We fix p.ot=0.25 and we vary the input dimension ol p

d € {6,8,10,11,12}. We train for at most 100,000 iter- iout dmension d

ations (of batch size 256) and we consider switching to Figure 11: Sample complexity advan-
post-training (GRPO with e2e reward) at several check- tage of pre-training & post-training
points. We consider a checkpoint to be successful if its test over mere pre-training vs input di-
accuracy is greater than 95%. In Figure[TT} we show the mension. Note the logarithmic scale in
gap between the number of samples required for any pre- the y-axis. The figure shows mean and
trained checkpoint to generalize vs the number of samples one standard deviation across 3 random
required by any pre- and post-trained model (combined) seeds.

for several input dimensions d. For the number of post-train samples, we take the multiplicity of
GRPO samples into consideration. This gap seems to be growing exponentially fast. Some limitations
of this simple experiment: the pre-trained checkpoints from which we consider starting post-training
are at iterations {1000, 1500, 2000, 2500, 3000, 5000, 10000, 15000, 20000, 30000, 50000, 100000}.
Also, for d=12, only one of three seeds ended up generalizing during pre-training (so by definition
we could only calculate the gap for that seed and we discarded the rest).

Gap (in sequences)

D.2 Partial chain of thought

The purpose of this subsection is to relax our main setting, and consider a more complex variation
which might better capture “real-world” data. In particular, we consider a setting, where the data
include a third type of sequence consisting of a medium-sized chain of thought, in addition to short
and long sequences.

We consider the distribution Ds3(peot, Poad) over {£1}? x {41,<E0S>}*, parameterized by
Peots Podd € (0, 1), such that: x4, ..., x4 ~ Rad(1/2) and

d
1,212, ..., [[, 24, <EOS>) , W.P. Dot
d
Wi,y Yas1) = (@1, Z12223, T12T223TaTs5, . .., [[@4, <EOS>) ; W.P. Podd; (11)

d
Hi:l T, <EOS>) , W.p. 1 —Peot — Podd-

The medium-sized sequence consists of the same random variables as before in input positions 1 to d,
while the chain of thought skips the intermediate computations that involve partial parities ending
at an even position (with the exception of the final parity, if d is even). This results in sequences
that contain a partial chain of thought with omitted reasoning steps. The purpose of this sequence is
to provide the model with some samples of intermediate complexity between the two extremes of
D(peot)- Indeed, learning to predict each term of the chain of thought after the first position requires
a leap [1]] of order 2, as opposed to either leap 1 or d for short and long sequences, respectively. For
instance, predicting x1 zox3 from the history of the sequence (z1, ..., x4, 1) is a leap of order 2. The
leap between terms characterizes the additional sample complexity for learning each (sub)function.

We repeat pre-training and post-training on this distribution and present results in Figure|12|for d=15
and (pcot, Podd)=(0.1,0.1).

Pre-training staircase As before, improvement during pre-training happens in stages: early at
training, model accuracy under sampling with temperature 1 is around 50%, yet it suddenly jumps to
% x 100% as the model learns from the long demonstrations. Later in training, there is another
phase transition indicating the model has learned the medium-sized sequences, as the accuracy leaps
to W x 100%. As before, if peot, Podd are not large enough, then the models under greedy
decoding do not generalize in reasonable time.

Pre-training checkpoints & length penalties In this setting, the point when we switch to post-
training, can not only affect the eventual success of RL, but also the length distribution of the model
responses at the end of it:

22

666
667

668
669
670

671
672
673
674
675
676

677

679
680
681

682

683
684
685
686
687

Parity, Medium chain of thought, (pcot, Poda)=(0.1, 0.1), d=15, depth=4, seed=44

REINFORCE(e2e)@5k REINFORCE(e2e)@50k
Test Accuracy Proportion of responses by length Test Accuracy Proportion of responses by length
100 /nw 100 /\f 100 100 s length 15
— = — = m—length 7
q < 80 q < 80
) i < = length 15 S < = length L
bl 60 bl 60
2 £ — length 7 2 £
3 S 40 w—_length 1 3 [S 40
S 60 & S 60 &
< H —o— temp=0.0 & 20 < —o— temp=0.0 £ 20
te =1.0 te =1.0
40 S 0 S — a0 s 0 i, St
5 10 15 20 5 10 15 0 20 40 60 80 100 o 20 40 60 80 100
RL Iterations RL Iterations RL Iterations RL Iterations
Pre-training
100 Lo
= acc w/temp=0.0 === (pcor+1)/2 = Pr(length=15) 08
g w0 accw/temp=1.0 === (pcot + Pods + 1)/2 = Pr(length=7) N
a, 0.6 %
8
£ 60 fmmmmmmmmm e e e e mmmm—m——— = — — - 2
S B L e e S A o o P ot o e e e A e m e m o[0475
g ACA RIS IR S A AR £
< 40 02
[0.0
o 10000 20000 30000 40000 50000
Iteration
REINFORCE(e2e w/ penalty)@5k REINFORCE(e2e w/ penalty)@50k
Test Accuracy Proportion of responses by length Test Accuracy Proportion of responses by length
100 e temp=00 100 r— 100 - 100
< 80 S 6 —|ength 15 < 80 S 6o s length 15
g £ = length 7 8 £ — length 7
3 S 40 m—_|ength 1 3 S 40 e length 1
g e & g o0 3
8a o - & 20 —e— temp=0.0 & 20
et Dot gl s N temp=1.0 -
" A ¢ e " emp ;
0 20 40 60 80 100 o 20 40 60 80 100 0 20 40 60 80 100 o 20 40 60 80 100
RL Iterations RL Iterations RL Iterations RL Iterations

Figure 12: Parity with partial chain of thought data and effectiveness of length penalties. Post-
training experiments using REINFORCE with (bottom row) and without (top row) a length penalty
on pre-trained models that correspond to the training shown in the middle. Notice that leaps in
accuracy during pre-training control length distributions at the end of post-training and success of
length-penalized RL.

- Post-training at 5k iterations yields a model that generalizes, yet it learns to almost exclu-
sively generate long responses (Figure[I2] top left).

- Post-training at 50k iterations, on the other hand, results in a model that not only manages
to reach 100% test accuracy but also has more diversity in its length distribution, generating
both long and medium-sized responses (Figure[T2] top right).

The previous observation is both good and bad news: good news, as the 50k checkpoint ends up being
cheaper at inference than the post-trained 5k counterpart; but bad news, as the model could have
been even faster at inference without sacrificing accuracy. Indeed, after 50k pre-training iterations
the model has learned to generate correct medium-sized responses, hence, in principle, it need not
learn from the long self-generated ones. To test this, we consider reinforcement learning with a
length-penalized reward. In particular, we consider the following length-penalized reward:

d
Te2e,A\len (X7 y) =1 y[_l] = H Ti o —)\len%a Alen € [07 1]- (12)
We use Ajen=0.4. As we confirm in Figure |12 (bottom row), a length penalty applied during post-
training of a late checkpoint is effective, as it leads to a model that is both accurate and fast. On the
contrary, if we apply the same length penalty at an earlier checkpoint, post-training fails. This is
because the pre-trained model has not managed to learn from the medium-sized sequences early in
pre-training.

E Experiments with Mathematical Reasoning Benchmarks

A shortcoming of the previous sections is that they are devoted to the study of a computationally
shallow problem. The parity of d bits can be represented by a small, shallow transformer [20],
yet the current post-training paradigm targets tasks that appear to require greater computational
depth, involving sequences of dependent operations that cannot be collapsed into a single “step”. To
accommodate such tasks, the iterative application of the transformer in the form of the autoregressive

23

688
689
690
691
692

693
694
695

696

697
698
699
700
701
702
703
704

706
707
708

709
710
71
712
713
714
715

716
7
718
719
720
721
722
723
724
725
726
727
728

729
730
731
732
733
734
735
736
737

generation process enhances the computational depth of the model. Without this generated chain-of-
thought, models may fail to approximate solutions to certain tasks as context length grows [[10,25,[19].
Can reinforcement learning after next-token prediction be effective when learning from mixture
distributions that encode such deeper problems? In other words, can RL be as effective when
representation, in addition to learning, is also an issue?

To study this question, we now consider less idealized settings (including pre-trained models)
and computationally deeper tasks, such as the multiplication of 5-digit numbers and mathematical
reasoning benchmarks.

E.1 Number Multiplication

First, we study the task of multiplying n-digit numbers. It has been reported that even LLMs as capable
as GPT4 [2] have struggled with accurate multiplication of 4-digit numbers [36] without the use of an
external calculator program® We encode the task in sequences of characters, including the n digits
of the multiplier and multiplicand (both in reversed order), the execution trace of the grade-school
multiplication algorithm, and the final answer. Prior work has reported that reversing the input order
helps transformers with absolute positional embeddings generalize better on arithmetic tasks [36].
Following our previous setup, we construct datasets that

contain thjc n digits of .the multiplier and multiplicand,
together with the execution trace of the grade-school mul-

tiplication algorithm and the final answer, with probability

. . ° .. Long: 563 2*7434 || 555

Peot» and just question, answer with probability 1 — peot 61+006490(551111)

: +0059070(5560280)

(Flgure@. +00006490#### 556082
01

We pre-train randomly initialized GPT2 transformers on
either 4 x 4,5 x 5 or 7 x 7 datasets for multiple epochs Short:
over a training set of 808k examples using the next-token °
prediction objective. At various checkpoints, we switch
to reinforcement learning (with GRPO) and compare per-
formance during pre-training vs post-training. Full exper-
imental details are provided in Appendix[C.2]

Figure 13: Example of a 4x4 sequence,
encoding 2365%4374 (digits appear in
reverse order). Top row: long format
Figures [T3]to [T7] show pre-training results for all values With full sequence. Bottom row: short
of n € {4,5,7} and peo € {0,0.1,0.25,0.5,1.0}. When format without chain of thought.
Peot=1.0 (i.e., the algorithm’s trace is included in all sam-

ples), models during pre-training quickly learn to answer correctly with long responses, leveraging
the intermediate calculations present in the training data. By contrast, when p.. is small, models
struggle to generalize: performance under greedy decoding remains close to 0% throughout training.
In some runs, we observe sudden increase in accuracy under sampling with temperature 1.0, jumping
to approximately peos X 100%. This outcome is consistent with the parity experiments: the objective
enforces length calibration and, once the model learns from long sequences, its output becomes a
mixture of short random guesses (with probability of success 10~2*®) and long correct responses
(with probability of success 1). Similar to the parity experiments, we observed unstable behavior
under greedy decoding when training with p.., close to the critical threshold (which is close to 0.5
here).

After switching to reinforcement learning (Figure |E| (left) for (n=5, pcot=0.25) and Figure @ for
the rest of the values), the model’s accuracy improves rapidly and the average response length
increases, provided the pre-training checkpoint has developed some correlation with the target. These
observations hold for most values of n and p... For the most challenging setting we considered
(largest n, smallest peot — (1, peot) = (7,0.1)), the model failed to learn from long sequences under
any of the 3 random seeds, even after 38 GPU hours, preventing post-training from being successful
in this case. Note that this section provides an example of a task where the capability obtained during
RL (accuracy under greedy decoding on task of multiplication) appears to be almost absent during
pre-training (accuracy goes from ~ 0 to 100%) — for example, when p.y is equal to 0.1 or 0.25.

SOtherwise, the problem reduces to copying input (from the calculator program) to output and transformers
are well-suited for it [[14].

24

738

739
740
741
742
743
744
745
746

747
748
749

751

752
753
754
755
756
757
758
759
760
761

762
763
764

765

767
768

GSM8K, model=Llama 3.2 3B (base), pcot = 0.05

Numbers Multiplication, 5x5, model=gpt2, pcor = 0.25

@
e
ep.1
ep. 5

ep. 10

ep. 15

ep. 20

ep. 25

ep. 30

=1.0
a
g

w/ temp:
=
&

,4
N 2 0 ® O
S 5 3 & 3

Accuracy (%)
w/ greedy decoding
Test Accuracy (%)

s
—
P—
—
*
e
*
—

3

[REN
S

@
s

o
s & &

Average Length (tokens)
B e NNy W
55 845 8
g & 8¢ 8

S—
‘7
‘ ; "
"

Average Length
under greedy decoding

:
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 o 50000 100000 150000 200000 250000
train sequences 2e7 # train sequences

= next-token only === next-token &rl mwew sft&rl % sftcheckpoints ---- sftacc W/per=1.0 ---- sft length W/ peor=1.0

Figure 14: Advantage of next-token prediction followed by reinforcement learning over mere
next-token prediction in (Left) multiplying two 5-digit numbers with a GPT2 model trained from
scratch, and in (Right) solving grade-school math problems with Llama 3.2 3B (base). Left: Red
line: pre-training on a 5x5 dataset with p.ot=0.25 using next-token prediction. Blue lines: the same
pre-training runs, each followed by GRPO from a different checkpoint. Top: median test accuracy
under greedy decoding (3 seeds). Bottom: median average response length (median over seeds,
averaged over sequences). Right: » markers: supervised fine-tuning checkpoints on GSM8k with
Deot=0.05 (epochs 1-30). Colored curves: GRPO post-training from these checkpoints. Training
sequences are reused across epochs; during post-training, multiple generations per input are counted.

E.2 Grade School & High School Mathematics (GSMS8K & MATH datasets)

Finally, we experiment with pre-trained LLMs and mathematical reasoning benchmarks. We train
Llama pre-trained models [9] on variations of two standard mathematical benchmarks (GSM8k [6]
and MATH [12]). We format the data by surrounding the chain of thought of each sample with
special “thinking” tokens. As previously, the chain of thought is replaced by the empty string with
probability p..t, creating a mixture distribution of long and short reasoning sequences. We first
perform supervised fine-tuning (SFT) on these mixture datasets, and then switch to RL with GRPO
and a reward that assesses both correctness of the response and consistency with the specified data
format. For experimental details, see Appendices|C.3] [C.4}

We plot results for Llama 3.2 3B (base) on GSM8K, pcot=0.05, in Figure[T4] (right). We show test
accuracy and average response length for the SFT checkpoints (stars) and the post-training curves
starting from these checkpoints. As a baseline, we also plot the best SFT model trained with full
chain of thought data; the p..4=1.0 runs can be found in Figure Early in SFT, accuracy is low
and the average length of the model response is much smaller than the baseline. As training with
the next-token objective continues, accuracy improves and length increases, but accuracy does not
reach the baseline and appears to saturate at a lower value. Once we switch to RL with GRPO, the
model rapidly reaches baseline accuracy while increasing its average response length. Notice how
few samples RL requires to reach the baseline, even when starting from the first epoch checkpoint.
This sample count should be contrasted with the number of SFT updates needed to reach comparable
accuracy. Furthermore, in Figures [22] to we provide examples of model completions during
RL for this first checkpoint. We observe that early on, the model respects the SFT format but
primarily generates short responses (Figure 22). As RL progresses, the model learns to produce
longer responses with greater probability (Figure[23)), eventually reaching a point where it consistently
generates correct elaborate responses that mimic the chain of thoughts in the long-form part of the
training distribution (Figure [24). These training patterns are consistent with the mechanisms observed
in the parity setting of the previous sections. In Figure[I9] we repeat this experiment for various pcos
values.

Beyond the point where accuracy exceeds the SFT baseline, the model continues to improve and its
response length grows even further. This phase of post-training differs from the situations observed in
the previous sections and is likely due to the model leveraging pre-training data. Indeed, in Figure [25]
we show that model generations at the end of RL are qualitatively different from the train sequences.

25

Numbers Multiplication 4x4, seed=42

Test Accuracy Lengths (temp=0.0) Lengths (temp=1.0) Probability of long/short (tem,
100F=
g n 800 50y 800 B
£ § 8 . =
s 7 £ 600 05 £ o0 ©g 5
> g g] § g
& 2 g 400 308 & 400 308 g
TEE I & 0 0 £
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 1000 100
g o 8 50y 800 50§
£ /5 8 - 8 . &
> g 60 £ £ 600 s 5
//Q’? 3 A = g B § -
T = g § 2 a0 gt
¢ g2 & g »3 2
< 2 200 20 £
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 100
g2 o 0 8
. Pl L i s—
P 7 g 0% §
g 8 so g g £ s0
¢ 3 g 08 g
< == 0 &
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 wi]
= — temp=0.0 | 0§ [——
o €15 temp=1.0 | § s =5 length 59
> g w05 §
A Es - Peot § 2 25 — length 13
o g g - == Peor
8 2 & g 25
< 20 &
100000 200000 300000 100000 200000 300000 100000 200000 300000 100000 200000 300000
(pre-train) iterations (pre-train) iterations (pre-train) iterations (pre-train) iterations
Numbers Multiplication 4x4, seed=43
Test Accuracy Lengths (temp=0.0) Lengths (temp=1.0) Probability of long/short (temp=1.0)
100fF=mmmmmmmmmm == mm === =1
g 45 g 800 S0 g 800 o F
> g 600 2% £ s00 w05 §
g g)]
£ s0 g a0 308 & 400 03 £
. & N 0 £
(pre-train) iterations (pre-train) iterations
™ Test Accuracy 1000 _ 1000 __ o Probability of long/short (temp=1.0)
g g 800 50 g a0 o 2
STA R b o§ §w g 3
é,(/ g PRI g o 30§ 3 o 08 §
Q S a @ g 25
< 20 20 0 &
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 100
- N 50
£ 55 8 . S e—m—
A g 05§
A g g g €0
& 3 g 03 g
g &
¢ § oy w £
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 _100
g 0§
g 9 g
N = 75 ; wE 75 length 59
A Es g 2 2 — length 13
& 3 g 08 g == Pe
g2 & g 25
< 20 «
100000 200000 300000 100000 200000 300000 100000 200000 300000 100000 20000 300000
(pre-train) iterations (pre-train) iterations (pre-train) iterations (pre-train) iterations
Numbers Multiplication 4x4, seed=44
Test Accuracy Lengths (temp=0.0) Lengths (temp=1.0) Probability of long/short (temp=1.0)
_ 10 feeemme e e
g o 800 50 4 800 50 5
£ s H . 8 . =
s 3 £ oo wg £ oo 0§ §
“(/N i & 400 08 g a0 08 §°
& g2 & & S 25
< 2 200 2 200 0 &
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 1000 5
g g 00 0 g o 8,
@ 3 A |20 wg ¢ w5 §
g = = E g3 g =
g s & & g 25
< 200 20 20 &
o = —
(pre-train) terations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 1000 1000 oo o L OnIEROn SEMP=S,
g g 00 50 g a0 o § ——
S £ a0 w§ £ oo ©g §
re s g 400 308 g 400 08 &
o 3
< g Vit 4 200 o P 200 o £
o o
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 1000 1000 100
£, 0 |y w00 0 4 w00 0o E .
R O € 600 05 £ 600 05 5 length 59
A g s g 23 2 S5 — length 13
o 3 g oo 0§ g a0 03 g == Pt
g 3 200 o %20 o £
o o
100000 200000 300000 100000 200000 300000 100000 200000 300000 100000 200000 300000
(pre-train) iterations (pre-train) iterations (pre-train) iterations (pre-train) iterations

Figure 15: Pre-training of GPT2 transformers on mixture of long and short sequences encoding
the multiplication of 4-digits numbers for 3 different seeds and for various values of p..;.
Left: Test accuracy during the course of pre-training, under greedy decoding and sampling with
temperature 1. Center, Left: The length of the greedy response for 1000 test samples during the
course of pre-training. Center, Right: The length of the sampled response (temperature of 1) for 1000
test samples during the course of pre-training. Right: The probability that the length of a model’s
autoregressive generation equals the maximum or minimum length present in the training distribution.

