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ABSTRACT

The pressing need for pretraining algorithms has been diminished by numerous
advances in terms of regularization, architectures, and optimizers. Despite this
trend, we re-visit the classic idea of unsupervised autoencoder pretraining and
propose a modified variant that relies on a full reverse pass trained in conjunction
with a given training task. We establish links between SVD and pretraining and
show how it can be leveraged for gaining insights about the learned structures.
Most importantly, we demonstrate that our approach yields an improved perfor-
mance for a wide variety of relevant learning and transfer tasks ranging from fully
connected networks over ResNets to GANs. Our results demonstrate that unsu-
pervised pretraining has not lost its practical relevance in today’s deep learning
environment.

1 INTRODUCTION

While approaches such as greedy layer-wise autoencoder pretraining (Bengio et al., 2007; Vincent
et al., 2010; Erhan et al., 2010) arguably paved the way for many fundamental concepts of today’s
methodologies in deep learning, the pressing need for pretraining neural networks has been dimin-
ished in recent years. This was primarily caused by numerous advances in terms of regularization
(Srivastava et al., 2014; Hanson & Pratt, 1989; Weigend et al., 1991), network architectures (Ron-
neberger et al., 2015; He et al., 2016; Vaswani et al., 2017), and improved optimization algorithms
(Kingma & Ba, 2014; Loshchilov & Hutter, 2017; Reddi et al., 2019). Despite these advances, train-
ing deep neural networks that generalize well to a wide range of previously unseen tasks remains a
fundamental challenge (Neyshabur et al., 2017; Kawaguchi et al., 2017; Frankle & Carbin, 2018).

Inspired by techniques for orthogonalization (Ozay & Okatani, 2016; Jia et al., 2017; Bansal et al.,
2018), we re-visit the classic idea of unsupervised autoencoder pretraining in the context of re-
versible network architectures. Hence, we propose a modified variant that relies on a full reverse
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Figure 1: Our pretraining (denoted as RR) yields improvements for numerous applications: a): For difficult
shape classification tasks, it outperforms existing approaches (StdTS, OrtTS, PreTS): the RRTS model classi-
fies the airplane shape with significantly higher confidence. b): Our approach establishes mutual information
between input and output distributions. c): For CIFAR 10 classification with a Resnet110, RRC10 yields sub-
stantial practical improvements over the state-of-the-art. d): Learned weather forecasting has strictly limited
real-world data: our pretraining yields improvements for pressure (Z500, zoomed in regions shown above),
atmospheric temperature (T850) as well as ground temperature (T2M).
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pass trained in conjunction with a given training task. A key insight is that there is no need for
”greediness”, i.e., layer-wise decompositions of the network structure, and it is additionally bene-
ficial to take into account a specific problem domain at the time of pretraining. We establish links
between singular value decomposition (SVD) and pretraining, and show how our approach yields
an embedding of problem-aware dominant features in the weight matrices. An SVD can then be
leveraged to conveniently gain insights about learned structures. Most importantly, we demonstrate
that the proposed pretraining yields an improved performance for a variety of learning and transfer
tasks. Our formulation incurs only a very moderate computational cost, is very easy to integrate,
and widely applicable.

The structure of our networks is influenced by invertible network architectures that have received
significant attention in recent years (Gomez et al., 2017; Jacobsen et al., 2018; Zhang et al., 2018a).
However, instead of aiming for a bijective mapping that reproduces inputs, we strive for learning a
general representation by constraining the network to represent an as-reversible-as-possible process
for all intermediate layer activations. Thus, even for cases where a classifier can, e.g., rely on
color for inference of an object type, the model is encouraged to learn a representation that can
recover the input. Hence, not only the color of the input should be retrieved, but also, e.g., its shape.
In contrast to most structures for invertible networks, our approach does not impose architectural
restrictions. We demonstrate the benefits of our pretraining for a variety of architectures, from fully
connected layers to convolutional neural networks (CNNs), over networks with and without batch
normalization, to GAN architectures. We discuss other existing approaches and relate them to the
proposed method in the appendix.

Below, we will first give an overview of our formulation and its connection to singular values, before
evaluating our model in the context of transfer learning. For a regular, i.e., a non-transfer task, the
goal usually is to train a network that gives optimal performance for one specific goal. During a
regular training run, the network naturally exploits any observed correlations between input and
output distribution. An inherent difficulty in this setting is that typically no knowledge about the
specifics of the new data and task domains is available when training the source model. Hence, it
is common practice to target broad and difficult tasks hoping that this will result in features that
are applicable in new domains (Zamir et al., 2018; Gopalakrishnan et al., 2017; Ding et al., 2017).
Motivated by autoencoder pretraining, we instead leverage a pretraining approach that takes into
account the data distribution of the inputs. We demonstrate the gains in accuracy for original and
new tasks below for a wide range of applications, from image classification to data-driven weather
forecasting.

2 METHOD

With state-of-the-art methods, there is no need for breaking down the training process into single
layers. Hence, we consider approaches that target whole networks, and especially orthogonalization
regularizers as a starting point (Huang et al., 2018). Orthogonality constraints were shown to yield
improved training performance in various settings (Bansal et al., 2018), and can be formulated as:

Lort =

n∑
m=1

∥∥MT
mMm − I

∥∥2
F
, (1)

i.e., enforcing the transpose of the weight matrix Mm ∈ Rsout
m×s

in
m for all layers m to yield its

inverse when being multiplied with the original matrix. I denotes the identity matrix with I =

(e1m, ...e
sin
m

m ), ejm denoting the jth column unit vector. Minimizing equation 1, i.e. MT
mMm− I = 0

is mathematically equivalent to:
MT

mMmejm − ejm = 0, j = 1, 2, ..., sin
m, (2)

with rank(MT
mMm) = sin

m, and ejm as eigenvectors of MT
mMm with eigenvalues of 1. This formu-

lation highlights that equation 2 does not depend on the training data, and instead only targets the
content of Mm. Inspired by the classical unsupervised pretraining, we re-formulate the orthogonal-
ity constraint in a data-driven manner to take into account the set of inputs Dm for the current layer
(either activation from a previous layer or the training data D1), and instead minimize

LRR =

n∑
m=1

(MT
mMmdi

m − di
m)2 =

n∑
m=1

((MT
mMm − I)di

m)2, (3)
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where di
m ∈ Dm ⊂ Rsin

m . Due to its reversible nature, we will denote our approach with an RR
subscript in the following. In contrast to classical autoencoder pretraining, we are minimizing this
loss jointly for all layers of a network, and while orthogonality only focuses onMm, our formulation
allows for minimizing the loss by extracting the dominant features of the input data.

Let q denote the number of linearly independent entries in Dm, i.e. its dimension, and t the size
of the training data, i.e. |Dm| = t, usually with q < t. For every single datum di

m, i = 1, 2, ..., t,
equation 3 results in

MT
mMmdi

m − di
m = 0, (4)

and hence di
m are eigenvectors of MT

mMm with corresponding eigenvalues being 1. Thus, instead
of the generic constraint MT

mMm = I that is completely agnostic to the data at hand, the proposed
formulation of equation 4 is aware of the training data, which improves the generality of the learned
representation, as we will demonstrate in detail below.

As by construction, rank(Mm) = r 6 min(sin
m, s

out
m ), the SVD of Mm yields:

Mm = UmΣmV
T
m , with

{
Um = (u1

m,u
2
m, ...,u

r
m,u

r+1
m , ...,u

sout
m

m ) ∈ Rsout
m×s

out
m ,

Vm = (v1
m,v

2
m, ...,v

r
m,v

r+1
m , ...,v

sin
m

m ) ∈ Rsin
m×s

in
m ,

(5)

with left and right singular vectors in Um and Vm, respectively, and Σm having square roots of the
r eigenvalues of MT

mMm on its diagonal. uk
m and vk

m(k = 1, ..., r) are the eigenvectors of MmM
T
m

and MT
mMm, respectively (Wall et al., 2003). Here, especially the right singular vectors in V T

m are
important, as they determine which structures of the input are processed by the transformation Mm.
The original orthogonality constraint with equation 2 yields r unit vectors ejm as the eigenvectors of
MT

mMm. Hence, the influence of equation 2 on Vm is completely independent of training data and
learning objectives.

Next, we show that LRR facilitates learning dominant features from a given data set. For this, we
consider an arbitrary basis for spanning the space of inputsDm for layerm. Let Bm :

〈
w1

m, ...,w
q
m

〉
denote a set of q orthonormal basis vectors obtained via a Gram-Schmidt process, with t> q > r,
and Dm denoting the matrix of the vectors in Bm. As we show in more detail in the appendix,
our constraint from equation 4 requires eigenvectors of MT

mMm to be wi
m, with Vm containing r

orthogonal vectors (v1
m,v

2
m, ...,v

r
m) from Dm and (sin

m − r) vectors from the null space of M .

