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ABSTRACT

Evaluation has traditionally focused on ranking candidates for a specific skill.
Modern generalist models, such as Large Language Models (LLMs), decidedly
outpace this paradigm. Open-ended evaluation systems, where candidate mod-
els are compared on user-submitted prompts, have emerged as a popular solution.
Despite their many advantages, we show that the current Elo-based rating systems
can be susceptible to and even reinforce biases in data, intentional or accidental,
due to their sensitivity to redundancies. To address this issue, we propose eval-
uation as a 3-player game, and introduce novel game-theoretic solution concepts
to ensure robustness to redundancy. We show that our method leads to intuitive
ratings and provide insights into the competitive landscape of LLM development.

1 INTRODUCTION

We can only improve what we measure, yet measuring the performance of Large Language Models
(LLMs) has become an elusive endeavor owing to their breadth and depth of capabilities. Real-
world benchmarks are costly to curate, increasingly requiring feedback from human domain experts
(Hendrycks et al., 2021; Rein et al., 2023). Synthetic benchmarks can help, but their relevance
to real-world performance is less clear (Zhang et al., 2024; Hsieh et al., 2024). An even more
vexing challenge of static benchmarks is that of test set contamination, a phenomenon difficult to
prevent despite efforts (Golchin & Surdeanu, 2024; Balloccu et al., 2024; Palavalli et al., 2024).
Enumerating skills of interests with narrowly defined static benchmarks seems to be an uphill battle
from the outset, as frontier models become generally capable.

An emerging trend in LLM evaluation is therefore to rely on open-ended evaluation systems, a no-
table example being the LMSYS Chatbot Arena (Chiang et al., 2024). In such a system, users submit
prompts of interest, with each model assigned an Elo score (Elo, 1978) based on how they compare
to each other on all prompts. In contrast to static benchmarks, this open-ended approach enjoys
liveness, diversity and scale, lending itself to become an important reference in LLM development.
Despite an intuitive sense of progress, issues around redundancy, bias and quality of crowdsourced
data have been raised (Chiang et al., 2024; Ahuja et al., 2023; Li et al., 2024b). Several recent stud-
ies reverted back to centralized curation for quality (Taori et al., 2023; Lee et al., 2024; White et al.,
2024). Increasing commercial efforts have been invested in private and proprietary evaluation too.

Perhaps this tension between quality and open-endedness is to be expected in LLM evaluation. Bi-
ases, redundancies and quality issues in the prompt distribution can affect Elo ratings, as they reflect
performance on average. This along with other identified deficiencies of the Elo system (Balduzzi
et al., 2018; Bertrand et al., 2023; Lanctot et al., 2023) raise crucial questions for LLM develop-
ment: how does an Elo-based open-ended evaluation system affect model development today, and
how can we mitigate its drawbacks, if any, in the future? In this paper, we provide an empirical
simulated-based investigation of the former and lean on game theory for a solution to the latter.

The connection between evaluation and game theory needs unpacking. Consider a set of agents and
a set of tasks, a naive approach to evaluation would rank agents by their average performance over
tasks, propagating biases and redundancies in the task set. A game-theoretic approach (Balduzzi
et al., 2018), would be to consider evaluation as an agent-vs-task game where the agent (task) player
chooses one of its agents (tasks) and is rewarded (penalized) by the agent’s performance on the task.
This game-theoretic perspective accomplishes two goals simultaneously. First, it lets the evaluation
system designers express their goals in players’ objectives: here, Balduzzi et al. (2018) evaluates
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agents under adversarial task selection. Second, a game-theoretic equilibrium decides which actions
are played during evaluation: quality and redundancies in players’ action sets do not matter. It is in
this sense that game theory complements open-ended evaluation at a fundamental level.

Applying game theory to LLM evaluation however has its own challenges. Indeed, the decision of
Balduzzi et al. (2018) in comparing agents under adversarial task selection was not a choice but a
necessity. In 2-player zero-sum games, approximating a Nash equilibrium (NE, Nash et al. (1950)) is
computationally tractable. NEs are also interchangeable in this setting as playing any NE guarantees
zero exploitability. Beyond this setting, both benefits are lost: approximating NEs is computationally
hard in the worst case (Daskalakis et al., 2006) and despite recent progress important challenges
remain (Gemp et al., 2022; 2024). Equilibrium selection in this generalised setting remains a long-
standing challenge too (Harsanyi & Selten, 1988; Rinott & Scarsini, 2000). For instance, driving
on either side of the road is an equilibrium, but it is unclear which equilibrium should be used for
evaluation. Past attempts at game-theoretic evaluation have therefore been restricted to the 2-player
zero-sum settings when LLM evaluation calls for at least 3 players (e.g., model-vs-model-vs-prompt).