26

Numbers Multiplication 5x5, seed=42

Test Accuracy Lengths (temp=0.0) Lengths (temp=1.0) Probability of long/short (tem,
100F=
g o 800 80 a0 0 g
£ 8 8 .
oz g 600 605 2 600 05 5
> 8 g g £
4 £ g 400 203 § 0o wd 8°
Q¢ S & 200 & 200 g
20 20
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 1000 1 1000 100
- 80 0 5
ERS g g o ERS
> g 605 2 605 §
&3 AT L g g oo s £
% g w13 § 2 §
o 3 I/ v \/ g 4o 08 g a0 08 §
S &, & o ES
20 20
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 1000 100
= a00 80 o o
£ 8 8 L i s—
> g 6o 605 g 605
A g 5 ¢ 5 8
g 8 so g . g g €0
& 3 g a0- g a3 g
< g @ 500 v £
20 20
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 1000 w{
80 0 =
g s g & 3 € s
S 2 o w05 ¢ w0E g length 89
2§ g - 2 £ — length 15
o H g o w03 § 403 g == Peot
FRY A 200 A 200 g
20 20
o
100000 200000 300000 100000 200000 300000 100000 200000 300000 100000 200000 300000
(pre-train) iterations (pre-train) iterations (pre-train) iterations (pre-train) iterations
Numbers Multiplication 5x5, seed=43
Test Accuracy Lengths (temp=0.0) Lengths (temp=1.0) Probability of long/short (temp=1.0)
100fF=mmmmmmmmmmm === m = === =1
5 4 800 8, w0 ® g
£ 8 8 s
> £ 600 605 2 600 05 £
g §)]
g s0 2 400 g 2 a0 § §5°°
3 g 03 g w03 g
FRY A 200 A 200 g
20 20
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 = a0 1000 = — |
g 5 2 g 00 g .
0T H 605 £ 600 60f §
P e = E c 3 s £
& H g w03 g o 203 g
Q g2 @ @ o 25
20 20
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 100
B 80 0 g
8 s]] S~
LAY g 60f g 605 §
Qo 8 50 g s 3 g E o
& 3 g w03 g 03
< §opez it & g
20 20
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 100
= 80 0 — |
g g g g
£ 8 8 75
v oz 2 605 ¢ 0E & length 89
A §s g] 2 £ — length 15
o g g w3 £ w3 g -= P
g & & =
20 20
100000 200001 300000 100000 200000 300000 100000 200000 300000 100000 20000 300000
(pre-train) iterations (pre-train) iterations (pre-train) iterations (pre-train) iterations
Numbers Multiplication 5x5, seed=44
Test Accuracy Lengths (temp=0.0) Lengths (temp=1.0) Probability of long/short (temp=1.0
80 0 1
g o 800 o 800 5
£ s 8 . 8 . =
> g 600 605 £ 600 605 §
- g 35 5 §
o 2 a0 03 § w0 wi £
o EES & 200 & 200 g
20 20
(pre-train) iterations (pre-train) iterations
Test Accuracy 100 Probability of long/short (temp=1.0)
100 100
g g o “ g v g,
o T DAALAA wg ¢ wg g
£ g = ==r=d 3 -] £t
& 3 NS g 400 w03 g w03 g
Q g @ 200 @ g 2
20 20
o = —
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 1000 a0 1000 o w0l]
5 ., 800 800 g
£ s 3 P L I~ ———————
S £ a0 ©g £ o “g §
¢ s 3 400 § 3 a0 § 3
o8] g 03 g 03§
g 5 3 20 3 200 H
o 20 o 20
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 1000 1000 100
— e —
g s Belamedi P a0 ® g,
g —— temp=1.0 | § . 8 P
S emp 2 600 605 2 600 605 5 length 89
P g so == Pt g 5 g 2 2 s —— length 15
o 5 & 400 08 g 40 w0d 8 - Per
g 3 200 3 200 g
20 20
o o
100000 200000 300000 100000 200000 300000 100000 200000 300000 100000 200000 300000
(pre-train) iterations (pre-train) iterations (pre-train) iterations (pre-train) iterations

Figure 16: Pre-training of GPT2 transformers on mixture of long and short sequences encoding
the multiplication of 5-digits numbers for 3 different seeds and for various values of p..;.
Left: Test accuracy during the course of pre-training, under greedy decoding and sampling with
temperature 1. Center, Left: The length of the greedy response for 1000 test samples during the
course of pre-training. Center, Right: The length of the sampled response (temperature of 1) for 1000
test samples during the course of pre-training. Right: The probability that the length of a model’s
autoregressive generation equals the maximum or minimum length present in the training distribution.

27

Numbers Multiplication 7x7, seed=42

Test Accuracy Lengths (temp=0.0) Lengths (temp=1.0) Probability of long/short (tem
- 150 1o SMOFT -
g o 800 o 800 g
£ 8 < 8 . T
S 7 £ 600 £ 2 600 £ c
~ 8 s g w08 g w08 £ 5
- 3 o 3 g aw § 5
Q€ g & 200 0 B 00 s0 g
(pre-train) iterations (pre-train) iterations
flest Accurac robability of long/shol em|
Test A Probability of long/short (t 0)
e 150 1m0 1
g5 o3 LI
//Q’? g sof-- - 8 08 § 1008 S
K 5 3 g 2 g 3
§ 3 g g
Q¢ S & o & 50 g 2
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
e 150 150 §“’”
. € g L8 [S
Ol g ® 1008 § w05 §
S 8 g 2 g 2 2
FE 2 a0 g 2 § 5%
e 3 g g g
Q § Smmns = a8 0 @ s £
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
e 150 wo 1
s 8 8 < 15
> o7 g 05 & b 5 length 167
A B so § o] 2 £ — length 19
& 3 k4 - 8 g -
< ERES 8 & g s P
£ 50 200 50 £
0
100000 200000 300000 100000 200000 300000 100000 200000 300000 100000 200000 300000
(pre-train) iterations (pre-train) iterations (pre-train) iterations (pre-train) iterations
Numbers Multiplication 7x7, seed=43
Test Accuracy Lengths (temp=0.0) Lengths (temp=1.0) Probability of long/short (tem|
Pt 2 150 10 S OFT -
g o 800 o 800 g
s § e & £ "
s g o wE g o 02 2 g,
g2 & & g 2
2 200 50 200 50 £
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 1000 — 1000 oo oRRRNLY O ONGISNOR ReMp=2.0)
- 150 B0 o
g o 800 o 800 g
En é s ¢ £ "
T g oo 1005 § © 008§
Q¢ §as & 20 P} 50 g
. —
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 1000 100
- 150 B0 o
2 5 800 " g
. &] L8 . En T —
W § oo 008 § 1005 2
o 8 g 2 g 2 2
Fa £ % 2 400 HE e
o g g g &
< TIIT 200 50 50 H
— N
(pre-train) iterations (pre-train) iterations
Test Accuracy 1000 Probability of long/short (temp=1.0)
e 150 1m0 1
2 o 800 9 g
N = 75 § 00 s ; s 2 length 167
A Es I wg g wE £ — length 19
& 5 5 gz g % -
Q¢ 3, g g g Peot
g 2 & & g 2
2 200 50 50 I3
o
100000 20000 300000 100000 200000 300000 100000 200000 300000 100000 20000 300000
(pre-train) iterations (pre-train) iterations (pre-train) iterations (pre-train) iterations
Numbers Multiplication 7x7, seed=44
Test Accuracy Lengths (temp=0.0) Lengths (temp=1.0) Probability of long/short (temp=1.0)
= 150 10 o
g g 800 w 800 g
£ s 8 e 8 . =
- g 600 1005 £ 600 S §
g 2 g 2 2
ooEw 2 00 g g 400 LI 0
& g2 & & g 25
< 2 200 50 200 50 £
(pre-train) iterations (pre-train) iterations
Test Accuracy 1000 Probability of long/short (temp=1.0)
e 150 10 1
g 9 5 800 g
gn 4 s 8 g "
o z s 1005 § 0 1008 2
re s 4 g g a0 g 3
LS 8 0 F o 0§
== = =
(pre-train) iterations (pre-train) iterations
Test Accuracy Probability of long/short (temp=1.0)
100 1000 1000 o0 [y O ONGISNOT TTemp=2-21
- 150 130 o
g o 800 800 g
. £] .8 . S npr————
2. g e wh § oo wd L
ke 5 2 400 g 5 400 g 5
S 3 g g g
< 2 2 @ 20 50 200 50 13
0 0
(pre-train) iterations (pre-train) iterations
Test Accuracy 1000 100 Probability of long/short (temp=1.0)
100 100
— — 150 P —
g temp=0.0 |, goo 800 g
- L 5 £ e s 5 ” length 167
A Es == Pt 2 0 we g o wE 2 g — length 19
o] g - 48 == b
& A 200 50 F a0 s g
o 0
106000 200000 300000 100000 200000 300000 100000 200000 300000 100000 200001 300000
(pre-train) iterations (pre-train) iterations (pre-train) iterations (pre-train) iterations

Figure 17: Pre-training of GPT2 transformers on mixture of long and short sequences encoding
the multiplication of 7-digits numbers for 3 different seeds and for various values of p..;.
Left: Test accuracy during the course of pre-training, under greedy decoding and sampling with
temperature 1 . Center, Left: The length of the greedy response for 1000 test samples during the
course of pre-training. Center, Right: The length of the sampled response (temperature of 1) for 1000
test samples during the course of pre-training. Right: The probability that the length of a model’s
autoregressive generation equals the maximum or minimum length present in the training distribution.

28

Numbers Multiplication, 4x4, model=gpt2, pct = 0.5 Numbers Multiplication, 4x4, model=gpt2, p..t = 0.25

©100 l— r ©100
£ £
SR g8 #0
28 60 28 60
O > 8>
39 40 3T 40
] — | S8
<5 20 <5 20
B B
0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
167 17
Zeo Zeo
. 0 T | i
oY oL
29 29
° °
gz2a0 gzTa0
< o
&% 5 8
g 520 g 520
B3 E3
° °
g IR
0.0 02 0. 0’ 08 1.0 0.0 02 04 0. 08 1.0
train sequences 2e7 # train sequences 1e7
= next-token only === next-token & rl = next-token only === next-token & rl
Numbers Multiplication, 4x4, model=gpt2, pcot = 0.1 Numbers Multiplication, 5x5, model=gpt2, pcot = 0.5
©100 ©100
< £
§§ 80 (§§ 80
238 60 28 60
o > 8>
50 50
<5 20 <5 20
B B
0 0
0.0 0.2 0.4 0.6 0.8 1.0 15 2.0 2.5 3.0 35
167 17
oo 2
<3 [T80
$T a0 $T60 \ \ y
d5 35 A
o o
33 1
2o g0 Al
$ 520 g o i
EY] 2520 :
° S i
g 5o ‘
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 15 2.0 2.5 3.0 35
train sequences 2e7 # train sequences 17
= next-token only === next-token & rl = next-token only === next-token & rl
Numbers Multiplication, 5x5, model=gpt2, pcot = 0.1 Numbers Multiplication, 7x7, model=gpt2, pcot = 0.5
100 2100
£ E
g8 80 R]g 80
23T 60 23 60
>)
3§ 20 3% 40
g g
<5 20 <o 20
H H
E 0
0.0 05 1.0 15 200 255 30 35 15 2.0 255 30 35
17 17
o 2150
£ge0 53
o9 20
53 60 £3 100
d5 23
5840 &0
oo]
55 55 50
2520 33
° ©
2 2
5 S o0
0.0 0.5 1.0 15 2.0 2.5 3.0 35 0.0 0.5 1.0 15 2.0 2.5 3.0 35
train sequences 1e7 # train sequences 1e7
= next-token only === next-token & rl = next-token only === next-token & rl
Numbers Multiplication, 7x7, model=gpt2, pcot = 0.25 Numbers Multiplication, 7x7, model=gpt2, pcot = 0.1
2100 ©100
£ £
]R8 80 g8 e
38 60 28 60
£z £
3% 40 5% 40
§¢ 3¢
<5 20 <o 20
H H
0 0 i
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 0.0 0.5 1.0 15 2.0 2.5 3.0 35
17 167
2150 2150
g8 £3
oy oY
S8 100 S8 100
= > = >
) ©
88 8
5o 50 5o 50
i3 <3
2 ' 2 i
5 5
0.0 0.5 1.0 15 2.0 2.5 3.0 35 0.0 0.5 1.0 15 2.0 2.5 3.0 35
train sequences 1e7 # train sequences o7
= next-token only === next-token & rl = next-token only === next-token & rl

Figure 18: Pre-training and post-training combined of a randomly initialized GPT2 on numbers

multiplication for various values of numbers of digits n and fraction of chain of thought data p.. in
the mix.

29

769
770

771
772
773
774
775
776
777
778
779

Based on these observations, we hypothesize that the initial steep phase of RL reflects in-distribution
learning (where the model “mines” SFT data), while the later phase reflects out-of-distribution gains.

MATH results with the instruct version of Llama 3.1 8B and Llama 3.2 3B models are presented
in Figures 20]and [21] As in the GSM8k experiments, we observe that SFT on a dataset with small
Peot does not enable the model to generalize as well as SFT with full chain-of-thought data. During
RL, checkpoints with smaller p.,¢ benefit the most in terms of relative performance gains, which
are accompanied by an increase in response length. However, we also find quantitative evidence
that this improvement is sometimes (Figures 26| and [27) (but not always Figures 28] to [3T) due to
out-of-distribution gains, as model completions can differ significantly from the SFT dataset. We
believe that these models were heavily finetuned on the MATH dataset prior to its release, introducing
additional confounding factors.

30

GSMB8K, model=Llama 3.2 3B (base), pcot = 0.0 GSMB8K, model=Llama 3.2 3B (base), pcot =0.01

®
2
ep. 1
ep.5
ep. 10
ep. 15
ep. 20
ep. 25
ep. 30
@
3
ep. 1
ep.5

o

=
o
@

1.0
1.0
ep. 15

o
g

o
g

Test Accuracy (%)

w/ temp:
[
8 38
.

3 \

3

¥
Test Accuracy (%)

w/ temp:

5

5

w)
§ 300 g 300
2 g
S2s0 Sa2s0
- <
5200 5200
2 2 scefrecrace
g 150 g 150 ,/‘"'“
2100 8100 1 . +
e s
g s0 @ 50
<l 37|
[50000 100000 150000 200000 250000 [50000 100000 150000 200000 250000
train sequences # train sequences
weme st & rl * sft checkpoints ~ ---- sft acc W/ pcor=1.0 ---- sft length W/ pcor = 1.0 wewee st & rl * sft checkpoints ~ ---- sft acc W/ peor = 1.0 ---- sft length W/ pcor = 1.0
GSMB8K, model=Llama 3.2 3B (base), pcot = 0.1 GSM8K, model=Llama 3.2 3B (base), pcot = 0.9
A n o n o n o “ 1n o w o un o
— T o2 2 8 8 R — T o2 4] &R
20?8 8 4 4 4 4 4 098 8 & 4 4 4 4
<e g & & o <e g & & & 9
> i P
E‘”l 60 Eg 60 rapsted
SE S E o
gE 40 EE 40
£ A I I S
Qe <
w i
§ 300 300
2 g
S2s50 E250 NI g aang SEOR
= . = /7 ———
200 g2
= c
g 150 1 g1
Soof & g
o s
g s0 @ 50
2 E
[50000 100000 150000 200000 250000 [50000 100000 150000 200000 250000
train sequences # train sequences
e sft & 1l * sftcheckpoints ---- Sftacc W/ por=1.0 ---- sftlength W/ peor=1.0 wwss sft & rl % sftcheckpoints ---- Sftacc W/ peor=1.0 - sftlength w/ peor = 1.0

GSM8K, model=Llama 3.2 3B (base), pcot = 1.0

100
- 1n o 1w o 1! o

— 4 a4 = 2 & & @
o 801 & 8§ a o a a o
<< 3 [3
)
%)
EQ_SO
3E
o8 40
<<
232
@ 20

0

350

N}
a
o

Average Length (tokens)

200
150
100
50

[

0 50000 100000 150000 200000 250000
train sequences
----- » sft &rl * sft checkpoints -=--= sftacc W/ peor = 1.0 ---- sft length w/ pcot = 1.0

Figure 19: SFT and GRPO of Llama 3.2 3B (base) on the GSMS8k dataset for various values
of peot- Some observations: For p..t=0, only two checkpoints succeed to generalize during RL.
Interestingly, the length does not grow in these cases. The model obviously leverages some kind
of pre-training data. For p..;=0.01, we observe length increase for almost all checkpoints and
accompanying performance gains. When the length does not grow (SFT epochs 1 and 10), test
accuracy plateaus to a small value (in comparison to the other checkpoints). RL consistently induces

generalizing models for larger values of p.... We observe that test accuracy and average token length
are very similar across these checkpoints.

