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Abstract
Catastrophic forgetting remains a core challenge
in continual learning (CL), where the models
struggle to retain previous knowledge when learn-
ing new tasks. While existing replay-based CL
methods have been proposed to tackle this chal-
lenge by utilizing a memory buffer to store data
from previous tasks, they generally overlook
the interdependence between previously learned
tasks and fail to encapsulate the optimally inte-
grated knowledge in previous tasks, leading to
sub-optimal performance of the previous tasks.
Against this issue, we first reformulate replay-
based CL methods as a unified hierarchical gradi-
ent aggregation framework. We then incorporate
the Pareto optimization to capture the interrela-
tionship among previously learned tasks and de-
sign a Pareto-Optimized CL algorithm (POCL),
which effectively enhances the overall perfor-
mance of past tasks while ensuring the perfor-
mance of the current task. To further stabilize the
gradients of different tasks, we carefully devise a
hyper-gradient-based implementation manner for
POCL. Comprehensive empirical results demon-
strate that the proposed POCL outperforms cur-
rent state-of-the-art CL methods across multiple
datasets and different settings.

1. Introduction
An ideal intelligent system should possess the ability to
incrementally learn, swiftly adapting to environmental

*Equal contribution †Work was done when the author in-
terned in Tencent AI Lab 1City University of Hong Kong, Hong
Kong SAR 2Tencent AI Lab, Shenzhen, China 3Tencent Youtu
Lab, Shenzhen, China 4Nanyang Technological University, Sin-
gapore. Correspondence to: Ying Wei <ying.wei@ntu.edu.sg>,
Yichen Wu <wuyichen.am97@gmail.com>, Long-Kai Huang
<hlongkai@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

changes while retaining previously acquired knowledge.
Despite the remarkable performance of current deep neural
networks (DNNs) on specific tasks, they still encounter chal-
lenges when adapting to streaming tasks. One critical issue
is catastrophic forgetting, where acquiring knowledge on a
new task leads to a significant decline in performance on
previously learned tasks. To alleviate this issue, numerous
algorithms have been proposed in continual learning (CL)
area, aiming to enhance the incremental learning ability of
DNNs on streaming tasks (Lopez-Paz & Ranzato, 2017;
Serra et al., 2018; Gupta et al., 2020; Guo et al., 2020; Arani
et al., 2022; Wang et al., 2023; Chrysakis & Moens, 2023).

Replay-based methods currently stand as straightforward
yet effective research line in the field of CL. The objec-
tive of these methods is to emulate joint training, the upper
bound of CL, which trains all the tasks simultaneously and
optimizes the model θt in the update direction u by fully
exploiting the gradient of every task (as illustrated in Fig. 1).
However, in the absence of full data from previous tasks, it
becomes crucial to approximate their gradients. To this end,
replay-based methods typically employ a small memory
bufferM to store examples from previously encountered
tasks in order to approximately compute the gradient of
every previous task gm

i . Based on the strategies for ma-
nipulating the gradients of previous tasks gm

i , replay-based
methods can be broadly categorized into experience replay
methods (Rolnick et al., 2019; Buzzega et al., 2020; Arani
et al., 2022; Caccia et al., 2022; Wang et al., 2023) and
gradient alignment methods (Lopez-Paz & Ranzato, 2017;
Chaudhry et al., 2018; Guo et al., 2020; Riemer et al., 2019;
Gupta et al., 2020). Specifically, experience replay methods
directly combine every approximated gradient of the pre-
vious task gm

i with the gradient of the current task to help
update model θt. As illustrated in Fig. 1(a), the gradient
update direction u is derived by simply assigning equal
weight to every gm

i . For gradient alignment methods, they
favor weighting the gradients of previous tasks that conflict
with the gradient of the current task, while disregarding the
others. As exemplified in Fig. 1(b), the update direction
u takes into account gm

1 that conflicts with the gradient of
the current task g3, indicated by the negative inner product
⟨g3, gm

1 ⟩, while ignoring gm
2 that is not in conflict with g3.
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Figure 1. Gradient update u of different methods in the perspective of gradient weighting under a simplified scenario with only three tasks.
Here θt means the model parameters at the t-th streaming learning step, and the weights λ∗

i in (c) are obtained by our proposed Pareto-
Optimized CL (POCL) algorithm, which flexibly models the gradients of previous tasks gm

i and fully accounts for their interrelationships
(see Sec. 3). In Sec. 2, we revisit these methods under the general scenario with more tasks.

Albeit achieving promising performance, for the current
replay-based CL methods, the aforementioned weighting
strategies on the gradient of previously seen tasks gm

i lack
enough flexibility and they do not adequately explore the in-
tricate interrelationships among previous tasks. For instance,
if the gradients of two previous tasks conflict with each other,
simply merging them would lead to mutual cancellation of
the gradients, thus potentially losing important knowledge
from the previous tasks. Moreover, as demonstrated in (Lin
et al., 2019; Momma et al., 2022), seemingly unrelated
tasks can exhibit significant dependencies, and it is possible
to enhance the overall performance across all previously
learned tasks by effectively leveraging the dependencies
among diverse tasks. As seen, without fully modeling the in-
terrelations among previous tasks, the existing replay-based
methods fall short in encapsulating the optimally integrated
knowledge of previous tasks. This shortfall hinders the max-
imization of catastrophic forgetting mitigation, leading to
sub-optimal performance of previous tasks.

