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Abstract001

Current Large Language Models (LLMs) for002
understanding proteins primarily treats amino003
acid sequences as a text modality. Meanwhile,004
Protein Language Models (PLMs), such as005
ESM-2, have learned massive sequential evo-006
lutionary knowledge from the universe of natu-007
ral protein sequences. Furthermore, structure-008
based encoders like ProteinMPNN learn the009
structural information of proteins through010
Graph Neural Networks. However, whether the011
incorporation of protein encoders can enhance012
the protein understanding of LLMs has not013
been explored. To bridge this gap, we propose014
EVOLLAMA, a multimodal framework that con-015
nects a structure-based encoder, a sequence-016
based protein encoder and an LLM for protein017
understanding. EVOLLAMA consists of a Pro-018
teinMPNN structure encoder, an ESM-2 pro-019
tein sequence encoder, a multimodal projector020
to align protein and text representations and a021
Llama-3 text decoder. To train EVOLLAMA,022
we fine-tune it on protein-oriented instructions023
and protein property prediction datasets verbal-024
ized via natural language instruction templates.025
Our experiments show that EVOLLAMA’s pro-026
tein understanding capabilities have been sig-027
nificantly enhanced, outperforming other fine-028
tuned protein-oriented LLMs in zero-shot set-029
tings by an average of 1%-8% and surpassing030
the state-of-the-art baseline with supervised031
fine-tuning by an average of 6%. On pro-032
tein property prediction datasets, our approach033
achieves promising results that are competitive034
with state-of-the-art task-specific baselines. We035
will release our code in a future version.036

1 Introduction037

The rapid advancements in Natural Language Pro-038

cessing (NLP) have led to the development of039

Large Language Models (LLMs) that are capable040

of understanding and generating human language.041

These models such as GPT-3.5 (OpenAI, 2022),042

GPT-4 (Achiam et al., 2023) and Llama (Touvron043

et al., 2023a,b; Dubey et al., 2024), inherently pos- 044

sess a certain level of world knowledge and have 045

demonstrated remarkable proficiency across a wide 046

range of tasks. Recently, the field of Bioinformat- 047

ics has seen the emergence of Transformer-based 048

(Vaswani et al., 2017) Protein Language Models 049

(PLMs) like ProtBert (Elnaggar et al., 2021) and 050

ESM (Rives et al., 2021; Lin et al., 2022). These 051

sequence-based encoders are pre-trained on a large 052

number of amino acid sequences to capture the 053

functional information embedded within proteins. 054

Moreover, structure-based encoders like Protein- 055

MPNN (Dauparas et al., 2022) and GearNet (Zhang 056

et al., 2022b) utilize Graph Neural Networks to 057

learn the structural information of proteins. 058

Despite the success of protein encoders and 059

LLMs in their respective domains, a significant gap 060

remains in integrating the knowledge from protein 061

encoders into LLMs to address biological prob- 062

lems by leveraging the parametric knowledge of 063

LLMs. Current LLMs treat amino acid sequences 064

as a text modality (Pei et al., 2023; Fang et al., 065

2023), potentially failing to leverage the rich struc- 066

tural and sequential information of proteins that 067

protein encoders are designed to capture. More- 068

over, protein encoders face challenges in multi-task 069

learning, making them unable to follow human 070

instructions. Besides, the gap between protein en- 071

coders and LLMs leads to significant challenges 072

in aligning different modalities, even between the 073

primary and tertiary structures of proteins (Zhang 074

et al., 2023). 075

To address the aforementioned challenges, we 076

introduce EVOLLAMA, a multimodal framework 077

designed to integrate the capabilities of protein en- 078

coders with an LLM. EVOLLAMA combines the 079

ESM-2 (Lin et al., 2022) protein sequence encoder, 080

which captures sequential evolutionary knowledge 081

from amino acid sequences, the ProteinMPNN 082

(Dauparas et al., 2022) structure encoder that learns 083

geometric features from 3D protein structures, a 084
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multimodal projector that aligns protein and text085

representations, and a Llama-3 (Dubey et al., 2024)086

text decoder for generating natural language out-087

puts.088

We propose a two-stage training approach, and089

the experimental results demonstrate that EVOL-090

LAMA with zero-shot outperforms the baselines091

fine-tuned on the Mol-Instructions (Fang et al.,092

2023) dataset by an average of 1%-8% and sur-093

passes the current state-of-the-art model with su-094

pervised fine-tuning by an average of 6%. Addi-095

tionally, on protein property prediction tasks based096

on the PEER benchmark (Xu et al., 2022), EVOL-097

LAMA shows promising results that are competitive098

with task-specific baselines.099

Our contributions are listed as follows:100

• Leverage multimodal representations of101

protein structures and sequences. We align102

protein structure and sequence representations103

with LLM text modalities, bridging the gap in104

limitations of protein encoders that are unable105

to directly exploit the advanced capabilities of106

LLMs. Our approach enhances LLMs’ under-107

standing of proteins, leveraging their paramet-108

ric knowledge to address biological problems109

and laying a foundation for future research on110

incorporating a broader range of biomolecular111

modalities.112

• Multi-task learning and instruction follow-113

ing capability. We implement a two-stage114

training approach. After projection tuning,115

EVOLLAMA can follow various human in-116

structions and solve downstream tasks in zero-117

shot settings. During the supervised fine-118

tuning stage, experiments demonstrate that119

tasks in the PEER benchmark have few interre-120

lations and do not negatively affect each other121

when multi-task fine-tuning is employed.122

• Plug-and-play architecture and efficient123

fine-tuning approach. Different protein en-124

coders and LLMs can be used in our plug-125

and-play architecture. Extensive experiments126

demonstrate that the projection tuning stage127

can be optional, with the frozen LLM pa-128

rameters during supervised fine-tuning signif-129

icantly reducing trainable parameters. Addi-130

tionally, we introduce a simple yet effective131

fusion method to align structure and sequence132

representations, improving efficiency during133

both training and inference.134

2 Related Work 135

Protein-oriented LLMs BioT5 (Pei et al., 2023) 136

and BioT5+ (Pei et al., 2024) captures the under- 137

lying relations and properties of bio-entities such 138

as molecules and proteins. ProLLaMA (Lv et al., 139

2024) introduces a training framework to transform 140

a LLM into a multi-task protein LLM, focusing on 141

protein sequence generation and superfamily pre- 142

diction tasks. InstructProtein (Wang et al., 2024b) 143

utilizes a knowledge graph based-generation frame- 144

work to construct instructions. These methods uti- 145

lize text-format protein sequences while EVOL- 146

LAMA focuses on leveraging multimodal represen- 147

tations of proteins. Prot2Text (Abdine et al., 2024) 148

directly fuses the structure and sequence represen- 149

tations as inputs into the multi-head cross-attention 150

module within the Transformer decoder. Compared 151

to Prot2Text, EVOLLAMA maps the structure and 152

sequence features into language embedding tokens, 153

enabling it to handle PPI prediction tasks, which 154

typically requires two proteins as inputs. Addi- 155

tionally, Prot2Text is designed to generate protein 156

descriptions rather than handle various protein- 157

oriented tasks, whereas EVOLLAMA can follow 158

human instructions, even in zero-shot settings. Fur- 159

ther related work is discussed in Appendix A. 160

Protein Representations BERT-based PLMs 161

such as ProtBert (Elnaggar et al., 2021), Protein- 162

BERT (Brandes et al., 2022) and ESM (Rives et al., 163

2021; Lin et al., 2022) learn protein sequence rep- 164

resentations through Masked Language Modeling 165

objective. Gligorijević et al. (2021) propose a 166

Graph Convolutional Network to encode protein 167

structures. Zhang et al. (2022b) present a protein 168

graph encoder to learn protein geometric features. 169

Apart from these sequence-based protein encoders, 170

some work employ Graph Neural Networks to learn 171

the geometric features of proteins. Dauparas et al. 172

(2022) introduce a protein sequence design method 173

based on Message Passing Neural Network with 174

3 encoder and 3 decoder layers. We adopt the en- 175

coder layers of ProteinMPNN as a structure-based 176

encoder in our approach. GearNet (Zhang et al., 177

2022b) performs relational message passing on 178

protein residue graphs for protein representation 179

learning. While these methods effectively learn 180

the protein representations through sequences or 181

structures, they do not utilize natural language with 182

knowledge of protein properties. Therefore, EVOL- 183

LAMA aligns protein and text representations to 184

enhance LLM’s understanding of proteins. 185
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3 Approach186