31

MATH, model=Llama3.1 3B (instruct), p.+=0.0 MATH, model=Llama3.1 3B (instruct), p.+=0.01

1.0
P
5 3
p.
€
ep. 10
ep. 15
ep. 20
1.0
3
ep
ep
ep. 10

-

Test Accuracy (%)

w/ temp=

5 8 8
.

\——.._.‘
Test Accuracy (%)

w/ temp=1.

3 8 8
‘__._,
—a

P~

——p
- L ep.15
— ep. 20

5

) @
< 350 € 350
g g
S 300 $ 300
g 250 E 250 »
2200 2200 I
Y150 t S1s0 1
5 100 & 100 J 1 *
© ©
3 50 o s0
= o) =
0 20000 40000 60000 80000 100000 120000 140000 160000 20000 40000 60000 80000 100000 120000 140000
train sequences # train sequences
----- sft&rl % sft checkpoints ---- SftaccW/pPer=1.0 ---- sftlength W/ pee=1.0 =sse= sft&rl % sft checkpoints ---- Sftaccw/pee=1.0 ---- sftlength w/ pcor=1.0

MATH, model=Llama3.1 3B (instruct), p.+=0.05

MATH, model=Llama3.1 3B (instruct), p.,+=0.8
n ° n ° — n ° n °
3 01 g & b - 2 3 501 & & - b ~
o @ ° & S 5 & o @ @ & & &
> 40 r > 40
[o "
o 39 A
il 0 [- Flwlf f / /
o8 g8 1 * *
P ! ! I
7 7
2 10 2 10
) w
2 350 2 350
3 g
S 300 < 300
= 250 | = 250
s f 5
2200 f ¢ ﬂ 2200 r
3150 * %150 »/
5 100 1 & 100
T =]
2 50 2 50
= =
20000 40000 60000 80000 100000 120000 140000 20000 40000 60000 80000 100000 120000 140000
train sequences # train sequences
----- sft&rl % sftcheckpoints ---- Sftaccw/pee=1.0 ---- sftlength w/poe=1.0 ==ew= sft&rl % sft checkpoints ---- sft acc W/ peot=1.0 sft length w/ peot = 1.0
MATH, model=Llama3.1 3B (instruct), pcot=1.0
60
— n o wn o
S %91 g o - - ~
N o [[9] o a a
~ O o o
> 40
gL
S8] '
g8 ¥
=
£25007]] i
=3
i}
@ 10
0
400
v
< 350
g
S 300
E=3
= 250
o
i 'f 1/\1,
1150 -
e
p ¥ bl -
© 100
k=]
L 50
= 0
0 20000 40000 60000 80000 100000 120000 140000
train sequences
----- sft &rl * sft checkpoints ---- sft acc W/ pcor = 1.0 ---- sft length w/ pcot = 1.0

Figure 20: SFT and GRPO of Llama 3.2 3B (instruct) on the MATH dataset for various values
of peot. The situation is similar to the GSM8k experiments, yet RL gains might be due to out of

distribution gains — see qualitative analysis. We early stopped the curves before the RL runs collapse,
which we attribute to large learning rate.

32

MATH, model=Llama3.1 8B (instruct), p+=0.0 MATH, model=Llama3.1 8B (instruct), p,+=0.01

g

p.

p.
ep. 10

n ° ~ " o n o
s - o [- o - b ~
ge @ & g o @ @ & sr &
> 40 > 40 t
[l | d 2
il g f f AT [
S E 30 S E 30
g2 52] ! 1

8 2 i
< 32 14 < 320
g I 7
2 10 e 10
) @
£ 350 £ 350
g g
S 300 & 300 r
g 250) E 250 f
2200 f 2200
Y150 ' S 1s0 /
*
5 100 & 100 1 *
© ©
2 50] 2 50
: _J " :
20000 40000 60000 80000 100000 120000 140000 20000 40000 60000 80000 100000 120000 140000
train sequences # train sequences
----- sft&rl % sft checkpoints ---- SftacCW/por=1.0 ---- sftlength W/ por=1.0 =s=== sft&rl * sftcheckpoints ---- Sftaccw/pee=1.0 ---- sftlength w/ peor=1.0
MATH, model=Llama3.1 8B (instruct), p+=0.05 MATH, model=Llama3.1 8B (instruct), p.,+=0.8
0 o n ° ~ n o " o
3 01 g g 3 - o 3 01 g o 3 b ~
o @ ° & S g o @ @ & g &
o [} [' T
{
3 © ,
S8 SEw ,/ 7 Pl
ge | 1 + * g2] + -
< 32 < 32
B B
2 10 2 10
) 1 w
€ 350 £ 350
g g
& 300] 300
g 250 g 250
2200 4 2200 Jo J
3150 P4 S 1s0 ? .
Al
S100] 4 & 100 f
© -1
2 50 2 50
= =
20000 40000 60000 80000 100000 120000 140000 0 20000 40000 60000 80000 100000 120000 140000
train sequences # train sequences
----- sft&rl % sftcheckpoints ---- sft acc w/ peot=1.0 sftlength W/ peor=1.0 =s==x sft&rl * sftcheckpoints — ---- Sftaccw/pee=1.0 ---- sftlength W/ peor=1.0
MATH, model=Llama3.1 8B (instruct), pcot=1.0
60
— n o n o
S %91 g o - - ~
S o (9] (9] a [} a
~ (7] o .
> 40
2L
<
30 .9 -
3
3 UE) * F Al
g e 20
>
= 2
7]
@ 10
0
__ 400
v
< 350
g
S 300
E=3
= 250
200
c
3 v i
Y150 b i
c o 2
S 100
°
L 50
= 0
20000 40000 60000 80000 100000 120000 140000
train sequences
----- sft &rl * sft checkpoints ---- sft acc W/ pcor = 1.0 ---- sft length w/ pcot = 1.0

Figure 21: SFT and GRPO of Llama 3.1 8B (instruct) on the MATH dataset for various values
of peot. The situation is similar to the GSM8k experiments, yet RL gains might be due to out of

distribution gains — see qualitative analysis. We early stopped the curves before the RL runs collapse,
which we attribute to large learning rate.

33

GSMS8k Completions (p.ot = 0.05, epoch=1, RL step=1)

Question: In four years, Peter will be twice as old as Harriet. If Peter’s age is currently
half of his mother’s age, who is 60, how old is Harriet now?

Ground truth cot: If Peter’s age is currently half of his mother’s age, who is 60,
Peter is 1/2#%60 = <<30=30>>30 years old. In four years, Peter will be 30+4 =
<<30+4=34>>34 years old. Since Peter’s age in four years will be twice Harriet’s age,
Harriet will be 34/2 = <<34/2=17>>17 years old in four years. Currently, Harriet is
17-4 = <<17-4=13>>13 years old. Answer: 13

Generation 1; reasoning process here</think> <answer>32</answer> Reward: 10
Generation 2; reasoning process here</think> <answer>35</answer> Reward: 10
Generation 3; ...]1</think> <answer>24</answer> Reward: 10

Generation 4, reasoning process here</think> <answer>34</answer> Reward: 10
Generation 5; 7</think> <answer>40</answer> Reward: 10

Generation 6; processing online </think> <answer>35</answer> Reward: 10
Generation 7; reasoning process here</think> <answer>18</answer> Reward: 10
Generation 8; 2020-11-23T11:49:57.397405+00:00</think> <answer>40</answer> Reward: 10
Generation 9; thinking... </think> <answer>21</answer> Reward: 10

Generation 10; Harriet’s age right now =</think> <answer>2</answer> Reward: 10
Generation 11; reasoning process here</think> <answer>32</answer> Reward: 10
Generation 12; 2016-09-19T00:00:00Z</think> <answer>24</answer> Reward: 10
Generation 13, 3</think> <answer>36</answer> Reward: 10

Generation 14; reasoning process here</think> <answer>40</answer> Reward: 10
Generation 15; Harriet = 4</think> <answer>84</answer> Reward: 10

Generation 16; reasoning process here</think> <answer>48</answer> Reward: 10
Generation 17; </think> <answer>25</answer> Reward: 10

Generation 18, For Peter to be twice as old as Harriet, Harriet’s age has to be half
the current age of Peter. Start with the current age of Peter as x years. Then
half of z is half of mother’s age=60, or % = 60 = z = 60 x 2 = 120[0] Harriet’s

age=r — 2 = 120 — 2 = 118[1] Harriet’s age is 118 years, and Peter is 120 years. The
answer is 118. [2]November 6, 2021 Reward: O

Generation 19; (please wait a few seconds)</think> <answer>18</answer> Reward: 10

Generation 20; my reasonning here</think> <answer>18</answer> Reward: 10

Generation 21;, </think> <answer>20</answer> Reward: 10

Generation 22; could not solve the problem</think> <answer>13</answer> Reward: 100
Generation 23; 2016-03-11 20:54:37</think> <answer>36</answer> Reward: 10

Generation 24; reasoning process here</think> <answer>40</answer> Reward: 10

Generation 25; IN FOUR YEARS, PETER WILL BE TWICE AS OLD</think> <answer>8</answer> Reward:
10

Generation 26; He is fourty years now</think> <answer>35</answer> Reward: 10

Generation 27; 10</think> <answer>25</answer> Reward: 10

Generation 28; Harriet’s current age?</think> <answer>24</answer> Reward: 10

Generation 29; Why is Harriet’s age h? Who is w? Who is d? <think> <answer>37</answer>
Reward: 5

Generation 30; </think> <answer>36</answer> Reward: 10

Generation 31; include forgive-me.fr</think> <answer>32</answer> Reward: 10

Generation 32; Ernesto thought about reasoning process here </think> <answer>42</answer>
Reward: 10

Figure 22: Llama 3.2 3B completion on a GSM8k prompt for p.ot = 0.05, SFT epochs=1, RL step=1.
Most completions are short (following the SFT format of </think><answer>ANS</answer>) and
inaccurate.

34

GSM8k Completions (pcot = 0.05, epoch=1, RL step=58)

Question: Mrs. Watson is grading 120 final exams from her American History class. On
Monday, she grades 60% of the exams. On Tuesday, she grades 75% of the remaining
exams. On Wednesday, how many more exams does she need to grade?

Ground truth cot: On Monday, Mrs. Watson grades 120 x 60% =
<<120%60*.01=72>>72 final exams. At the end of Monday, she has 120 - 72
<<120-72=48>>48 exams left to grade. On Tuesday, she grades 48 x 75%
= <<48*%75*.01=36>>36 final exams. On Wednesday, she has 48 - 36 = <<48-
36=12>>12 exams left to grade.

Answer: 12

Generation 1; . ..</think> <answer>30</answer> Reward: 10

Generation 2; She graded 607 of 120 = 72 exams on Monday.</think> <answer>24</answer>
Reward: 10

Generation 3; . ..</think> <answer>15</answer> Reward: 10

Generation 4, Let’s get a variable for Mrs. Watson’s total number of exams.</think>

<answer>30</answer> Reward: 10

Generation 5, 120 final exams are left to grade, or 30. She grades 60% of them on
Monday, which is 18.</think> <answer>12</answer> Reward: 100

Generation 6; Mrs. Watson needs to grade 30% of the exams</think> <answer>40</answer>
Reward: 10

Generation 7, . ..</think> <answer>30</answer> Reward: 10

Generation 8, She’s finished 607 of the total. How many are left? We have 100*60=60
exams left. Next, on Tuesday, she grades another 75% of those. She now has finished
60+75=135 out of 120 exams. So how many exams are left? There are 120-135=15 exams
left.</think> <answer>45</answer> Reward: 10

Loood

Generation 22, There is a 60% completion rate of all exams. On Monday, 60% of all
grades were given. This means that 60% of 120, or 72, were graded so far. Thus, 48
have yet to be graded. 75}, of the remaining exams that haven’t been graded will be
graded on Tuesday. There are then 48)×75% = 36 more exams to be graded.</think>
<answer>36</answer> Reward: 10

Generation 23, . ..</think> <answer>10</answer> Reward: 10

Generation 24, 120</think> <answer>30</answer> Reward: 10

Generation 25; That’s a really easy word problem. It’s a good thing I worked through so
many examples last night.</think> <answer>30</answer> Reward: 10

Generation 26; She has graded them at a rate of 60% and then 75/, of them remaining, so
she will need to grade...</think> <answer>30</answer> Reward: 10

Generation 27, ...once she grades 607 of the exams, she grades the remaining...</think>
<answer>30</answer> Reward: 10

Generation 28; Well, we know that we have 120 exams that need to be graded. Mrs. Watson
graded 60% on Monday so that was 60 exams. That means that she graded 60 120 = 60
exams on Monday.</think> <answer>30</answer> Reward: 10

Generation 29, Let’s see....</think> <answer>15</answer> Reward: 10
Generation 30, ...</think> <answer>15</answer> Reward: 10
Generation 31; . ..</think> <answer>20</answer> Reward: 10

Generation 32; He asked how many more exams she needs to grade...wish she had thought of
this one...</think> <answer>6</answer> Reward: 10

Figure 23: Llama 3.2 3B completion on a GSM8k prompt for p..; = 0.05, SFT epochs=1, RL
step=58. The model starts generating longer responses that mimic the long SFT demonstrations,
while continuing to respect the SFT answering format.

35

GSMS8k Completions (pcot = 0.05, epoch=1, RL step=118)

Question: Ethan is reading a sci-fi book that has 360 pages. He read 40 pages on
Saturday morning and another 10 pages at night. The next day he read twice the total
pages as on Saturday. How many pages does he have left to read?

Ground truth cot: Ethan read a total of 40 pages + 10 pages = <<40+10=50>>50 pages
on Saturday. On the next day, he read a total of 50 pages x 2 = <<50%2=100>>100
pages. The total number of pages that Ethan had read is 50 pages + 100 pages
= <<50+100=150>>150 pages. Therefore, Ethan has 360 pages - 150 pages =
<<360-150=210>>210 pages left to read.

Answer: 210

Generation 1; Ethan was reading a sci-fi book that had 360 pages.Ethan read 40 pages on
Saturday morning and then another 10 pages on Saturday night.So far he had read 50
pages on Saturday.So the next day he read 2*50 = 100 more pages So far he had read 50
+ 100 = 150 pages So the next day he has read a total of 150 pages.Ethan has 360 - 150
= 210 pages left to read.</think> <answer>210</answer> Reward: 100

Generation 2; 0Our book had 360 pages in total.Ethan read 40 pages on Saturday so there
are 320 pages left. Ethan read 10 more pages at night so there are now 330 pages
left. So far he has read 50 pages in 2 days. So if he read one day on Saturday

then he must have read 25 on Sunday. So now there are 320-25 = 295 pages left to
read.</think> <answer>295</answer> Reward: 10

Generation 3, Ethan is reading a sci fi book that has 360 pages. He read 40 pages
on Saturday morning and 10 pages at night. So the total number of pages he read on
Saturday was 40 + 10 = 50 pages. The next day he read twice the number of pages he
read on Saturday. So the number of pages he read on Sunday was 2 * 50 = 100. So the
total number of pages he read on Saturday and Sunday was 50 + 100 = 150 pages. So the
total number of pages he read was 50 + 100 = 150. So the remaining number of pages
were 360 - 150 = 210 pages. </think> <answer>210</answer> Reward: 100

Loood

Generation 30; Ethans book has 360 pages.Ethan read 40 pages on Saturday morning.Ethan
read an additional 10 pages at night.Ethan read on Saturday 50 pages = 40 + 10 =
50.Ethans book has on the next day twice as many pages as on Saturday.So on the next
day Ethan would have read 50 * 2 = 100 pages.Ethans book had a Total of 360 - 50 - 100
= 210 pages he had left to read.</think> <answer>210</answer> Reward: 100

Generation 31; Ethan has a 360 page science fiction book. He read 40 pages on Saturday
morning and then 10 pages on Saturday night. So far he has read 50 pages. The next
day he read 2 times 50 which equals 100 pages. So he has read a total of 150 pages.
So he has 360 - 150 = 210 pages left to read.</think> <answer>210</answer> Reward: 100
Generation 32; Ethan is reading a sci-fi book that has 360 pages. He read 40 pages
on Saturday morning and another 10 pages on Saturday at night. So far today he has
read 50 pages. The next day he read 2 times 50 which equals 100 pages He has read

so far today and the next day so he has read a total of 150 pages. So far he has

read 360 minus 150 which equals 210 pages. So he has 210 pages left to read.</think>
<answer>210</answer> Reward: 100

Figure 24: Llama 3.2 3B completion on a GSM8k prompt for p.o,t = 0.05, SFT epochs=1, RL
step=117. After only 100 RL steps, the overwhelming majority of model generations consist of long,
elaborate responses that give the correct answer.