Against the aforementioned issue, we first revisit current
replay-based CL methods from the gradient weighting per-
spective and mathematically formulate them as a hierar-
chical gradient aggregation framework for joint training
emulation, which combines the gradient of the current task
and the gradient-weighted sum of each previous task in the
update direction. Based on these understandings, we then
specifically model the interrelationships among previous
tasks by incorporating Pareto optimization into CL and op-
timize the weight λi assigned to the gradient of each past
task gm

i to get the aggregated gradient of previous tasks
g(λ∗) (as illustrated in Fig. 1(c)) for appropriately enhanc-
ing the integrated knowledge of the previous tasks and thus
reducing catastrophic forgetting. Moreover, we propose
to employ hyper-gradient to effectively avoid the potential
conflict between the gradient of the current task and the
Pareto-optimized gradient of previous tasks g(λ∗), as il-

lustrated in Fig. 1(c) that ⟨g3, g(λ∗)⟩ is non-negative. In
this manner, our proposed method, called Pareto-Optimized
CL (POCL), can not only ensure the performance of the
current task but also maximize the performance of previ-
ous tasks and minimize catastrophic forgetting. Our main
contributions are summarized as follows:

1) New Perspective. We mathematically revisit the current
various replay-based CL methods and formulate them as a
unified hierarchical gradient aggregation framework.

2) Effective Algorithm. Within the established hierarchical
gradient aggregation framework, we propose the POCL al-
gorithm for an enhanced gradient update direction u, which
takes into account not only the performance of the current
task but also the interdependence among the previously
learned tasks for maximizing their overall performance.

3) Superior Performance. We perform comprehensive ex-
periments under various settings using three widely used
datasets, which validate the effectiveness of the proposed
POCL algorithm. Additionally, we conduct thorough abla-
tion studies to analyze the individual impact of each com-
ponent within the POCL algorithm, further enhancing our
understanding of its performance.

2. Revisiting CL from a Gradient Perspective
For convenience, we present a simplified scenario with only
three tasks in Fig. 1. In this section, we delve into a general
scenario and formally revisit different kinds of replay-based
CL methods.

Let’s assume there are N sequential tasks, denoted as
{T1, T2, ..., TN}. During the t-th streaming learning step,
the model parameters are represented as θt. The gradient
of the current training task Tn is referred to as gn and the
gradient of the previous task Ti is denoted as gm

i , where
i = 1, 2, ..., n−1. Here gm

i is computed by using randomly
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selected samples from the memory bufferM which stores
a subset of the previous tasks. From the view of gradient,
the main goal of current replay-based continual learning
methods is to search for the gradient update direction u for
optimizing model θt during the t-th streaming learning step.

2.1. Experience Replay

One class of replay-based CL methods (Rolnick et al., 2019;
Buzzega et al., 2020; Arani et al., 2022; Caccia et al., 2022),
represented by ER (Rolnick et al., 2019), involves drawing
samples from the bufferM and integrating them with the
data from the current training task to optimize the model.
Correspondingly, the update direction u is obtained as:

u = gn +

n−1∑
i=1

gm
i = gn + gm

1 + gm
2 + · · ·+ gm

n−1. (1)

2.2. Gradient Alignment Methods

Another prominent category within replay-based CL meth-
ods is gradient alignment (Lopez-Paz & Ranzato, 2017;
Chaudhry et al., 2018; Riemer et al., 2019; Gupta et al.,
2020), exemplified by GEM (Lopez-Paz & Ranzato, 2017).
The primary objective of these methods is to project the
gradient gn of the current training task Tn in a direction that
minimizes potential negative impacts on preceding tasks.
Mathematically, the update direction u is optimized by solv-
ing the following problem (Lopez-Paz & Ranzato, 2017;
Chaudhry et al., 2018):

max
u
−1

2
∥gn−u∥22, s.t.⟨u, gm

i ⟩ ≥ 0, i = 1, . . . , n−1. (2)

The primary objective is to minimize the discrepancy be-
tween the update direction u and the gradient of the cur-
rent task gn. Additionally, the non-negative inner product
constraints, ⟨u, gm

i ⟩ ≥ 0, are imposed to ensure that the
updated gradient u does not conflict with gm

i to prevent
performance degradation of previous tasks.

To solve Eq. (2), we propose to adopt the Lagrange multi-
plier (Boyd & Vandenberghe, 2004) and convert the objec-
tive into an unconstrained form:

max
u

min
λi≥0

− 1

2
∥gn − u∥22 +

∑n−1
i=1 λi⟨u, gm

i ⟩, (3)

where λi is a non-negative penalty coefficient. Let Qn−1 =
{(λ1, ..., λn−1)|λi ≥ 0} and g(λ) =

∑n−1
i=1 λig

m
i , where

λ = [λ1, . . . , λn−1]. Eq. (3) can be equivalently written as:

max
u

min
λ∈Qn−1

− 1

2
∥gn − u∥22 + ⟨u, g(λ)⟩. (4)

From Eq. (4), we can know that the feasible domains of
the maximum and the minimum optimization processes are

both convex sets, and the objective function is convex w.r.t.
the variable of the minimum operation λ and concave w.r.t.
the variable of the maximum operation u. According to
the MiniMax theorem (Du & Pardalos, 1995) (also detailed
in Appendix A.1), we can swap the order of the maximum
and the minimum operation in Eq. (4) and then derive the
following optimization problem:

min
λ∈Qn−1

max
u
− 1

2
∥gn − u∥22 + ⟨u, g(λ)⟩

(a)⇔ min
λ∈Qn−1

1

2
∥g(λ)∥22 + ⟨gn, g(λ)⟩

(b)⇔ min
λ∈Qn−1

1

2
∥g(λ)∥22 + ⟨gn, g(λ)⟩+

1

2
∥gn∥22

⇔ min
λ∈Qn−1

1

2
∥g(λ) + gn∥22,

(5)

where (a) holds since the solution u∗ of the maximum prob-
lem can be directly obtained as u∗ = gn + g(λ), and (b)
holds since the term 1

2∥gn∥
2
2 is independent of the optimiza-

tion variable λ. Consequently, the final gradient update
direction is u∗ = gn + g (λ∗), where λ∗ is obtained by
solving the last minimization problem in Eq. (5). The ob-
jective of determining λ∗ reveals that a larger λ∗

i will be
assigned to gradients gm

i that are in conflict with gn.