We are especially interested in how Mm changes w.r.t. input in terms of Dm, i.e., we express LRR
in terms of Dm. By construction, each input di

m can be represented as a linear combination via a
vector of coefficients cim that multiplies Dm so that di

m =Dmcim. Since Mmdm = UmΣmV
T
mdm,

the loss LRR of layer m can be rewritten as

LRRm
= (MT

mMmdm − dm)2 = (VmΣT
mΣmV

T
mdm − dm)2

= (VmΣT
mΣmV

T
mDmcm −Dmcm)2,

(6)

where we can assume that the coefficient vector cm is accumulated over the training data set size t
via cm =

∑t
i=1 c

i
m, since eventually every single datum inDm will contribute to LRRm

. The central
component of equation 6 is V T

mDm. For a successful minimization, Vm needs to retain those wi
m

with the largest cm coefficients. As Vm is typically severely limited in terms of its representational
capabilities by the number of adjustable weights in a network, it needs to focus on the most im-
portant eigenvectors in terms of cm in order to establish a small distance to Dmcm. Thus, features
that appear multiple times in the input data with a corresponding factor in cm will more strongly
contribute to minimizing LRRm .

To summarize, Vm is driven towards containing r orthogonal vectors wi
m that represent the most

frequent features of the input data, i.e., the dominant features. Additionally, due to the column
vectors of Vm being mutually orthogonal, Mm is encouraged to extract different features from the
input. By the sake of being distinct and representative for the data set, these features have the
potential to be useful for new inference tasks. The feature vectors embedded inMm can be extracted
from the network weights in practical settings, as we will demonstrate below.

Realization in Neural Networks Calculating MT
mMm is usually very expensive due to the di-

mensionality of Mm. Instead of building it explicitly, we constrain intermediate results to realize
equation 3 when training. A regular training typically starts with a chosen network structure and
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trains the model weights for a given task via a suitable loss function. Our approach fully retains this
setup and adds a second pass that reverses the initial structure while reusing all weights and biases.
E.g., for a typical fully connected layer in the forward pass with dm+1 = Mmdm +bm, the reverse
pass operation is given by d

′

m = MT
m(dm+1 − bm), where d

′

m denotes the reconstructed input.
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Figure 2: A visual overview of the regular
forward pass (blue) and the corresponding re-
verse pass for pretraining (yellow).

Our goal with the reverse pass is to transpose all oper-
ations of the forward pass to obtain identical intermedi-
ate activations between the layers with matching dimen-
sionality. We can then constrain the intermediate results
of each layer of the forward pass to match the results
of the backward pass, as illustrated in figure 2. Unlike
greedy layer-wise autoencoder pretraining, which trains
each layer separately and only constrains d1 and d

′

1, we
jointly train all layers and constrain all intermediate re-
sults. Due to the symmetric structure of the two passes,
we can use a simple L2 difference to drive the network
towards aligning the results:

LRR =

n∑
m=1

λm

∥∥∥dm − d
′

m

∥∥∥2
F
. (7)

Here dm denotes the input of layer m in the forward pass and d
′

m the output of layer m for the
reverse pass. λm denotes a scaling factor for the loss of layer m, which, however, is typically
constant in our tests across all layers. Note that with our notation, d1 and d

′

1 refer to the input data,
and the reconstructed input, respectively.

Next, we show how this setup realizes the regularization from equation 3. For clarity, we use a fully
connected layer with bias. In a neural network with n hidden layers, the forward process for a layer
m is given by dm+1 = Mmdm +bm,, with d1 and dn+1 denoting in- and output, respectively. For
our pretraining, we build a reverse pass network with transposed operations starting with the final
output where dn+1 = d

′

n+1, and the intermediate results d
′

m+1:

d
′

m = MT
m(d

′

m+1 − bm), (8)

which yields
∥∥∥dm − d

′

m

∥∥∥2
F

=
∥∥MT

mMmdm − dm

∥∥2
F

. When this difference is minimized via equa-
tion 7, we obtain activated intermediate content during the reverse pass that reconstructs the values
computed in the forward pass, i.e. d

′

m+1 = dm+1 holds. As in equation 10 the reverse pass activa-
tion d

′

m depends on dm+1
′, this formulation yields a full reverse pass from output to input, which

we use for most training runs below. In this case

d
′

m = MT
m(d

′

m+1 − bm) = MT
m(dm+1 − bm) = MT

mMmdm , (9)

which is consistent with equation 3, and satisfies the original constraint MT
mMmdm − dm = 0.

This version is preferable if a unique path from output to input exists. For architectures where the
path is not unique, e.g., in the presence of additive residual connections, we use a local formulation

d
′

m = MT
m(dm+1 − bm), (10)

which employs dm+1 for jointly constraining all intermediate activations in the reverse pass.

Up to now, the discussion focused on simplified neural networks without activation functions or
extensions such as batch normalization (BN). While we leave incorporating such extensions for
future work, our experiments consistently show that the inherent properties of our pretraining remain
valid: even with activations and BN, our approach successfully extracts dominant structures and
yields improved generalization. In the appendix, we give details on how to ensure that the latent
space content for forward and reverse pass is aligned such that differences can be minimized.

To summarize, we realize the loss formulation of equation 7 to minimize
∑n

m=1((MT
mMm−I)dm)2

without explicitly having to construct MT
mMm. Following the notation above, we will refer to

networks trained with the added reverse structure and the additional loss terms as RR variants. We
consider two variants for the reverse pass: a local pretraining equation 10 using the datum dm+1

of a given layer, and a full version via equation 8 which uses d
′

m+1 incoming from the next layer
during the reverse pass.

4



Under review as a conference paper at ICLR 2021

Embedding Singular Values Below, Std denotes a regular training run (in orange color in graphs
below), while RR denotes our models (in green). Pre and Ort will denote regular autoencoder
pretraining and orthogonality, respectively, while a subscript will denote the task variant the model
was trained for, e.g., StdT for task T. While we typically use all layers of a network in the constraints,
a reduced variant that we compare to below only applies the constraint for the input data, i.e., m=1.
A network trained with this variant, denoted by RR1

A, is effectively trained to only reconstruct the
input. It contains no constraints for the inner activations and layers of the network. For the Ort
models, we use the Spectral Restricted Isometry Property algorithm (Bansal et al., 2018).

We verify that the column vectors of Vm of models from RR training contain the dominant features
of the input with the help of a classification test, employing a single fully connected layer, i.e.
d2 = M1d1, with batch normalization and activation. To quantify this similarity, we compute an
LPIPS distance (Zhang et al., 2018b) between vim and the training data (lower values being better).
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Figure 3: Column vectors of Vm for different
trained models Std, Ort, Pre and RR for peaks.
Input features clearly are successfully embed-
ded in the weights of RR, as confirmed by the
LPIPS scores.

We employ a training data set constructed from two
dominant classes (a peak in the top left, and bottom
right quadrant, respectively), augmented with noise in
the form of random scribbles. Based on the analysis
above, we expect the RR training to extract the two
dominant peaks during training. The LPIPS measure-
ments confirm our SVD argumentation above, with av-
erage scores of 0.217±0.022 for RR, 0.319±0.114 for
Pre, 0.495± 0.006 for Ort, and 0.500± 0.002 for Std.
I.e., the RR model fares significantly better than the
others. At the same time, the peaks are clearly visible
for RR models, an example is shown in figure 3(b),
while the other models fail to extract structures that
resemble the input. Thus, by training with the full
network and the original training objective, our pre-
training yields structures that are interpretable and be
inspected by humans.

The results above experimentally confirm our formulation of the RR loss and its ability to extract
dominant and generalizing structures from the training data. Next, we will focus on quantified
metrics and turn to measurements in terms of mutual information to illustrate the behavior of our
pretraining for deeper networks.

3 EVALUATION IN TERMS OF MUTUAL INFORMATION

As our approach hinges on the introduction of the reverse pass, we will show that it succeeds in terms
of establishing mutual information (MI) between the input and the constrained intermediates inside a
network. More formally, MI I(X;Y ) of random variablesX and Y measures how different the joint
distribution ofX and Y is w.r.t. the product of their marginal distributions, i.e., the Kullback-Leibler
divergence I(X;Y ) = DKL[P(X,Y )||PXPY ]. (Tishby & Zaslavsky, 2015) proposed MI plane to
analyze trained models, which show the MI between the input X and activations of a layer Dm,
i.e., I(X;Dm) and I(Dm;Y ), i.e., MI of layer Dm with output Y . These two quantities indicate
how much information about the in- and output distributions are retained at each layer, and we use
them to show to which extent our pretraining succeeds at incorporating information about the inputs
throughout training.