In this paper, we make several contributions that lead up to our equilibrium rating framework:

1. We show via a simulated example (Section 1.1) that the risk of models specializing in a
few skills, at the expense of others, as they maximise their Elo ratings. Similarly, popular
practice in prompt selection further reinforces this trend;

2. We introduce novel equilibrium solution concepts for N -player general-sum games that are
unique and clone-invariant, a pre-requisite for our equilibrium rating method (Section 3);

3. We show our method scales to a real-world LLM evaluation dataset (Section 4.2) and pro-
vide ratings that are invariant to redundancy and correspond to our intuition in the sense of
risk-dominance (Harsanyi & Selten, 1988), with empirical evidence (Appendix F.4);

4. We provide examples of analyzing these equilibrium structures of the game, drawing in-
sights into the competitive landscape of LLM evaluation (Section 4.3).

1.1 ELO RATING IMPROVEMENT PATH: A SIMULATED EXAMPLE

With models continually improving their Elo ratings in systems such as LMSYS Chatbot Arena (Li
et al., 2024a), it is worth asking if higher Elo scores translate to meaningful progress across skills
of interest. This is difficult to answer from real-world data: we cannot replicate LLM development
at scale nor can we disentangle factors driving model development besides maximizing leaderboard
ratings. A synthetic example can provide insights in a controlled setting.

Consider S orthogonal skills of interests, M models and P prompts with each prompt a probability
vector p P �S over the skills and each model a vector m P RS

`, representing its competencies in
each skill. We can then define the utility of selecting model mi when compared to model mj on
prompt pk, as umppk,mi,mjq “ pT

k pmi ´mjq with i, j P rM s and k P rKs. A less common but
equally valid question is what should be the utility, if any, for selecting a prompt. We follow a similar
definition as Li et al. (2024b) and define the utility in choosing prompt pk as upppk,mi,mjq “
|umppk,mi,mjq|. The separability of a prompt is then 1

M2

∞
ij upppk,mi,mjq, consistent with

the prompt selection criterion used in offline benchmarks such as arena-hard-v0.1.

We now observe how this system evolves with rating-maximizing players. Consider two settings:
a) the “initial prompts” setting where the set of prompts is fixed but the set of models expands;
and b) the “additional prompts” setting where prompt and model players alternate to introduce new
prompts and models. We use a simple evolutionary process for our simulation (see Appendix F.1
for pseudocode). Let Pt and Mt be the number of prompts and models at iteration t and P0, M0 the
number of initial prompts and models sampled from Dirichletp11:Sq. We introduce a model at each
iteration which is a sum of improvement vectors sampled from Dirichletp11:Sq, such that the new
addition receives the highest rating according the rating method used (i.e. Elo or our equilibrium-
based method). In the “additional prompts” setting, a best-of-64 prompt is added at each iteration,
selected by their separability when Elo ratings are used, and by their equilibrium ratings otherwise.

Figure 1 (Center) shows our findings. Let Hpp̄tq, Hpm̄tq be the prompt and model skill entropy
at iteration t with p̄t “ 1

Pt

∞Pt

i pi and m̄t “ 1
Mt

∞Mt

i mi and H the Shannon entropy. The
Elo rating method leads to a consistent decline in skill entropy: the sequence of models improve

2
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Figure 1: (Left) We simulate the effect of the rating method on model development with users
submitting highly rated models (and prompts) iteratively. (Center) We show how model and prompt
skill entropy evolves under different rating methods over 32 trials. (Right) We show an example
sequence of models and prompts maximising their respective ratings. Darker indicates higher value.

along specific skill dimensions that is over-represented in the fixed set of initial prompts (dashed).
Adding prompts with high separability further reinforces this trend in both model and prompt skill
entropy (solid). We offer an intuitive explanation. Improvement on the Elo ratings or the separability
metric reflects improvements against the average. At iteration t, the expected utility to model mi is
given by umpp̄t,mi, m̄tq with its gradient defined by p̄t. Improving on the most prevalent skill in
p̄t therefore leads to the steepest ascent in utility. Similarly, the gradient for a prompt vector pk is
defined by the absolute deviation of the model vectors along each skill dimension 1

Mt

∞t
i |mi´m̄t|.