36

GSMS8k Completions (pcot = 0.05, epoch=1, RL step=4676)

Question: Gabe has three songs on his playlist. “The Best Day” is 3 minutes, ‘“Raise the
Roof” is 2 minutes, and “Rap Battle’ is 3 minutes. How many times can Gabe listen to
his entire playlist on the 40-minute ride to his wrestling match?

Ground truth cot: If you add all the songs together, Gabe’s playlist is 3 + 2 + 3 =
<<3+2+3=8>>8 minutes long. During the 40-minute car ride, Gabe can listen to his
8-minute playlist 40 / 8§ = <<40/8=5>>5 times.

Answer: 5

Generation 1; We have the following information:

Gabe has three songs on his playlist.

"The Best Day" is 3 minutes

Raise the Roof" is 2 minutes

"Rap Battle" is 3 minutes

So the total length of the three songs in minutes = 3 + 2 + 3 = 8 minutes

So the number of minutes in the ride to his wrestling match is 40 minutes

So the number of times that the entire playlist can be played during the 40-minute
ride = 40 / 8 = 5 plays of the playlist

</think> <answer>5</answer> Reward: 100

Generation 2; We have the following information:

Gabe has three songs on his playlist.

"The Best Day" is 3 minutes long

"Raise the Roof" is 2 minutes long

"Rap Battle" is 3 minutes long

So the total length of the three songs on Gabe’s playlist = 3 minutes for "The Best
Day"

+ 2 minutes for "Raise the Roof"

+ 3 minutes for "Rap Battle"

So the total length of the playlist = 3 + 2 + 3 = 8 minutes

So the length of the ride to his wrestling match is 40 minutes

So the number of times that the entire playlist can fit into the 40-minute ride = 40 /
8 = 5 total plays of the playlist

</think> <answer>5</answer> Reward: 100

Loood

Generation 32; We have the following information:

Gabe has three songs on his playlist.

‘“The Best Day’’ is 3 minutes long

‘‘Raise the Roof’’ is 2 minutes long

‘‘Rap Battle’’ is 3 minutes long

So the total length of the three songs on Gabe’s playlist = 3 minutes for ‘‘The Best
Day”’

+ 2 minutes for ‘‘Raise the Roof”’

+ 3 minutes for ‘‘Rap Battle”’

So the total length of the playlist = 3 + 2 + 3 = 8 minutes

Gabe’s ride to his wrestling match lasts 40 minutes.

So the number of times that the entire playlist can fit into the 40-minute ride = 40 /
8 = b complete plays of the playlist

So the answer to how many times can Gabe listen to his entire playlist on the
40-minute ride to his wrestling match = 5 plays

</think> <answer>5</answer> Reward: 100

Figure 25: Llama 3.2 3B completion on a GSM8k prompt for p..; = 0.05, SFT epochs=1, RL
step=4676. After 1000s of RL steps, model responses cease to resemble SFT data and are much more
verbose.

37

MATH Completions (pcot = 0.01, epoch=20, RL step=1)

Question: In triangle ABC, AB = 13, BC' = 15 and C'A = 17. Point D is on AB, E is
on BC,and F'ison CA. Let AD =p- AB, BE = q- BC,and CF = r - C'A, where p,
q, and r are positive and satisfy p + ¢ +r = 2/3 and p? + ¢*> + r? = 2/5. The ratio of
the area of triangle D E'F to the area of triangle ABC' can be written in the form m/n,
where m and n are relatively prime positive integers. Find m + n.

Ground truth cot: [asy] /* — arbitrary values, I couldn’t find nice values for pqr please
replace if possible — */ real p = 0.5, q = 0.1, r = 0.05; /* — arbitrary values, I couldn’t
find nice values for pqr please replace if possible — */ pointpen = black; pathpen =
linewidth(0.7) + black; pair A=(0,0),B=(13,0),C=IP(CR(A,17),CR(B,15)), D=A+p*(B-
A), E=B+q*(C-B), F=C+r*(A-C); D(D(MP("A",A))-D(MP("'B",B))-D(MP("'C",C,N))-
cycle); DAD(MP("'D",D))-D(MP("E'",E,NE))-D(MP("'F" ,F,;NW))—cycle); [/asy] We let

. ..] denote area; then the desired value is * = %ggg]] = MBC]*MDQ;EDE]*[CEF]

Using the formula for the area of a triangle %ab sinC, we find that %ﬁgg
+p-AB-(1-r)-AC-sin ZCAB [BDE]
T AB-AC-sin ZCAB [ABC]

ﬁgg% = (1 — q). Thus, we wish to find

= p(1 — r) and similarly that = ¢(1 — p) and

[DEF] _ | _|ADF| _[BDE] _[CEF]

[ABC] [ABC] [ABC] [ABC]
=1-p(1-7)—q(1-p)—r(l-9q)
=(g+qr+rp)—(p+qg+r)+1

We know that p+¢+r = 2, and also that (p+q-+7)? = p*>+¢*+r?+2(pg+qr+rp) <>
2)2_2

pq+qr+rp = (")TE’ = L. Substituting, the answer is ;- — 2 + 1 = 15, and

m4n= . Answer: 61

Generation 1, </think> <answer>103</answer> Reward: 10

Generation 2; </think> <answer>103</answer> Reward: 10

Generation 3; </think> <answer>103</answer> Reward: 10

Generation 4; </think> <answer>103</answer> Reward: 10

Generation 5; DEEZNIT</think> <answer>123</answer> Reward: 10
Generation 6; </think> <answer>103</answer> Reward: 10

Generation 7; ></think> <answer>103</answer> Reward: 10

Generation 8; forcedeterminant</think> <answer>121</answer> Reward: 10
Generation 9; think</think> <answer>103</answer> Reward: 10

Generation 10;, </think> <answer>59</answer> Reward: 10

Generation 11, <think> <think></think></think> <answer>137</answer> Reward: 10
Generation 12, <answer>103</answer> Reward: 5

Generation 13; </think> <answer>103</answer> Reward: 10

Generation 14, </think> <answer>937</answer> Reward: 10

Generation 15; ></think> <answer>101</answer> Reward: 10

Generation 16;, </think> <answer>103</answer> Reward: 10

Generation 17, ></think> <answer>13</answer> Reward: 10

Generation 18, commands- i</think> <answer>9</answer> Reward: 10
Generation 19; </think> <answer>243</answer> Reward: 10

Generation 20; </think> <answer>103</answer> Reward: 10

Figure 26: Llama 3.1 8B (instruct) completion on a MATH prompt for p.. = 0.01, SFT epochs=20,

RL step=1. The model generates short inaccurate responses.

38

MATH Completions (pcot = 0.01, epoch=20, RL step=181)

Question: Let a, b, ¢ be distinct complex numbers such that

a b c
-6 -z l1—g
Find the sum of all possible values of k.
Ground truth cot: From the given equation,

a=k(1-0),
b=k(1l—c),
c=k(l—a).
Then
a=Fk(1-"b)
=k(1—-Fk(1-c)

— k(1 — k(1 — k(1 — a))).
Expanding, we get ak> + o — k% + k? — k = 0, which factors as

(k> —k+1)(ak +a—k)=0.

in which case b = ¢ = -%—. This is not allowed, as «a,

Ifak:+a—k:0,thena:ki+l, T
b, and c are distinct, so k> — k + 1 = 0. The sum of the roots is . Note: The roots of
k* —k+1=0are
1+iv3
—
For either value of %, we can take « = 0, b = 1, and ¢ = k. Answer: 1

Generation 1; ></think> <answer>From the given equation, we have: a = k(1 — b),b =
k(1 — ¢),c = k(1 — a). Substituting b = k(1 —¢) into a = k(1 — b) gives:
a = k(1 — k(1 —¢c)) = k — k% + k%2c. Substituting a = k(1 —b) into c¢ = k(l — a)
gives: ¢ = k(1 — k(1 —b) = k — k% + k2b. Equating a = k — k? + k?c and
a = k — k%2 + k2b , we get: k?c = k?b , so ¢ = b. Substituting ¢ = b into
a = k — k2 4+ k2¢ gives: a =k — k2 + k2b. Also, we know that b = k — k2 + k2a.
Equating a = k — k> + k*b and a = k — k?> + k?a , we get: b = a. Since a,b,c
are distinct, we have a contradiction. Therefore, the initial assumption that there
are distinct complex numbers a,b,c is incorrect. There can be only one value of

k. Adding the equations a = k — k2 + k2b,b = k — k2 + k2a,¢c = k — k2 + k2a,
we get: a + b+ c = 3k — 3k2 + k%2(a + b + ¢). Equating 3k — 3k2 = 0,
we get: 3k(l — k) = 0. Solving for k, weget: k = 0 or k = 1.
We are only interested in non-trivial solutions, so the sum of all possible

values of k is: O+ 1=1. </answer> Reward: 100

[...]
. . . a b @ _ — —g3._.a _ag. b _q _c

Generation 14; ></think> <answer>1; + -+ 1=, =k+k+k=3k=3-725 =3- 122 =3 - =

Therefore, Kk can be any value such that the equation %5 = % = £ =k

= —c l—a

holds. It can be shown that the sum of all possible values of k is 3 . </answer>
Reward: 20
[

Figure 27: Llama 3.1 8B (instruct) completion on a MATH prompt for p..; = 0.01, SFT epochs=20,
RL step=181. The model starts generating longer responses, which however do not respect the SFT
format. This behavior is likely due to out of distribution generalization.

39

MATH Completions (p.ot = 0.01, epoch=1, RL step=1)

Question: In triangle ABC, /B = 60° and ZC = 45°. The point D divides BC in the
ratio 1 : 3. Find

sin /BAD
sin Z/CAD"

Answer: %

Generation 1; Categories problem. Inclines BC</think> <answer>\/2</answer> Reward: 10
Generation 2, </think> <answer>2</answer> Reward: 10

Generation 3; </think> <answer>2</answer> Reward: 10

Generation 4; </think> <answer>2</answer> Reward: 10

Generation 5; </think> <answer></a_nswer> Reward: 10

Generation 6; ></think> <answer>3</answer> Reward: 10

Generation 7, ></think> <answer>3</answer> Reward: 10

Generation 8, </think> <answer>1</answer> Reward: 10

Generation 9; </think> <answer>2</answer> Reward: 10

Generation 10, </think> <answer>£3</answer> Reward: 10

2++/3
Generation 11; </think> <answer>+/3</answer> Reward: 10

Generation 12;, </think> <answer>\/3,</answer> Reward: 10
Generation 13; No </think> <answer>\/§</a.nswer> Reward: 10
Generation 14, </think> <answer> V3 </answer> Reward: 10
Generation 15, </think> <answer>2 — \/3</answer> Reward: 10

Generation 16, </think> <answer> f;g end answer> Reward: 5

Generation 17; </think> <answer>+/7</answer> Reward: 10
Generation 18, </think> <answer>2</answer> Reward: 10
Generation 19; </think> <answer>31/3</answer> Reward: 10
Generation 20, </think> <answer> 1 </answer> Reward: 10

Figure 28: Llama 3.2 3B (instruct) completion on a MATH prompt for p.,; = 0.01, SFT epochs=1,
RL step=1. The model generates short inaccurate responses, which nevertheless adhere to the SFT
format.

40

MATH Completions (pcot = 0.01, epoch=1, RL step=87)

Question: Triangle

Answer: 20

ABC has sides of 6 units, 8 units, and 10 units. The width of

a rectangle, whose area is equal to the area of the triangle, is 4 units. What is the
perimeter of this rectangle, in units?

Generation 1; </think>
Generation 2; </think>
Generation 3; </think>
Generation 4, </think>
Generation 5; </think>
Generation 6; </think>
Generation 7; </think>
Generation 8, </think>
Generation 9; </think>
Generation 10;, </think>
Generation 11;, </think>
Generation 12, </think>
Generation 13; </think>
Generation 14; </think>
Generation 15; </think>
Generation 16;, </think>
Generation 17, </think>
Generation 18; </think>
Generation 19;, </think>
Generation 20; </think>

<answer>2(6 + 8) = 28</answer> Reward: 10
<answer>2(6+8) = 28</answer> Reward: 10
<answer>2(6+8+6+4) = 44</answer> Reward: 10
<answer>44</answer> Reward: 10
<answer>2 - (6 + 8) = 28</answer> Reward: 10
<answer>2(6+8)=28</answer> Reward: 10
<answer>2(6+4)+2(8+4)=36</answer> Reward: 10
<answer>2 - (5 + 6) = 2 - 11 = 22</answer> Reward: 10
<answer>20 + 8</answer> Reward: 20
<answer>2 X (5 x 8) = 40 < /answer > Reward: 10
<answer>2(6+8) = 28</answer> Reward: 10
<answer>2(10 + 6) = 32</answer> Reward: 10
<answer>2(6 + 8 + 10 + 4) = 76</answer> Reward: 10
<answer>2 - (10 + 6) = 32</answer> Reward: 10
<answer>2(10 + 6) = 32</answer> Reward: 10
<answer>2(4+12+8) = 52</answer> Reward: 10
<answer>2(10+4)=36</answer> Reward: 10
<answer>2 * (4 + 5) = 18</answer> Reward: 10
<answer>2(4+5)=18</answer> Reward: 10
<answer>2(6 + 8) = 28</answer> Reward: 10

Figure 29: Llama 3.2 3B

(instruct) completion on a MATH prompt for p.o, = 0.01, SFT epochs=1,
RL step=87. The model learns to generate some reasoning in the answer part of the response, which

does not seem to be a very successful strategy.

41

MATH Completions (pcot = 0.01, epoch=1, RL step=92)

Question: Simplify

1 1 1
logy52 +1 +10g103+1 +1og65+1'

Answer: 2

Generation 1; ></think> <answer>1</answer> Reward: 10

Generation 2; </think> <answer>1</answer> Reward: 10

Generation 3; </think> <answer>1</answer> Reward: 10

Generation 4, </think> <answer>1</answer> Reward: 10

Generation 5; </think> <answer>1</answer> Reward: 10

Generation 6, </think> <answer>1</answer> Reward: 10

Generation 7, </think> <answer>1</answer> Reward: 10

log. a
log. b

Generation 8; Recall the change-of-base formula for logarithms: log,a
1 _ log(xz+1)
z+1 = log(z+1)z+1°
of the given expression using these properties. After the rewriting, we obtain

for any

positive numbers a,b, and c. Also note that We can rewrite each term

log 15 log 10 log 6
log15+1og2 log10+1log3 = log6 + log5’

where we have removed the denominators to make the arguments in the denominator of
each term equal log;s2,log;y3,and logg 5. Since the 2nd and 3rd terms are already in
lowest terms, we focus on simplifying the lst term:

log 15 log 15 1

log15 +1log2 log(15-2) logsg 15

Thus, the given expression can be written as

1 log1 3 logg 5

logs 15 logyo 10+ log1q3 logg 6 + logg 5
By using a change-of-base formula, we find that
the following: Reward: 0
Generation 9; </think> <answer>1</answer> Reward: 10
Generation 10;, ></think> <answer>1</answer> Reward: 10
Generation 11; </think> <answer>1</answer> Reward: 10
Generation 12; </think> <answer>1</answer> Reward: 10
Generation 13; </think> <answer>1</answer> Reward: 10
Generation 14, Let’s use the change-of-base formula to simplify each of the logarithmic

@ = log;530. The final result is

expressions in the denominators of the fractions.</think> <answer>1</answer> Reward: 10
Generation 15; </think> <answer>1</answer> Reward: 10
Generation 16, </think> <answer>1</answer> Reward: 10
Generation 17; </think> <answer>1</answer> Reward: 10

Generation 18; Using the identity logya + 1 = log; ab, the expression can be simplified
1 1 1 : _ log.a
as Tog,5 30 + Tog10 30 + Togg 30 * then applying the change of base formula, log,a = loga s

log 15 + log 10 + log 6

we get 10;30 + 10;30 + 10;30 , then Tog 30 and after cancelling out

log 30 log 30 ?
Tog 15 Tog 10 Tog 6
. log 15+log 104+1og 6 . log(15-10-6) . . log 900
common terms, we find " Tog30 ’ and finally ~log30 ® which is Toz 30 * equal
1 2 . . .
to %, equal to 2, and the final value is .</th1nk> <answer>2</answer> Reward:
100

Generation 19; </think> <answer>1</answer> Reward: 10
Generation 20, </think> <answer>1</answer> Reward: 10

Figure 30: Llama 3.2 3B (instruct) completion on a MATH prompt for p.,; = 0.01, SFT epochs=1,
RL step=92. The model starts exploring longer responses in the thinking part of the response.