The following tests employ networks with six fully connected layers with the objective to learn
the mapping from 12 binary inputs to 2 binary output digits (Shwartz-Ziv & Tishby, 2017), with
results accumulated over five runs. We compare the versions StdA, PreA, OrtA, RRA, and a variant
of the latter: RR1

A, i.e. a version where only the input d1 is constrained to be reconstructed. While
figure 4a) visually summarizes the content of the MI planes, the graph in (b) highlights that training
with the RR loss correlates input and output distributions across all layers: the cluster of green points
in the center of the graph shows that all layers contain balanced MI between in- as well as output
and the activations of each layer. RR1

A fares slightly worse, while StdA and OrtA almost exclusively
focus on the output with I(Dm;Y ) being close to one. PreA instead only focuses on reconstructing
inputs. Thus, the early layers cluster in the right-top corner, while the last layer I(D7;Y ) fails to
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Figure 4: MI planes for different models: a) Visual overview of the contents. b) Plane for task A. Points
on each line correspond to layers of one type of model. All points of RRA, are located in the center of the
graph, while StdA and OrtA, exhibit large I(Dm;Y ), i.e., specialize on the output. PreA strongly focuses on
reconstructing the input with high I(X;Dm) for early layers. c,d): After fine-tuning for A/B. The last layer
D7 of RRAA and RRAB successfully builds the strongest relationship with Y , yielding the highest accuracy.

align with the outputs. Once we continue fine-tuning these models without regularization, the MI
naturally shifts towards the output, as shown in figure 4 (c). Here, RRAA outperforms the other
models in terms of final performance. Likewise, RRAB performs best for a transfer task B with
switched output digits, as shown in graph (d). The final performance for both tasks across all runs
is summarized in figure 5. These graphs visualize that the proposed pretraining succeeds in robustly
establishing mutual information between inputs and targets across a full network, in addition to
extracting reusable features.
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Zoom-in
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Accuracy Comparisons of Source & Transfer Tasks

Figure 5: Performance for MI source and trans-
fer tasks for the models of figure 4. Due to the
large standard deviation of Ort, we show min/max
value ranges. The dashed gray line and region
show baseline accuracy for StdB. The top-left in-
set highlights the stability of the high accuracy re-
sults from RR training.

MI has received attention recently as a learning ob-
jective, e.g., in the form of the InfoGAN approach
(Chen et al., 2016) for learning disentangled and in-
terpretable latent representations. While MI is typ-
ically challenging to assess and estimate (Walters-
Williams & Li, 2009), the results above show that
our approach provides a straightforward and robust
way for including it as a learning objective. In this
way, we can, e.g., reproduce the disentangling re-
sults from (Chen et al., 2016), which are shown in
figure 1(c). A generative model with our pretraining
extracts intuitive latent dimensions for the different
digits, line thickness, and orientation without any
additional modifications of the loss function. The
joint training of the full network with the proposed
reverse structure, including non-linearities and nor-
malization, yields a natural and intuitive decomposi-
tion.

4 EXPERIMENTAL RESULTS

We now turn to a broad range of network structures, i.e., CNNs, Autoencoders, and GANs, with a
variety of data sets and tasks to show our approach succeeds in improving inference accuracy and
generality for modern day applications and architectures.

Transfer-learning Benchmarks We first evaluate our approach with two state-of-the-art bench-
marks for transfer learning. The first one uses the texture-shape data set from (Geirhos et al., 2018),
which contains challenging images of various shapes combined with patterns and textures to be
classified. The results below are given for 10 runs each. For the stylized data shown in figure 6 (a),
the accuracy of PreTS is low with 20.8%. This result is in line with observations in previous work
and confirms the detrimental effect of classical pretraining. StdTS yields a performance of 44.2%,
and OrtTS improves the performance to 47.0%, while RRTS yields a performance of 54.7% (see
figure 6b). Thus, the accuracy of RRTS is 162.98% higher than PreTS, 23.76% higher than StdTS,
and 16.38% higher than OrtTS. To assess generality, we also apply the models to new data without
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Figure 8: (a) Example output and reconstructed inputs, with the reference shown right. Only RRA
successfully recovers the input, StdA produces a black image, while PreA fares poorly. (b) L2 loss
comparisons for two different generative transfer learning tasks (averaged across 5 runs each). The
RR models show the best performance for both tasks.

re-training, i.e. an edge and a filled data set, also shown in figure 6 (a). For the edge data set, RRTS
outperforms PreTS, StdTS and OrtTS by 178.82%, 50% and 16.75%, respectively,

It is worth pointing out that the additional constraints of our training approach lead to moderately
increased requirements for memory and computations, e.g., 41.86% more time per epoch than reg-
ular training for the texture-shape test. On the other hand, it allows us to train smaller models: we
can reduce the weight count by 32% for the texture-shape case while still being on-par with OrtTS in
terms of classification performance. By comparison, regular layer-wise pretraining requires a sig-
nificant overhead and fundamental changes to the training process. Our pretraining fully integrates
with existing training methodologies and can easily be deactivated via λm = 0.

As a second test case, we use a CIFAR-based task transfer (Recht et al., 2019) that measures how
well models trained on the original CIFAR 10, generalize to a new data set (CIFAR 10.1) collected
according to the same principles as the original one. Here we use a Resnet110 with 110 layers
and 1.7 million parameters, Due to the consistently low performance of the Pre models (Alberti
et al., 2017), we focus on Std, Ort and RR for this test case. In terms of accuracy across 5
runs, OrtC10 outperforms StdC10 by 0.39%, while RRC10 outperforms OrtC10 by another 0.28% in
terms of absolute test accuracy (figure 7). This increase for RR training matches the gains reported
for orthogonality in previous work (Bansal et al., 2018), thus showing that our approach yields
substantial practical improvements over the latter. It is especially interesting how well performance
for CIFAR 10 translates into transfer performance for CIFAR 10.1. Here, RRC10 still outperforms
OrtC10 and StdC10 by 0.22% and 0.95%, respectively. Hence, the models from our pretraining very
successfully translate gains in performance from the original task to the new one, indicating that the
models have successfully learned a set of more general features. To summarize, both benchmark
cases confirm that the proposed pretraining benefits generalization.

Generative Adversarial Models In this section, we employ our pretraining in the context of gen-
erative models for transferring from synthetic to real-world data from the ScalarFlow data set (Eckert
et al., 2019). As super-resolution taskA, we first use a fully-convolutional generator network, adver-
sarially trained with a discriminator network on the synthetic flow data. While regular pretraining is
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Figure 9: Details of the three physical quantities of the weather forecasting test (full frames are shown in the
appendix). As confirmed by the quantified results, RR predicts results closer to the reference.

more amenable to generative tasks than orthogonal regularization, it can not be directly combined
with adversarial training. Hence, we pretrain a model Pre for a reconstruction task at high-resolution
without discriminator instead. Figure 8 a) demonstrates that our method works well in conjunction
with the GAN training: As shown in the bottom row, the trained generator succeeds in recovering
the input via the reverse pass without modifications. A regular model StdA, only yields a black im-
age in this case. For PreA, the layer-wise nature of the pretraining severely limits its capabilities to
learn the correct data distribution (Zhou et al., 2014), leading to a low performance.

We now mirror the generator model from the previous task to evaluate an autoencoder structure that
we apply to two different data sets: the synthetic smoke data used for the GAN training (task B1),
and a real-world RGB data set of smoke clouds (task B2). Thus both variants represent transfer
tasks, the second one being more difficult due to the changed data distribution. The resulting losses,
summarized in figure 8 b), show that RR training performs best for both autoencoder tasks: the L2

loss of RRAB1
is 68.88% lower than StdAB1

, while it is 13.3% lower for task B2. The proposed
pretraining also clearly outperforms the Pre variants. Within this series of tests, the RR performance
for task B2 is especially encouraging, as this task represents a synthetic to real transfer.

Weather Forecasting Pretraining is particularly attractive in situations where the amount of data
for training is severely limited. Weather forecasting is such a case, as systematic and accurate data
for many relevant quantities are only available for approximately 50 years. We target three-day
forecasts of pressure, ground temperature, and mid-level atmospheric temperature based on a public
benchmark dataset (Rasp et al., 2020). This dataset contains worldwide observations from ERA5
(Hersbach et al., 2020) in six-hour intervals with a 5.625◦ resolution. For the joint inference of
atmospheric pressure (500 hPa geopotential, Z500), ground temperature (T2M), and atmospheric
temperature (at 850 hPa, T850), we use a convolutional ResNet architecture with 19 residual blocks.
As regular pretraining is not compatible with residual connections, we omit it here.

We train a model regular model (about 6.36M trainable parameters) with data from 1979 to 2015,
and compare its inference accuracy across all datapoints from years 2017 and 2018 to a similar
model that employs our pretraining. While the regular model was trained for 25 epochs, the RR
model was pretrained for 10 epochs and fine-tuned for another 15 epochs. Across all three physical
quantities, the RR model clearly outperforms the regular model, as summarized in figure 1 (d) and
figure 9 (details are given in the appendix). Especially for the latitude-weighted RMSE of Z500, it
yields improvements of 5.5%. These improvements point to an improved generalization of the RR
model via the pretraining and highlight its importance for domains where data is scarce.

5 CONCLUSIONS

We have proposed a novel pretraining approach inspired by classic methods for unsupervised au-
toencoder pretraining and orthogonality constraints. In contrast to the classical methods, we employ
a constrained reverse pass for the full non-linear network structure and include the original learning
objective. We have shown for a wide range of scenarios, from mutual information, over transfer
learning benchmarks to weather forecasting, that the proposed pretraining yields networks with bet-
ter generalizing capabilities. Our training approach is general, easy to integrate, and imposes no
requirements regarding network structure or training methods. Most importantly, our results show
that unsupervised pretraining has not lost its relevance in today’s deep learning environment.