Prompts that target the skill dimension with the highest “spread” averaged across all model pairs is
therefore the most highly rated. Figure 1 (Right) illustrates this phenomenon from a single trial.
The Elo models become specialists on skill 1 due to prompt redundancy while new prompts become
highly concentrated in search for higher separability.

The underlying challenge, one that we address, is to propose a practical rating method that compares
models and prompts in a way that is intuitive and robust to redundancies. Figure 1 (Center) suggests
that our NE ratings maintain skill entropy. Indeed, Figure 1 (Right) shows models focusing on
different skills across iterations. As prompts are no longer measured against the average model
pairs, they also remain diverse. In both cases, ratings are derived from a game-theoretic equilibrium,
instead of an undifferentiated average. We now present our equilibrium-based evaluation framework.

2 BACKGROUND

Normal-form game A normal-form game is a tuple pN,A, uq where N is a finite set of players
N “ t1, . . . , nu indexed by i, a tuple of strategy (action) sets A “ pA1, . . . ,Anq, and a tuple of
utility functions u “ pu1, . . . , unq with Ai and ui : A Ñ R being player i’s strategy set and utility
respectively. Let a P A “ pa1, . . . , anq with ai P Ai for all i denote a strategy profile. We allow
strategy profiles to be selected randomly according to a distribution x P �pAq over joint actions.
Let xi denote the marginal distribution over player i’s strategy set Ai, i.e., x with all players j ‰ i

marginalized out. Likewise, let x´i denote the distribution with player i marginalized out. We call
x a pure strategy if it places all mass on a single action profile and mixed otherwise. Each player’s
utility function is naturally extended to randomized strategy profiles by considering its expected
value uipxq “ Ea„xruipaqs. Similarly, let uipxi, x´iq “ E ai„xi

a´i„x´i
ruipaqs.

3
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Coarse Correlated Equilibrium (CCE) and Nash Equilibrium (NE) An equilibrium is a strat-
egy profile x from which no player has an incentive to unilaterally deviate. Define player i’s incen-
tive to deviate to x

1
i P �pAiq unilaterally as regretipx1

i,xq “ uipx1
i, x´iq ´ uipxq, where �pAiq is

the simplex over Ai. Then, player i’s maximum regret for deviating from x, is defined as:

regretipxq “ max
x1
iP�pAiq

”
regretipx1

i,xq
ı

“ max
x1
iP�pAiq

”
uipx1

i, x´iq
ı

´ uipxq. (1)

The profile x is an approximate Coarse Correlated Equilibrium (Aumann, 1974; 1987) (✏-CCE) iff
@i, regretipxq § ✏. If x can be factorized into player marginals such that players cannot correlate,
i.e., x “ ëN

i“1 xi, then x is also an ✏-NE. NEs are a subset of CCEs.

Equilibrium Selection Games can have many equilibria. Additional criteria are often introduced
to make their selection unique. The set of CCEs is always convex, and so any strictly convex
objective function such as negative Shannon entropy can used to select a unique equilibrium.

In contrast, the set of NEs need not be convex, however, several solutions have been proposed to
solve for unique Nash equilibria in general-sum games (Harsanyi & Selten, 1988). The LLE was
originally defined by McKelvey & Palfrey (1995) along with their introduction of quantal response
(logit) equilibria (QREs). QREs are defined by a temperature parameter ⌧ and can be interpreted as
the Nash equilibria of a game with payoffs perturbed by Gumbelp0, ⌧q noise. Computing the LLE
involves tracing a continuum of QREs, starting at temperature ⌧ “ 8 (corresponding to the uniform
strategy profile) and ending at the LLE in the limit of ⌧ “ 0. The LLE is unique in all games except
a 0-measure set (McKelvey & Palfrey, 1995; Goeree et al., 2003). Another reason to solve for an
LLE is that it falls into the family of homotopy methods (Herings & Peeters, 2010), which were
shown to select risk-dominant equilibria in some general settings, a Nobel prize winning result of
Harsanyi & Selten (1988). Empirically, LLEs have also been shown to approximate human play in
games (McKelvey & Palfrey, 1995; Goeree et al., 2003).