42

MATH Completions (pco; = 0.01, epoch=1, RL step=102)

Question: Let G be the centroid of triangle ABC. If GA? + GB? 4+ GC? = 58, then
find AB? + AC? + BC?.
Answer: 174

Generation 1; Since G is the centroid of triangle ABC, by the properties of a
centroid, G divides the medians of AABC into six equal segments, with GA = %AD,
GB = %BE, and GC = %CF, where D, FE, and F are the vertices of trisections
of the medians AD,BF, and CF. Then by the Midpoint Theorem applied to triangles

AGD,BGE,CFC, we have GD = 2(AG), GE = 2(BG), and FC = 2(CF), and
since AD = AE,BE = BG, CF = CE, ve get GD?> = 4AG? GE? = 4BG?, and
FC? = 4CF?, where D,E and F are the midpoints of sides AB, BC, and CA. Now,

GA? + GB* + GC? = (14D)? + (1BE)® + (1CF)® = ! . (AD?4 BE? 4 CF?). Thus,
2. (GA?2 + GB%+GC?) = AD? + BE? + CF? = 3. (GA? + GB%2+GC?) = 3. 58, then
AB? + AC? + BC? = AD? + BE? + CF2. </think> <answer>174</answer> Reward: 100
Generation 2, Using the fact that the centroid divides each median into two segments
with a 2:1 ratio, we have AG = %AD7 BG = %BE7 and CG = %C’F, where D, E,
and F' are the midpoints of BC AC, and AB respectively.</think> <think>Therefore,
GA? + GB? + GC? = §(AD? + BE? + CF?). Since AD = AC, BE = {AB, and CF = 3 BC,
we have GA% + GB2 4+ GC? = %(AC2 + AB? + BC?) = 58.</think> <think>It follows that

AC? + AB? + BC? = % <58 = .</think> <answer>132</answer> Reward: 5
Generation I3 By the relationship between the centroid and the circumcenter of a
triangle, we know that GG is the circumcenter of triangle ABC. Thus, AG = BG = CG,

since the circumcenter is equidistant from the vertices of the triangle. Letting
z = AG = BG = CG, we see that

z? + 2 + 22 =58
3z2 = 58
z? = 58/3.

</think> <answer>58 + 58/3</answer> Reward: 10

Generation 4; By the configparser proposition, we know that GA2 + GB? + GC? =
1(AB? + AC? + BC?), so AB? + AC? + BC? = 3 .58 = 174.</think> <answer>174</answer>
Reward: 100

Lo ood 2 2 2
Generation 17, By the formula for the centroid, GA? + GB? + GC? = W =
1(AB? + BC? + AC?) = 58 = AB? + BC? + AC? = 174 < /[think > <answer>174</answer>
Reward: 100

Generation 18; By Apollonius’s Theorem, AB? + AC? = 2(GA? + GB?) and AB? + BC? =
2(GB? + GC?) and AC? + BC? = 2(GA? + GC?). Adding these together, we have
AB? 4+ AC? + BC? = 2(GA? + GB? + GC?) = 2(58) = 116.</think> <answer>116</answer>
Reward: 10

Generation 19; By the definition of the centroid, we know that G is the point (1 : 1 : 1)
in the 3-2-1 coordinate system. Also, by Stewart’s Theorem, GA?2 + GB? + GC? =
%(AB2 + BC? + CA?2). We want to solve for AB? + BC? + CA2?, so we can multiply both
sides by 3 and get 3(GA2 + GB? + GC’Q) = AB? + BC? + CAZ?. Since we are given that
GA? + GB? + GC? = 58, it follows that AB? + BC? + CA? = 3(58) = 174.</think>
<answer>174</answer> Reward: 100

Generation 20; Recall that the centroid divides the median of each triangle into segments
whose lengths hold the weights of 2:1, with the longer length being towards the
vertex. Then, by the properties of medians, we know

1
GA? + GB% + GC? = g(AB2 + AC? + BC?).
If we know this, then the answer is
AB? AC? + BC? = 8(GA® + GB? 4+ GC?) = 8(58) = [464]

</think> <answer>464</answer> Reward: 10

Figure 31: Llama 3.2 3B (instruct) completion on MATH prompt for p..; = 0.01, SFT epochs=1, RL
step=102. After 100 RL steps, the model generates long correct responses similar to SFT samples.

43

780

781
782
783
784
785

786
787
788
789
790

791
792

793

794
795
796
797
798
799
800
801
802

803

804

805

806

807
808

809
810
811

812

813

814
815
816

817
818
819

F Proofs

Here, we present our theoretical analysis. For pre-training, we consider learning the mixture of long
and short demonstrations of the parity task with a linear (time-dependent) autoregressive hypothesis
class. That is, we consider a series of d+1 linear models. For post-training, we consider reinforcement
learning with the STaR objective and a chain-of-thought correctness reward. The goal is to show two
main learning results: a negative one during pre-training and a positive one after post-training.

Remark 2. Linear autoregressive architectures were introduced in [22] to demonstrate the power of
autoregressive learning, independently of the specifics of self-attention networks. Leveraging the
equivalence between binary computable functions and binary circuits, Malach [22]] proved that such
simple autoregressive models can approximate and learn any function efficiently computed by a
Turing machine given a dataset that contains appropriate “chain-of-thought” data.

We first cover some preliminary results. We then define our architecture as a series of linear models,
and then define pre- & post-training algorithms.

F.1 Preliminaries & Setup

Notation We denote the set {1,2,...,n} by [n]. We denote vectors with bold latin letters, e.g. x €
R?. We denote sequences of characters from a set V) using parentheses, e.g. (a1, as, ..., a,), a; €
V, i € [n]. The notation z € V* denotes a finite concatenation of elements of V to produce sequence
z (Kleene star). When we write an equality between sequences, for instance (a1, as,...,an,) =
(b1, b2,...,bs,), we overload notation and allow either exact match ny = na, a; = b;, Vi € [n4]
or substring match ny > ns, a; = b;, Vi € [ng]. We denote a Bernoulli random variable with
parameter p as Ber(p), a Rademacher random variable (uniform in {£1}) as Rad(1/2), and we use
the tensor product symbol for product distributions, e.g. x ~ Rad(1/2)®¢, when z; ~ Rad(1/2)
for all 4. We use asymptotic notation f(n) = O(g(n)) if there exists ¢ > 0,n¢ € R such that
f(n) < cg(n), ¥n > ng. We hide logarithmic terms with the notation f(n) = O (g(n)) as a
shorthand for f(n) = O (g(n) log® n) for some constant £ € N. The notation a < b denotes

a < Cb for some constant C' > 0.
We make use of a standard definition and theorem for convex learning as presented in [33]). First, we

recall the definition of a convex (and Lipschitz) learning problem, which is based on Definition 12.12
in [33].

Definition 1. (Adaptation of Definition 12.12 in [33]]) Let H be a hypothesis set, Z be a measurable
instance set and [: H x Z +— R be a measurable loss function. A learning problem (X, Z,1) is
called Convex and p-Lipschitz for p > 0 if:

- The hypothesis set H is convex.

- For all z € Z, the (partially applied) loss function {(-; z) is convex and p-Lipschitz.

The original definition in [33]] is about bounded hypothesis sets, but in our analysis we will use
unbounded ones (as a regularization term in the loss function will effectively bound the solution
space).

The learning algorithm will be Stochastic Gradient Descent (SGD) for ¢, regularized learning
problems (Algorithm 2] below). Note that the algorithm returns the average of the weights across 7'
iterations, as it is typically the case in online learning.

44

820
821
822
823

824
825
826

827
828
829

830
831

832
833
834

835

836
837

838
839

Algorithm 2 Stochastic Gradient Descent (SGD) for minimizing E...p [[(w, 2)] + 3 [|w]|?

Require: Integer 7' > 0
1: Initialize w(¥) =0
2: fort=1,2,...,T do
3 Sample z ~ D
4 Set v =V inl(w®), 2)
. _ 1
5: Setny = 53
6 Set w(tts) = w(t) —p, (v + Aaw®)
7: end for
8: Output w = S w,

We study strongly convex learning objectives, as they permit tight bounds on the calibration of the
output of SGD later on. Analyzing their convex (only) counterparts would have yielded weaker
calibration guarantees — see, for instance, Chapter 4.7 in [27] and the analysis of early stopped SGD
in [48].

We now state a guarantee on the output of SGD after T iterations for convex and Lipschitz objectives
plus an additional ¢, regularization term. The proof follows from Theorem 14.11 in [33] by applying it
to a learning objective and combining it with Markov’s inequality. We present it here for completeness.
Theorem 3. (Adaptation of Theorem 14.11 in [33|]) Consider a Convex, p-Lipschitz learning problem
(H = R, Z,1) and a distribution D over Z. For every § € (0,1), if we run the SGD method
(Algorithmfor minimizing Lp x(w) = E..p [l(w,2)] + 3[|w|/?, X > 0, for T iterations and

with learning rate ny = % then the output w of SGD satisfies with probability at least 1 — § over

the sampling z1,...,zp ~ D:

. 2
Lo (W) < min Lpa(w) + 5= (1+InT). (13)

Proof. The objective Lp (W) = E..up [I[(w,)] + 5 ||w||?, A > 0 is A-strongly convex. Let z ~ D,
then v() = V_ I(w®), 2) and, from the Lipschitz condition, it holds: ||v(*)|| < p. Let the update
direction be: g; = v() 4+ Aw(®). Then, we have for the weight vector w(*+1):

w(tt) — w® (Vm + Awm)

1\ 1
N SRR W 0
v (t) Y (14)
t
1 .
_ 150
=2
=1

Hence, we have ||[w®)|| <)\(tlfl) (t —1)p = £, which implies that for the update vector it holds:

llg:ll < p+ A& = 2p. From Theorem 14.11 (SGD guarantee for strongly convex functions) in [33]],
we get:

20" (1 4 10 T) = min Lpa(w) + 22 (1 4+)
n = min W — n .
wcH DA T
(15)
Finally, we apply Markov’s inequality on the non-negative random variable Lp) (W) —
mingyey Lp a(W). Let 0 < 6 < 1, then by leveraging the above guarantee, we get:

Ezl,...,zTND [LD,)\ (W)] S vrglel,}r_l[LD)\(W) + INT

E., . :o~p Loy (W)] — mingey Lp A (W)
T

.....

2 2
JSpaenn)
T
(16)

45

840
841

842

843
844

845
846

847

848
849
850
851

853
854
855
856

858
859
860
861
862
863
864
865

866
867

868
869

870

then with probability less than 6: Lp » (W) — minwey Lp a(w) > 7 > w. In other words,

with probability at least 1 — § over z1, ..., 27 ~ D, it holds:
Lo (W) < min Lpa(w) + 22 (14 1nT) (17)
DA = Gen DA T Sy

Remark 3. We assumed that the loss function is differentiable, but the proof goes through for any
continuous function using subgradients.

Remark 4. Tt is possible to tighten the ¢ dependency on the previous bound from ©(1/4) to
©(In (1/6)) by using Azuma’s instead of Markov’s inequality.

F.1.1 Setup: Data distribution, Architecture and Learning Algorithms

Data As areminder, we consider a parity mixture distribution. Let X = {41} be the input space
of d > 2 bits and) = {£1, <E0S>}* be the output space of sequences, where <EQS> is a special
symbol denoting the end of a string. Let D(peot) be a distribution over X' x), parameterized by
Peot € [0, 1], such that:

x1,...,2q ~ Rad(1/2)

d d

18

(yl,. . .,yd+1) = Z(l’hl'lxz, .. .,H(Ei,<EOS>) + (]. — Z) (Hl’i7<EOS>> s (18)
i=1 i=1

where Z ~ Ber(peot)-

Model We consider an architecture that consists of d+1 linear models. For the first output

position, we consider the hypothesis class H1 = {x~— (w1, x):x e {£1}% w; € R},
We break the second decision into two parts and consider two separate linear classes:
Haa = {X = <W2aa ¢2(X)> +bygx € {il}d+1aw2a € R2d+17b2a € R} and Hz =

{x = (wa, ¢2(x)) : x € {£1}97 wy € R2T!}, where the first model decides between
<E0S> and {£1} while the second model decides between —1 and +1, in case the first

model did not predict <EOS>. For the rest of the positions, we consider hypothesis classes
Hy = {x = (w;,p1(x)) : x € {£1}2¢T71 W, € R?4F=11. The feature embedding is defined as

follows ¢y : X = [T1 ... Zdpi—1 Tdpi—121 ...xd+l_1xd]T € {£1}2+ -1 for2 <[< d.
For position d + 1, the output is a constant function of the input, as the output symbol is always
<EO0S>. As learning is trivial in this case and, for not complicating the analysis any further, we
assume access to this deterministic function o : {+1}2? + <E0S> for which it holds: o(x) = <E0S>
for any x € {£1}24.

Our final model is a function / that belongs to the linear autoregressive hypothesis class #5118, defined
as:

HER = My X Hog X Ho .. X Ha. (19)
Note that we can learn any sparse parity inside Hkiﬁ, hence we argue that our definitions are not
Lin

particularly tailored for the problem at hand. Given an h € H &} and the corresponding d + 1 models,
W1, 024, Wy, W3, ..., W, we define a deterministic autoregressive process h : R? x R? x R24+2 x

46

g71 R2IHL 5 x R340 {1 41, ¢, <EOS>}* as follows:

ha(x; w1) = sgn((w1, x)),
hoa(x;024) = dict (sgn (<W2a7 o2 (x, ﬁ(l)(x;wl))> + b2a)) ,
620 == (W3, b2a)
€, if hga (x; 02a) = <E0S>,
(3 w2) sgn W2 qzﬁg X, sy (X'Wl))>> , O.W.,
€, if hga (x; Gza) = <E0S>,
(5 ws) sgn W3,¢3 x, h(1)(x;wl),ﬁ(z)(x;wQ))>> , 0.W.,
(x5 wa) gn wd,qbd x, D (x;wy), ..., b4 (x; wy_ 1))>) , O.W.,
)

€, lf hQa X 02a) = <EQ0S>,
hari(x

il(xa {W1702aaW27" Wd} @

{e if Do (x; 02a) — <E0S>,
(

X Wl 7h(d+1) (X)))
(20)

s72 where dict : {£1} — {e,<E0S>} is a deterministic function (dictionary) that maps label —1 to
873 the empty string and label +1 to the <EOS> token. Likewise, we define a randomized sequence to

g74 sequence model h as follows:

~ 1
hi(x;wy) ~ Rad (1 T e_<wl7x>>)

~ 1
hoo(X;602,) ~ dict | Rad = ,
2a(X;024) ic (a <1+€<w2m¢2(x,h1(x;wl))>b2a>>

02q = (W3, b2a) ,
€, if Ega (x) = <E0S>,
Rad (L) , O.W.,

1+e—<W2,¢2(x,’11(x;W1))>

€,if hog(x) = <E0S>,

?L?,(X; w3) ~ {Rad(1 _) oW, 2D

1e—(W3:6306c,h1 (xsw1),ha (x5w2)))

Rad(1

1+87<Wd’¢d,(xvhl(x?w1) ----- Ed—l(xiwd—l)») » O.W.,

h(x; {1, 020, Wo, ..., Wa)}) = (El(x; wl),‘..,ﬁdﬂ(x)) .

875
876

877

878
879

880

882

883

884

885

886

887
888

X X)Xy XXy XK r[\‘
]:[\ -1,-1,+1,+1,+ 1,<EOS>

+1,<EOS>

—1,+1,-1,+1,+1,+1 -1,+1,-1,+1,+1,-1,-1,+1,+1
H\‘ Y| XXy XX X

Figure 32: An illustration of next-token prediction training (for d=5) with the linear (time-
inhomogeneous) autoregressive architecture in the case of a short (left) and long (right) training
sequence.

We adopt the convention that e = a3, i.e., concatenation with the empty string character € does
not change a string. We define the probability measure induced by h as:

P[ﬁl(XQWI) = yl} 'P{EZa(X; 02,) = <E0S> ‘ I (x;w1) = yl}) if ly| =2,
Th (y ‘ X) =]P)|:7L1(X;W1) = y1:| et]P)|:7ld(X;Wd) = Yd ‘ 711(X;W1) =Yy,
~ if ly| > 2.
ha—1(x;Wq_1) = yd—l} ;
(22)

For any other y € {+1,¢,<E0S>}", itis 7, (y | x) = 0.

The two autoregressive models, h and E, correspond to greedy decoding and sampling with tempera-
ture 1, respectively.

Pre-training loss function During pre-training, the loss function is the next token prediction
objective, together with an {5 regularization term. Let (X, y) ~ D(peot). We define the loss functions
corresponding to each linear model:

1. Position 1: IV (w1, (x,91)) = In (1 + e7¥™1X)) 4+ AL{|wy |2, Ay > 0.

2. Position 2a: 19 ((waq,boa), ((%,91),72)) = In(1+ e ¥(Waa:@2(Ceyn)))+baa)) 4
+17 Y2 = <EDS>a
1, ype {1}

220 (|| waq||? + b3,) with Aaq > O and g = {
3. Positions 2 to d:
1w, (g1, rea)) = I (L e O) 2 2,
with \; > Oforall 2 <[<d.

We included the regularization term in the definition of the loss functions. Then, we seek to solve the
following optimization problem:

8yl = 2} (10w, (6, 92)) + 19 ({wa, b1, (6, 1) 5 52))

min E ~D
W1,W20,b,W2,...,Wq (x,y) (Peot)

+1 {|y| =d + 1} (l(l)(wh (val)) +...+ l(d)(wd7 ((vala AR 7yd—1) 7yd)))
(LIN-NTP)

48

889
890
891

892
893

894
895
896
897
898

Note that the regularization term can have a different coefficient for each parameter vector. Also,
observe that Problem [LIN-NTP|corresponds to d+1 binary classification problems with respect to the
logistic loss.