As future work, we believe it will be exciting to evaluate our approach in additional contexts, e.g.,
for temporal predictions (Hochreiter & Schmidhuber, 1997; Cho et al., 2014), and for training ex-
plainable and interpretable models (Zeiler & Fergus, 2014; Chen et al., 2016; Du et al., 2018).
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Léon Bottou. Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of machine learning research, 11(12), 2010.

Michael E Wall, Andreas Rechtsteiner, and Luis M Rocha. Singular value decomposition and prin-
cipal component analysis. In A practical approach to microarray data analysis, pp. 91–109.
Springer, 2003.

Janett Walters-Williams and Yan Li. Estimation of mutual information: A survey. In International
Conference on Rough Sets and Knowledge Technology, pp. 389–396. Springer, 2009.

Andreas S Weigend, David E Rumelhart, and Bernardo A Huberman. Generalization by weight-
elimination with application to forecasting. In Advances in Neural Information Processing Sys-
tems, pp. 875–882, 1991.

You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. tempogan: A temporally coherent, volumetric
gan for super-resolution fluid flow. ACM Transactions on Graphics (TOG), 37(4):95, 2018.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Advances in neural information processing systems, pp. 3320–3328, 2014.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3712–3722, 2018.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Lijing Zhang, Yao Lu, Ge Song, and Hanfeng Zheng. Rc-cnn: Reverse connected convolutional
neural network for accurate player detection. In Pacific Rim International Conference on Artificial
Intelligence, pp. 438–446. Springer, 2018a.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In IEEE Conference on Computer Vision
and Pattern Recognition, pp. 586–595, 2018b.

Yingbo Zhou, Devansh Arpit, Ifeoma Nwogu, and Venu Govindaraju. Is joint training better for
deep auto-encoders? arXiv preprint arXiv:1405.1380, 2014.

11



Under review as a conference paper at ICLR 2021

A APPENDIX

To ensure reproducibility, source code and data for all tests will be published. Runtimes were mea-
sured on a machine with Nvidia GeForce GTX 1080 Ti GPUs and an Intel Core i7-6850K CPU.

A.1 DISCUSSION OF RELATED WORK

Greedy layer-wise pretraining was first proposed by (Bengio et al., 2007), and influenced a large
number of follow up works, providing a crucial method for enabling stable training runs of deeper
networks. A detailed evaluation was performed by (Erhan et al., 2010), also highlighting cases were
it can be detrimental. These problems were later on also detailed in other works, e.g., by (Alberti
et al., 2017). The transferability of learned features was likewise a topic of interest for transfer learn-
ing applications (Yosinski et al., 2014). Sharing similarities with our approach, (Rasmus et al., 2015)
combined supervised and unsupervised learning objectives, but focused on denoising autoencoders
and a layer-wise approach without weight sharing. We demonstrate the importance of leveraging
state-of-the-art methods for training deep networks, i.e. without decomposing or modifying the
network structure. This not only improves performance, but also very significantly simplifies the
adoption of the pretraining pass in new application settings.

Extending the classic viewpoint of unsupervised autoencoder pretraining, several prior methods
employed ”hard orthogonal constraints” to improve weight orthogonality via singular value decom-
position (SVD) at training time (Huang et al., 2018; Jia et al., 2017; Ozay & Okatani, 2016). Bansal
et al. (Bansal et al., 2018) additionally investigated efficient formulations of the orthogonality con-
straints. In practice, these constraints are difficult to satisfy, and correspondingly only weakly im-
posed. In addition, these methods focus on improving performance for a known, given task. This
means the training process only extracts features that the network considers useful for improving the
performance of the current task, not necessarily improving generalization or transfer performance
(Torrey & Shavlik, 2010). While our approach shares similarities with SVD-based constraints, it
can be realized with a very efficient L2-based formulation, and takes the full input distribution into
account.

Recovering all input information from hidden representations of a network is generally very difficult
(Dinh et al., 2016; Mahendran & Vedaldi, 2016), due to the loss of information throughout the layer
transformations. In this context, (Tishby & Zaslavsky, 2015) proposed the information bottleneck
principle, which states that for an optimal representation, information unrelated to the current task
is omitted. This highlights the common specialization of conventional training approaches.

Reversed network architectures were proposed in previous work (Ardizzone et al., 2018; Jacobsen
et al., 2018; Gomez et al., 2017), but mainly focus on how to make a network fully invertible via
augmenting the network with special structures. As a consequence, the path from input to output
is different from the reverse path that translates output to input. Besides, the augmented structures
of these approaches can be challenging to apply to general network architectures. In contrast, our
approach fully preserves an existing architecture for the backward path, and does not require any
operations that were not part of the source network. As such, it can easily be applied in new settings,
e.g., adversarial training (Goodfellow et al., 2014). While methods using reverse connections were
previously proposed (Zhang et al., 2018a; Teng & Choromanska, 2019), these modules primarily
focus on transferring information between layers for a given task, and on auto-encoder structures for
domain adaptation, respectively.

A.2 PRETRAINING AND SINGULAR VALUE DECOMPOSITION

In this section we give a more detailed derivation of our loss formulation, extending Section 3 of the
main paper. As explained there, our loss formulation aims for minimizing

LRR =

n∑
m=1

(MT
mMmdi

m − di
m)2, (11)

where Mm ∈ Rsout
m×s

in
m denotes the weight matrix of layer m, and data from the input data set Dm

is denoted by di
m ⊂ Rsin

m , i = 1, 2, ..., t. Here t denotes the number of samples in the input data set.
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Minimizing equation 11 is mathematically equivalent to

MT
mMmdi

m − di
m = 0 (12)

for all di
m. Hence, perfectly fulfilling equation 11 would require all di

m to be eigenvectors of
MT

mMm with corresponding eigenvalues being 1. As in Sec. 3 of the main paper, we make use of
an auxiliary orthonormal basis Bm :

〈
w1

m, ...,w
q
m

〉
, for which q (with q ≤ t) denotes the number of

linearly independent entries inDm. While Bm never has to be explicitly constructed for our method,
it can, e.g., be obtained via Gram-Schmidt. The matrix consisting of the vectors in Bm is denoted
by Dm.

Since the wh
m(h = 1, 2, ...q) necessarily can be expressed as linear combinations of di

m, equation 11
similarly requires wh

m to be eigenvectors of MT
mMm with corresponding eigenvalues being 1, i.e.:

MT
mMmwh

m −wh
m = 0 (13)

We denote the vector of coefficients to express di
m via Dm with cim, i.e. di

m = Dmcim. Then
equation 12 can be rewritten as:

MT
mMmDmcim −Dmcim = 0 (14)

Via an SVD of the matrix Mm in equation 14 we obtain

MT
mMmDmcm −Dmcm

=

q∑
h=1

MT
mMmwh

mcmh
−wh

mcmh

=

q∑
h=1

VmΣT
mΣmV

T
mwh

mcmh
−wh

mcmh

(15)

where the coefficient vector cm is accumulated over the training data set size t via cm =
∑t

i=1 c
i
m.

Here we assume that over the course of a typical training run eventually every single datum in Dm

will contribute to LRRm
. This form of the loss highlights that minimizing LRR requires an alignment

of VmΣT
mΣmV

T
mwh

mcmh
and wh

mcmh
.

By construction, Σm contains the square roots of the eigenvalues of MT
mMm as its diagonal en-

tries. The matrix has rank r = rank(MT
mMm), and since all eigenvalues are required to be 1 by

equation 13, the multiplication with Σm in equation 15 effectively performs a selection of r column
vectors from Vm. Hence, we can focus on the interaction between the basis vectors wm and the r
active column vectors of Vm:

VmΣT
mΣmV

T
mwh

mcmh
−wh

mcmh

= cmh
(VmΣT

mΣmV
T
mwh

m −wh
m)

= cmh
(

r∑
f=1

(vf
m)Twh

mvf
m −wh

m).

(16)

As Vm is obtained via an SVD it contains r orthogonal eigenvectors of MT
mMm. equation 13

requires w1
m, ...,w

q
m to be eigenvectors of MT

mMm, but since typically the dimension of the input
data set is much larger than the dimension of the weight matrix, i.e. r ≤ q, in practice only r
vectors from Bm can fulfill equation 13. This means the vectors v1

m, ...,v
r
m in Vm are a subset of

the orthonormal basis vectors Bm :
〈
w1

m, ...,w
q
m

〉
with (wh

m)2 = 1. Then for any wh
m we have{

(vf
m)Twh

m = 1, if vf
m = wh

m

(vf
m)Twh

m = 0, otherwise. (17)

Thus if Vm contains wh
m, we have

r∑
f=1

(vf
m)Twh

mvf
m = wh

m, (18)
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and we trivially fulfill the constraint

cmh
(

r∑
f=1

(vf
m)Twh

mvf
m −wh

m) = 0. (19)

However, due to r being smaller than q in practice, Vm typically can not include all vectors from
Bm. Thus, if Vm does not contain wh

m, we have (vf
m)Twh

m = 0 for every vector vf
m in Vm, which

means
r∑

f=1

(vf
m)Twh

mvf
m = 0. (20)

As a consequence, the constraint equation 12 is only partially fulfilled:

cmh
(

r∑
f=1

(vf
m)Twh

mvf
m −wh

m) = −cmh
wh

m . (21)

As the wh
m have unit length, the factors cm determine the contribution of a datum to the overall loss.