3 METHOD

We now describe our rating method in terms of gamification, equilibrium solving and its selection.
In gamification, we endow prompt and model players with utility functions, partly inspired by prior
works, such that actions played at an equilibrium reflect our intuition. We note that our specific gam-
ification defines an N -player general-sum game where equilibrium solving and selection requires
more careful consideration. For equilibrium solving, we build on existing methods for approxi-
mating NEs and CCEs, reformulated to accommodate entropy-based techniques that select unique
equilibria and explain why ratings derived from these equilibria remain vulnerable to manipulation
in the face of redundant actions. We then propose a family of algorithms based on a novel kernel-
ized entropy that select unique equilibria yet are also robust to redundant actions. Finally, for a given
equilibrium solution x, we define the rating of an action ai to be regretipai,xq.

3.1 GAMIFICATION: EVALUATION VIA A GAME BETWEEN MODELS AND PROMPTS

We study a 3-player general-sum game in our experiments. Consider a prompt player with ap P Ap

the set of prompts, a king player and a rebel player each with actions am P Am the set of models.
Let ukpap, am, a

1
mq P t´1,´1{2, 0,`1{2,`1u be the utility function to the king player representing

a preference towards king model response am over the rebel model response a
1
m on a prompt ap.

The prompt player is rewarded for separating the models, with uppap, am, a
1
mq “ |ukpap, am, a

1
mq|.

The rebel player receives urpap, am, a
1
mq “ ´ukpap, am, a

1
mq except for when am “ a

1
m in which

case urpap, am, a
1
mq “ ´1. This asymmetry discourages the same model being played by both

model players deterministically with a prompt player indifferent over its actions. We refer to this
game as king-of-the-hill as it favours the king player, leaving the rebel player to mount its
best resistance without relying on some of the best models that the king player may choose. We
refer to the king player ratings as the model ratings in our results.

Given a collection of prompts and models, the utility function can be tabulated with |Ap| ˆ |Am|2
pairwise preference ratings. In our experiments we query a gemini-1.5-pro-api-0514 judge
LLM for preference ratings similar to Zheng et al. (2023); Verga et al. (2024). We caveat that our
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empirical results could therefore suffer from self-preference (Panickssery et al., 2024) and should
not be viewed as an objective assessment of frontier LLMs.

3.2 EQUILIBRIUM SOLVING

For an instance of the evaluation game, we can compute different equilibrium solutions x which
then define ratings. Here we present two options as they are unique, scalable and lead to intuitive,
invariant ratings when combined with a selection criteria that we describe in Section 3.3.

Nash Equilibrium (NE) While LLE computation is typically formulated as solving a differen-
tial equation that evolves the temperature ⌧ towards 0 while obeying the logit constraint xi “
softmaxp 1

⌧rxiuiq for all i (Turocy, 2005), this is also equivalent to satisfying the constraint
xi “ argmaxziP� uipzi, x´iq ` ⌧Spxiq where Spxiq is the Shannon entropy of xi. In this work,
we choose another condition

xi “ argmax
ziP�

!
u
⌧
i pzi, x´iq def“ uipzi, x´iq ´ ⌧DKLpzi||tiq

)
(2)

which is equivalent in the case where the target strategy ti is set to player i’s uniform strategy.
Using this definition of u⌧

i pzi, x´iq, we can define a loss function as in Gemp et al. (2022) such that
argminx L⌧ pxq is a QRE at temperature ⌧ :

L⌧ pxq “
ÿ

i

u
⌧
i pBRi, x´iq ´ u

⌧
i pxi, x´iq (3)

where player i’s best response BRi “ softmaxp 1
⌧rxiui ` logptiqq.1 By annealing ⌧ from a high

value and successively re-solving for the global minimum of L⌧ , we can approximately trace the
QRE continuum to the LLE. In Section 3.3, we explore non-uniform ti to achieve clone-invariance.

Coarse Correlated Equilibrium (CCE) Solving for a unique CCE is computationally easier than
NE as the problem is convex (Equation (1)). Therefore any strictly convex function can be used to
uniquely select an equilibrium. For example, maximum entropy would be a suitable default criterion
following the principle of maximum entropy. However, as we show in Section 3.3, a different target
formulation is necessary for clone-invariance. As such, we opt for maximum relative entropy to
a target joint t “ ën

i“1 ti to allow for non-uniform target joint distributions. A number of off-
the-shelf solvers (Domahidi et al., 2013) and frameworks (Diamond & Boyd, 2016) can be used
to compute solutions to this problem. We used a particularly efficient dual space gradient based
algorithm described in Appendix A for scaling.