Pre-training Algorithm We minimize the previous objective with Stochastic Gradient Descent —
see Algorithm 3]

Algorithm 3 Stochastic Gradient Descent (SGD) for solving Problem (LIN-NTP)

Require: Integers 1,711,154, 15, ..., Ty > 0, Real numbers A1, Aoy, Az, ..., Ag > 0.
1: Initialize wgw,wg}; wi o owl) = 0,8y, =0
2: Set tiong = 0

3: fort=1,2,...,T do

4: Sample (x,y) ~ D(peot)

5: if t < T} then

6: Setn, =)%ﬁ

7: Set W(tH) —ntV <t>l(1) (v , (%, yl)>

8: end if

9: if t < Ty, then

~ +1, if yo = <E0S>,
10: Set yo =
2 {—1, if yo € {1}

11: Setn, = %

12: Set W(t+1) = Wg;) — 77tv (t)l(Qa) ({nga bgz)}) ([X7 yl} 7272))

13: Set b = bY) — 52 o l(2“) ({W%,bgb} (%, 1] @2))

14: end if

15: if |y| > 2 then

16: Set tiong = tiong + 1

17: fori=2,...,ddo

18: if t1ong < 7T then

19: Set Ny, = m
0. Set wtions+1) _ gy (tone) 1y Vo 0 ((Bons) (I, 1, .. 1] ,yz))
21: end if
22: end for
23: end if
24: end for T t) Tou ()
25: Output w; = T1 Zt 1 W1 ,W2a = i D121 Wags by = T2 Z 2 030, W2 =

T T, t
T% tzlwé)w Wd—T% fdlw((i)'

Post-training loss function For post-training, we consider the STaR algorithm [49]. Recall that the
STaR algorithm involves n reinforcement learning rounds, where each round involves optimization of
a next-token prediction loss on model sampled responses (from the model of the previous round) that
are correct according to some reward function. We use a reward 7 : X X) that assesses whether
the whole sequence is valid:

d d
Teot(X,y) =1 {y = (xl, T1T2, ..., Hxl-, <EOS>> V oy = (H i, <EDS>> } . (23)
i=1 i=1

49

899

900

901
902
903

904

905
906

907
908
909

910

911
912

914
915

916

917

918

919
920

921

922
923
924

925

Namely, at the k& + 1 round, we minimize the following objective:

]ExNRad(l/z)@d,

Yy~ () (%)

2 {Jyl =2} (10w, (6, 90)) + 19 ({wa, b}, (. 01] 32)))
+1{ly|=d+1} (l(l)(Wla (%,91)) + 129 ({waa, b}, (%, 1], 52)) + -

Tcot (X7 y) =1 5

4+ A 1D (wa, (% Y15 - Ya1] 7yd)))
(LIN-RL)

where h(¥) is the model returned at the end of the &’th round.

Post-training Algorithm The algorithm consists of n rounds, where at each one we minimize the
previous objective with Stochastic Gradient Descent. At each round, we start optimization from a
freshly initialized model at the origin.

F.2 Pre-training

We proceed by providing guarantees for each one of the models W, 82,, Wo, W3, . . ., Wq indepen-
dently, and then state and prove our main pre-training theorem for the behavior of induced models

fz, h, leveraging the per-position results. All results are stated for a mixture coefficient p € (0, 3/4).
The upper bound needs to be greater than 1/2 to obtain the post-training result later on, but the
specific 3/4 value is arbitrary.

F.2.1 Position 1

For the first position of the output, we consider a binary classification problem where X} =
{£1}4,); = {£1} with a distribution D; (p) over X; x Y; such that: xy,...,24 ~ Rad(1/2)

andy = Zz1 + (1 — 2)]_[;1:1 x; where Z ~ Ber(p), 0 < p < 3/4. We consider the hypothesis
class H; = {x = (w,X) 1w € Rd} and the logistic loss plus an additional ¢, regularization term:
1D (w, (x,y)) =In (1 +e7v™2) + A|w|2, A; > 0.

We prove the following guarantees on the hypothesis returned by SGD.

Proposition 1. Consider running SGD (Algorithm for minimizing Lp,), (W) =
E(x,y)~Dy (p) [In (14 e 43N] + A ||w||? with Ay > 0. Then, after T\ iterations and for any
d € (0, 1), with probability at least 1 — & over the sampled {(x;, y,)};f:l1 ~ D1 (p), it holds for all
x € {£1}%

14
o (1P _ 2 1+1nT1+41H(ﬁ)A
Wi —In| —— X -
' 1—p) "7/ =MV omy 1—p2 0
14 24)
1 1 <i 1+1nT1+1n<ﬁ>
1+ e Wi N oV on 1—p2 0
1+ (152

where Wy is the output of SGD and e, = [1,0,...,0]7 € R%

Proof. We first show that learning 7{; with respect to (unregularized loss) In (1 + e*y(<w’x>))
corresponds to a Convex and Lipschitz learning problem. The loss is convex with respect to its first
argument. For the Lipschitz constant, we have for all x € {+1}%,y € {1} and w € R%:

yx
N 1+ ey{w,x)
Therefore, applying Theorem [3] we have that SGD after T} iterations returns a hypothesis w1 such
that for any ¢ € (0, 1) with probability at least 1 — ¢ it holds:

< V. (25)

[Fin (14} =

LDl(P)J\l (Wl) < LDl(P)Jq (vAV) + (1 +In Tl) ’ (26)

oMTy

50

927

928
929
930

931

932

933
934

935

936
937

939

940

941
942

944
945

946
947

948

where W = arg minwes, Lp, (p),, (W). From the strong convexity of Lp, ()., this implies:

_ N 2 _ . 4d
”Wl - W||2 < (LD1(P),>\1 (Wl) - LD1(P),>\1 (W)) < N2 o (1 + lnTl) (27)
A1 AT

The previous bound on the parameter space can be translated to a guarantee on the estimated
probability of the output being equal to 1. Recall that for a hypothesis w, this probablhty is defined
as the output of the hypothesis passed through the sigmoid function J(u) =

1+e O
_ 1 28
pi(w [x) =o((w,x)) = T o—tw (28)
We calculate the Lipschitz constant of p; (w | x). For any x € {£1}¢, w € R?, we have:
—(w,x) Vi
Xe
[Vwpi(w [X)]| = || ———3|| < (29)
(1 + e—(w,x)) 4
Therefore, combining eqs. 27] 29 we have:
Vd d [1+InTy
; oW | x) < Xy — W < 2 30
(W 1) = pa(ov | 0] < 2 o —] < oy /R (0)
It remains to estimate the value of p;(W | x). In order to find the minimizer w =
arg ming ey, Lp, (p),z, (W), we set the gradient of Lp, (., (W) to zero:
—Yx N
]E(Xay)’\‘Dl(p) |:1 + ey(W,x)} + >\1W = 0 (31)

The objective Lp, (p) 5, (W) is strongly convex, so it admits a unique solution. We observe that

this solution is of the form w = «e;, o € R, where e; = [1,0,... ,O]T. Indeed, the optimality
conditions become:

E(x,y)~D1(p) | THesoer | + M1 =0,

E(x,y)le(p) % =0,i1=2,...,d.

(32)

The last d — 1 equations are satisfied as E(x ,)~p, (p) [y2:] = 0 foralli = 2, ..., d. The first equation
simplifies to:

1 1
gla) == s/ + Mo — Z% 0. (33)

This equation has, indeed, a unique root as g is continuous, ¢'(u) = (1+e u)2 + A1 > 0 for all

A1 >0, v € Randlim, o g(u) = —00,limy 1o g(u) = 4-o00. Furthermore, g(0) = —% <0,
hence o > 0. This proves that w = «e;, where « > 0 is such that g(«) = 0. Furthermore,
let g = In (H‘p) be the weight of the unregularized solution Wy; that is, « is the solution of

g(ag) = 0 for Ay = 0. We have g(a) — g(ag) = —A1a < 0 which implies that & < . From the
mean value theorem there exists £ € («, o) such that:
o(ag) — o(a) A

o'(¢) = = : (34)

g — & Qp —

But, observe that for any u € [0, a], the derivative of the sigmoid is bounded as follows: 1;”2 <
o'(u) < %. Therefore, for any A\; > 0, it holds:

14p
lo — o] < 1Ziap2)‘1 < 14_(1?92)‘1 = 41111E1p_2p) A1 (35)
Given the above, we can bound the calibration of w. For any A; > 0 and x € {£1}% we have:
1 1
TFeom Tqemom| =g/l
i (122) 30
< ﬁ/\

51

949

950

952

953

954
955

956

957

958

959

960

961

962

963

964

965

Combining the above with (30), we finally obtain that for any A; > 0 and x € {41}, it holds:

e T (f_pyl = Ipi(w %) = i (o | %)
T+p
< pr(W [%) = pr(W |)] + |1 (W | %) = pa (W0 [%) BT
¢ rwr (1)
27)\1 5Ty + 1—p2 A1
Furthermore, for the optimality of w; in parameter space, we have:
(w1 — aper,x)| = (W1 — aer,x) — (qpe; — aeq, X)]
< Vd|[wy — W + o — aol - o9
From eqs. [27]and [35] we obtain:
1+p
|<W1_aoel7x>|§% HélTriTl +4ITE1 ”>A1. (39)
O

The guarantees of quantify the calibration of the model returned by SGD and its proximity to the
best-in-class model in parameter space. We obtain the following explicit corollary on the calibration
and “hard” prediction of the model.

Corollary 1. Consider running SGD (Algorithm for minimizing Lp,)\, (W) =

/2

E gm0 (1+ € 00%)] 4 3 w2, Then, forany e > 0,if A = © (T

), and after

T, =0 (%) iterations, with probability at least 1 — 0 over the sampled {(x;, yz)}lT;l ~ Dy (p), it
holds:
1 1
1 —<W1, > b
+e 1+ (1 ﬂ))

for all x € {£1}4. If, additionally, ¢ < In (Hp) then with probability 1 —

<e, (40)

sgn ((W1,x)) = 1, 41)
forall x € {£1}4.

Proof. Recall that from eq. (24), with probability 1 — ¢ we have:

1+
N AL AVNAN 1+1nT+41n(i)A
Cqp (LEP
! 1—]) b _)\1 (STl 1—p b
1+ (42)
1 1 d [T+ 1n<1 Z)A
1.

- <
14 e (wix) ! 2 0T 1—p
e 14 (1+p) 1 1

. . . In(+£2
To instantiate the bounds, first observe that for any 0 < p < 3/4, it holds: nl(j; ;) < 16;“7.

d 1+1n T\ 1/2
Furthermore, the first bound is always larger than the second one. We set A\; = \/ (. 7) to
-7

bound the two terms and solve the following inequality for 77:

g (LT V4 /51217 1/2<€
5T} 7

T 5192 , 2
In7
1+1InTh o 49 (In7) det

(43)

52

966

967

968

969

970
971

972

973
974
975
976
977
978
979
980
981

982

983

984
985

986

987

988
989
990
991
992

993

This proves the first part of the claim. For the decision term sgn ((W1, X)), we have:

i) s ({31 (Y o) ¢ (o (122))
o ({3110 (222 o) 4 mum (L22)).
o (12)] > [(3n - (12)en)

sgn (331 In ()) = x;. For this to happen, we additionally require having ¢ < In (}Jrz) O

(44)

, then the following holds: sgn ((W1,x)) =

F.2.2 Position 2

Position 2a We consider a binary classification problem where X, = {£1}9*1),, = {£1}
with a distribution Dy, (p) over Xz, X Vo such that: zq,...,24 ~ Rad(1/2) and (z441,y) =
Z(x1,-1)+(1-2) (Hl 1 xl,+1> where Z ~ Ber(p), 0 < p < 3/4. The —1 label should be inter-

preted as the empty string €, while the +1 output corresponds to the <EOS> symbol. We consider a non-
homogeneous linear hypothesis class Haq = {x > (W, 2(x)) +b: w € R?*! b € R}, where

the feature map ¢ : X > [T1 ... Tgy1 T1Td+1 T2Td+1 - -- xdde]T € {£1}2+1 aug-
ments the input with the second degree monomials that involve the inputs bits and the bit from the
previous position. In this way, the linear model is capable of approximating the target via the z1x 41
feature which can help predict whether the generation is on the “long” or “short” path. Note that the
dimension of the feature map — O(d) — is still polynomial in the input dimension. The bias term is
crucial for representing the best-in-class conditional probabilities. We consider learning with the
{y-regularized logistic loss:

Ao
(0 = {w, b}, (x,)) = In (14 e 2 (O020D 0) 4 250 (w2 447), gy > 0. (45)

Proposition 2. Consider running SGD (Algorithmfor minimizing Lp,, (p) x,, (0 = {w,b}) =
E ()~ D (p) |10 (1 + e_y(<w’¢2(x)>+b))] + 2z (Ilw*> +b%) , X2q > 0. Then, after Ty, iterations
and for any § € (0, 1), with probability at least 1 — § over the sampled {(x;, yz)}zTi“1 it holds for all
x € {1} with my24,1 = —1:

1 2(d+1) [/1+1InTh, A2q
12 [T [(46)
1+ e(w2a,x>+b2a)\211 5T2a 1-— p

while for x € {£1}4F! such that v124,1 = +1, it holds:

2
1 1—p <2(d+1)\/m+/\2a(1+p) In ip)
1 4+ e—(W2a,%)—bz2a 1+p Aog 015, 8p(1 —p) 7
P
- 8(d+)\/m RaalL+) ln ()
a) b a b ‘ ’
‘<W2 Gp€dt2, $2(X)) + baa — bo| < Now 5Toa T 2p(1 — p)

where Waq, bag is the output of SGD and ay, 130 € R such that: ag + 130 =In (2;1)”).

(47)

Proof. We first show that learning Hs, with respect to the unregularized loss
In (1+e’y(<w’¢2(x)>+b)) corresponds to a Convex and Lipschitz learning problem. We
will abuse notation and write 8 € Hy, for @ = (w,b), where (w,b) € Ha,. The loss is convex

with respect to 8. For the Lipschitz constant, we bound the gradient with respect to 8. For all
x € {£1}4+1 y € {£1}, we have:

2a _ y¢2 (X)
Yl (8, (x,4)) = ~ T (48)

and for the bias term:

d
Y 1(2a) _ Y
ol 0. y) =—1 T v (Wb () +) (49)

53

994

995

997

998

999

1000

1001
1002

1003
1004
1005
1006
1007
1008

1009

1010
1011

As a result, we have for the Lipschitz constant:

_ yo2 (x)
1 + ey((w,02(x))+b)

2

9 2
2a o Y
HV“()(&(&y”H B +<1+4w«w@wam> s@d+D+1

(50)
which implies that the function is v/2d + 2-Lipschitz with respect to . Therefore, applying Theo-

reml we have that SGD after Th,, iterations returns a hypothesis 85, such that for any § € (0,1)
with probability at least 1 — § it holds:

_ A 4d+1
LD2a,(p),A2a (020) < LDza(P),AQG (9) + () (1 +1In TQa)) (51
A2a0712q
where 6 = arg minee%m Lp,, (p),rs. (0). From the strong convexity of Lp,, (,).x,,» this implies:

H92a - 9” o (LDQO(p) 2o (020) — Ly, () A (é)> <)\(%(j;Tjj (1+InTh,). (52)

We characterize now the loss minimizer 6 = {v“v7 l;} by setting the gradient of Lp,, (),»,, t0 zero:

—y¢2(x) A
IE(x,.1,1)~Dza(p) 1+ey<<w,§2<x>>+b>} + A2aW = 0, (53)

y h—
E(x,y)NDza(p) - 1+ey<<w,¢2<x>>+b>] + A2qb = 0.
The objective Lp,, (), x,., (@) is strongly convex, so it admits a unique solution. We observe that this

solution is of the form W = deg42, @ € R, where e442 = [0,...,0,1,0,..., O]T and b € R. Indeed,
the optimality conditions yield:

+ (a—b)_o

1+e— (a b) (54)
2 1 AN
e T 1iears T A2 (a + b) =0
The functions g1 (u) = 1+€_u + Au, A > 0and go(u) = 1+2€p_u + B 1+€u + Au, A > 0 are continuous,

monotonically increasing and lim, ., gl() = limy o go(u) = —o0 hmu—>+oo g1(u) =
hmuﬁJroo g2(u) = +o0, hence they have umque roots. This proves that, 1ndeed W = degy2, Where
i, b are such that gy (a — b) = 0 and go(a + b) = 0. We will now bound the error in the predicted
probablhtles depending on what region of the distribution the input lies. We consider the following
cases:

e If 12441 = —1, then we have:
- 1
P-1 (02a T1&dy1 = —1) = o 92 T
1 1 1

— = — =+ -
1 + e{W2a,¢2(x))+b2a 1+ e(v”v,q>2(x))+b 1 + e{W,2(x))+b

V2(d+1) d 1)
+ "69211 - f?“ +—
1+ e(w,¢2<x)>+b

<2(d+1) /1+1nT2a+ 1
T Ao 0T, 1 4+ e(W.ba(x))+b’

/\

(55)
where we used and the Lipschitzness of the logistic function. For the bias error term,
we have:

1 _ 1
14 eW.b2()+b | 4 eazizari+h
_ 1
1+ e_(a_b)

Aog (. i " (56)
) e

A2a
< b)

1—p

1012

1013

1014

1015

1016

1017

1018
1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

as the solution & — b of the g1 (u) = 0 equation lies in (— 1)\;{’, 0).