A feature wh
m that appears multiple times in the input data will have a correspondingly larger factor

in cm and hence will more strongly contribute to LRR. The L2 formulation of equation 11 leads
to the largest contributors being minimized most strongly, and hence the repeating features of the
data, i.e., dominant features, need to be represented in Vm to minimize the loss. Interestingly, this
argumentation holds when additional loss terms are present, e.g., a loss term for classification. In
such a case, the factors cm will be skewed towards those components that fulfill the additional loss
terms, i.e. favor basis vectors wh

m that contain information for about the loss terms. This, e.g., leads
to clear digit structures being embedded in the weight matrices for the MNIST example below.

In summary, to minimize LRR, Vm is driven towards containing r orthogonal vectors wh
m which

represent the most frequent features of the input data, i.e. the dominant features. It is worth empha-
sizing that above Bm is only an auxiliary basis, i.e., the derivation does not depend on any particular
choice of Bm.

A.3 EXAMPLES OF NETWORK ARCHITECTURES WITH PRETRAINING

While the proposed pretraining is significantly more easy to integrate into training pipelines than
classic autoencoder pretraining, there are subtleties w.r.t. the order of the operations in the reverse
pass that we clarify with examples in the following sections. To specify NN architectures, we use the
following notation: C(k, l, q), and D(k, l, q) denote convolutional and deconvolutional operations,
respectively, while fully connected layers are denoted with F (l), where k, l, q denote kernel size,
output channels and stride size, respectively. The bias of a CNN layer is denoted with b. I/O(z)
denote input/output, their dimensionality is given by z. Ir denotes the input of the reverse pass
network. tanh, relu, lrelu denote hyperbolic tangent, ReLU, and leaky ReLU activation functions
(AF), where we typically use a leaky tangent of 0.2 for the negative half-space. UP , MP and BN
denote 2× nearest-neighbor up-sampling, max pooling with 2 × 2 filters and stride 2, and batch
normalization, respectively.

Below we provide additional examples how to realize the pretraining loss Lrr in a neural network
architecture. As explained in the main document, the constraint equation 11 is formulated via

Lrr =

n∑
m=1

λm

∥∥∥dm − d
′

m

∥∥∥2
F
, (22)

with dm, and λm denoting the vector of activated intermediate data in layer m from the forward
pass, and a scaling factor, respectively. d

′

m denotes the activations of layer m from the reverse pass.
E.g., let Lm() denote the operations of a layer m in the foward pass, and L′m() the corresponding
operations for the reverse pass. Then dm+1 = Lm(dm), and d

′

m = L′m(d
′

m+1).

When equation 22 is minimized, we obtain activated intermediate content during the reverse pass
that reconstructs the values computed in the forward pass, i.e. d

′

m+1 = dm+1 holds. Then d
′

m can
be reconstructed from the incoming activations from the reverse pass, i.e., d

′

m+1, or from the output
of layer m, i.e., dm+1. Using d

′

m+1 results in a global coupling of input and output throughout
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Figure 10: Left: An overview of the regular forward pass (blue) and the corresponding reverse pass (yellow).
The right side illustrates how parameters are reused for a convolutional layer. conv/deconv denote convolu-
tion/deconvolutional operations. fm and BNm denote the activation function and batch normalization of layer
m, respectively. Shared kernel and bias are represented by Mm and bm.

all layers, i.e., the full loss variant. On the other hand, dm+1 yields a variant that ensures local
reversibility of each layer, and yields a very similar performance, as we will demonstrate below. We
employ this local loss for networks without a unique, i.e., bijective, connection between two layers.
Intuitively, when inputs cannot be reliably reconstructed from outputs.

Full Network Pretraining: An illustration of a CNN structure with AF and BN and a full loss is
shown in figure 10. While the construction of the reverse pass is straight-forward for all standard
operations, i.e., fully connected layers, convolutions, pooling, etc., slight adjustments are necessary
for AF and BN. It is crucial for our formulation that dm and d

′

m contain the same latent space
content in terms of range and dimensionality, such that they can be compared in the loss. Hence, we
use the BN parameters and the AF of layer m − 1 from the forward pass for layer m in the reverse
pass. An example is shown in figure 14.

To illustrate this setup, we consider an example network employing convolutions with mixed AFs,
BN, and MP. Let the network receives a field of 322 scalar values as input. From this input, 20, 40,
and 60 feature maps are extracted in the first three layers. Besides, the kernel sizes are decreased
from 5× 5 to 3× 3. To clarify the structure, we use ReLU activation for the first convolution, while
the second one uses a hyperbolic tangent, and the third one a sigmoid function. With the notation
outlined above, the first three layers of the network are

I(32, 32, 1) = d1 → C1(5, 20, 1) + b1 → BN1 → relu
→ d2 →MP → C2(4, 40, 1) + b2 → BN2 → tanh
→ d3 →MP → C3(3, 60, 1) + b3 → BN3 → sigm
→ d4 → ...

(23)

The reverse pass for evaluating the loss re-uses all weights of the forward pass and ensures that all
intermediate vectors of activations, dm and d

′

m, have the same size and content in terms of nor-
malization and non-linearity. We always consider states after activation for Lrr. Thus, dm denotes
activations before pooling in the forward pass and d

′

m contains data after up-sampling in the reverse
pass, in order to ensure matching dimensionality. Thus, the last three layers of the reverse network
for computing Lrr take the form:

...→ d
′

4 → −b3 → D3(3, 40, 1)→ BN2 → tanh→ UP

→ d
′

3 → −b2 → D2(4, 20, 1)→ BN1 → relu→ UP

→ d
′

2 → −b1 → D1(5, 3, 1)

→ d
′

1 = O(32, 32, 1).

(24)

Here, the de-convolutions Dx in the reverse network share weights with Cx in the forward network.
I.e., the 4× 4× 20× 40 weight matrix of C2 is reused in its transposed form as a 4× 4× 40× 20
matrix in D2. Additionally, it becomes apparent that AF and BN of layer 3 from the forward pass
do not appear in the listing of the three last layers of the reverse pass. This is caused by the fact
that both are required to establish the latent space of the fourth layer. Instead, d3 in our example
represents the activations after the second layer (with BN2 and tanh), and hence the reverse pass
for d

′

3 reuses both functions. This ensures that dm and d
′

m contain the same latent space content in
terms of range and dimensionality, and can be compared in equation 22.
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For the reverse pass, we additionally found it beneficial to employ an AF for the very last layer if the
output space has suitable content. E.g., for inputs in the form of RGB data we employ an additional
activation with a ReLU function for the output to ensure the network generates only positive values.

Localized Pretraining: In the example above, we use a full pretraining with d
′

m+1 to reconstruct
the activations d

′

m. The full structure establishes a slightly stronger relationship among the loss
terms of different layers, and allows earlier layers to decrease the accumulated loss of later layers.
However, if the architecture of the original network makes use of operations between layers that
are not bijective, we instead use the local loss. E.g., this happens for residual connections with
an addition or non-invertible pooling operations such as max-pooling. In the former, we cannot
uniquely determine the b, c in a = b + c given only a. And unless special care is taken (Bruna
et al., 2013), the source neuron of an output is not known for regular max-pooling operations. Note
that our loss formulation has no problems with irreversible operations within a layer, e.g., most
convolutional or fully-connected layers typically are not fully invertible. In all these cases the loss
will drive the network towards a state that is as-invertible-as-possible for the given input data set.
However, this requires a reliable vector of target activations in order to apply the constraints. If the
connection betweeen layers is not bijective, we cannot reconstruct this target for the constraints, as
in the examples given above.

In such cases, we regard every layer as an individual unit to which we apply the constraints by
building a localized reverse pass. For example, given a simple convolutional architecture with

d1 → C1(5, 20, 1) + b1 = d2 (25)

in the forward pass, we calculate d
′

1 with

(d2 − b1)→ D1(5, 3, 1) = d
′

1, (26)
We, e.g., use this local loss in the Resnet110 network below. It is important to note that despite being
closer to regular autoencoder pretraining, this formulation still incorporates all non-linearities of the
original network structure, and jointly trains full networks while taking into account the original
learning objective.