EVOLLAMA aims to align protein informa-187

tion from both pre-trained structure-based and188

sequence-based protein encoders with an advanced189

LLM. Both language and protein models are open-190

sourced. We target to bridge the gap between the191

protein encoders and LLM using MLP projection192

layers (Sec. 3.1), with an overview of our model193

displayed in Fig. 1. To achieve an effective EVOL-194

LAMA, we propose a two-stage training approach195

(Sec. 3.2). The initial stage involves pre-training196

the model on a large collection of aligned protein-197

text pairs to acquire protein language knowledge.198

In the second stage, we fine-tune the model with the199

high-quality protein-text dataset to enhance gener-200

ation reliability and usability.201

3.1 Architecture202

In this section, we will introduce the overall EVOL-203

LAMA in three parts: the protein encoders, the204

projection layer and the language decoder.205

Protein Encoders Given the input amino acid206

sequence Xseq, we consider the pre-trained protein207

encoder ESM-2 (Lin et al., 2022), which provides208

the protein feature Zseq = SeqEncoder(Xseq).209

The 3D structure of the given amino acid se-210

quence is predicted using AlphaFold-2 (Jumper211

et al., 2021) or ESMFold (Lin et al., 2022). A pro-212

tein structure encoder, such as ProteinMPNN and213

GearNet, is used to extract the feature Zstruct =214

StructEncoder(Xstruct).215

Projection Layer To map the outputs of the pro-
tein encoders into the same space as the text fea-
tures from word embedding, we apply an MLP to
convert Zseq and Zstruct into language embedding
tokens Hseq and Hstruct separately, which have the
same dimensionality of the word embedding space
in the language model:

Hseq = MLPseq(Zseq),

Zseq = SeqEncoder(Xseq),

Hstruct = MLPstruct(Zstruct),

Zstruct = StructEncoder(Xstruct)

Furthermore, since both structure-based and216

sequence-based protein encoders extract features217

based on residue positions, the lengths of their fea-218

ture representations are dependent solely on the219

length of the amino acid sequence. Therefore, we220

fuse the structure and sequence features by employ- 221

ing an element-wise addition of the correspond- 222

ing residue features. The fused protein represen- 223

tations Hp = Hseq ⊕ Hstruct reduces the protein 224

embedding tokens by half, significantly decreasing 225

the training and inference latency. Note that our 226

simple projection scheme is lightweight and cost- 227

effective, which allows us to iterate data centric 228

experiments quickly. We leave exploring possi- 229

bly more effective and sophisticated architecture 230

designs for EVOLLAMA as future work. 231

Language Decoder Given the protein structure
Xstruct, amino acid sequence Xseq and the fused
projected embeddings Hp, we have conversation
data (Xq,Xa), where Xq and Xa represent the
protein-related question and its corresponding an-
swer, respectively. We organize them as a sequence
and perform instruction-tuning of the LLM on the
prediction tokens, using its original auto-regressive
training objective. Specifically, we compute the
probability of generating target answers Xa by:

p(Xa|Xstruct,Xseq,Xq)

=

|Xa|∏
i=1

pθ(Xa,i|Xstruct,Xseq,Xq,Xa,<i) (1)

where θ is the trainable parameters. EVOLLAMA 232

model design is compatible with any off-the-shelf 233

GPT-style pre-trained LLM. EVOLLAMA adopts 234

Llama-3 8B (Dubey et al., 2024) for further train- 235

ing. A causal mask is applied to all the attention 236

operations, including the attention between protein 237

features Hp. 238

3.2 Training 239

As illustrated in Fig. 1, the training process of the 240

EVOLLAMA model consists of two stages: projec- 241

tion tuning and supervised fine-tuning, with the 242

first stage being optional. 243

Stage 1: Projection Tuning We keep both the 244

protein encoders and LLM weights frozen, and 245

maximize the likelihood of Eq. 1 with the param- 246

eters of projection MLP only (Fig. 1(a)). In this 247

way, the protein features Hp can be aligned with 248

the pre-trained LLM word embedding. This stage 249

can be understood as training a compatible protein 250

projector for the frozen LLM. 251

Stage 2: Supervised Fine-Tuning To efficiently 252

fine-tune EVOLLAMA and preserve the internal 253

knowledge of the LLM, its parameters are frozen 254
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Figure 1: Overall architecture and the training pipeline of the EVOLLAMA.

during this stage. Continuing to update the pre-255

trained weights of the projection layers and pro-256

tein encoders helps EVOLLAMA learn more protein257

knowledge and enhance its instruction following258

capability.259

4 Protein Instruction-Following Data260

In this section, we introduce the construction of261

protein instruction-following data. It consists of262

two sets, projection tuning and supervised fine-263

tuning, which are used at different training stages,264

described in Sec. 3. An example of the projec-265

tion tuning data and supervised fine-tuning data266

is illustrated in Fig. 2. Formally, for each exam-267

ple, we define Xp,Xq,Xa as the protein (fused268

protein representations, consisting of the 3D struc-269

ture Xstruct and the amino acid sequence Xseq), the270

protein-related natural language question, and the271

corresponding answer, respectively.272

Projection Tuning Data It consists of protein-273

text pairs originated from the Swiss-Prot (Consor-274

tium, 2023) database. Due to limited computational275

resources, we directly utilize the 3D structures pre-276

dicted by AlphaFold-2 (Jumper et al., 2021) from277

Swiss-Prot. The database contains 571K manually-278

annotated records, each containing information in-279

cluding protein name, subcellular location, func-280

tion and families. For Xq, we construct 10 tem-281

plates that ask the model to briefly describe the282

input protein Xp from various aspects. For Xa,283

information is extracted from the filtered Swiss-284

Prot annotation and constructed using a pre-defined285

template to ensure the consistency and clarity of286

protein descriptions. The question and answer tem-287

plates are listed in Fig. 4.288

Case #1:
Projection Tuning Data

Input 𝐗!"#$%": Input 𝐗!&': MLLPNILLTGTPGVGKTTLGKELASRSGLKYINVGDLAREGQLYD ...

Prompt 𝐗(: <protein> Examine the protein determined by the provided amino acid sequence, including

an in-depth look at its function, where it resides within the cell, and the broader family of proteins it is a

member of.

Response: The given protein Adenylate kinase isoenzyme 6 suggests its potential function as broad-

specificity nucleoside monophosphate (NMP) kinase that catalyzes the reversible transfer of the terminal

phosphate group between nucleoside triphosphates and monophosphates. May have a role in nuclear

energy homeostasis. Has also ATPase activity. May be involved in regulation of Cajal body (CB) formation.

It belongs to the adenylate kinase family. AK6 subfamily.

Supervised Fine-Tuning Data

Case #2 (PEER):

Response: Yes.

Case #1 (PMol):

Response: Evaluation of the protein sequence indicates that the associated enzyme exhibits catalytic

activity in the form of this chemical reaction: acetyl-CoA + alpha-D-glucosamine 1-phosphate = CoA + H(+)

+ N- acetyl-alpha-D-glucosamine 1-phosphate.

Input 𝐗!"#$%": Input 𝐗!&': MPAAVAIILAAGLGTRMRSSAPKALHPIAGRPMLGHLIAACEAVFD ...

Prompt 𝐗(: <protein> Examine the provided protein sequence and determine the catalytic activity of

the enzyme it represents, focusing on the chemical reaction it promotes.

Input 𝐗!"#$%": Input 𝐗!&': MPSGFQQIGSEDGEPPQQRVTGTLVLAVFSAVLGSLQFGYNIGVI ...

Input 𝐗!"#$%": Input 𝐗!&': MDELAGGGGGGPGMAAPPRQQQGPGGNLGLSPGGNGAAGGG ...

Prompt 𝐗( : <protein> <sep> <protein> Infer the interaction potential between the two human

protein sequences. Answer the question using a single word or phrase.

Figure 2: An example of the projection tuning data and
supervised fine-tuning data. Note that the special token
<protein> denotes the fused protein representations of
structural and sequential features.