2.3. Hierarchical Gradient Aggregation Framework

From the aforementioned derivations in Eq. (1) and (5), it
is easily concluded that for replay-based CL methods, the
gradient update direction u can be generally reformulated
under the gradient weighting framework as:

u = gn + g(λ) = gn +

n−1∑
i=1

λig
m
i . (6)

Observably, the update gradient direction u consists of two
components, the gradient of the current task gn and the
aggregation of gradients gm

i from past tasks. Given the
memory buffer with a fixed size |M|, as the number of
training tasks increases, the number of samples per task
from past tasks stored at the bufferM gradually decreases.
Consequently, compared to the gradient gn of the current
task Tn, the importance of the gradient gm

i progressively
diminishes during the model’s update process. Besides, for
gradient alignment methods, as explained in Eq. (5), they
always apply a fixed weight to gn but varying weights λi to
different gm

i which are optimized based on their extent of
conflicting with gn. These observations collectively suggest
that replay-based CL methods can be viewed as a form of
hierarchical gradient aggregation framework that prior-
itizes the gradient of the current training task gn and the
aggregation of gradients gm

i of previous tasks primarily
serve a regularization role in preventing forgetting.
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Based on this understanding, the main task of searching for
u can be reframed as the assignment of different weights λi

to different gm
i of previous tasks with a fixed weight on the

prioritized gradient of the current task gn. From Eqs. (1)
and (5), we have that experience replay methods choose the
uniform weighting strategy, while gradient alignment meth-
ods focus more on past tasks that significantly conflict with
the current task’s gradient. However, these existing weight-
ing strategies exhibit limited flexibility and insufficiently
explore the intricate relationships among past tasks.

3. Pareto-Optimized Continual Learning
In this section, following the aforementioned hierarchical
gradient aggregation framework, we aim at fully modeling
the interrelationships among previous tasks and propose a
Pareto-optimized CL algorithm for assigning more flexible
and nearly optimal weights λi in Eq. (6).

3.1. Model Optimization

As discussed in (Lin et al., 2019; Momma et al., 2022),
seemingly unrelated tasks can exhibit significant dependen-
cies. Therefore, it is possible to enhance the overall per-
formance across all previously learned tasks by effectively
leveraging the dependencies among diverse tasks. To this
end, we propose to model the relationships of past tasks
based on the Pareto optimality concept (Pareto, 1964) to
flexibly optimize the weighting schemes g(λ) of previous
tasks in Eq. (6) in order to enhance the overall performance
across all previously learned tasks. Here the Pareto opti-
mality (Pareto, 1964) represents a solution where no action
can improve the performance of one task without adversely
affecting the performance of other tasks. This indicates that
the model has reached an optimal state, where simultaneous
performance improvement of different tasks is no longer
possible.

Specifically, by considering v as the overall to-be-estimated
gradient direction aggregated from all the previously learned
tasks, our goal is to guarantee that the direction v can benefit
all the tasks learned so far. This can be achieved by maxi-
mizing the minimum inner product of the previous gradient
gm
i and v, where i ∈ {1, 2, ..., n−1}. Mathematically, this

can be formulated as:

max
v

min
1≤i≤n−1

⟨gm
i ,v⟩ − 1

2
∥v∥22, (7)

where the second term in the objective function is to con-
strain the gradient norm to avoid infinity.

Define Pn−1 = {(λ1, ..., λn−1)|λi ≥ 0,
∑n−1

i=1 λi = 1} and
g(λ) =

∑n−1
i=1 λig

m
i . For the first term in Eq. (7), we can

prove that

min
1≤i≤n−1

⟨gm
i ,v⟩⇔ min

λ∈Pn−1
⟨g(λ),v⟩, (8)

Algorithm 1 Frank-Wolfe Algorithm for Solving Eq. (10)
Input: Initialization λ = [ 1

n−1 , . . . ,
1

n−1 ]
Output: The coefficient vector λ of previous tasks

1: Precompute D = GTG, where G =
[
gT
1 , . . . , g

T
n−1

]
2: repeat
3: α = argminα∈{αT1=1,α⪰0}α

TDλ
4: L = λ+ η(α− λ)
5: η = argminη∈[0,1] LTDL
6: λ← (1− η)λ+ ηα
7: until η ∼ 0 or Reaching the maximum iteration number

based on the two inequalities: 1) Since 0 ≤ λi ≤ 1 and
λ ∈ Pn−1, it always holds that ⟨g(λ),v⟩ ≥ min

1≤i≤n−1
⟨gm

i ,v⟩,

so we have min
λ∈Pn−1

⟨g(λ),v⟩ ≥ min
1≤i≤n−1

⟨gm
i , g(λ)⟩; 2) Since

⟨gm
i ,v⟩ is a special case of ⟨g(λ),v⟩, we can deduce that
min

λ∈Pn−1
⟨g(λ),v⟩ ≤ min

1≤i≤n−1
⟨gm

i ,v⟩.