If 212441 = 1, then denote by a¢ + ISU the solution of the unregularized problem go(ao +
130) = 0 for A = 0 or, equivalently from (34), ao + lA)O =1In (12_71)) We bound the distance
between the model-induced probabilities and the best in-class probabilities:

‘p1 (ém

< ‘P1 (éza

T1Td41 = +1> - D1 (éo‘l‘lﬂ?dﬂ = +1)‘

T1T4q1 = —l—l) —p1 (é‘x1xd+1 = —|—1)’
R R 57
+ ’Pl (9’1d+1 = +1) —p1 (00’1d+1 = +1>‘

LD o]] o43) - o)|

It remains to show that the distance ‘ (& + I;) — (do + lA)O) ‘ is bounded. Let us denote the

unregularized part of g; as g, thatis g(u) = 7 +2€p_u +2& +_€1u . First, observe that go(0) = %,

which means that the sign of a + b depends on the value of p. It will be easier to treat these
three subcases separately:

_Ifp < 1/3, then ¢2(0) < 0 and go(do + bo) = A (ao +Bo) > 0, so it holds

0<a+b< ap + 130. From the mean value theorem, there exists £ € (& + 13, ag + 50)
such that:
AQa <&‘+'b)
7€) = " ~- (58)
(do + bo) - (fl + b)
But, §'(u) = Efi?f;g and, in particular, g’ (&o +bo) =7 (ln (%)) = 2(-p)
This implies that for any u € (O, In (12—7;))) it holds: 22(1=p) <g(u) < 1%’. Thus,

. . Xoa (@ +D
(a0+bo) = (a+b) = g(,(g))
A24(1 +p) (&o +60)

(59)
< 2p(1 —p)
)\Qa(l +p) ln (12;191))
- 2p(1 —p) '

- Ifp=1/3,thena + b=0as g2(0) = 0 and, also, ao + by = In (%) = 0. Hence,
the bias error term is 0.
-Ifp> 1/3, thengg(O) > 0,92(&04—80) = Aoy (&0 + BO) < 0, so CAL0+BQ < CAL-i-lA) < 0.

From the mean value theorem, there exists & € (do + l;o, a+ 3) such that:
Aoa (a n 13) Ao (do + Bo)
~ ~ < - ~ ~)
a+b) — (ao+bo) (a+b)— (ao+bo)

N . A2a(1+p) (In %pp
[(a+8) = (a0 +b0)| < 2p(1(—pg)) ©D

from the same bound on g’ as before.

(60)

g'(€) =~
(

which, further implies:

55

1031

1032
1033

1034

1035

1036
1037

1038
1039

1040

1041

1042

1043

Therefore, we showed that for any 0 < p < 3/4, we have:

‘(d+l§) —(do+éo)‘ <

A2q(1+p) ’ln (

2p
1-p

2p(1 —p)

(62)

Combining this guarantee with the bound of and the parameter space guarantee of (52)),

we finally have:

1—

it (25)]

P1 (éQa

T1Td+1 = + I

20d+1) [T+ InTs,
p| _2d+1) [1+InT n
p)\Za 5T2a

Furthermore, for the optimality of 85, in parameter space, we have:

’<V_VZa — @peq2, P2(x)) + bag — Eo‘

= ‘<W2a — Geqi2, P2(x)) +

< V2(d+1)020 6] + |

+b—-0b—

(

8p(1 —p)

<<@oed+2 — @eg12, $2(x)) + bo — 8)‘

bo) = (a+0)]

b1 +)in ()|

_8(@+1) T3,
)\Qa 5T2a

2p(1 —p)

where the last inequality follows from eqs.[62] 52]

(63)

(64)

O

As before, we obtain the following explicit corollary on the calibration and “hard” prediction of the
second linear model.

Corollary 2. Consider running SGD (Algorithm for minimizing Lp,, (p) x,, (W)
+ 2o (||w||? + b2). Then, for any ¢ > 0, after To, =

}) with probability at

E(Xﬂy)NDQG(p) [ln (1 + e_y(<W7¢2(X)>+b))]
~ &2 g2 . . . -0 i dips
O (max {F? W}) iterations with Ay, = © (mln {51/45121({4; 51/513°

least 1 — 6 over the sampled {(x;,y:)}

1 1—p

14+ e—(Waa,%x)—bag N 1+0p
1

1 + e{W2a,x)+b2a
If additionally € < ’111 ()

sgn ((Waq, ¢2(x)) 4 baq) = sgn <ln (

forallx € {£1}4 with x124, 1 = 1.

T
121 ~ Daq (p

), it holds:

a42/3

‘ <& Vx € {il}d+1 S.L T1T4+1 = +17

1_p _ _]-7
2p ERERE

<eVxe {1} s zag = —1.

then with probability at least 1 — & we have:

ifp>1/3,
ifp<1/3,

1044 Proof. Recall that from eqs. we have: for all x € {+1}9*! with 24, = —1:

1 < 2(d+ 1) /1+lnTga +)\2(1
1 + €<W2“’x>+62“ /\2a 6T2a 1- p
1+ 1InT5,
6T2 2 + V 2)\2(1 Qa)\ZaaTQa)

1045

while for x € {£1}9+! such that 71241 =

2(d + 1)

/\2a

2(d+1)

+1, it holds:

colin(25)

1 1—p
- = — <
1+ e_<W2mx>—b2a 1+ P

)\Za

d+1)

AT, Aza(1
6T2a
A

8p(1 —p) ’

(Waa = G0€at2, 62(%) + baa — bo| <

2a

1+ lnTga n 2a(1
6T2a

2p(1 —p)

56

Qb(A2a,T24)

+2)|in (%)

(65)

(66)

(67)

(68)

1046
1047
1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061
1062
1063
1064

1065

1066

1067

1068

1069

1070
1071
1072
1073

We want to upper bound all three quantities by ¢ € (0,1). In (68), the second inequality upper
bounds the first one. Thus, it suffices to only consider that one. Let A, A, be the optimal Ay, ’s for the
two previous expressions (i.e., quantities Qq (A2q, T2a), Qp(A2a, T2q)) and Ty, T}, the corresponding

. . . ~ 2/3 .
number of iterations to get the expressions less than . We have: \, = O (=%), while
s1/3)/3

~ 1 1
Ay =0 (%) (by balancing the two terms of each of @), Q). For these values of Ay, A, the

two expressions are equal to:

_ d1/3
Qalder 1) = O <51/6T1/6)
g2 (69)
@R, Tp) = < 3 1/4T1/4>
This implies that it is sufficient to take 7, = 9] (3e 6) and T, = O (pf%) to satisfy

Qua(Na,T,) < e and Qp(My, Tp) < &, respectively. In other words, it is sufficient to take
~ . 11 2/3 ~ 2 2 .
A2g = © (mln {632;12/4, W}) and Tp, = O (max{(sd?, zﬁ})‘ This proves the first
2a 2a

part of the claim. For the decision term sgn ((Waq, ¢2(x)) + bo,), we have:

sgn ((Waq, ¢2(x)) + bze) = sgn <<W2a — Gp€dsa, $2(X)) + bag — bo + (d0€dra, P2(x)) + 50)

=sgn <<V_V2a — Go€dt2, $2(X)) + baq — bo + GoT12441 + i?o)

In particular, when ;2441 = 1, we have:
sgn ((Waq, $2(X)) + baa) = sgn ((Wza — Go€dta, P2(xX)) + bag — bo + o + Z;0)

1—p (71)
= sgn ((wQa — G0€at2, $2(X)) + baa — by + In < 2p >> '

If ‘ln (12;;’) ‘ > ‘<W2a — pedr2, p2(Xx)) + bag — bol, then the following holds:

sgn ((Waq, P2(x)) + bag) = sgn (ln (12—7;7)) = sgn(1/3 —p). For this to happen, it suf-

fices to additionally have ¢ < ’111 (1 pp) ‘

O

Position 2b For the second part of position 2, we consider a binary classification problem where
all the data come from the “long” path. As this is similar to positions 3 to d, we treat all of these
positions together next. We will denote the second part of position 2 simply as position 2 in the next
subsubsection for ease of presentation.

F.2.3 Positions 2 to d

For the [’th position of the output, 2 < [< d, we consider a binary classification prob-
lem where X} = {£1}=1), = {41} with a distribution D;(p) over X} x }; such that:
Z1,...,xq ~ Rad(1/2), (Ta41s-- s Tdpi-1) = (ml, ceey Hi;i xz) and y = Hi:l ;. We con-
sider a linear hypothesis class H; = {x — (w,¢;(x)) : w € R?~11 where the feature map

X [T1 . Tdri-1 Tdpl-171 ...xd+l_1xd]T € {+1}29+=1 qugments the input with
the second degree monomials that involve the inputs bits and the bit from the previous (I — 1’th)
position. We consider learning with the logistic loss plus an additional {5 regularization term:
10 (w, (x,)) = In (L4 ¥900) 1 w2, A >0,

57

1074
1075

1076

1077

1078

1079
1080
1081

1082
1083

1084

1085
1086
1087

1088

1089
1090

1091

1092
1093

Proposition 3. For any | € {2,...,d}, consider running SGD (Algorithm 2|) for minimizing
Lo,y (W) = Eyyomy () [In (1 + e ¥ 0N 4 2t ||w||2 with A, > 0. Then after Ty it-
erations and for § € (0, 1), with probability at least 1 — & over the sampled {(x;, yi) Yo L1, it holds:

1 2d+1-1 1+lnTl
+ A 72
1+ e—(Wi,¢1(x)) < 2\ b (72)

forall x € {£1}4 = such that x4y = Hi;i x; A Hézl x; = —1, and

(73)

1 2 +1—1 1+lnTl -
1+ e{Wi,¢i(x)) < 2\ M

forall x € {+1}41=1 such that x4y = Hi;} i N\ Hézl x; = 1, where wy is the output of SGD.

Proof. We first show that learning H; with respect to {)(w, (x,y)) = In (14 e ¥W:e(D) 4
% ||w||? corresponds to a Convex and Lipschitz learning problem. The loss is A;-strongly convex
with respect to its first argument. For the Lipschitz constant, we have for all x, y and w € R4+ 1

Hv ln(1—|—e i)H_H 1+e79 oyl < Va1 (74)

Therefore, applying Theorem 3] we have that SGD after T} iterations returns a hypothesis w; such
that for any ¢ € (0, 1) with probability at least 1 — ¢ it holds:

® X 2(2d+1—-1)
Lp,(p).x (W1) < Lp,p) x, (W1) + N

where W; = arg minwes, Lp, (p),», (W). From the strong convexity of Lp,p),»,» this implies:

2 _ . 4(2d+1-1)
=N (Lo (p) 7 (W) = L, () 1, (W) < T T (1+InT). (76)
The previous bound on the parameter space can be translated to a guarantee on the calibration of the
model. First, we find the optimal solution W; = arg minwes, Lp,(p),», (W). We set the gradient of

Lp, (p),n, (W) to zero:

(1+WnTy), (75)

_ ~ 2
[Wi — Wil

& _ yhix)
(x,9)~Di(p) 1 4 ey(Wi,¢1(x))

The objective Ly, (,),, (W) is strongly convex, so it admits a unique solution. We observe that this

:| + \w; = 0. ()

solution is of the form W; = aejy9;-1, « € R, where 4421 = [0,...,0,1,0,..., O] Indeed,
the optimality conditions become:

Eooza~Rad(1/2) [11 u7r171 f I:Iﬁlllxl } + Na =0, a8)
Eo.za~Rad(1/2) [H_eilf(liilglié:l 17} =0,j#d+2l—1.

All but the d + 2] — 1’th equation are satisfied as B, ., ~Rad(1/2) {Hizl Ty (x)]} = 0 (there is

always at least one zero-mean bit that survives in the product). The d + 2] — 1°th equation can be
simplified to:
1
= — = Na=0. 79
9(0) == 1 — Mo (79)

"One way to “guess” the optimal solution is the following. Suppose the solution had an additional non-
zero coefficient: W; = aeqt2i—1 + fej, j # d + 21 — 1. Take, for concreteness, j = 1 (the argument is

e CTT)
invariant to the choice of 7). Then, the optimality conditions yield: Ex [limy 2i [l 20 +Na =0,
Mg o (@i @i+621)
14etti=17i i=1%i

and Ex —e1 ILL =10 + A8 = 0. By summing up and subtracting the equations, we get:
1aellizy zi(aTli, Lmsn)

1+€++ﬁ Ai(e+ B) = 0and 1 —5=5 — Ai(a —) = 0. However, since the equation

unique root for any A; > 0, it must be: o + 8 = a — 3, or equivalently, 8 = 0.

1+eu — Aiu = 0O has a

58

1094

1095

1096

1097

1098

1099

1100

1101

1102
1103

1104

1105

1106

1107

1108

1109

This equation has, indeed, a unique root as g is continuous and ¢'(u) = _ﬁ — A < 0 for
all \; > 0,u € R. Furthermore, g(0) = 1 > 0, while g (,/Ail) = # — VA <0, as for any
1+e A

1
A, > 0itholds: 1+ e\/; > //\il +2> /)\%. From the intermediate value theorem, we get that

o€ (0, \/;) Hence, for the output probabilities of the optimal model w;, we have:

. . - 1 B 1
pl(Wl | X) = 0'(<Wl7¢l(X)>) - 1+ e— (Wi,61(x)) - 1+ e_o‘ni:l 2
1 1 (80)
p_1(Wy | x) = o((Wy, 1(x))) = T4 eeatD) |4 all_ o0
For any x € {+1}4H =1 with g, 1 = Hf;} x;, the above together with eq. (79) imply:
1
1
A P — —1 = =
p1 (Wl 1:[1552) 1T en Ao < /A,
i . (81)
1
— A p— 1 = =
p 1<Wl il;[lxz) T4 en Ao < A/ A
Finally, combining with eq. (76), we have:
1
_ 1
P (Wz l:[lx = —1> = Tty
B 1 1 1
I P T) N R i) S B e e 82)
vV2d+1-1 _ .
< Wi — Wil + v\
2d+1—1 [1+InT]
VA
< 3y 5T + I
and, similarly:
!
) 2+1-1 [1+InT,
_ i =1 Al 83
p1<Wli1:[1$C >< N oT, + VA (83)
O

We obtain the following corollary on the calibration and “hard” prediction of the hypothesis returned
by SGD for the {’th position of the output.

Corollary 3. Consider running SGD (Algorithm E]) for minimizing Lp,) (W) =

q42/3

Siapi7E) and after
1

E(x,g)~Dy(p) [0 (1 + e 90"%N)] + 3 ||w|/2 Then, forany e > 0, if \y = © (

T,=0 (%) iterations, with probability at least 1 — 0 over the sampled {(x;, yl)}zll ~ Dy(p), we
have:

-1 !
1 d+1—-1
Tt <o Vx e FYT st wa = [[a A][2 = -1,
=1 =1 (84)
-1 !
d+1-1 _ ' o
W <& Vxe {il} Sl Td41-1 —Hl’,/\lj[lxz— 1.
If additionally, € < 1/2, then with probability at least 1 — §, we have:
!
sen (Wi, 1(x))) = [[=, (85)
i=1

forallx € {£1}4 " withwy | = Hi;i Z;.

59

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122
1128

1124

1125

Proof. Recall that from (72), we have:

l
1 2d+1—-1 [1+InT; 4
_ N VA 106t [Tas = -1,
1+ e—(Wi,x) < 2)\ 5T, + VAL Vx € {£1)7s 1_[I

i=1

(86)
1 2d+1-1 /1 + lnTl d B
e < o \/ + Vi, ¥x e {£1}%s.t. Hzlfl,
L)\ _ (2d+1-1 2/3 1+InT; 1/3 h h b db .
et A\; = (3) (T) , then the upper bound becomes:
2d+1—1 [1+InT, 2d+1—1\"? /1+InT\Y°
VAN=2 ——— _— . 87
2N o7, TV (2) 6T, ®D
The first claim follows by solving the following inequality for 7;:
2d+1— 1\ (1+mT\V°
2 . 88
(57 (Bh) < (58)
For the second claim, observe that by a standard property of the logistic function, we have:
_ _ 1 1 %9
sgn ((Wi, ¢1(x))) = sgn Tt e-wam) 2 (89)
Assume that € < 1/2, then we consider the cases:
- If Hizl x; = —1, then we have:
1
T ooy <€ <1/2 ©0)
which implies: sgn (m — %) = 1.
- If Hizl x; = 1, then we have:
1
T omaen <€ <1/ OD
which implies:
1 1\ 1 141 1
S\ I o) 3) M T emmaey T TG
B 1 1 (92)
=S8N | T a0y T
=1.
Therefore, for all x € {£1}4H = with g,y = Hi;i x;, it holds:
sgn (Wi, di(x H ;. 93)
O

F.2.4 End-to-end pre-training result

Theorem 4. Letd > 2,0 < €,d < 1and 0 < p < 3/4. Let D(p) be a (parameterized)

distribution over sequences deﬁned as in (I8). Consider SGD (Algorithm E]) with per-position
iterations 17 = O (> To, = O (max{édsﬁ, p;fs; }) To,..., T, = 19) (596>, total iter-
2max;¢ {2,

ations T' = max {Tl,Tga7 -

T : o .
""" 4 l,%ln%} and with regularization coefficients \i =

60

1126

1127
1128

1129

1130
1131

1132

1133

1134

1135

1136

1137

1138

1139

1140
1141

ol d3/4 _ 3 . dip? d -9 d

© <51/4Tll/4> ,)\2(1 =0 <mln{61/4;21{{4, W}) ,Al =0 (W) for all 2 < l < d.
Then, with probability at least 1 — 6, SGD returns hypotheses W1 € Hi,02, € Hoq, Wy €
Ha, ..., W € Hg that induce h € HER for which for all x € {£1}% it holds:

T ((ml,xlx%...,nxi, <EUS>> x> —p| Se
i=1

%94
d 1—p
h <<sz, <EUS>> X) -~ <e
Furthermore, if ¢ < (d + 1) min { L ln 1+” ‘ln } then it holds:
> = (131a <l;0:;>)) éf]j < 1//3a
Awq,09,, Wo, ..., W =
h(x7 {Wla 2ay W2, 7Wd}) {(.’E17$1x2,.--71—[?1 x;, <EUS>) , otherwise. (95)

Proof. The proof strategy is to bound the probability of either not sampling enough ‘long’ sequences
or of SGD returning a ‘problematic’ hypothesis at some position. We invoke Corollaries [T] to 3] for

From Corollary after T' > T3 (d+1’ 2(di—1)> iterations for \; = © (q3/4 >

d+1’ 2(d+1) 51/4T11/4
SGD returns w1 such that the following hold with probability less than 5 @ +1)
~ _ 1+p €
P [nxw) =i | - =) >
‘ 1(x; W) = 23 9 “d+1

-4

d d
1 ~ _ 1
EE (: []11(}{ Vﬁll) = -1]j]:ﬂ?i =—x1| +P]11(){;Vh/1) =2]jl:a:i = 171]:> — Ei
i=1 i=1
2 d ; 1’
~d+
(96)
and, since d+1 1+Z:
ﬁl(x; w1) =sgn ((wq,X)) = x1. 97)
From Corollary , after T > T, (ﬁ, %) iterations for Mg, =
~ 3 1 _
(C] <min{%,m}>, SGD returns wo,, ba, such that, it holds with probability
2a 2a
less than %:
~ _ ~ 2p €
]P’[ha ;0a=‘h TW1) = } > , 98
‘ 2a(X; 024) = €|h1(x;W1) = 21 e B (98)
and, since dLH < ‘ln 12;”
_ . 1—p —1, ifp>1/3
as bag) = In{ —— = S T
sen (W2 62 () + bau) Sgn(n< 2p)) {+17 ifp<1/3 ©9)

for all x € {£1}9H! with 212441 = 1.