3.3 INVARIANT EQUILIBRIUM SELECTION

There may be many NEs and CCEs in N -player general-sum normal-form games of even moderate
sizes (McLennan & Park, 1999; Sturmfels, 2002; McLennan, 2005). Many equilibria rely on sparse
or heavily skewed strategy profiles (see examples in Appendix F.4). Intuitively, these equilibria
are risky in the sense of risk dominance: playing one such equilibrium when other players do not
would be a costly mistake. Our goal is to propose a selection procedure that in conjunction with our
equilibrium solving algorithms, approximate a clone-invariant equilibrium.

Shannon entropy plays a key role in several equilibrium selection approaches, however, its definition
is vulnerable to redundancy in games. Consider a game with 2 distinct actions A and B per player
and introduce b´1 clones of B into player 1’s action set. The maximum entropy strategy for player 1
in the new game is uniform across their actions with mass 1

1`b on each, but this induces a distribution
that places b

1`b cumulative mass on the cloned action B. From Section 3.2, the maximum Shannon
entropy profile defines the precise starting point for tracing the path of QREs towards the LLE. This
starting point is sensitive to clones. Hence, if we compute the LLE using the uniform distribution in
this new game, we will effectively start from the pA,Bq mixed-strategy p 1

1`b ,
b

1`b q rather than the
desired mixed-strategy p1{2, 1{2q; hence, will not necessarily arrive at the LLE of the original game.

Desired properties. A clone-invariant entropy definition should be:
1If ti is the uniform distribution, logptiq is a constant vector and hence has no impact on the softmax.
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P1. Real-valued, finite, and non-negative for any distribution x;
P2. Have a well-defined gradient for any x in the interior of the simplex;
P3. Its maximizers should form a convex set. In the case of duplicate strategies (clones), the max-

imizers should form precisely the set of distributions which arbitrarily distribute a mass of
1
c across each of the c sets of clones. In addition, they should achieve an entropy value
which is equal to the entropy of the system with clones removed;

P4. Amenable to efficient estimation and flexible to re-interpretation of redundancy.

Note P3. resolves the issue with Shannon entropy that we highlighted above. P1 is necessary for a
reasonable measure of information content. P2 is necessary for gradient-based optimization, and P4
is practically helpful for efficient implementation and adaptation to bespoke game settings. We now
introduce affinity entropy H

p
a : � Ñ R, a generalized Tsallis entropy (Tsallis, 1988) that recognizes

similar or redundant strategies. Its derivation from the above axioms can be found in Appendix B.
Definition 1 (Affinity Entropy H

p
a ).

H
p
apxq “ 1

p

”
1 ´ 1JpU ppqxqp`1

ı
(4)

with entropic-index parameter p P p0, 1s, U ppq “ K⇤´1
p , and K a similarity kernel with entries in

r0, 1s with 1 indicating two strategies are clones, and ⇤p a diagonal matrix containing the pp ` 1q-
norms of the columns of K on its diagonal.
Theorem 1. Affinity entropy H

p
a satisfies all desiderata P1-P4.

In experiments, we define a similarity kernel Kpiq for each player i with entries Kpiq
↵� with

D
piq
↵� “ Ea„UpAqr

`
uip↵, a´iq ´ uip�, a´iq

˘2s (5)

K
piq
↵� “ expp´D

piq
↵�{p2�q2q (6)

where D measures the strategic dis-similarity between player i’s strategies ↵ and � and K is simply
a radial basis function (RBF) kernel under the metric D. Note Dpiq

↵� is zero iff two strategies ↵ and �

achieve exactly the same utility for player i irrespective of the actions chosen by other players in the
game. It should also be clear from the definition how one might Monte-Carlo estimate D. To select
for an NE or a CCE, we set t “ argmaxHp“1

a pxq in Equation (2) and Equation (7) respectively.