By substituting Eq. (8) into Eq. (7), we can obtain that

max
v

min
λ∈Pn−1

⟨g(λ),v⟩ − 1

2
∥v∥22. (9)

According to the MiniMax theorem (Appendix A.1), we
can swap the order of minimum and maximum operations
in Eq. (9). Then we can get the solution of the maximum
problem as v∗ = g(λ) and then obtain the λ∗ by solving
the following minimization problem:

min
λ∈Pn−1

1

2
∥g(λ)∥22 ⇔ min

λ∈Pn−1

1

2
∥
∑n−1

i=1 λig
m
i ∥22. (10)

This minimization problem can be solved utilizing the Frank-
Wolfe algorithm (Frank et al., 1956; Jaggi, 2013; Sener &
Koltun, 2018) as presented in Alg. 1. Then, we compute the
optimized gradient update direction as:

u∗ = gn + v∗ = gn + g(λ∗) = gn +
∑n−1

i=1 λ
∗
i g

m
i . (11)

3.2. Gradient Implementation

To avoid the potential conflict between the overall update
direction v for previous tasks and the gradient of the current
task gn as much as possible, we propose to employ the
hyper-gradient gHD

j (j ∈ {1, 2, . . . , n}) to implement gm
i

(i ∈ {1, 2, . . . , n− 1}) in Eq. (7) and gn. Concretely, at the
t-th training step, the hyper-gradient gHD

j , is calculated via
the following bi-level iterative form as (Riemer et al., 2019;
Gupta et al., 2020):

gHD
j =

∂L(fθ̃t+1
(xm), ym)

∂θt
,

where θ̃t+1 = θt − α∇θtL(fθt(xj), yj),

(12)

where f(·) denotes the model with parameter θ; (xm, ym)
means the samples drawn from the bufferM which stores
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Algorithm 2 The Entire Algorithm Implementation for the
Proposed POCL
Input: At the tth streaming training step, current training

task Tn, memory buffer M, learning rates α and β,
network parameter θt for classification

Output: θt+1

1: Sample from memory buffer: (xm, ym) ∼M
2: Sample from memory buffer for previous task Ti:

(xi, yi) ∼Mi, i ∈ {1, 2, ..., n− 1},Mi ∈M
3: Sample for the current task: (xn, yn) ∼ Tn
4: Compute the hyper-gradient gHD

j , j ∈ {1, . . . , n} based
on Eq. (12)

5: Compute the Pareto optimal weights λ∗ based on Alg. 1
and get g(λ∗) =

∑n−1
i=1 λ

∗
i g

HD
i

6: Compute the update direction: u∗ = gHD
n + g(λ∗)

7: Update network parameters: θt+1 = θt − βu∗

8: Update the memory buffer M with (xn, yn) follow-
ing (Buzzega et al., 2020)

examples of all seen tasks T[1:n]; (xj , yj) are samples be-
longing to the task Tj which are drawn from M (when
j = 1, . . . , n − 1) or Tn (when j = n); L(·) is the cross-
entropy loss function; θ̃t+1 denotes the auxiliary model
parameter to help compute gHD

j . As seen, the inner-level
loss L(fθt(xj), yj) is related to the specific task Tj , while
the outer-level objective is related to all the seen tasks T[1:n].

Let Lm
θt

≜ L(fθ̃t+1
(xm), ym) and Lj

θt
≜ L(fθt(xj), yj).

Then we can transform gHD
j into the following expression:

gHD
j ≈

∂(Lm
θt
− α∇θtLm

θt
· ∇θtL

j
θt
)

∂θt
≜

∂LHD

∂θt
, (13)

where LHD ≜ Lm
θt
− α∇θtLm

θt
· ∇θtL

j
θt

. Please refer to
Appendix A.2 for the detailed proof of Eq. (13).

As shown in Eq. (13), the hyper-gradient gHD
j aims to min-

imize the loss LHD. Observing the second item of LHD,
it is easily known that the optimization goal is to pro-
mote the alignment between the gradient of the specific
task ∇θtL

j
θt

and the overall gradient on all the seen tasks
∇θtLm

θt
(Riemer et al., 2019; Gupta et al., 2020). Since

the gradient of every specific task is aligned with ∇θtLm
θt

,
there is a small probability that different gHD

j (j = 1, . . . , n)
is conflicting with each other. When replacing gm

i and
gn in Eq. (6) with the hyper-gradient gHD

j in Eq. (12), ac-
cording to Eq. (11), the ultimate Pareto-optimized gradient
update direction is u∗=gHD

n + v∗ = gHD
n +

∑n−1
i=1 λ

∗
i g

HD
i .

As seen, v∗ is a weighted combination of different gHD
i

(i = 1, . . . , n− 1), there is a high probability that gHD
n and

v∗ would not conflict with each other. Consequently, the
final gradient update direction u∗ would be beneficial for
both the current and previously learned tasks. The advan-
tage of the proposed hyper-gradient-based implementation

will be validated in Table 5. In consequence, we propose
the Pareto-Optimized CL (POCL) algorithm with the hyper-
gradient implementation. The complete algorithm is out-
lined in Alg. 2. Please note that in Fig. 1(c), we omit the
hyper-gradient for the sake of readability.

4. Experiments
In this section, we conduct comprehensive experiments to
evaluate the effectiveness of the proposed POCL based on
diverse benchmark datasets and different CL settings. Be-
sides, we provide a series of ablation studies to analyze and
evaluate the specific role of each component in our method.