Supervised Fine-tuning Data To align the 289

model to follow a variety of instructions, we 290

present and curate diverse instruction-following 291

data about the provided proteins, by verbalizing 292

protein-related tasks. It consists of 10 tasks includ- 293

ing Mol-Instructions (Fang et al., 2023) and PEER 294

benchmark (Xu et al., 2022). We use ESMFold 295

(Lin et al., 2022) to accelerate protein structure 296

prediction for sequences in these two datasets. 297

• Mol-Instructions is a comprehensive in- 298

struction dataset designed for the biomolec- 299

ular realm. It includes three compo- 300
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nents: molecule-oriented instructions, protein-301

oriented instructions and biomolecular text in-302

structions. We adopt protein-oriented instruc-303

tions in Mol-Instructions (named PMol) for304

the supervised fine-tuning stage. PMol details305

will be discussed in Sec. 5.1. For each task306

in Mol-Instructions, we make simple modifi-307

cations to the original prompts to fit our use308

cases and ensure coherence. Details are dis-309

cussed in Appendix B.2 and some modifica-310

tion cases are listed in Fig. 7.311

• PEER is a comprehensive benchmark for gen-312

eral protein sequence understanding tasks in-313

cluding protein localization prediction, pro-314

tein structure prediction and protein-protein315

interaction prediction. PEER benchmark de-316

tails will be discussed in Sec. 5.2. For each317

task in PEER benchmark, there are 10 ques-318

tion templates and 1 answer template, some319

of which are listed in Fig. 6. In response tem-320

plates for other tasks, categories are repre-321

sented by natural language. However, for fold322

classification, we use integers from 0 to 1,194323

due to the large number of categories.324

5 Experiments325

We evaluate EVOLLAMA1 on downstream tasks in-326

cluding protein understanding tasks based on Mol-327

Instructions (Sec. 5.1) and protein property predic-328

tion tasks based on PEER benchmark (Sec. 5.2).329

Additionally, the structure encoder in our approach330

is replaced with GearNet to construct EVOLLAMA331

(GearNet+ESM-2) for the experiments, and further332

experiments on the substitution of protein sequence333

encoders are provided in Appendix E. We evaluate334

our approach in both zero-shot settings, where only335

the projection layers are aligned during the pro-336

jection tuning stage, and in supervised fine-tuning337

without the projection tuning stage. Details of the338

experimental setups are discussed in Appendix C.339

5.1 Protein Understanding Tasks340

Task Descriptions Protein understanding tasks341

use PMol for fine-tuning and evaluation, which342

consist of four distinct tasks with datasets con-343

structed based on UniProtKB (Consortium, 2021).344

Protein function prediction outputs the function of345

the given protein. Catalytic activity prediction out-346

puts the catalytic activity of the input protein and347

1Unless specified otherwise, EVOLLAMA refers to EVOL-
LAMA (ProteinMPNN+ESM-2).

the chemical reactions it promotes. Domain/motif 348

prediction outputs the domains or motifs that the 349

given protein may contain. Functional description 350

generation outputs the description of the input pro- 351

tein’s function, subcellular localization, and any 352

biological processes it may be a part of. 353

Baselines We compare our approach with the 354

protein-oriented LLMs in Mol-Instructions includ- 355

ing LLaMA (Touvron et al., 2023a), Alpaca (Tloen, 356

2023), Baize (Xu et al., 2023a), ChatGLM (Zeng 357

et al., 2022), Galactica (Taylor et al., 2022) and 358

Vicuna. Apart from these LLMs, we use Prot2Text 359

(Abdine et al., 2024) and ProLLaMA (Lv et al., 360

2024) as our baseline models in zero-shot settings. 361

These models lack support for arbitrary prompts. 362

Prot2Text is designed to generate protein descrip- 363

tions, while ProLLaMA predicts protein superfam- 364

ilies. Therefore, we evaluate protein function pre- 365

diction for Prot2Text and domain/motif prediction 366

for ProLLaMA. For protein understanding tasks, 367

we follow Mol-Instructions, taking ROUGE-L (Lin, 368

2004) as the evaluation metric. Details of ROUGE- 369

L implementation are discussed in Appendix D. 370

Results As shown in Tab. 1, EVOLLAMA and 371

EVOLLAMA (GearNet+ESM-2) with zero-shot not 372

only handle all protein understanding tasks but 373

also outperform Prot2Text and ProLLaMA. Fur- 374

thermore, they surpass or approach ChatGLM, 375

Llama-2-7B-Chat and Vicuna fine-tuned on protein- 376

oriented instructions by 1%-8%, demonstrating that 377

during the projection tuning stage, EVOLLAMA 378

and EVOLLAMA (GearNet+ESM-2) learn protein 379

knowledge and can follow human instructions to 380

generalize their knowledge for various downstream 381

tasks. Additionally, EVOLLAMA outperforms all 382

baseline models, including Llama-2-7B-Chat fine- 383

tuned on the complete Mol-Instructions dataset 384

(Mol) after supervised fine-tuning, highlighting 385

the effectiveness of our approach. Notably, our 386

approach uses a relatively small amount of data 387

and has significantly fewer trainable parameters 388

than the baseline models using full-parameter fine- 389

tuning. The experimental results highlight the im- 390

portance of leveraging the multimodal structure and 391

sequence representations during training LLMs. 392

5.2 Protein Property Prediction Tasks 393

Task Descriptions Protein property prediction 394

tasks use PEER benchmark for fine-tuning and 395

evaluation, which consist of 6 tasks. Solubility 396

prediction (Khurana et al., 2018), defined as a bi- 397
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Models Data
Trainable/Total ROUGE-L(↑)

#Params. PF GF CA DP Avg.

Models in zero-shot settings
Galactica - - 0.12 0.12 0.13 0.09 0.1150
Prot2Text - - 0.14 - - - 0.1400
ProLLaMA - - - - - 0.02 0.0200
EVOLLAMA (GearNet+ESM-2) - - 0.16 0.16 0.21 0.15 0.1700
EVOLLAMA (ProteinMPNN+ESM-2) - - 0.16 0.14 0.15 0.11 0.1400

Fine-tuned models
ChatGLM PMol 6B/6B 0.15 0.14 0.13 0.10 0.1300
Llama-2-7B-Chat PMol 7B/7B 0.15 0.14 0.16 0.12 0.1425
Llama-2-7B-Chat Mol 7B/7B 0.42 0.44 0.52 0.46 0.4600
Vicuna PMol 7B/7B 0.07 0.08 0.08 0.06 0.0725
Alpaca PMol 7B/7B 0.2 0.1 0.23 0.12 0.1625
Baize PMol 7B/7B 0.2 0.15 0.22 0.13 0.1750
EVOLLAMA (GearNet+ESM-2) PMol, PEER 720M/8.8B (8.2%) 0.25 0.32 0.34 0.31 0.3050
EVOLLAMA (ProteinMPNN+ESM-2) PMol, PEER 690M/8.8B (7.9%) 0.48 0.50 0.60 0.50 0.5200

Table 1: Results of protein understanding tasks (Best, Second Best, Third Best). PF refers to protein function
prediction. GF refers to functional description generation. CA refers to catalytic activity prediction. DP refers
to domain/motif prediction. Note that Mol refers to the Mol-Instructions with 3 components: molecule-oriented
instructions, protein-oriented instructions (named PMol), and biomolecular text instructions. - indicates the data is
not applicable to the task.

nary classification task, aims to predict whether398

a given protein is soluble or not. Subcellular lo-399

calization prediction (Almagro Armenteros et al.,400

2017), defined as a ten-class classification task,401

aims to predict where a given protein locates in402

the cell. Binary localization prediction, a simpli-403

fied version of subcellular localization prediction,404

is defined as a binary classification task that aims405

to determine whether a given protein is soluble or406

membrane-bound. Fold classification (Fox et al.,407

2014; Hou et al., 2018) requires the model to clas-408

sify the global structural topology of a given protein409

into one of 1195 classes at the fold level. Yeast PPI410

prediction (Guo et al., 2008) and human PPI predic-411

tion (Peri et al., 2003; Pan et al., 2010) are defined412

as binary localization tasks, which aim to predict413

whether two given yeast or human proteins interact414

or not respectively. It is worth noting that for all415

tasks, protein sequences in the training set with416

high similarity to those in the test set are excluded417

based on the sequence identity. For example, se-418

quences with ≥ 30% identity are excluded in the419

solubility prediction task. Therefore, a key chal-420

lenge in protein property prediction tasks lies in421

evaluating a model’s ability to generalize across422

dissimilar protein sequences.423

Baselines We compare our approach with the424

following baselines in PEER benchmark. Fea-425

ture engineers include Dipeptide Deviation from 426

Expected Mean (DDE) (Saravanan and Gautham, 427

2015) and Moran correlation (Moran) (Feng and 428

Zhang, 2000). Protein sequence encoders in- 429

clude LSTM (Hochreiter and Schmidhuber, 1997), 430

Transformer (Vaswani et al., 2017), shallow CNN 431

(Shanehsazzadeh et al., 2020) and ResNet (He 432

et al., 2016). Pre-trained PLMs include ProtBert 433

(Elnaggar et al., 2021) and ESM-1b (Rives et al., 434

2021). Protein-oriented LLMs include Llama-3- 435

8B-Instruct (Dubey et al., 2024) and InstructProtein 436

(Wang et al., 2024b). For protein property predic- 437

tion tasks, we take accuracy (Acc) as the evaluation 438

metric. 439

Results As displayed in Tab. 2, EVOLLAMA with 440

zero-shot achieves a comparable performance with 441

both task-specific and single models across several 442

tasks including solubility prediction, binary local- 443

ization prediction and PPI prediction tasks. EVOL- 444

LAMA (GearNet+ESM-2) with zero-shot performs 445

relatively worse than EVOLLAMA due to its lower 446

capability to follow instructions. Besides, the su- 447

pervised fine-tuning stage significantly enhances 448

the performance of our approach, enabling it to out- 449

perform or approach the previous state-of-the-art 450

models including ProtBert, ESM-1b and Instruct- 451

Protein across multiple tasks. Additionally, we add 452

a linear classification head to ESM-2 and fine-tune 453
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Models Sol Sub Bin Fold Yst Hum Avg.