Let z1,...,2r ~ D(p) and let Tiong = ZiTzl 1{|z;] > d + 2} be the count of “long” samples. By
the definition of D(p), it is: E [Tiong] = T'p. By the multiplicative Chernoff bound, it holds:

T ,
P [Tlong < ﬂ <e ¥, (100)

61

1142 hence with probability at least 1 — %, we have:
Tp
2)

2maxe{2,..., d}T

Tiong > (101)

1143 as long as T' > %ln%. If further, T >

1144 Tong > Ty foralll € {2,...,d}. From Corollary after Tiong > 1) (d%_l, ﬁ

, then with probability at least 1 — g:

) iterations for
145 A\ =© < W), SGD returns w; such that, with probability less than §/2d:
L

l

P [EI(X;WI) = H(El h

(102)

~ €
h, W = ,...,hf ;77 == — _1 2 9
2 1(X,W1) T l 1(X Wi 1) x] 1] ‘ d+1

1.
5

1146 and, since

ey
sgn (W1, ¢ (x H i (103)

147 forall x € {1} with zqy = Hi: x;. Let Epong denote the event that Ti,,,, > T for all
1148 2 <[< d and denote by P; the event that the above guarantees hold for position 7. Then, by union
1149 bound, we have:

P [ELONG AP NPy, NPy A ... Pd] =P [ELONG] P [Pl ANPoy NPy A .. -Pd|ELONG]

> (12) (1-P[Fie{1,2a,2,...,d} : ~P}])

Z(lg) TS 2(d§+1) >1-4

i€{1,2a,2,...,d}
(104)

1150 Thus, with probability at least 1 — §, SGD returns a hypothesis A whose probability of correct, long
1151 and short, sequences is:
) _

d
T ((xl,xlxg,...,Hxi,<EOS>>
i=1
~ d ~
[(x;w1) 1}-...-Plhd(x;wd):Hxi

hi(%;W1) = @1, b1 (5 W1) = @y
=1

:(1 51) <2+§2a)(1_§2)"'(1_£d)7

1152 and:

(105)

=P [hl Hxll [hg x; Wo) = <E0S> h1 (x;w1) Hmzl

=P [hl X;W1) Hmll ([hg X;Wo) = <EDS>’h1 (x;w1) = xl} P [ﬁl(x;v’vl) = xl}

4P [ﬁg(x;wg) _ <Eos>‘%1(x; W) = —xl] P [El(x; W) = —:cl])
—(5+8) (52 +e) (S2+a)+a-a)(52-a)].

62

(106)

1153

1154

1155

1156

1157

1158

1159

1160

1161
1162
1163

50 min{%,ln(i%z),l\nl%pp }vsp

2.5 |In]2;pp

Function value
= N
o)

g
)

08 b .

0.0

Figure 33: The functional form of the error term e vs p € (0,1) in Theorem

d
Th ((ml,xlx% ey Hwi, <EOS>> x> —-p
i=1
d 1—p
o <<H1 xi,<EDS>> x) -
1=

Furthermore, from eqs. for all x € {£1}%, we have:

where [£1],. .., &4 € O(e/d). In other words,

<e. (107)

~

<e. (108)

~

* hi(x;w1) = sgn ((W1,x)) = z1,
_ A(l) _ - 1 —p
sgn (<wQa,¢2 (X,h (x;wl))> + b2a> =sgn|In|{ ——
2p
. (109)
(-1, if1/2>p>1/3,
O+, ifp<1/3 ’
hence
. _ <EDS>, if1/2 > p > 1/3,
-0 —
f120(x; 62a) {e, ifp < 1/3,
and
l e A
° }ALI(X, V_Vl) — H%:Lx’m if @2&(){7 02&) # <EOS>7 for 2 S 1 S d.
€, if ho, (X; 02,1) = <E0S>,
This implies:
. S - (w1,<E0S>), if p < 1/3,
h (x7 {W17 02(17 Wo,... ;Wd}) - { <I1, T1T2,. .., Hld=1 z;, <EOS>) ; Otherwise. (110)
L]

Theorem [T]in the main text follows as a corollary by Theorem] for p = p.ot. See Figure [33]for the
functional form of the error term £(p). In particular, the functional form also explains the difficulties
faced in training transformers for peot & 1/3.

63

1164

1165

1166

1167

1168
1169

1170
1171

1172

1173

1174

1175
1176

1177

1178

1179

1180

1181

1182

1183

1184

1185
1186

1187

1188
1189
1190
1191
1192

1193
1194

F.3 Post-training

We complement the analysis of the previous subsection to show now a positive learning result on
the combined pre- & post-training procedure. Precisely, we show that, when p.ot < 1/3 which is

the hard regime for pre-training, only O <log %) RL rounds suffice for the pre-trained model to

reach perfect accuracy. Furthermore, we prove that the length of the answer grows in a predictable
way.

Theorem 5. Letd > 2, § € (0,1) and peoy € (0,1/3). Let D(peot) be a (parameterized) distribution
over sequences deﬁned as in (I8). Let ¢ < co2— for some constant co > 0. Consider pre-training

(Algortthml)per—posztlon iterations Ty = O (5 4> Th, = 0] (max {%, %}) o, .. T =

,,,,, a8
p ? Peot

3 1
. A d3/4 A . dip2, d = d
COE_ﬁl‘ClEntS)\1 = @ (W) 7)\2(1 = @ (mln { 51/4T21a/4 5 W}) 7)\l = @ (W’ for
all 2 <1 < d. Furthermore, consider post-training with the STaR algorithm solving Problem
at each round and denote by h™ & ’HL““ the model returned at the end of the n-th STaR round. Then

there exists n* = O <log 1= pc‘”) such that, if:

2 max¢ {2

2] o ; o . . .
o (5%) total iterations T' = max {Tl, Ta, In %} and with regularization

.. ~ 7
1. SGD steps per-position per-STaR round are as follows: T = O (é-d?),
) d° d" A (d° : :
To. = O (max{@, W}) o, .., T = O (W) and total iterations T =
1—pcot
2max;c2,..., Ty 8 210%(Peo)
max < 11, To, %, = In ———P<t—= 5, and

51/4T11/4

~ FE J ~
— 3 Pco —
a=9 (mln{51/4T;Z4’ §1/3T2/3 })’ =06 (51/3 1/3> forall2 <1 <d,

with probability at least 1 — (5 over sampling from D(pcot) (during pre-training) and over sam-

2. Regularization strengths per-position per-STaR round are as follows: \1 = 0 da/4>,

pling from models ?Lo, <oy hyx (during post-training), post-training returns W() . v’vgn*) S
Hl,éé(lz)7.. 95 Joe H2a7 7(1 ,...w’vé") ¢ Ho, ... wfil),.. wg') ¢ ’Hd that induce
RV) e HER X s yfor which for all x € X it holds:
d
Th(n) <<$1,$11‘2,-~-,H$i7 <EUS>> X) —qn| SE, (111)
i=1

where |q, — pn| < 2" and ppy1 =
d

B ({w§)00 w L wln >}) - (xl,xlxg,...,Hxi, <EUS>> (12
i=1

Proof. The proof proceeds in two main steps. We first observe that the STaR objective for the
n’th round can be re-written as next-token prediction with respect to a shifted version D(g,,) of the
original distribution D(pcot), where 0 < ¢, < 1. We then bound the deviation of sequence ¢,, from a
“noise-less” sequence p,, that describes the evolution of the proportion of long data in the data mix,
and whose closed form is available.

12f£ for all n. < n* with pg = peot, and also:

From Theorem for p = peot and § = /2, with probability at least 1 — 6/2, we obtain model
RO e HER such that:
)(> — Pcot <

d
T h(0) <<$1,$1$2,...7H$i,<EOS>> S
i=1
x| — 1- Pcot
2

d
Tho ((H i, <EOS>>
i=1

64

&

(113)
<e

)

1195

1196

1197

1198
1199

1200

1201
1202
1203

1204

1205

1206
1207

1208

1209

and

WO (x; {W1, 020, W2, ..., Wq}) = (w1, <EDS>). (114)
Recall the form of the STaR problem for the first round:
min L=Ey raa/2)@, (LYl = 2} Lonore + L]y = d + 1} Liong|reot(%,y) = 1]

b,
W1,W2q,0,W2,...,Wq y’\"ﬂ'h<o)(‘|x)

(115)

where Lanore = [(wy, (x,91)) + 1?9 ((Waa, b), ([X,y1],72)) and Liong = 1D (w, (x,91)) +
1(2a) ({waa, b}, ((x,91) ,52)) + ... + (@) (wWa, ((X,91,---,Yd—1) ,ya))- Note that, with probability
at least 1 — §/2, the objective can be re-written as:

d
L= TTp,(0) ((Il,mll’g, Ceey HI1,<EOS>>

i=1

X, Tcot(xa y) = 1) E z1,...,xq~Rad(1/2), [‘Clong]

y:(ml,xlxg Hle a:i,<EUS>)

d
+ Th ((H i, <EOS>> X, Tcot (Xa y) = 1> E’azl,...,szRad(l/Z), [‘Cshort]
i=1 y=(T1{_, @:,<E0S>)
Po + o
Dol |, ~ | ¢ z1,...,cq~Rad(1/2), [‘Clong]
2 + 6o+ y=($17$1$2,~~vnf=1 $i7<EUS>>
Po + Go
+ <1 - ;Do+1> Eqy...zg~Rad(1/2), [Lshort]
Ho=+ G+ y=(TTL, «;,<E0S>)
= E(xay)ND(‘h) []]' {‘y| = 2} ‘Cshort +1 {|y| =d+ 1} Llong])

(116)

where ¢ := % with [(o[, |€o] < €. In other words, we showed that the reinforcement
2

learning risk with reward 7., during the first round of STaR is equal to a next-token prediction risk,
where the distribution is the mixture of long and short strings but with shifted mixture weight ¢ .
Thus, from Theorem 4] for p = ¢y and 6 = 6; € (0,1) with probability (1 — &) (1 — &/2), SGD
returns model A1) € HE®, such that:

d
TR <<$1,$1$2, XN Hwia <EOS>> X) -1 S g,
] =t (117)
1_
(1) ((Hxi,<EOS>> X) — 2q1 <e,
and
. _ (z1,<E0S>), if g1 < 1/3,
Y (x5 {W1, 020, Wa, ..., Wa}) = 118
(c: {1, 020, W2, .. Wa) (x1, T1T2,. .., Hle 24, <EOS>> , otherwise. (118)
Therefore, by induction, as long as ¢, < 1/2, invoking Theorem [l|n times for 6 = §; € (0,1)

and p = ¢;, with probability at least]\, (1 — ;) > 1 — Y. 0;, post-training returns model
R € HYn such that:

d

T h(n) <<I‘1,$1$2, ey Hwi, <EOS>> X) — (gn 5 e,

; =1 (119)
1- m
Th(n) <<i1_]1:$i,<EOS>> X) — TQL SE,
and
. _ (x1,<E0S>), if ¢, < 1/3,

R (x; {W1, 024, Wo, ..., W = . 120
(x, {W1, 020, W2, ’Wd}> {(xl,:clxg, ce H;i:l x;, <EOS>) , otherwise, (120)

65

1210

1211

1212

1213

1214
1215
1216

1217

1218

1219

1220
1221

1222

1228

1224

1225

1226

2(gn+¢n)

where dn+1 = m with |Cn|, |§"| S € with qo = Po-
We now analyze the perturbed sequence ¢y,. Let f(gn, Cny&n) := qni+1 = qfl(jlrgi?%. We Taylor
expand f around (g¢y, 0, 0):
of of
f(QT17<na€n) :f(Qn70a0)+Cnf +£n¥ +Rf(u7€n7£n)
" 1(4n,0,0) " 1(4n,0,0)
2q, 2 —2g, —4qn (121)
= + Cn +&én +R u,Gn,Sn
o1 gz T g1 TG)
2qn 2Cn — 2Cnqn — 4ntn
= + + }% u, 9 9
gn +1 (gn +1)? £(G)

where we used the Lagrange form of the remainder: Ry(u, (»,&n) = %H(O, u) ((ﬁ + 5121) , where

u € R? such that: |u;| < [¢,] and |ug| < |&,| and H(q, Cy, &r) is the Hessian of f evaluated at
(¢, Cn, &). We now bound the deviation of the perturbed sequence ¢, 11 from the un-perturbed one

pn-l—l:

2pn
|Qn+1 _pn+1| - f(Qn,Cnvfn) - o+ 1‘

2qy, 2Cn — 2Cnqn — 4&nqn 2pn

= + + R u, sSn) —
n +1 (gn + 1)2 s Gnn) =

2q” Qpn QCn _'ZCHQn _'4§HQn

< - +|R W, (n,ySn
2 n 2 nn — 4 nin :

<2|gn — pu| + ‘ ¢ (qC jlr O End + |R¢(u, (n, &), provided g, > 0.

(122)

Since g, < 1 and [¢,|,|&n| € O(e) and |Rf(u, ¢y,)| S €2, if we denote the error sequence by
en = |qn — Pnl, then:
ent1 — 26, S e (123)

Since ey = 0, this implies that the error at step n is bounded as:
en S 2% (124)

We want to find an integer n* such that model (") generates long answers. For this, it suffices to
have g, > 1/3, or equivalently:

x 1
pue =27 Cle > 2. (125)
‘We show that the unperturbed sequence p,, = p2p7"ljr11 admits a closed form solution. Let u,, = 1%,
then:
Up—1+1 ug — 1
= =1 , 126
U 5 + on (126)

or, for the original sequence p,,:

1 (1 - 2%y Po
2™ \ po 2"po+1—po po+(1—po)2"

Returning back to (123)), we seek n* > 1 such that:

po n* ’ 1
—2" (' > —. 128
po+ (1 —po)2="" °73 (128)

Assume that 2" C'e < % for some ¢ to be specified later. Then, it suffices to have:
1 1
pO * - I > 7’
po+ (1 —po)2—" 15~ 3

(129)

66

1227

1228

1229
1230
1231
1232

1233

1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245

or

2(1 —
n* > log <(pO)) . (130)
3po
In that case, the error parameter € needs to be as small as:
1 po
< = , 131
€ (j 1 — Po ()

for some C' > 0. Finally, we pick the smallest n* such that ¢,,» > 1/3 + u, where p > w(e’d)ﬂ
Note that p, < 1/3 = p,41 < 1/2, hence Theorem |4 can be invoked for ¢, < 3/4if C'is
sufficiently small. We set o = §/2 and 1, ..., 0, = ﬂ then with probability at least 1 — §, we
have:

d
(") (x; {v‘vﬁ””,égz*),wg”*),...,v‘vfl"*)}) - <x17x1x2,...,Ha:i,<EOS>> . (132)
1=1

O

Remark 5. Note that the guarantees of Theorem [5] for the number of SGD iterations required per
STaR round are very pessimistic: 1) they depend on the original mixture weight p. rather than the
per-round updated weight g,,, and 2) they assume that the models are re-initialized at the origin prior
to each STaR round, whereas of course in practice we continue fine-tuning the previously obtained
model which speeds up convergence.

Remark 6. One can also analyze an (almost offline) version of REINFORCE algorithm with no
reward normalization, instead of STaR, by noting that its loss also corresponds to the next-token
prediction objective but scaled by a different per-round coefficient.

In particular, if the proportion of long data in the data mixture is not exponentially small, i.e., there
exists constant k € N such that: p.or € 2(d™"), then by following the previous pre- & post-training
recipe on data coming from D (pc,t), We can obtain a model that emits a long, correct sequence and
predicts the parity of d bits after O (poly(d)) SGD iterations.

8We require ¢+ to not be exponentially close to 1/3, so that we do not pay 1/ sample complexity for
e < (d+1)In 22 < (d +1) (g — 1/3)

Note that for §; = % the regularization terms and SGD iterations grow together with a factor

(0] (ln m), but this gets suppressed by the 6() notation.

Pcot,

67

	Introduction
	Experiments on Parity
	Theory
	Conclusion
	Discussion
	Models and Algorithms
	Architecture
	Pre-training
	Post-training

	Experimental Details
	Parity
	Number Multiplication
	GSM8K
	MATH

	Additional experimental results
	More experiments on main parity setting
	Partial chain of thought

	Experiments with Mathematical Reasoning Benchmarks
	Number Multiplication
	Grade School & High School Mathematics (GSM8K & MATH datasets)

	Proofs
	Preliminaries & Setup
	Pre-training
	Post-training