4.1. Evaluation Protocol

Benchmark Datasets. Following (Buzzega et al., 2020;
Arani et al., 2022; Wang et al., 2023), we select three widely-
used datasets with varying complexity for the subsequent
CL experiments, i.e., Split CIFAR-10, Split CIFAR-100, and
Split TinyImageNet (Buzzega et al., 2020). Split CIFAR-
10 and Split CIFAR-100 are derived from the CIFAR-10
and CIFAR-100 (Krizhevsky et al., 2009), respectively. For
Split CIFAR-10, the number of tasks N is 5 and each task
contains 2 classes. For Split CIFAR-100, N is 20 and each
task is composed of 5 classes. Split Tiny-ImageNet is di-
vided into 20 tasks, each containing 10 classes. More details
about datasets are included in Appendix C.

Implementation Details. Consistent to (Chrysakis &
Moens, 2023; Lopez-Paz & Ranzato, 2017), we utilize the
widely-adopted Reduced ResNet-18 (He et al., 2016) as the
network backbone architecture to implement the proposed
POCL method. During the training, the stochastic gradient
descent (SGD) optimizer is used for optimizing the model
and the batch size is set as 32. For the experiments on dif-
ferent datasets and various CL settings, the learning rates
α and β in Alg. 2 are fixed as 0.03 and the sampling batch
size for memory bufferM is 300. Please note that all the
comparison experiments are executed under the online class
incremental setting, where each task is trained for only one
epoch and the task identity is not provided during inference.

Baselines. For comprehensive comparisons, we adopt
various types of state-of-the-art CL approaches. These
include the regularization-based method EWC (Huszár,
2017); a range of gradient alignment methods such as
AGEM (Chaudhry et al., 2018), GEM (Lopez-Paz &
Ranzato, 2017), MER (Riemer et al., 2019), and La-
MAML (Gupta et al., 2020); and experience replay methods
like ER (Rolnick et al., 2019), DER (Buzzega et al., 2020),
DER++ (Buzzega et al., 2020), CLSER (Arani et al., 2022),
ER-ACE (Caccia et al., 2022) and CBA (Wang et al., 2023).

Evaluation Metrics. To fairly and comprehensively vali-
date the effectiveness of our proposed methods, we adopt
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(a) (b)

Figure 2. (a) accuracy (Acc) and (b) forgetting measure (FM) of each task achieved by different competitive CL methods on Split
CIFAR-10 with N = 5 and buffer size |M| as 1k. Here T[1:4] denotes the previously learned tasks and T5 is the current task, and
Avg(T[1:4]) means the average performance of past tasks T[1:4].

Table 1. Average accuracy of previous tasks T[1:n−1] and all the tasks T[1:n], respectively, on the Split CIFAR10 with |M| =1k and N = 5
with an increasing number of all the seen tasks n (n = 2, 3, 4, 5).

n = 2 n = 3 n = 4 n = 5
Methods Avg (T1) Avg(T[1:2]) Avg(T[1:2]) Avg(T[1:3]) Avg(T[1:3]) Avg(T[1:4]) Avg(T[1:4]) Avg(T[1:5])
ER 71.22±7.40 66.16±2.29 32.31±6.78 46.51±3.85 35.52±6.41 41.95±7.25 32.51±6.15 42.04±4.33

La-MAML 79.82±3.56 53.14±3.11 51.51±1.06 37.62±2.15 40.53±2.37 38.45±2.68 43.49±1.72 35.89±1.35

ER-ACE 73.50±7.03 66.68±4.07 66.69±1.37 53.84±2.84 46.66±6.36 47.58±6.07 47.42±5.38 51.17±3.44

CLSER 71.47±2.06 71.28±0.53 41.57±5.24 55.12±3.51 39.38±3.03 51.25±2.30 43.90±2.01 53.06±1.58

CBA 79.65±3.58 73.21±0.91 52.70±3.85 57.95±1.46 47.18±3.86 53.56±1.12 44.00±3.51 52.08±0.15

POCL 80.86±4.62 73.34±0.61 55.19±5.13 60.56±3.22 49.94±2.56 56.23±1.71 52.71±3.34 58.50±2.43

several representative evaluation metrics for quantitative
comparisons, including Average Accuracy, Forgetting Mea-
sure (Lopez-Paz & Ranzato, 2017), and Anytime Average
Accuracy (Caccia et al., 2022). The higher these indicators,
the better the performance. Specifically,

• Average Accuracy (Acc): It represents the average
accuracy on all the previously seen tasks after complet-
ing the model training on N tasks T[1:N ], computed as
Acc = AccN = 1

N

∑N
i=1 ai,N , where ai,j(i ≤ j) is the

accuracy of the task Ti after the training on the task Tj .

• Forgetting Measure (FM): This metric reflects the de-
gree of forgetting that occurs in a model during sequen-
tial training. Concretely, it computes the average de-
crease from the best accuracy to the final accuracy after
training on TN across all N tasks. This is denoted as
FM= 1

N

∑N
i=1(ai,N−a∗

i ), where a∗i is the best accuracy
of the task Ti achieved during training.

• Anytime Average Accuracy (AAA): Different from
Acc, this indicator quantifies the classification per-
formance of the model throughout the entire learn-
ing process. Specifically, its definition is AAA =
1
N

∑N
j=1 Accj =

1
N

∑N
j=1

(
1
j

∑j
i=1 ai,j

)
.