A.4 MNIST AND PEAK TESTS

𝒗

𝒗

𝐋𝐏𝐈𝐏𝐒𝐒𝐭𝐝 𝐋𝐏𝐈𝐏𝐒𝐎𝐫𝐭 𝐋𝐏𝐈𝐏𝐒𝑷𝒓𝒆

0.312

0.392

0.298

0.334

0.231

0.114

𝑆𝑡𝑑 𝑂𝑟𝑡 𝑃𝑟𝑒

(a) One hidden layer, without BN, without AF

𝒅 ∈ ℝ × , 𝑀 ∈ ℝ × , 𝒅 ∈ ℝ ×

𝒗

𝒗

𝐋𝐏𝐈𝐏𝐒𝐒𝐭𝐝 𝐋𝐏𝐈𝐏𝐒𝐎𝐫𝐭 𝐋𝐏𝐈𝐏𝐒𝑷𝒓𝒆

0.499

0.502

0.499

0.491

0.239

0.400

𝑆𝑡𝑑 𝑂𝑟𝑡 𝑃𝑟𝑒

(b) One hidden  layer, with BN, with ReLU AF

𝒅 ∈ ℝ × , 𝑀 ∈ ℝ × , 𝒅 ∈ ℝ ×

𝒗

𝒗

𝐋𝐏𝐈𝐏𝐒𝐒𝐭𝐝 𝐋𝐏𝐈𝐏𝐒𝐎𝐫𝐭 𝐋𝐏𝐈𝐏𝐒𝑹𝑹

0.356

0.437

0.405

0.433

0.196

0.267

𝑆𝑡𝑑 𝑂𝑟𝑡 𝑃𝑟𝑒

𝒅 ∈ ℝ × , 𝑀 ∈ ℝ ×

(c) Two hidden  layers, with BN, with ReLU AF

𝑀 ∈ ℝ × , 𝒅 ∈ ℝ ×

… … …

𝐋𝐏𝐈𝐏𝐒𝑹𝑹

0.200

0.110

𝑅𝑅

𝐋𝐏𝐈𝐏𝐒𝑹𝑹

0.233

0.202

𝑅𝑅

𝒅 ∈ ℝ × , 𝑀 ∈ ℝ × ,

(c) Two hidden  layers, with BN, with ReLU AF

𝑀 ∈ ℝ × , 𝒅 ∈ ℝ ×

𝐋𝐏𝐈𝐏𝐒𝑹𝑹

0.175

0.181

𝑅𝑅

…

𝒗

𝒗

𝐋𝐏𝐈𝐏𝐒𝐒𝐭𝐝 𝐋𝐏𝐈𝐏𝐒𝐎𝐫𝐭 𝐋𝐏𝐈𝐏𝐒𝑷𝒓𝒆

0.499

0.502

0.499

0.491

0.239

0.400

𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑃𝑒𝑎𝑘 𝑇𝑒𝑠𝑡 𝑤𝑖𝑡ℎ 𝐵𝑁, 𝑎𝑛𝑑 𝑅𝑒𝐿𝑈 𝐴𝐹
(1)

𝒗

𝒗

𝐋𝐏𝐈𝐏𝐒𝐒𝐭𝐝 𝐋𝐏𝐈𝐏𝐒𝐎𝐫𝐭 𝐋𝐏𝐈𝐏𝐒𝑷𝒓𝒆

0.412

0.440

0.420

0.395

0.229

0.524

(2)

𝒗

𝒗

𝐋𝐏𝐈𝐏𝐒𝐒𝐭𝐝 𝐋𝐏𝐈𝐏𝐒𝐎𝐫𝐭 𝐋𝐏𝐈𝐏𝐒𝑷𝒓𝒆

0.414

0.401

0.448

0.377

0.255

0.417

(3)

𝒗

𝒗

𝐋𝐏𝐈𝐏𝐒𝐒𝐭𝐝 𝐋𝐏𝐈𝐏𝐒𝐎𝐫𝐭 𝐋𝐏𝐈𝐏𝐒𝑷𝒓𝒆

0.395

0.528

0.420

0.465

0.225

0.441

(4)

𝒗

𝒗

𝐋𝐏𝐈𝐏𝐒𝐒𝐭𝐝 𝐋𝐏𝐈𝐏𝐒𝐎𝐫𝐭 𝐋𝐏𝐈𝐏𝐒𝑷𝒓𝒆

0.582

0.447

0.389

0.411

0.214

0.370

(5)

0.3190.500 0.495 

𝑆𝑡𝑑 𝑂𝑟𝑡 𝑃𝑟𝑒
Avg. 

LPIPS

𝑆𝑡𝑑 𝑂𝑟𝑡 𝑃𝑟𝑒
Avg. 

LPIPS 0.377 0.426 0.408 

𝑆𝑡𝑑 𝑂𝑟𝑡 𝑃𝑟𝑒
Avg. 

LPIPS
0.3360.407 0.412 

𝑆𝑡𝑑 𝑂𝑟𝑡 𝑃𝑟𝑒
Avg. 

LPIPS
0.3330.462 0.443 

𝑆𝑡𝑑 𝑂𝑟𝑡 𝑃𝑟𝑒
Avg. 

LPIPS
0.2920.514 0.400 

STDEV 
LPIPS

0.002 0.006 0.114 0.020 0.017 0.209 
STDEV 
LPIPS 0.009 0.050 0.115 

STDEV 
LPIPS

0.094 0.032 0.153 
STDEV 
LPIPS

0.095 0.016 0.110 
STDEV 
LPIPS

𝐋𝐏𝐈𝐏𝐒𝑹𝑹

0.233

0.202

0.217 

𝑅𝑅

0.022 

𝐋𝐏𝐈𝐏𝐒𝑹𝑹

0.243

0.244

𝑅𝑅
0.243 

0.001 

𝐋𝐏𝐈𝐏𝐒𝑹𝑹

0.147

0.219

𝑅𝑅
0.183 

0.051 

𝐋𝐏𝐈𝐏𝐒𝑹𝑹

0.142

0.232

𝑅𝑅
0.187 

0.064 

𝐋𝐏𝐈𝐏𝐒𝑹𝑹

0.306

0.240

𝑅𝑅

0.273 

0.047 

Figure 14: Right singular vectors of M1 for peak
tests with different network architectures. Across
the three architectures, RRA successfully extracts
dominant and salient features.

Below we give details for the peak tests from Sec. 3
of the main paper and show additional tests with the
MNIST data set.

Peak Test: For the Peak test we generated a data
set of 110 images shown in figure 12. 55 images
contain a peak located in the upper left corner of
the image. The other 55 contain a peak located in
the bottom right corner. We added random scrib-
bles in the images to complicate the task. All 110
images were labeled with a one-hot encoding of the
two possible positions of the peak. We use 100 im-
ages as training data set, and the remaining 10 for
testing. All peak models are trained for 5000 epochs
with a learning rate of 0.0001, with λ = 1e − 6
for RRA. To draw reliable conclusions, we show re-
sults for five repeated runs here. The neural network
in this case contains one fully connected layer, with
BN and ReLU activation. The results are shown in
figure 13, with both peak modes being consistently
embedded into the weight matrix of RRA, while reg-
ular and orthogonal training show primarily random
singular vectors.

We also use different network architectures in fig-
ure 14 to verify that the dominant features are successfully extracted when using more complex
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Figure 11: SVD of the M1 matrix for five tests with random two digit images as training data. LPIPS distances
(Zhang et al., 2018b) of RR are consistently lower than Std and Ort.

training data test data

Figure 12: Data set used for the peak tests.
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Figure 13: Five repeated tests with the peak data shown in Sec. 3 of the main paper. RRA robustly extracts
dominant features from the data set. The two singular vectors strongly resemble the two peak modes of the
training data. This is confirmed by the LPIPS measurements.

17



Under review as a conference paper at ICLR 2021

network structures. Even for two layers with BN and ReLU activations, our pretraining clearly ex-
tracts the two modes of the training data. The visual resemblance is slightly reduced in this case, as
the network has the freedom to embed the features in both layers. Across all three cases (for which
we performed 5 runs each), our pretraining clearly outperforms regular training and the orthogonal-
ity constraint in terms of extracting and embedding the dominant structures of the training data set
in the weight matrix.

MNIST Test: We additionally verify that the column vectors of Vm of models from RR training
contain the dominant features of the input with MNIST tests, which employ a single fully connected
layer, i.e. d2 = M1d1. In the first MNIST test, the training data consists only of 2 different images.
All MNIST models are trained for 1000 epochs with a learning rate of 0.0001, and λ = 1e − 5 for
RRA. After training, we compute the SVD for M1. SVDs of the weight matrices of trained models
can be seen in figure 11. The LPIPS scores show that features embedded in the weights of RR are
consistently closer to the training data set than all other methods, i.e., regular training Std, classic
autoencoder pretraining Pre, and regularization via orthogonalization Ort. While the vectors of Std
and Ort contain no recognizable structures.

Overall, our experiments confirm the motivation of our pretraining formulation. They additionally
show that employing an SVD of the network weights after our pretraining yields a simple and con-
venient method to give humans intuition about the features learned by a network.

B MUTUAL INFORMATION

This section gives details of the mutual information and disentangled representation tests from Sec.
4 of the main paper.