Task-specific models
DDE 59.77±1.21 49.17±0.40 77.43±0.42 9.57±0.46 55.83±3.13 62.77±2.30 52.42
Moran 57.73±1.33 31.13±0.47 55.63±0.85 7.10±0.56 53.00±0.50 54.67±4.43 43.21

CNN 64.43±0.25 58.73±1.05 82.67±0.32 10.93±0.35 55.07±0.02 62.60±1.67 55.74
ResNet 67.33±1.46 52.30±3.51 78.99±4.41 8.89±1.45 48.91±1.78 68.61±3.78 54.17
LSTM 70.18±0.63 62.98±0.37 88.11±0.14 8.24±1.61 53.62±2.72 63.75±5.12 57.81
Transformer 70.12±0.31 56.02±0.82 75.74±0.74 8.52±0.63 54.12±1.27 59.58±2.09 54.02

ProtBert 68.15±0.92 76.53±0.93 91.32±0.89 16.94±0.42 63.72±2.80 77.32±1.10 65.66
ESM-1b 70.23±0.75 78.13±0.49 92.40±0.35 28.17±2.05 57.00±6.38 78.17±2.91 67.35

Single models in zero-shot settings
EVOLLAMA (GearNet+ESM-2) 34.65±0.48 - 50.89±0.88 - 2.52±0.11 3.70±0.10 22.94
EVOLLAMA (ProteinMPNN+ESM-2) 50.76±0.47 8.16±0.27 92.85±0.21 0.65±0.06 53.59±0.36 50.21±0.79 42.70

Single fine-tuned models
InstructProtein 69.08±0.00 70.79±0.00 85.19±0.00 10.86±0.00 - - 58.98
Llama-3-8B-Instruct 69.13±0.39 51.36±0.06 98.91±0.00 8.77±0.40 56.05±0.53 62.87±0.34 57.85
EVOLLAMA (GearNet+ESM-2) 61.13±0.15 42.27±0.23 85.21±0.34 3.11±0.36 50.42±0.57 67.72±1.08 51.64
EVOLLAMA (ProteinMPNN+ESM-2) 72.37±0.35 73.25±0.27 99.73±0.05 10.96±0.36 57.45±0.78 72.71±1.15 64.41

Table 2: Results (in %) of protein property prediction tasks (Best, Second Best, Third Best). Sol represents solubility
prediction. Sub represents subcellular localization prediction. Bin represents binary localization prediction. Fold
represents fold classification. Yst represents yeast PPI prediction. Hum represents human PPI prediction. - indicates
the data is not applicable to the task.

it with full parameters for 1K steps per task. ESM-2454

achieves an average score of 67.10, demonstrating455

that ESM-2 is a competitive baseline compared456

to ESM-1b. Our approach surpasses ESM-2 on457

binary localization prediction and human PPI pre-458

diction tasks while approaching it on other tasks.459

We find that when jointly fine-tuning models on var-460

ious tasks through multi-task learning, the perfor-461

mance improves compared to task-specific models,462

demonstrating no negative impact between tasks.463

However, more interrelated downstream tasks or464

data could be introduced in future work to further465

enhance the model’s performance.466

In particular, compared to task-specific mod-467

els, EVOLLAMA outperforms or approaches them468

across several tasks, except for fold classification.469

A possible explanation for the promising results is470

that EVOLLAMA learns the properties of proteins471

through various tasks by leveraging multimodal472

structure and sequence representations. Notably,473

both EVOLLAMA and Llama-3-8B-Instruct achieve474

the best performance on binary localization task,475

demonstrating the significant potential of LLMs476

to understand proteins. Additionally, BioT5 and477

BioT5+ are trained to solve four tasks, excluding478

subcellular localization prediction and fold classifi-479

cation, achieving average accuracy scores of 79.36480

and 79.01, respectively, across these tasks. In com-481

parison, EVOLLAMA has an average score of 75.57,482

showing comparable performance with these two483

models. A possible explanation for the relatively 484

higher accuracy of these two models is that they 485

incorporate molecules as a new modality and lever- 486

age more molecule-related data, potentially yield- 487

ing positive effects, while we focus only on protein 488

structures and sequences. A similar result can be 489

observed in Tab. 1, where Llama-2-7B-Chat fine- 490

tuned on the complete Mol-Instructions dataset, 491

including molecule-related data, performs signifi- 492

cantly better than when fine-tuned only on protein- 493

oriented instructions. We leave the exploration of 494

incorporating more biomolecular modalities, such 495

as molecules and DNA, for future work. 496

Additionally, compared to Llama-3-8B-Instruct, 497

used as a text decoder in our approach, EVOLLAMA 498

improves performance on all tasks by incorporating 499

the multimodal structure and sequence representa- 500

tions of proteins. 501

5.3 Ablation Study 502

In this section, we conduct ablation studies to ex- 503

plore the effect of the projection tuning stage, struc- 504

ture and sequence representations, and the fusion 505

method. For a fair comparison, the baselines are 506

trained using the same experimental setups dis- 507

cussed in Appendix C with 10K steps. We conduct 508

more evaluations on protein property prediction 509

tasks in Appendix E, where we further discuss the 510

effect of protein sequence encoder sizes. 511
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Effect of the projection tuning stage We com-512

pare the performance of EVOLLAMA with and513

without the projection tuning stage in Tab. 3.514

EVOLLAMA, when continued to be fine-tuned after515

the projection tuning stage, achieves lower perfor-516

mance compared to direct supervised fine-tuning.517

A possible reason is that we use protein structures518

predicted by AlphaFold-2 during the projection519

tuning stage, while structures predicted by ESM-520

Fold are used during the supervised fine-tuning521

stage. The zero-shot ability discussed in Sec. 5.1522

and Sec. 5.2 highlights the effectiveness of the pro-523

jection tuning stage, demonstrating that the model524

learns to generalize its structural knowledge from525

structures predicted by AlphaFold-2 to those pre-526

dicted by ESMFold during inference. However, it’s527

challenging for models to learn the gap between528

protein structures predicted by AlphaFold-2 and529

ESMFold when the structure encoder and projec-530

tion layer are updated simultaneously during the531

supervised fine-tuning stage.532

Models PF GF CA DP Avg.

EVOLLAMA 0.43 0.46 0.55 0.48 0.4800
EVOLLAMA

w/ PT
0.28 0.34 0.40 0.34 0.3400

Table 3: Effect of the projection tuning stage. The
experiments are conducted on protein understanding
tasks. PT refers to the projection tuning stage.

Effect of structure and sequence representations533

As shown in Tab. 4, EVOLLAMA incorporating534

both structure and sequence representations outper-535

forms those utilizing either alone, demonstrating536

the effectiveness of integrating both protein rep-537

resentations. EVOLLAMA (GearNet+ESM-2) sig-538

nificantly enhances the performance by leveraging539

structure and sequence representations. Further-540

more, EVOLLAMA with only a sequence-based pro-541

tein encoder surpasses the one with only a structure-542

based protein encoder, regardless of the protein543

structure encoder chosen. A possible explanation544

is that the features extracted by ESM-2 implicitly545

contain structural information, indicating that se-546

quence representations are easier for LLMs to learn.547

Moreover, the parameters of the structure encoder548

are one to two orders of magnitude fewer than those549

of the sequence encoder, leading to a more limited550

extraction of structural features. A case study on551

the effect of structure and sequence representations552

is conducted in Appendix F.553

Models PF GF CA DP Avg.