4.2. Experimental Results

Direct verification about POCL. To better understand
the working mechanism of our proposed POCL, based on

Split CIFAR-10, we first provide direct model verification.
Specifically, in Fig. 2(a), for the representative comparison
methods, we provide the test accuracy of model on every
task Ti (i = 1, . . . , 5) after finishing the sequential training
on all 5 tasks and the average accuracy on all the previously
learned four tasks as Avg(T[1:4]). The average accuracy on
all the previously learned tasks after learning a new task is
a direct measure of the extent to which the algorithm has
preserved knowledge from previous tasks after the update
on a new task. From the results in Fig. 2(a), we can find
that: 1) Our proposed POCL is obviously superior to other
CL methods on Avg(T[1:4]). This finely substantiates the po-
tential of the proposed POCL algorithm to boost the entire
performance of all the previously learned tasks, which com-
plies with our design motivations; 2) On the newly learned
T5, the proposed POCL also exhibits superior performance.
Consequently, POCL generally performs competitively on
all five tasks. Table 1 reports the average accuracy on pre-
viously learned tasks Avg(T[1:n−1]) and the overall average
accuracy on all the tasks Avg(T[1:n]) with the increasing of
the number of all the seen tasks n. It is clearly observed that
POCL effectively boosts the performance of previous tasks
during sequential learning and finely achieves the obvious
overall performance improvement over all the seen tasks.

Fig. 2(b) depicts the forgetting measure (FM) of different
methods on every task. For Avg(T1∼4), POCL averagely
obtains a higher FM score and outperforms ER, CLSER,
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Figure 3. Task-based confusion matrix of various gradient-alignment-based CL methods on the Split CIFAR-10 dataset with |M|=1k.

Table 2. Performance comparison on benchmark datasets under different memory buffer sizes |M|.‘-’ indicates the implementation is
both highly time-consuming and unstable. The full table with 95% confidence interval is in Appendix D.

Method
Split CIFAR-10 (N=5) Split CIFAR-100 (N=20) Split TinyImageNet (N=20)
|M| = 0.6k |M| = 1k |M| = 1k |M| = 5k |M|= 2k |M| = 5k

AAA Acc AAA Acc AAA Acc AAA Acc AAA Acc AAA Acc

SGD 34.04 16.68 34.04 16.68 9.67 3.24 9.67 3.24 7.63 2.17 7.63 2.17
EWC (Huszár, 2017) 36.51 18.37 36.51 18.37 9.87 2.77 9.87 2.77 7.96 2.43 7.96 2.43
GEM (Lopez-Paz & Ranzato, 2017) 37.78 18.84 37.00 18.73 13.43 6.04 13.71 6.46 10.17 3.70 10.27 3.81
AGEM (Chaudhry et al., 2018) 37.67 18.51 37.62 18.03 10.61 3.75 10.80 3.52 7.66 2.33 7.79 2.40
ER (Rolnick et al., 2019) 54.68 39.43 54.91 42.04 17.86 11.89 20.67 14.87 16.27 10.52 16.10 11.89
MER (Riemer et al., 2019) 45.39 24.42 50.99 36.15 – – – – – – – –
La-MAML (Gupta et al., 2020) 47.89 30.53 46.08 35.89 17.37 10.03 19.05 12.57 15.81 8.02 16.32 9.24
DER (Buzzega et al., 2020) 49.06 25.80 48.25 23.90 10.96 3.71 10.47 3.68 8.04 2.46 7.65 2.04
DER++ (Buzzega et al., 2020) 57.17 47.03 61.01 50.31 17.30 8.72 17.08 8.98 12.42 5.57 11.93 5.26
ER-ACE (Caccia et al., 2022) 52.27 46.04 57.42 51.17 24.02 15.46 24.93 20.58 20.57 13.23 21.16 17.22
CLSER (Arani et al., 2022) 61.64 50.36 63.27 53.06 22.58 15.68 23.25 16.42 18.50 10.03 18.88 11.61
CBA (Wang et al., 2023) 63.41 51.47 65.47 52.08 22.46 15.54 23.07 15.87 18.79 11.43 18.98 10.98
POCL (Ours) 63.62 53.42 66.23 58.50 26.68 16.54 36.34 33.36 21.56 12.69 25.48 19.40

and CBA, which demonstrates the favorable capability in
alleviating forgetting. Please note that instead of giving
higher priority to the current task as in other comparison
methods, ER-ACE and La-MAML both over-emphasize
preserving the performance of a past task without fully
exploring the potential of the current task, which leads to a
quite low a∗i and in turn an extremely high FM score, but a
quite low accuracy on T5 as shown in Fig. 2(a). It is unfair
to directly compare the FM with these two methods which
have different design focuses from other baselines. This
analysis is consistent with (Caccia et al., 2022).

Moreover, we provide the task-based confusion matrix in
Fig. 3 to investigate the proficiency of the proposed POCL
and other replay-based methods in managing task interre-
lationships. It is easily understood that a method that can
balance task interrelationships and optimize the overall per-
formance of all the tasks should, at a minimum, distinguish
between tasks. By comparing the diagonal elements rep-
resenting the correct classification probability of the task
identity, we can find that in general, the proposed POCL ex-
hibits a higher accuracy on all five tasks, and better balances
every task, which comprehensively validates its effective-
ness in capturing the interdependence among different tasks.

More results are presented in Appendix D.