B.1 MUTUAL INFORMATION TEST

Mutual information (MI) measures the dependence of two random variables, i.e., higher MI means
that there is more shared information between two parameters. More formally, the mutual infor-
mation I(X;Y ) of random variables X and Y measures how different the joint distribution of
X and Y is w.r.t. the product of their marginal distributions, i.e., the Kullback-Leibler diver-
gence I(X;Y ) = KL[P(X,Y )||PXPY ], where KL denotes the Kullback-Leibler divergence. Let
I(X;Dm) denote the mutual information between the activations of a layer Dm and input X. Sim-
ilarly I(Dm;Y ) denotes the MI between layer m and the output Y . We use MI planes in the main
paper, which show I(X;Dm) and I(Dm;Y ) in a 2D graph for the activations of each layer Dm of
a network after training. This visualizes how much information about input and output distribution
is retained at each layer, and how these relationships change within the network. For regular train-
ing, the information bottleneck principle (Tishby & Zaslavsky, 2015) states that early layers contain
more information about the input, i.e., show high values for I(X;Dm) and I(Dm;Y ). Hence in the
MI plane visualizations, these layers are often visible at the top-right corner. Later layers typically
share a large amount of information with the output after training, i.e. show large I(Dm;Y ) values,
and correlate less with the input (low I(X;Dm)). Thus, they typically show up in the top-left corner
of the MI plane graphs.

Training Details: We use the same numerical studies as in (Shwartz-Ziv & Tishby, 2017) as task
A, i.e. a regular feed-forward neural network with 6 fully-connected layers. The input variable X
contains 12 binary digits that represent 12 uniformly distributed points on a 2D sphere. The learning
objective is to discover binary decision rules which are invariant under O(3) rotations of the sphere.
X has 4096 different patterns, which are divided into 64 disjoint orbits of the rotation group, forming
a minimal sufficient partition for spherically symmetric rules (Kazhdan et al., 2003). To generate the
input-output distribution P (X,Y ), We apply the stochastic rule p(y = 1|x) = Ψ(f(x) − θ), (x ∈
X, y ∈ Y ), where Ψ is a standard sigmoidal function Ψ(u) = 1/(1 + exp(−γu)), following
(Shwartz-Ziv & Tishby, 2017). We then use a spherically symmetric real valued function of the
pattern f(x), evaluated through its spherical harmonics power spectrum (Kazhdan et al., 2003), and
compare with a threshold θ, which was selected to make p(y = 1) =

∑
x p(y = 1|x)p(x) ≈ 0.5,

with uniform p(x). γ is high enough to keep the mutual information I(X;Y ) ≈ 0.99 bits.
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For the transfer learning taskB, we reverse output labels to check whether the model learned specific
or generalizing features. E.g., if the output is [0,1] in the original data set, we swap the entries to
[1,0]. 80% of the data (3277 data pairs) are used for training and rests (819 data pairs) are used for
testing.

For the MI comparison in Fig. 4 of the main paper, we discuss models before and after fine-tuning
separately, in order to illustrate the effects of regularization. We include a model with greedy layer-
wise pretraining Pre, a regular model StdA, one with orthogonality constraints OrtA, and our regular
model RRA, all before fine-tuning. For the model RRA all layers are constrained to be recovered
in the backward pass. We additionally include the version RR1

A, i.e. a model trained with only
one loss term λ1|d1 − d

′

1|2, which means that only the input is constrained to be recovered. Thus,
RR1

A represents a simplified version of our approach which receives no constraints that intermediate
results of the forward and backward pass should match. For OrtA, we used the Spectral Restricted
Isometry Property (SRIP) regularization (Bansal et al., 2018),

LSRIP = βσ(WTW − I), (27)

where W is the kernel, I denotes an identity matrix, and β represents the regularization coefficient.
σ(W ) = supz∈Rn,z 6=0

‖Wz‖
‖z‖ denotes the spectral norm of W .

As explained in the main text, all layers of the first stage, i.e. from RRA, RR1
A, OrtA , PreA and

StdA are reused for training the fine-tuned models without regularization, i.e. RRAA, RR1
AA, OrtAA

, PreAA and StdAA. Likewise, all layers of the transfer task models RRAB, RR1
AB, OrtAB , PreAB and

StdAB are initialized from the models of the first training stage.

Analysis of Results: We first compare the version only constraining input and output reconstruc-
tion (RR1

A) and the full loss version RRA. Fig. 4(b) of the main paper shows that all points of
RRA are located in a central region of the MI place, which means that all layers successfully encode
information about the inputs as well as the outputs. This also indicates that every layer contains a
similar amount of information about X and Y , and that the path from input to output is similar to
the path from output to input. The points of RR1

A, on the other hand, form a diagonal line. I.e., this
network has different amounts of mutual information across its layers, and potentially a very differ-
ent path for each direction. This difference in behavior is caused by the difference of the constraints
in these two versions: RR1

A is only constrained to be able to regenerate its input, while the full loss
for RRA ensures that the network learns features which are beneficial for both directions. This test
highlights the importance of the constraints throughout the depth of a network in our formulation.
In contrast, the I(X;D) values of later layers for StdA and OrtA exhibit small values (points near
the left side), while I(D;Y ) is high throughout. This indicates that the outputs were successfully
encoded and that increasing amounts of information about the inputs are discarded. Hence, more
specific features about the given output data-set are learned by StdA and OrtA. This shows that both
models are highly specialized for the given task, and potentially perform worse when applied to new
tasks. PreA only focuses on decreasing the reconstruction loss, which results in high I(X;D) values
for early layers, and low I(D;Y ) values for later layers.

During the fine-tuning phase for task A (i.e. regularizers being disabled), all models focus on the
output and maximize I(D;Y ). There are differences in the distributions of the points along the
y-axis, i.e., how much MI with the output is retained, as shown in Fig. 4(c) of the main paper. For
model RRAA, the I(D;Y ) value is higher than for StdAA, OrtAA, PreAA and RR1

AA, which means
outputs of RRAA are more closely related to the outputs, i.e., the ground truth labels for task A.
Thus, RRAA outperforms the other variants for the original task.

In the fine-tuning phase for task B, StdAB stands out with very low accuracy in Fig. 5 of the main
paper. This model from a regular training run has large difficulties to adapt to the new task. PreA
aims at extracting features from inputs and reconstructed them. PreAB outperforms StdAB, which
means features helpful for task B are extracted by PreA, however, it’s hard to guide the feature
extracting process. Model OrtAB also performs worse than StdB. RRAB shows the best performance
in this setting, demonstrating that our loss formulation yielded more generic features, improving the
performance for related tasks such as the inverted outputs for B.

We also analyze the two variants of our pretraining: the local variant lRRA and the full version
RRA in terms of mutual information. figure 15 shows the MI planes for these two models, also
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Figure 15: (a-c) MI plane comparisons for local (lRRA) versus full models (RRA). Points on each line
correspond to layers of one type of model. a) MI Plane for task A. All points of RRA and the majority of
points for lRRA (five out seven) are located in the center of the graph, i.e., successfully connect in- and ouput
distributions. b,c): After fine-tuning for A/B. The last layer D7 of RRAA builds the strongest relationship with
Y . I(D7;Y ) of lRRA is only slightly lower than RRAA. d): Accuracy comparisons among different models:
RRAA yields the highest performance, while lRRA performs similarly with RRAA.

showing RR1
A for comparison. Despite the local nature of lRRA it manages to establish MI for the

majority of the layers, as indicated by the cluster of layers in the center of the MI plane. Only the
first layer moves towards the top right corner, and the second layer is affected slightly. I.e., these
layers exhibit a stronger relationship with the distribution of the outputs. Despite this, the overall
performance when fine-tuning or for the task transfer remains largely unaffected, e.g., the lRRA
still clearly outperforms RR1

A. This confirms our choice to use the full pretraining when network
connectivity permits, and employ the local version in all other cases.

B.2 DISENTANGLED REPRESENTATIONS

The InfoGAN approach (Chen et al., 2016) demonstrated the possibility to control the output of
generative models via maximizing mutual information between outputs and structured latent vari-
ables. However, mutual information is very hard to estimate in practice (Walters-Williams & Li,
2009). The previous section and Fig. 4(b) of the main paper demonstrated that models from our
pretraining (both RR1

A and RRA) can increase the mutual information between network inputs and
outputs. Intuitively, the pretraining explicitly constrains the model to recover an input given an
output, which directly translates into an increase of mutual information between input and output
distributions compared to regular training runs. For highlighting how our pretraining can yield dis-
entangled representations (as discussed in the later paragraphs of Sec. 4 of the main text), we follow
the experimental setup of InfoGAN (Chen et al., 2016): the input dimension of our network is 74,
containing 1 ten-dimensional category code c1, 2 continuous latent codes c2, c3 ∼ U(−1, 1) and 62
noise variables. Here, U denotes a uniform distribution.