EVOLLAMA 0.43 0.46 0.55 0.48 0.4800
EVOLLAMA

w/o ProteinMPNN
0.39 0.46 0.54 0.48 0.4675

EVOLLAMA

w/o ESM-2
0.35 0.42 0.50 0.41 0.4200

EVOLLAMA (GearNet+ESM-2) 0.30 0.32 0.36 0.30 0.3200

EVOLLAMA (GearNet+ESM-2)
w/o ESM-2

0.20 0.28 0.31 0.29 0.2700

Table 4: Effect of structure and sequence representa-
tions. The experiments are conducted on protein under-
standing tasks. Note that EVOLLAMA (GearNet+ESM-
2) (w/o GearNet) is equivalent to EVOLLAMA (w/o
ProteinMPNN), as both only utilize the sequence repre-
sentations extracted by the protein sequence encoder.

Effect of the fusion method To evaluate the ef- 554

fect of the fusion method, we directly use the struc- 555

ture and sequence features instead of fusing their 556

representations. As shown in Tab. 5, EVOLLAMA 557

with fused representations surpass the one with- 558

out, demonstrating the effectiveness of our fusion 559

method. However, EVOLLAMA (GearNet+ESM- 560

2) without fused representations outperforms the 561

one with them, indicating that for different protein 562

structure encoders, different fusion methods may 563

be chosen. Furthermore, the fused representations 564

reduce the token cost of the LLM, resulting in ap- 565

proximately 20% lower inference latency. 566

Models PF GF CA DP Avg. Latency

EVOLLAMA 0.43 0.46 0.55 0.48 0.4800 ×1.0
EVOLLAMA

w/o fused representations
0.42 0.44 0.55 0.48 0.4725 ×1.17

EVOLLAMA (GearNet+ESM-2) 0.30 0.32 0.36 0.30 0.3200 ×0.8
EVOLLAMA (GearNet+ESM-2)

w/o fused representations
0.31 0.34 0.39 0.36 0.3500 ×1.0

Table 5: Effect of the fusion method. The experiments
are conducted on protein understanding tasks.

6 Conclusion 567

In this paper, we propose EVOLLAMA, a mul- 568

timodal framework that connects ProteinMPNN, 569

ESM-2 650M and Llama-3 8B for protein under- 570

standing through a two-stage training process. Ex- 571

periments demonstrate that after the projection tun- 572

ing stage, EVOLLAMA in zero-shot settings out- 573

performs the fine-tuned baselines with full parame- 574

ters, surpassing the current state-of-the-art model 575

with supervised fine-tuning on the Mol-Instructions. 576

Additionally, our approach achieves promising re- 577

sults that are competitive with state-of-the-art task- 578

specific baselines on the PEER benchmark. 579
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Limitations580

EVOLLAMA incorporates the structure and se-581

quence representations of proteins to enhance582

LLM’s understanding of proteins. Due to the lack583

of experimentally determined structures for many584

proteins in our experiments, we use 3D structures585

predicted by AlphaFold-2 and ESMFold to fully586

leverage the data. These computationally predicted587

structures generally have relatively lower accuracy588

compared to wet lab experiments. Besides, training589

a single model to predict various protein properties590

presents challenges, causing EVOLLAMA to only591

approach the state-of-the-art performance for some592

tasks in protein property prediction.593
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and knowledge bases, capable of storing, combin- 876

ing and reasoning about scientific knowledge. 877

Vision Language Models Vision Language 878

Models (VLMs) such as LLaVA (Liu et al., 2024a) 879

and InstructBLIP (Dai et al., 2024) have demon- 880

strated their capability to understand visual con- 881

tent. LLaVA introduces an end-to-end LMM that 882

connects a visual encoder and a LLM for visual 883

and language understanding. InstructBLIP pro- 884

poses a instruction tuning framework towards gen- 885

eralized vision-language models. Geneverse (Liu 886

et al., 2024b) is a collection of fine-tuned LLMs 887

and VLMs for three novel tasks in genomic and pro- 888

teomic research. For the protein task, Geneverse 889

uses protein structure images with the fixed capture 890

angle. In contrast, our approach treats amino acid 891

sequences and 3D structures as distinct modalities. 892

Unlike the visual information provided by protein 893

structure images, EVOLLAMA captures sequential 894

and structural features from the primary and tertiary 895

structures of proteins, offering a complementary 896

perspective on multimodal protein representations. 897
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Protein-oriented LLMs OntoProtein (Zhang898

et al., 2022a) integrate external factual knowledge899

from gene ontology into PLMs to enhance protein900

representations. ProteinChat (Guo et al., 2023) uti-901

lizes a Graph Neural Network encoder block com-902

bined with a Transformer encoder block to extract903

features from protein structures. Instead of intro-904

ducing complex Transformer blocks, EVOLLAMA905

uses MLP as a lightweight and cost-effective ap-906

proach to align different modalities. ProtST (Xu907

et al., 2023b) is a framework to enhance protein se-908

quence understanding through biomedical texts by909

utilizing a Protein Language Model (PLM) and a910

Biomedical Language Model (BLM). The weights911

of BLM are initialized from PubMedBERT-abs912

(Gu et al., 2021), which is pre-trained on PubMed913

abstracts. ProtChatGPT (Wang et al., 2024a) is914

trained with sequence-text pairs using a Protein-915

Language Pretraining Transformer initialized with916

the pre-trained weights of PubMedBERT (Gu et al.,917

2021) to incorporate external knowledge. Com-918

pared to ProtST and ProtChatGPT, EVOLLAMA919

does not rely on LLMs specifically trained on ex-920

ternal biomedical domain knowledge. Instead, we921

tune the projection layers from scratch, highlight-922

ing the generalizability of our plug-and-play ar-923

chitecture. ProteinGPT (Xiao et al., 2024) is a924

multimodal protein chat system trained through a925

two-stage process: modality alignment and instruc-926

tion tuning. In contrast, our approach demonstrates927

that the initial alignment stage can be optional928

(Sec. 5.3), making our method more efficient and929

reducing training costs. Furthermore, EVOLLAMA930

employs a template-based strategy to construct the931

instruction-following dataset, avoiding the use of932

GPT-4o for generating the QA dataset as described933

in Xiao et al. (2024). This template-driven ap-934

proach not only enables zero-shot capability in935

handling unseen instructions during the projection936

tuning stage (Sec. 5.1 and Sec. 5.2), showcasing937

the generalization and robustness of our method,938

but also eliminates the API call costs. ProteinCLIP939

(Wu et al., 2024) performs contrastive learning be-940

tween protein sequences and texts by employing a941

frozen protein encoder and a frozen text embedding942

encoder. While ProteinCLIP is designed for protein943

function related tasks, our approach can be adapted944

to various downstream tasks including catalytic945

activity prediction and domain/motif prediction.946

ProtLLM (Zhuo et al., 2024) is a cross-modal LLM947

designed for protein-centric and protein-language948

tasks. Unlike ProtLLM, our approach integrates949

both structure and sequence representations of pro- 950

teins, rather than relying solely on the sequence 951

modality. This allows for a more comprehensive 952

understanding of protein features. 953

Protein Representations DDE (Saravanan and 954

Gautham, 2015), based on the dipeptide frequency 955

within the protein sequence, and Moran (Feng and 956

Zhang, 2000), which defines the distribution of 957

amino acid properties along a protein sequence, 958

are two typical protein sequence feature descrip- 959

tors. Shallow CNN (Shanehsazzadeh et al., 2020) 960

and ResNet (He et al., 2016) are protein sequence 961

encoders designed to capture the short-range inter- 962

actions within the protein sequence, while LSTM 963

(Hochreiter and Schmidhuber, 1997) and Trans- 964

former (Vaswani et al., 2017) aim to capture the 965

long-range interactions. The output layers of these 966

protein sequence encoders aggregate the represen- 967

tations of different residues into a protein-level 968

representation. Apart from these methods, some 969

recent work has focused on simultaneously encod- 970

ing protein sequences and structures. SaProt (Su 971

et al., 2023) integrates residue tokens with structure 972

tokens and is pre-trained on approximately 40M 973

sequences and structures. In contrast, EVOLLAMA 974

avoids the introduction of additional tokens and 975

instead aligns the structure and sequence represen- 976

tations of proteins with embeddings from natural 977

language prompts, achieving this with significantly 978

fewer sequences and structures. ESM-3 (Hayes 979

et al., 2024) is a generative language model that 980

reasons over the sequence, structure, and function 981

of proteins. Compared to ESM-3, our approach 982

treats arbitrary protein functions as natural lan- 983

guage rather than discrete function tokens or key- 984

words, showing flexibility in both understanding 985

and generating descriptive texts about protein func- 986

tions. 987

B Dataset Construction Details 988

B.1 Projection Tuning Data 989

Randomly select one from

10 prompt templates

Swiss-Prot Annotation

Protein name
Subcellular location
Function
Families Response

Template

The given protein ...