Performance comparison with AAA and Acc. Table 2 re-
ports the average AAA and Acc of different CL methods on
Split CIFAR-10, Split CIFAR-100, and Split-TinyImageNet,
under different memory buffer size |M|. As seen, with the
increase of the buffer size |M|, the performance of previ-
ous tasks can be better maintained and then almost all the
comparing methods present an upward trend. Besides, from
Split CIFAR-10 to Split CIFAR-100 to Split-TinyImageNet,
as the task difficulty increases, all the approaches basically
show a downward trend. However, our proposed POCL
always achieves higher AAA and Acc scores, which almost
consistently outperform other baselines. This indicates that
POCL not only performs well on the final trained model but
also maintains a sustained advantage throughout the entire
streaming training process, which is crucial in CL.

Performance comparison with FM. Table 3 compares the
performance of different CL methods in mitigating forget-
ting and lists the average FM. As |M| increases, the FMs
of other comparative methods improve very little, or even
decrease. However, our proposed POCL always shows a
significant performance improvement on different datasets.
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Table 3. The Forgetting Measure (FM) with 95% confidence interval on benchmark datasets under different memory buffer size |M|. All
the reported results are averagely computed over 5 repetitions.

Method
Split CIFAR-10 (N=5) Split CIFAR-100 (N=20) Split TinyImageNet (N=20)
|M| = 0.6k |M| = 1k |M| = 1k |M| = 5k |M| = 2k |M| = 5k

SGD -61.01±3.30 -61.01±3.30 -54.24±1.20 -54.24±1.20 -43.58±0.58 -43.58±0.58

EWC (Huszár, 2017) -64.21±0.86 -64.21±0.86 -56.55±1.30 -56.55±1.30 -44.30±1.70 -44.30±1.70

GEM (Lopez-Paz & Ranzato, 2017) -58.09±3.90 -57.64±2.70 -45.83±0.69 -50.61±1.90 -42.30±0.11 -42.71±0.03

AGEM (Chaudhry et al., 2018) -66.17±1.61 -66.61±1.60 -60.51±0.34 -60.89±0.37 -45.61±0.04 -45.51±0.27

ER (Rolnick et al., 2019) -35.68±3.20 -32.16±5.10 -46.25±0.47 -48.54±1.10 -37.90±0.28 -37.43±0.81

MER (Riemer et al., 2019) -32.78±0.81 -23.33±8.06 – – – –
DER (Buzzega et al., 2020) -54.60±2.80 -55.22±1.70 -60.58±0.38 -59.94±1.40 -47.11±0.65 -46.27±0.85

DER++ (Buzzega et al., 2020) -24.00±1.30 -28.01±1.31 -58.61±0.60 -61.23±0.19 -47.13±2.00 -47.65±0.76

CLSER (Arani et al., 2022) -29.03±3.70 -31.38±1.70 -45.63±0.62 -50.71±0.86 -44.45±0.32 -44.21±0.14

CBA (Wang et al., 2023) -27.15±4.70 -27.31±3.70 -44.30±1.53 -50.16±2.76 -38.17±1.56 -40.53±1.34

POCL (Ours) -23.27±2.50 -16.85±2.80 -37.61±0.63 -17.55±0.36 -31.63±1.60 -20.22±1.20

Table 4. Performance on the Split CIFAR-10 with |M|=1k under different types of imbalanced CL settings, i.e., Normal and Reversed.
Normal Reversed Normal Reversed

Methods AAA Acc AAA Acc Methods AAA Acc AAA Acc
SGD 36.51±0.40 16.38±0.33 35.32±0.87 17.74±0.22 ER 52.28±0.65 32.59±1.86 46.78±3.01 27.89±2.46

EWC 38.95±0.25 16.95±0.31 37.82±0.27 17.91±0.19 DER 47.09±1.33 16.89±0.69 40.37±1.54 18.12±0.63

GEM 41.36±0.44 18.03±0.53 38.71±1.08 18.24±0.35 DER++ 61.97±0.63 44.04±2.06 58.52±0.87 39.43±3.29

AGEM 38.33±0.25 17.48±0.52 36.54±0.39 17.52±0.32 ER-ACE 61.47±1.42 44.12±2.33 60.21±0.17 48.16±1.79

MER 54.61±1.39 35.15±1.01 52.24±1.92 39.47±1.77 CLSER 61.87±0.41 48.04±0.72 55.32±1.57 42.38±2.97

La-MAML 36.17±1.25 28.99±0.78 31.79±2.03 31.68±1.42 POCL 66.87±1.92 54.82±1.55 64.45±1.38 58.79±2.66

Table 5. Ablation study on the proposed POCL. Here HD is the
abbreviation for hyper-gradient derived in Sec. 3.2.

HD Pareto Split CIFAR-10 (|M|=1k) Split CIFAR-100 (|M|=5k)
AAA Acc FM AAA Acc FM

✗ ✗ 36.80 19.45 -55.54 16.20 9.05 -54.91
✗ ✓ 39.03 21.12 -52.98 18.98 11.34 -52.67
✓ ✗ 63.95 54.57 -21.99 35.89 30.47 -18.84
✓ ✓ 66.23 58.50 -16.85 36.34 33.36 -17.55

Table 6. Performance on Split CIFAR-10 with 95% confidence
interval on the smaller 3-layer DNN with |M|=1k. The results are
averagely computed over 5 runs.