4 RESULTS

We use the same hyper-parameters for equilibrium solving in all results (see Appendix F.2). For
evaluation on real-world prompts, we consider the arena-hard-v0.1 dataset with 500 prompts,
selected to separate frontier LLMs, as well as responses from many candidate LLMs. We consider
responses from 17 LLMs in particular and queried gemini-1.5-pro-api-0514 for 8 pairwise
preference ratings on each prompt for each model pair. See Appendix F.3 for more details.

4.1 EQUILIBRIUM RATING IMPROVEMENT PATH: A SIMULATED EXAMPLE

Recall from Figure 1 that contrary to the Elo improvement path, maximizing equilibrium ratings led
to models (and prompts) improving across skills. We inspect the equilibrium improvement path and
offer our interpretation. Figure 2 (Right) shows that the shifts in focus between skills by the model
player coincides with transitions in the NE prompts, or prompts weighted by their NE strategies
(shown in Figure 2 (Center)). Similarly, to gain support under an NE, new prompts must highlight a
skill dimension along which equilibrium models are better differentiated (Figure 2 (Left)). In sum,
equilibrium prompts separate equilibrium models. This dynamic encourages exploration of new
skill dimensions and incentivizes models to be well-rounded across skills.

4.2 INVARIANT EVALUATION

We now turn to arena-hard-v0.1 and show that candidate LLMs’ equilibrium ratings are in-
variant to redundancies when their Elo ratings are not. In this experiment, we will introduce prompts

6
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Figure 2: We inspect the model improvement path induced by NE ratings as shown in Fig-
ure 1 (Right). (Left) shows the sequence of additional prompts added at each iteration. Each prompt
is the best-of-64 samples according to their NE ratings. (Center) shows the sequence of prompt
player NEs. Each row defines a distribution over prompts. (Right) shows the equilibrium-weighted
prompt skills and the sequence of king player models. Recall prompts and models are non-negative
vectors over skills, darker indicates higher focus or capability in each skill.

targeted at bringing down the rating of a certain action (in this case, model). Specifically, let
ūkpakq “ 1

|Am|
∞

ar
ukp¨, ak, arq be the vector of expected king player payoffs when playing action

ak against a randomly chosen rebel model on each prompt. We can then sample prompts adversarial
to ak from softmaxp´�ūkpakqq and add them to the prompt set. Figure 3 reports the king model
rankings under different methods with ak “ gemini-1.5-pro-api-0514 and � “ 10.

Our first observation is that without redundant adversarial prompts, our proposed equilibrium rank-
ings of LLMs are fairly consistent with their Elo rankings, with a few models moving up or down
one or two positions. This deserves attention. Out of a multiplicity of equilibria, the NE and CCE we
selected led to rankings that correspond to our intuition. Indeed, we show in Appendix F.4 that the
NE we select is risk-dominant among 128 mixed-strategy NEs of this game. Second, the Elo ratings
can be arbitrarily influenced by redundancy, with the top-ranked model falling through the ranks.
Equilibrium rankings remain invariant. In fact, while we lose the invariance guarantee with near
redundant prompts, we show models’ equilibrium rankings to degrade gracefully in Appendix F.5.
Third, the CCE ratings show the top-3 models to tie for the first place: correlating models with
prompts affects the competitive landscape which we inspect in Section 4.3. Lastly, solving for a
unique equilibrium is not sufficient for invariant ratings. We show in Figure 3 (Right) that using
Shannon’s entropy for tracing the QRE continuum or for selecting a max-entropy CCE would not
lead to invariant ratings. For completeness, we provide a detailed breakdown of our equilibrium
ratings in terms of action ratings and marginals for each player in Appendix F.5.

4.3 INTERPRETING EQUILIBRIUM SOLUTIONS

Besides rankings, the equilibrium solutions can surface insights into the evaluation game dynamics.
We share two examples using NE and CCE solutions respectively from ratings shown in Section 4.2.

Nash Equilibrium Prompts We have shown that equilibrium ratings are intuitive and invariant to
redundancy. A follow-up question is which actions are highly-rated and which actions affect other
players’ ratings (i.e. with positive support at the NE).