Prompt
Templates

<protein> Describe the properties of the protein that this

amino acid sequence constructs, ...

Prompt

Response

Figure 3: Overview of the projection tuning data con-
struction.
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<protein> Elaborate on the characteristics of the protein specified by this amino acid sequence, detailing its biological role, cellular 
compartmentalization, and its classification within protein families.

<protein> Provide a comprehensive analysis of the protein encoded by the given amino acid sequence, focusing on its physiological 
function, location within the cell, and the protein family it is associated with.

<protein> Examine the protein determined by the provided amino acid sequence, including an in-depth look at its function, where it resides 
within the cell, and the broader family of proteins it is a member of.

<protein> Offer a detailed account of the protein described by this sequence of amino acids addressing its functional significance, 
subcellular niche, and its familial lineage within the protein taxonomy.

<protein> Describe the properties of the protein that this amino acid sequence constructs, including its operational role in the cell, its 
intracellular positioning, and the protein family to which it pertains.

<protein> Furnish a detailed exposition of the protein that correlates with the specified amino acid sequence, highlighting its role within 
cellular processes, its subcellular habitat, and the family of proteins it integrates with.

<protein> Detail the profile of the protein corresponding to the listed amino acid sequence, encompassing its function within the organism, 
its cellular localization, and the protein family it is derived from.

<protein> Discuss the protein that this amino acid sequence forms, including an analysis of its functional role, subcellular distribution, and 
its affiliation with particular protein families.

<protein> Present a thorough description of the protein represented by the amino acid sequence given, considering its function in 
biological systems, its localization within the cell, and the family of proteins it belongs to.

<protein> Illustrate the features of the protein specified by this sequence of amino acids, with emphasis on its functional activity, place 
within the cell structure, and its classification among protein families.

{% if function is not none and similarity is not none %}
The given protein {{ protein_name }} suggests its potential function as {{ function }} It {{ similarity }}
{% elif function is none and similarity is not none %}
The given protein {{ protein_name }} {{ similarity }}
{% else %}
The given protein {{ protein_name }} suggests its potential function as {{ function }} 
{% endif %}

Prompt Template

Response Template

Figure 4: The prompt and response template of the projection tuning data. In the response template, similarity
refers to the families of the protein in Swiss-Prot.

As illustrated in Fig. 3, projection tuning data990

consists of sequence-description pairs originated991

from the Swiss-Prot (Consortium, 2023) database.992

The database contains 571K manually-annotated993

records, each containing information including pro-994

tein name, subcellular location, function and fam-995

ilies. To prevent from data leakage, we filter the996

Swiss-Prot annotation to 369K as our projection997

tuning data based on the downstream tasks.998

For prompts, we construct 10 templates that ask999

the model to briefly describe the input protein from1000

various aspects. For responses, information is ex-1001

tracted from the filtered Swiss-Prot annotation and1002

constructed using a pre-defined template to ensure1003

the consistency and clarity of protein descriptions.1004

The prompt and response templates are listed in1005

Fig. 4.1006

B.2 Supervised Fine-Tuning Data1007

As shown in Fig. 5, fine-tuning dataset consists1008

of 10 tasks including PEER benchmark (Xu et al.,1009

2022) and Mol-Instructions (Fang et al., 2023). For1010

each task in PEER benchmark, there are 10 prompt1011

templates and 1 response template, some of which 1012

are listed in Fig. 6. Except for fold classification, 1013

the categories in the response templates for other 1014

tasks are represented by natural language. For fold 1015

classification, we use integers ranging from 0 to 1016

1194 to represent its categories due to the excessive 1017

number of categories. 1018

For each task
there are 10 templates

Randomly select one from
each set

PEER Benchmark
Solubility
Subcellular Localization
Binary Localization
Fold

Response
Template Soluble.

Prompt
Templates

<protein> Assess the solubility of the given protein:
soluble or not? Answer the question using a single
word or phrase.

Prompt

Response

Yeast PPI
Human PPI <protein> <sep> <protein> Predict if the two yeast

protein sequences interact with each other. Answer
the question using a single word or phrase.

Prompt

Protein Function
General Function
Catalytic Activity
Domain/motif Prediction

Mol-Instructions (PMol)

Make simple modifications to the original prompts

Keep the original responses unchanged

Prompt
<protein> Please evaluate the given protein 
sequence and provide an explanation ...

By examining the input protein sequence, 
the enzyme catalyzes the subsequent ...

Response

Figure 5: Overview of the supervised fine-tuning data
construction.

For each task in Mol-Instructions, we make sim- 1019

ple modifications to the original prompts to ensure 1020

that they are suitable for our use cases and main- 1021

tain coherence. First, we remove the appended 1022
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<protein> Is the given protein water-soluble? Answer the question using a single word or phrase.

... (omit the other 9 prompt templates) ...

Prompt Template Response Template

<protein> Identify the subcellular localization of the specified protein. Answer the question using a 

single word or phrase.

... (omit the other 9 prompt templates) ...

<protein> Is the given protein membrane-bound or soluble? Answer the question using a single 

word or phrase.

... (omit the other 9 prompt templates) ...

<protein> Analyze the global fold topology of the specified protein. Answer the question using an 

integer between 0 and 1194 as the classification label.

... (omit the other 9 prompt templates) ...

<protein> <sep> <protein> Analyze the potential interaction between the two protein human 

sequences. Answer the question using a single word or phrase.

... (omit the other 9 prompt templates) ...

<protein> <sep> <protein> Analyze the potential interaction between the two protein yeast 

sequences. Answer the question using a single word or phrase.

... (omit the other 9 prompt templates) ...

Not soluble./Soluble.

Cell membrane./Cytoplasm./

Endoplasmic reticulum./

... (omit the other 7 responses) ...

Membrane-bound./Soluble.

0./1./.../1194.

No./Yes.

No./Yes.

Figure 6: The prompt and response template of PEER benchmark in the supervised fine-tuning data.

Given the protein sequence below, please analyze and describe the catalytic activity of the corresponding enzyme, specifically the 
chemical reaction it catalyzes: 

Original prompt used in Mol-Instructions:

Modified prompt in our fine-tuning dataset:
<protein> Given the protein sequence above, please analyze and describe the catalytic activity of the corresponding enzyme, 
specifically the chemical reaction it catalyzes.

Given the following protein sequence, can you perform an analysis and identify any potential motifs or domains? Here is the 
sequence: 

Original prompt used in Mol-Instructions:

Modified prompt in our fine-tuning dataset:
<protein> Given the protein sequence, can you perform an analysis and identify any potential motifs or domains?

Figure 7: Examples of modifications to the original prompts in Mol-Instructions. Red expressions are highlighted
for modifications.

text-format FASTA sequences. Additionally, we1023

modify some expressions in the original prompts.1024

Some modification cases are listed in Fig. 7.1025

C Experimental Setups1026

For protein understanding tasks, we follow Mol-1027

Instructions to split the dataset into an 8:1:1 ra-1028

tio for training/validation/test, where the training1029

and validation sets are used for the supervised fine-1030

tuning stage, and the test set is used for assessing1031

model performance. For protein property predic-1032

tion tasks, we follow the PEER benchmark to split1033

the dataset for each task. The details of dataset1034

splits are listed in Tab. 6. The results are averaged1035

over three runs with different random seeds. Specif-1036

ically, we follow the PEER benchmark to report the1037

mean and standard deviation of three runs’ results. 1038

We conduct both the projection tuning stage and 1039

supervised fine-tuning stage on 80GB H800 GPUs. 1040

The experiments to evaluate the inference latency, 1041

reported in Tab. 5, are conducted on 24GB RTX 1042

3090 GPUs. The hyperparameters are listed in 1043

Tab. 7. 1044

D Evaluation Implementation Details 1045

For a fair comparison, we follow Mol-Instructions 1046

(Fang et al., 2023) to compute the ROUGE-L (Lin, 1047

2004) score. Specifically, we take the complete ref- 1048

erences and predicted answers as inputs. However, 1049

both the references and predictions contain some 1050

non-protein-related parts, which are non-critical. 1051

In Fig. 8, we show that the critical parts are re- 1052
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Tasks Sub-tasks Data Source #Training #Validation #Test

Protein
Understanding

Tasks

Solubility

PEER
Benchmark

62,478 6,942 1,999
Subcellular Localization 8,420 2,811 2,773

Binary Localization 5,184 1,749 1,749
Fold Classification 12,312 736 718

Yeast PPI 9,890 190 788
Human PPI 71,338 630 474

Protein Property
Prediction

Tasks

Protein Function
Mol-Instructions

(PMol)

110,689 3,494
Catalytic Activity 51,573 1,601

Domain/Motif 43,700 1,400
Functional Description 83,939 2,633

Table 6: Details of dataset splits for supervised fine-tuning data.