Training Details: As InfoGAN focuses on structuring latent variables and thus only increases the
mutual information between latent variables and the output, we also focus the pretraining on the
corresponding latent variables. I.e., the goal is to maximize their mutual information with the output
of the generative model. Hence, we train a model RR1 for which only latent dimensions c1, c2, c3
of the input layer are involved in the loss. We still employ a full reverse pass structure in the neural
network architecture. c1 is a ten-dimensional category code, which is used for controlling the output
digit category, while c2 and c3 are continuous latent codes, to represent (previously unknown) key
properties of the digits, such as orientation or thickness. Building relationship between c1 and
outputs is more difficult than for c2 or c3, since the 10 different digit outputs need to be encoded in a
sinlge continuous variable c1. Thus, for the corresponding loss term for c1 we use a slightly larger λ
factor (by 33%) than for c2 and c3. Details of our results are shown in figure 16. Models are trained
using a GAN loss (Goodfellow et al., 2014) as the loss function for the outputs.

Analysis of Results: In figure 16 we show additional results for the disentangling test case. It is
visible that our pretraining of the RR1 model yields distinct and meaningful latent space dimensions
for c1,2,3. While c1 controls the digit, c2,3 control the style and orientation of the digits. For com-
parison, a regular training run with model Std does result in meaningful or visible changes when
adjusting the latent space dimensions. This illustrates how strongly the pretraining can shape the
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Figure 16: Additional results for the disentangled representations with the MNIST data: For every row in the
figures, we vary the corresponding latent code (left to right), while keeping all other inputs constant. Different
rows indicate a different random noise input. For example, in (b): every column contains five results which are
generated with different noise samples, but the same latent codes c1∼3. In every row, 10 results are generated
with 10 different values of c1, which correspond to one digit each for (b). (a): For a regular training (Std),
no clear correspondence between c1 and the outputs are apparent (similarly for c2,3). (c): Different c2 values
result in a tweaked style, while c3 controls the orientation of the digit, as shown in (d). Thus, in contrast to Std,
the pretrained model learns a meaningful, disentangled representation.

latent space, and in addition to an intuitive embedding of dominant features, yield a disentangled
representation.

C DETAILS OF EXPERIMENTAL RESULTS
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Figure 17: Separate per-class test accuracies for the four
model variants. The RRTS model exhibits a consistently high
accuracy across all 16 classes.

Training Details: All training data of
the texture-shape tests were obtained from
(Geirhos et al., 2018). The stylized data
set contains 1280 images, 1120 images are
used as training data, and 160 as test data.
Both edge and filled data sets contain 160
images each, all of which are used for test-
ing only. All three sets (stylized, edge, and
filled) contain data for 16 different classes.

Analysis of Results: For a detailed com-
parison, we list per-class accuracy of styl-
ized data training runs for OrtTS, StdTS,
PreTS and RRTS in figure 17. RRTS out-
performs the other three models for most of the classes. RRTS requires an additional 41.86% for
training compared to StdTS, but yields a 23.76% higher performance. (Training times for these mod-
els are given in the supplementary document.) All models saturated, i.e. training StdTS or OrtTS
longer does not increase classification accuracy any further. We also investigated how much we can
reduce model size when using our pretraining in comparison to the baselines. A reduced model only
uses 67.94% of the parameters, while still outperforming OrtTS.

C.2 GENERATIVE ADVERSARIAL MODELS

Training Details: The data set of smoke simulation was generated with a Navier-Stokes solver
from an open-source library (Thuerey & Pfaff, 2018). We generated 20 randomized simulations
with 120 frames each, with 10% of the data being used for training. The low-resolution data were
down-sampled from the high-resolution data by a factor of 4. Data augmentation, such as flipping
and rotation was used in addition. As outlined in the main text, we consider building an autoencoder
model for the synthetic data as task B1, and a generating samples from a real-world smoke data set
as task B2. The smoke capture data set for B2 contains 2500 smoke images from the ScalarFlow
data set (Eckert et al., 2019), and we again used 10% of these images as training data set.

Task A: We use a fully convolutional CNN-based architecture for generator and discriminator net-
works. Note that the inputs of the discriminator contain high resolution data (64, 64, 1), as well
as low resolution (16, 16, 1), which is up-sampled to (64, 64, 1) and concatenated with the high
resolution data. In line with previous work (Xie et al., 2018), RRA and StdA are trained with a
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Figure 18: Example outputs for PreAB1 , StdAB1 , RRAB1
. The reference is shown for comparison. RRAB1

produces higher quality results than StdAB1 and PreAB1 .
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Figure 19: Mean Absolute Error (MAE) comparisons for smoke task B2 models. RRAB2
shows the smallest

error, and additionally achieves the best visual quality amongst the different models.

non-saturating GAN loss, feature space loss and L2 loss as base loss function. All generator layers
are involved in the pretraining loss. As greedy layer-wise autoencoder pretraining is not compatible
with adversarial training, we pretrain PreA for reconstructing the high resolution data instead.

Task B1: All encoder layers are initialized from RRA and StdA when training RRAB1
and StdAB1

.
It is worth noting that the reverse pass of the generator is also constrained when training PreA and
RRA. So both encoder and decoder are initialized with parameters from PreA and RRA when train-
ing PreAB1

and RRAB1
, respectively. This is not possible for a regular network like StdAB1

, as
the weights obtained with a normal training run are not suitable to be transposed. Hence, the de-
convolutions of StdAB1 are initialized randomly.

Task B2: As the data set for the task B2 is substantially different and contains RBG images (instead
of single channel gray-scale images), we choose the following setups for the RRA, PreA and StdA
models: parameters from all six layers of StdA and RRA are reused for initializing decoder part of
StdAB2

and RRAB2
, parameters from all six layers of PreA are reused for initializing the encoder

part of PreAB2
. Specially, when initializing the last layer of PreAB2

, StdAB2
and RRAB2

, we copy
and stack the parameters from the last layer of PreA, StdA and RRA, respectively, into three channels
to match the dimenions of the outputs for taskB2. Here, the encoder part of RRAB2

and the decoder
of PreAB2 are not initialized with RRA and PreA, due to the significant gap between training data sets
of taskB1 and taskB2. Our experiments show that only initializing the decoder part of RRAB2

(avg.
loss:1.56e7, std. dev.:3.81e5) outperforms initializing both encoder and decoder (avg. loss:1.82e7±
2.07e6), and only initializing the encoder part of PreAB2

(avg. loss:4.41e7 ± 6.36e6) outperforms
initializing both encoder and decoder (avg. loss:9.42e7 ± 6.11e7). We believe the reason is that
initializing both encoder and decoder part makes it more difficult to adjust the parameters for new
data set that is very different from the data set of the source task.

Analysis of Results: Example outputs of PreAB1
, StdAB1

and RRAB1
are shown in figure 18.

It is clearly visible that RRAB1
gives the best performance among these models. We similarly

illustrate the behavior of the transfer learning task B2 for images of real-world fluids. This example
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Figure 20: A comparison of additional Z500, T850, T2M predictions (zoomed in regions). The predictions
inferred by the RR model are closer to the observed references.
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Figure 21: MSE value comparisons between RR and Std(ERR for RR and EStd for Std). RR consistently
yields lower errors than Std.

likewise uses an autoencoder structure. Visual comparisons are provided in figure 19, where RRAB2

generates results that are closer to the reference. Overall, these results demonstrate the benefits of
our pretraining for GANs, and indicate its potential to obtain more generic features from synthetic
data sets that can be used for tasks involving real-world data.

C.3 WEATHER FORECASTING

Training Details: The weather forecasting scenario discussed in the main text follows the method-
ology of the WeatherBench benchmark (Rasp et al., 2020). This benchmark contains 40 years of data
from the ERA5 reanalysis project Hersbach et al. (2020) which was re-sampled to a 5.625◦ resolu-
tion, yielding 32× 64 grid points in ca. two-hour intervals. Data from the year of 1979 to 2015 (i.e.,
162114 samples) are used for training, the year of 2016 for validation. The last two years (2017
and 2018) are used as test data. All RMSE measurements are latitude-weighted to account for area
distortions from the spherical projection.

The neural networks for the forecasting tasks employ a ResNet architecture with 19 layers, all of
which contain 128 features with 3 × 3 kernels (apart from 7 × 7 in the first layer). All layers use
batch normalization, leaky ReLU activation (tangent 0.3), and dropout with strength 0.1. As inputs,
the model receives feature-wise concatenated data from the WeatherBench data for 3 consecutive
time steps, i.e., t, t − 6h, and t − 12h, yielding 117 channels in total. The last convolution jointly
generates all three output fields, i.e., pressure at 500 hPa (Z500), temperature at 850 hPa (T850),
and the 2-meter temperature (T2M).

Analysis of Results: In addition to the quantitative results for both years of test data given in the
main text, figure 20 and 21 contain additional example visualizations from the test data set. A vi-
sualization of the spatial error distribution w.r.t. ground truth result in also shown in figure 21. It
becomes apparent that our pretraining achieves reduced errors across the whole range of samples.
Both temperature targets contain a larger number of smaller scale features than the pressure fields.
While the gains from our pretraining approach are not huge (on the order of 3% in both cases), they
represent important steps forward. The learning objective is highly non-trivial, and the improve-
ments were achieved with the same limited set of training data. Being very easy to integrate into
existing training pipelines, these results indicate that the proposed pretraining methodology has the
potential to yield improved learning results for a wide range of problem settings.
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