Recall that the prompt player utility uppap, ak, arq “ |ukpap, ak, arq| reflects the extent to which
a prompt separates the pair of responses from models ak and ar. The prompt player’s equilibrium
rating is then regretpap,xq “ Eak„xk

ar„xr
uppap, ak, arq with xk, xr the NE strategies of the king and

rebel player respectively. By definition, prompts that are highly rated under NE ratings separate
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Number of redundant prompts adversarial to `gemini-1.5-pro-api-0514`

Figure 3: We introduce an increasing number of redundant copies of prompts adversarial to
gemini-1.5-pro-api-0514 and show model rankings under each method. Models at the
same rank are grouped in grey and ordered alphabetically. (Right) We show equilibrium rankings
under NE(-a) and CCE(-a) selected using Shannon’s entropy instead of the affinity entropy.

models played at the NE. In other words, while the Elo ratings reflect the strength of an action on
average, equilibrium ratings reflect the strength of actions at the selected equilibrium.

We can now illustrates these phenomena using the same game investigated in the second columns
of Figure 3, with 250 redundant prompts added to the game. First, we show in Figure 4 (Top) the
king-vs-rebel payoff matrices induced by 6 sample prompts, with increasing equilibrium prompt
ratings. Prompts with low ratings tend to fail to differentiate performant models (i.e. top-left block
of each heatmap). Second, we can ask which prompts should we expect to have support at an
equilibrium. Figure 4 (Bottom) shows that empirically, highly rated prompts are played more often
at the equilibrium we select. This implies that the model ratings are heavily influenced by a small
subset of prompts that separate frontier models. We note that this correlation is not guaranteed,
following our discussion in Section 4.2 on redundant actions. Indeed, our final observation is that
prompts that are redundant with other prompts tend to receive lower probability mass than their
ratings would have required. In fact, since we have introduced 250 redundant prompts explicitly,
we can highlight in gray prompts that are indeed redundant — many of these prompts enjoy high
ratings, but significantly lower support. In other words, equilibrium ratings reflect quality of an
action in isolation while equilibrium support further takes into account redundancy of an action with
respect to other actions available to a player. This observation is even clearer in research games
studied in Appendix D-E.

Marginal rating contribution by co-player action With ratings derived from underlying equi-
libria, we can decompose the rating of each action into a sum of marginal contributions from each
co-player’s actions. Recall from Equation (1) that the rating of an action ai is its regretipai,xq “
uipai, x´iq ´ uipxq. We can decompose the rating of player i’s action ai into a weighted sum of
each of player j’s contributions, with �pai, aj ,xq “ xjpajq ruipaj , x´jq ´ uipai, aj , x´i,´jqs the
marginal contribution of aj to ai’s equilibrium rating. Note that regretpai,xq “ ∞

aj
�pai, aj ,xq.

The rating of ai describes the cost incurred by player i if it were to deviate to play ai from an equi-
librium x. �pai, aj ,xq therefore explains aj’s contribution in player i’s decision in not deviating.

Recall from Figure 3 where several models tied for the first place under the CCE dynamics but are
fully differentiated under NE. We can now leverage the marginal contribution analysis to understand
the mechanism underlying this phenomenon. Figure 5 shows the CCE king model ratings decom-
posed from the perspective of the rebel player. In other words, we ask which rebel models contribute

8
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King-vs-rebel payoffs for example prompts of increasing NE ratings (left to right)
Rows and columns ordered by the king model NE ratings of Figure 3
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Figure 4: We show that highly rated prompts generally have high support under the NE. Redundant
prompts (highlighted by the gray bands) would receive identical ratings but notably lower support.
In sum, equilibrium ratings reflect separability of each prompt with respect to the model equilibrium
strategies in isolation, whereas equilibrium support of each prompt further accounts for its redun-
dancy with respect to other prompts. (Top) We show the king-vs-rebel payoffs induced by example
prompts. Green indicates king-player winning and red losing. Highly rated prompts tend to discrim-
inate between strong models (top-left corners). (Bottom) We show the NE supports and ratings of
all prompts, ordered by their NE ratings.

−0.04 −0.02 0.00
king ratings

gemini-1.5-pro-api-0514

gpt-4o-2024-05-13

gpt-4-turbo-2024-04-09

claude-3-5-sonnet-20240620

gpt-4-0125-preview

−0.045 −0.035 −0.025 −0.015 −0.005 0.005 0.015
Contribution by family of models to king ratings

Qwen1.5
claude
command
gemini
gemma
gpt
llama
mistral

Family of models

Figure 5: The CCE joint distribution surfaces interesting game dynamics in the underlying com-
parison data which we can leverage for more insights. Here, the width of each bar representing a
model family F corresponds to