Stages lr Scheduler Optimizer #Batch Size #Epochs/#Steps

Projection Tuning 2× 10−4 cosine AdamW 64 2 epochs
Supervised Fine-tuning 2× 10−5 cosine AdamW 32 25,000 steps

Table 7: Hyperparameters for the projection tuning stage and supervised fine-tuning stage.

Domain/motif PredictionNon-criticalCritical

Ground Truth: The computational analysis of the sequence suggests the presence of the following protein domains or motifs:

Glutamine amidotransferase, CTP synthase N-terminal domains.

Prediction: Our predictive analysis of the given protein sequence reveals possible domains or motifs. These include: Glutamine

amidotransferase, CTP synthase N-terminal domains.

Catalytic Activity Prediction

Ground Truth: Based on the provided protein sequence, the enzyme appears to facilitate the chemical reaction: H2O + L-

glutamine = L-glutamate + NH4(+).

Prediction: Evaluation of the protein sequence indicates that the associated enzyme exhibits catalytic activity in the form of this

chemical reaction: H2O + L-glutamine = L-glutamate + NH4(+).

Functional Description Generation

Ground Truth: A summary of the protein's main attributes with the input amino acid sequence reveals: Mono-ADP-

ribosyltransferase that mediates mono-ADP- ribosylation of target proteins. Acts as a negative regulator of transcription.

Prediction: A short report on the protein with the given amino acid sequence highlights: Involved in the regulation of DNA repair.

Protein Function Prediction

Ground Truth: Based on the given amino acid sequence, the protein appears to have a primary function of ATP binding, DNA

replication origin binding. It is likely involved in the DNA replication initiation, regulation of DNA replication, and its subcellular

localization is within the cytoplasm.

Prediction: The protein with the amino acid sequence is expected to exhibit ATP binding, DNA replication origin binding, DNA

replication origin recognition activity, contributing to the DNA replication, DNA replication initiation, regulation of DNA replication.

It can be typically found in the cytoplasm of the cell.

Figure 8: Examples of computing ROUGE-L score on protein understanding tasks.

lated with the domains, catalytic activities, and1053

functions. To illustrate how the critical parts affect1054

the ROUGE-L score, we exclude the non-critical1055

parts, retaining only the domains/motifs, chemi- 1056

cal reactions, and functional descriptions in both 1057

the reference and prediction. Note that the mod- 1058
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ifications are applied to three sub-tasks, with the1059

exception of the protein function prediction task,1060

where every part of the generation is critical to the1061

protein functions.1062

The re-evaluation results are displayed in Tab. 8,1063

demonstrating that by excluding the non-critical1064

parts from both the references and predictions,1065

EVOLLAMA still outperforms the previous state-1066

of-the-art model by 5%. Compared to the 6% im-1067

provement discussed in Sec. 5.1, the impact of non-1068

critical parts is relatively minor.1069

Models PF GF CA DP Avg.

ROUGE-L

Llama-2-7B-Chat 0.42 0.44 0.52 0.46 0.4600
EVOLLAMA 0.48 0.50 0.60 0.50 0.5200

ROUGE-L (w/o non-critical parts)

Llama-2-7B-Chat 0.42 0.46 0.56 0.57 0.5025
EVOLLAMA 0.48 0.42 0.60 0.71 0.5525

Table 8: Re-evaluation on protein understanding tasks.
The ROUGE-L score is computed excluding the non-
critical parts from both the references and predictions.

E More Evaluations1070

We conduct more evaluations on protein property1071

prediction tasks for each ablation study introduced1072

in Sec. 5.3.1073

Effect of the projection tuning stage As shown1074

in Tab. 9, EVOLLAMA with supervised fine-tuning1075

fails to maintain performance after the projection1076

tuning stage, while EVOLLAMA in zero-shot set-1077

tings remains competitive with the baselines fine-1078

tuned on PMol (see Tab. 1). This indicates that1079

bridging the gap between protein structures pre-1080

dicted by AlphaFold-2 and ESMFold during the1081

supervised fine-tuning stage is more challenging1082

than inference.1083

Effect of structure and sequence representations1084

As shown in Tab. 10, EVOLLAMA and EVOLLAMA1085

(GearNet+ESM-2) enhances the performance on1086

protein understanding tasks by incorporating both1087

structure and sequence representations, specifically1088

on protein function prediction and catalytic activity1089

prediction.1090

Effect of the fusion method As shown in Tab. 11,1091

EVOLLAMA with fused representations outper-1092

forms the one without, particularly on subcellu-1093

lar localization prediction task, while EVOLLAMA1094

(GearNet+ESM-2) achieves better performance 1095

when the structure and sequence representations 1096

are not fused. This demonstrates that the fusion 1097

method is more effective when ProteinMPNN is 1098

used as the structure encoder. 1099

Effect of protein sequence encoder sizes The 1100

ESM-2 650M protein sequence encoder in EVOL- 1101

LAMA is substituted with encoders of different 1102

sizes to demonstrate that the scaling law observed 1103

by Lin et al. (2022) extends to our multimodal 1104

framework. The experimental results in Fig. 9(a) 1105

indicate that performance on protein understanding 1106

tasks improves as the size of the protein sequence 1107

encoder increases. Furthermore, EVOLLAMA em- 1108

ploying ESM-2 with only 8M parameters outper- 1109

forms Llama-2-7B-Chat fine-tuned on PMol by an 1110

average of 27%. This result highlights the effec- 1111

tiveness of our approach, as the protein sequence 1112

encoder effectively captures evolutionary knowl- 1113

edge from amino acid sequences, substantially en- 1114

hancing the LLM’s understanding of proteins. We 1115

also conduct experiments on protein property pre- 1116

diction tasks, as illustrated in Fig. 9(b). The results 1117

show positive accuracy scaling across most tasks, 1118

with the exception of fold classification. A possible 1119

explanation is that the limited amount of training 1120

data makes it challenging for our multimodal archi- 1121

tecture to effectively learn the distinctions among 1122

the 1,195 fold levels. 1123

Figure 9: Effect of protein sequence encoder sizes. The
experiments are conducted on (a) protein understanding
tasks and (b) protein property prediction tasks.
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Models Sol Sub Bin Fold Yst Hum Avg.

EVOLLAMA 71.19±2.27 68.05±0.65 99.10±0.05 6.18±0.29 53.81±1.55 75.95±1.30 62.38
EVOLLAMA

w/ PT
62.28±0.25 50.73±0.11 92.37±0.35 2.14±0.92 50.30±0.22 65.54±0.99 53.89

Table 9: More evaluations on the effect of the projection tuning stage. The experiments are conducted on protein
property prediction tasks.

Models Sol Sub Bin Fold Yst Hum Avg.

EVOLLAMA 71.19±2.27 68.05±0.65 99.10±0.05 6.18±0.29 53.81±1.55 75.95±1.30 62.38
EVOLLAMA

w/o ProteinMPNN
70.91±0.10 68.63±0.21 99.73±0.03 7.94±0.11 54.48±0.60 65.12±2.76 61.14

EVOLLAMA

w/o ESM-2
63.06±0.24 40.56±0.56 99.41±0.03 6.78±0.36 53.34±0.61 52.74±0.60 52.65

EVOLLAMA (GearNet+ESM-2) 67.20±0.40 37.96±0.33 91.96±0.06 3.67±0.29 52.16±0.63 60.41±0.10 52.23
EVOLLAMA (GearNet+ESM-2)

w/o ESM-2
57.63±0.07 12.15±0.18 91.96±0.10 3.90±0.20 49.58±0.74 48.59±0.44 43.97

Table 10: More evaluations on the effect of structure and sequence representations. The experiments are conducted
on protein property prediction tasks.

Models Sol Sub Bin Fold Yst Hum Avg.