∞
ajPF �pai, aj ,xq with ai a king player model choice and aj a

rebel model belonging to the family F . A model’s family is determined by its model name prefix.
For brevity, we show the king model rating breakdown for the top 5 out of 17 models. Interestingly,
we observe that the 3 top-ranked king models tend to do well against other models in its own family.
The Gemma family of models, improves the rating of gemini-1.5-pro-api-0514 but detract
from the ratings of GPT models. Mistral and Llama family of models, on the other hand, surface
weaknesses in all 3 top-ranked models, contributing negatively to top-ranked king models’ ratings.
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most positively or negatively to each king model’s CCE rating. For clarity of presentation, we fo-
cus on the top 5 models and we group rebel models into families of models if they share the same
naming prefix. The contribution of each family of model is therefore the sum of the contribution by
models within each family F or

∞
arPF �pak, ar,xq with ak a king model and ar a rebel model.

We make several remarks. First, all 3 top-ranked king models benefit the most when compared
against rebel models in their own model family: the GPT family (Achiam et al., 2023) of models con-
tribute positively to the ratings of gpt-4o-2024-05-13 and gpt-4-turbo-2024-04-09.
Similarly, gemini-1.5-flash-api-0514, the only other model in the Gemini family (Team
et al., 2023), improves gemini-1.5-pro-api-0514’s rating the most. We speculate that this
can be a result of model developers selecting models to release based on favourable comparisons
to their earlier or smaller models. Second, all top-ranked models remain vulnerable to open-weight
models such as the Mistral (Jiang et al., 2023) and Llama (Dubey et al., 2024) families of models.
More fine-grained analysis may shed light on the prompts on which these losses tend to occur.

We caveat that our results are in part derived from the preference ratings of a
gemini-1.5-pro-api-0514 model and may not reflect the true dynamics of real-world LLM
development. Nevertheless, the interpretability offered by the game-theoretic equilibria further dis-
tinguishes game-theoretic evaluation from prior works to be discussed in the Section 5.

To further help build intuition in interpreting equilibrium ratings, we refer readers to Appendix D-E
where we show examples of similar analysis in the context of traditional research games of rock-
paper-scissors and chicken.

5 RELATED WORKS

There is a rich body of literature studying rating methods with applications in Chess, Go, Tennis
and video games. One family of probabilistic methods follows the Bradley-Terry model and predict
pairwise win probabilities from ratings. A widely used example is Elo (Elo, 1978) with extensions
Bayes-Elo, mElo and Elo-MMR (Coulom, 2008; Balduzzi et al., 2018; Ebtekar & Liu, 2021; Vadori
& Savani, 2024) capturing temporal variation, cyclicality and ordinal ranks in data. A separate line
of works draws from Social Choice Theory (SCT, Sen (1977); Lanctot et al. (2023)), traditionally
studied in the context of voting systems driven by axioms. One relevant axiom here is the inde-
pendence of clones: rankings should be invariant to redundant candidates being added2. However,
redundancy in votes is out of scope. Finally, game-theoretic evaluation has been previously studied
in Balduzzi et al. (2018) and Marris et al. (2022b). Our method generalises to N -player general-sum
settings, with practical equilibrium solving and selection algorithms.

6 CONCLUSIONS

We studied the effect of maximizing Elo ratings in the context of open-ended evaluation and showed
that its sensitivity to redundancy could bias model (and prompt) selection. We then proposed an
equilibrium rating framework, with practical equilibrium solving and selection algorithms that can
scale to real-world LLM evaluation. We show our method to provide intuitive and robust rankings
of models (and prompts), with interpretable structures.

We see several exciting future directions. First, although our methods can scale to tens of thousands
of prompts and tens of models on commodity hardware, scaling further would be challenging. Tab-
ulating the evaluation payoff tensor with pairwise preference ratings can be costly too. Stochastic
equilibrium solving (Gemp et al., 2022) or payoff prediction (Liu et al., 2024) might help. Finally,
research into alternative solution concepts, or how we could leverage their equilibrium structure for
analysis (e.g. prompt and model pruning) is also promising. Finally, while we target LLM evaluation
in specific, our methodology can be applied more generally to other domains.

2One way to satisfy this axiom is game-theoretic in nature: the voter margin matrix (Lanctot et al., 2023)
can be viewed as a 2-player zero-sum game, such that invariance properties of max-entropy NE ratings applies.
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