EVOLLAMA 71.19±2.27 68.05±0.65 99.10±0.05 6.18±0.29 53.81±1.55 75.95±1.30 62.38
EVOLLAMA

w/o fused representations
69.53±0.87 59.29±2.35 99.16±0.50 10.91±0.37 56.26±1.09 74.40±0.70 61.59

EVOLLAMA (GearNet+ESM-2) 67.20±0.40 37.96±0.33 91.96±0.06 3.67±0.29 52.16±0.63 60.41±0.10 52.23
EVOLLAMA (GearNet+ESM-2)

w/o fused representations
64.33±0.00 47.66±0.87 91.90±0.27 6.59±0.23 56.56±1.72 70.04±0.86 56.18

Table 11: More evaluations on the effect of the fusion method. The experiments are conducted on protein property
prediction tasks.

F Case Study1124

As shown in Fig. 10, we compare the outputs of1125

EVOLLAMA, EVOLLAMA (GearNet+ESM-2) and1126

Mol-Instructions on domain/motif prediction task.1127

Only EVOLLAMA correctly predicts all possible1128

domains or motifs of the given protein, regardless1129

of whether structure or sequence representations1130

are incorporated. Compared to EVOLLAMA, Mol-1131

Instructions fails to predict all the domains or mo-1132

tifs while EVOLLAMA (GearNet+ESM-2) gener-1133

ates incorrect ones, indicating that the structure1134

representations extracted by GearNet fail to cap-1135

ture domain- or motif-related information.1136

As shown in Fig. 11, we compare the outputs of1137

these models on catalytic activity prediction task.1138

Both EVOLLAMA, with fused structure and se-1139

quence representations, and Mol-Instructions gen-1140

erate the accurate and complete chemical reaction.1141

Furthermore, models with only structure or se-1142

quence representations fail to produce the correct1143

chemical reaction, demonstrating the significance1144

of fused representations. 1145
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Output (EvoLlama (ProteinMPNN+ESM-2)): The computational analysis of the sequence suggests the presence of the 

following protein domains or motifs: Glutamine amidotransferase, CTP synthase N-terminal domains.

Domain/motif Prediction

Input 𝐗!"#$%":                    

Input 𝐗!&': 

MANTKYIFITGGVVSSLGKGIAAASIGALLESRGLSVSLIKVDPYINVDPGTMSPFQHGEVFVTEDGTETDLDLGHYERFVRFKASK

KNNFTAGKVYETVIRNERKGNYLGGTVQVIPHITNEIKKRIKKGGQNKDIAIVEVGGTVGDIESQPFVEALRQMALELPNSSWAFVH

LTLVPFINASGELKTKPTQHSVKELRSLGISPDVLVCRSEQELPKDEKNKIALFCSVPAKSVISMHDVDTVYSIPILLNKQKVDDTILK

KLNLKIKKPNLNDWKRVVKAKLLPEKEVNVSFVGKYTELKDSYKSINEALEHAGIQNKAKVNINFVEAEQITSQNVRKVLKKSDAILV

PGGFGERGIEGMILACKYARENNVPYLGICLGMQIAIIEYARNVLKLKSANSTEFDSSTKFPVIGLITEWSDISGKKEKRTKNSDLGG

TMRLGGQVCKLKKKSNSYKMYKKSEIIERHRHRYEVNPNYKDKMIEQGLDVVGTSIDGKLVEMIELPSHKWFLACQFHPEFTSNP

RDGHPIFNSYIKSTITK

 Instruction: Given this protein sequence, can you identify any common protein motifs or domains that it may contain?

Output (Mol-Instructions): Based on computational analysis, the provided sequence potentially contains the following protein 

domains or motifs: Glutamine amidotransferase type-1 domains.

Output (Ground Truth): Our predictive analysis of the given protein sequence reveals possible domains or motifs. These 

include: Glutamine amidotransferase, CTP synthase N-terminal domains.

Output (EvoLlama (GearNet+ESM-2)): The sequence you provided suggests the presence of a protein with a significant 

chance of containing a helicase, Rosy domain, SDH C-terminal domain, 'Y' domain, 'Z' domain type of protein.

Output (EvoLlama (ProteinMPNN+ESM-2), w/o ProteinMPNN): Upon evaluating your submitted sequence, our predictive 

algorithms suggest the presence of: Glutamine amidotransferase, CTP synthase N-terminal domains.

Output (EvoLlama (ProteinMPNN+ESM-2), w/o ESM-2): After analyzing the given sequence, the following protein domains or 

motifs are predicted: Glutamine amidotransferase, CTP synthase N-terminal domains.

Output (EvoLlama (GearNet+ESM-2), w/o ESM-2): Our bioinformatics algorithm indicates that the protein with sequence has 

potentially significant domains or motifs. These include: Helical transmembrane domains (e.g., 4-alpha-helical, 7-transmembrane 

G-protein coupled receptors).

Correct Incorrect

Figure 10: Case study of performance on protein understanding tasks (Domain/motif prediction).
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Catalytic Activity Prediction

Input 𝐗!"#$%":                    

Input 𝐗!&': 

MDKVAVAGFLPEELCASLSLSPSFRGNQIFQWIGKGVDSFDAMTNLSAELRASLAEKAILRSTRVSDVLKADDGTVKLQIQTEDDL

AVETVLLTDKAARKTACVSCQAGCAMGCAFCKTGTLGLARNLSAAEIVEQFLYLEKHAGALDNIVFMGMGEPLLNLDALRKAIAVL

TDKRGRNLSSRRITVSTVGIVSGIYDLANNGPDVRLAVSLTTADETLRRELMPASLTNPLSDLRQAISYYIEKTGKRVTLEAVLLSGK

NTSEKNADSLIAFAKGLDVHVNLIPWNPVEGLSFVTPDPEETAQFVSRLEKGGLNVTLRMHRGKSISGACGQLGKTNPYA

Instruction: Please evaluate the following protein sequence and provide an explanation of the enzyme's catalytic activity, 

including the chemical reaction it facilitates:

Output (EvoLlama (GearNet+ESM-2)): A chemical reaction and its participating enzymes have been identified: S-adenosyl-L-

methionine tRNA (cytidine(34) 2'-O-)-methyltransferase [acetyl-CoA pathway].

Output (EvoLlama (ProteinMPNN+ESM-2), w/o ProteinMPNN): By examining the input protein sequence, the enzyme 

catalyzes the hydrolytic removal of adenine (A) from tRNAs, resulting in 7,8-dihydro-8-oxo-A and 5,6-methyl-5,6-dihydro formyl-

C.

Output (EvoLlama (GearNet+ESM-2), w/o ESM-2): The enzyme catalyzes the chemical reaction: 2 2-oxo-4-methyl-1,7-

diazabicyclo[3.3.0]octane + 2 H(+) + 2 H(2)O = 2 2-oxo-4-methyl-1,7-diazabicyclo[3.3.0]octan-7-ol + 2 H(+) + N(2),N(5)-

dimethyl-1,5-diaminopentane.

Output (Ground Truth): Based on the provided protein sequence, the enzyme appears to facilitate the chemical reaction:

adenosine(37) in tRNA + 2 reduced [2Fe-2S]-[ferredoxin] + 2 S-adenosyl-L-methionine = 2-methyladenosine(37) in tRNA + 5'-

deoxyadenosine + L-methionine + 2 oxidized [2Fe-2S]-[ferredoxin] + S-adenosyl-L-homocysteine.

Output (EvoLlama (ProteinMPNN+ESM-2)): By examining the input protein sequence, the enzyme catalyzes the subsequent 

chemical reaction: adenosine(37) in tRNA + 2 reduced [2Fe-2S]-[ferredoxin] + 2 S-adenosyl-L-methionine = 2-methyladenosine 

(37) in tRNA + 5'-deoxyadenosine + L-methionine + 2 oxidized [2Fe-2S]-[ferredoxin] + S-adenosyl-L-homocysteine.

Output (EvoLlama (ProteinMPNN+ESM-2), w/o ESM-2): Based on the provided protein sequence, the enzyme appears to 

facilitate the chemical reaction: adenosine 5'-phosphosulfamidase + adenosine 5'-phosphosulfate = (R)-(+)- \u00a0 (S)-

methylmethionine + adenosine 5'-phosphate + sulfuric acid.

Output (Mol-Instructions): An analysis of the protein sequence reveals that the enzyme's catalytic function corresponds to the 

chemical reaction: adenosine(37) in tRNA + 2 reduced [2Fe-2S]-[ferredoxin] + 2 S-adenosyl-L-methionine = 2-

methyladenosine(37) in tRNA + 5'-deoxyadenosine + L-methionine + 2 oxidized [2Fe-2S]-[ferredoxin] + S-adenosyl-L-

homocysteine.

Correct Incorrect

Figure 11: Case study of performance on protein understanding tasks (Catalytic activity prediction).
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