Split-CIFAR10 (|M| =1k)
Methods AAA Acc FM
SGD 34.96±0.27 16.08±0.10 -61.63±0.06

EWC 35.12±0.12 16.38±0.08 -60.65±0.24

ER 56.82±0.83 39.05±1.80 -35.83±0.81

A-GEM 35.88±0.09 14.15±0.27 -61.90±0.22

GEM 46.86±0.68 28.02±0.55 -43.39±1.17

DER 50.31±0.19 29.04±0.22 -49.38±0.19

DER++ 56.99±0.08 42.30±0.18 -34.07±0.24

MER 58.18±0.34 35.14±0.84 -34.37±0.74

CLSER 60.25±0.12 43.82±0.25 -33.97±0.04

POCL (Ours) 61.09±0.62 46.14±0.43 -22.13±0.42

The underlying reason is that the derived hyper-gradient
weighting formulation makes POCL able to fully exploit
the memory buffer for more accurate gradient alignment.

For POCL, while the introduced Pareto optimization aims
to help improve the performance of entire previous tasks
(as verified in Table 2), from another perspective, this also
avoids forgetting to a certain extent, thus helping POCL
obtain higher FM scores. As discussed in the analysis for
Fig. 2, to avoid confusion, we defer reporting the FM results
for ER-ACE and La-MAML to Appendix D.

Performance comparisons on more realistic settings. To
comprehensively evaluate the effectiveness of our proposed
methods, based on Split CIFAR-10, we additionally execute
the comparing experiments on two more realistic CL set-
tings, including Normal class imbalanced CL and Reversed
class imbalanced CL. Specifically, for the Normal setting,
the number of samples possessed by each streaming task
is in a decreasing order, while Reversed takes an increas-
ing order. More details are included in Appendix D. The
corresponding comparison results are reported in Table 4.
As seen, even under these more challenging scenarios, our
proposed POCL still shows superior performance.

Ablation study on each component of POCL. To evaluate
the role of each component of POCL, we conduct an ablation
study based on Split CIFAR-10 with buffer size |M|=1k.
Table 5 presents the performance of different variants of the
proposed gradient weighting framework. From the results,
we can see that 1) the introduction of the hypergardient in-
deed introduces large performance gains; 2) through hyper-
gradient design, it unleashes the potential of the Pareto
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optimization and leads to significant performance improve-
ment. The Pareto optimization and the hyper-gradient part
are the two integral components of our proposed POCL.

More comparisons on different backbones. To explore
the versatility of our method across different backbones,
based on Split CIFAR-10 with |M|=1k, we also incorpo-
rate a smaller three-layer convolutional network as an ad-
ditional backbone for experimental analysis. The results
are provided in Table 6. Compared to Table 2 and Table 3
with Reduced ResNet-18 as the backbone, although all the
comparison methods show a relative performance degra-
dation under the smaller backbone, POCL still surpasses
other CL methods on all the evaluation metrics. The re-
sults demonstrate that the proposed POCL algorithm has
excellent applicability across various backbone models.

5. Related Work
Continual Learning Categories. In the field of contin-
ual learning, various approaches have been proposed to
address catastrophic forgetting in recent years. These exist-
ing approaches can be broadly categorized into three classes:
regularization-based, parameter-isolation-based, and replay-
based methods. Specifically, regularization-based meth-
ods (Kirkpatrick et al., 2017; Huszár, 2017; Ritter et al.,
2018; Zenke et al., 2017; Yang et al., 2019) intend to design
different regularization techniques to preserve important pa-
rameters for previously learned tasks. Parameter-isolation-
based approaches (Serra et al., 2018; Mallya & Lazebnik,
2018; Fernando et al., 2017; Aljundi et al., 2017; Ardywi-
bowo et al., 2022; Wang et al., 2022) focus on isolating
task-specific parameters to prevent interference between
tasks. Replay-based methods (Rolnick et al., 2019; Lopez-
Paz & Ranzato, 2017; Chaudhry et al., 2018; Aljundi et al.,
2019; Buzzega et al., 2020; Arani et al., 2022; Wang et al.,
2023; Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018;
Guo et al., 2020; Riemer et al., 2019; Wu et al., 2024) hope
to preserve previous knowledge by utilizing a small memory
bufferM, which retains samples from past tasks.

Replay-based Methods. According to different update
strategies for samples in the memory buffer M, replay-
based methods can be further classified into gradient align-
ment methods and experience replay methods. Specifically,
gradient alignment methods represented by GEM (Lopez-
Paz & Ranzato, 2017) utilize a small memory buffer to store
samples from previous tasks and aim to find a gradient up-
date direction u adhering to two main constraints: 1) the
to-be-estimated u should be as close as possible to the gra-
dient of the current task gn for improving the performance
on the current task; 2) the inner product ⟨u, gi⟩ between
the to-be-updated gradient u and the gradient of every past
task gi, where 1 ≤ i < n, should be non-negative to pre-
vent adverse effect on the performance of past task, thereby

alleviating forgetting. To accelerate the optimization pro-
cess of GEM, instead of computing the individual gradient
of each previous task, AGEM (Chaudhry et al., 2018) and
MEGA (Guo et al., 2020) have proposed to compute an
average past gradient gavg to execute the aforementioned
inner-product constraint. The average past gradient gavg
is calculated using examples randomly sampled from the
memory buffer. Similarly, MER (Riemer et al., 2019) and
La-MAML (Gupta et al., 2020) attempt to align the gradient
of the current task gn with the average gradient gavg via
a bi-level optimization procedure. For experience replay
methods, they usually draw examples from the bufferM
and directly utilize them to update the model. For example,
Der++ (Buzzega et al., 2020) utilizes both the examples
and the predicted logits of previous tasks, CLSER (Arani
et al., 2022) employs a dual memory that maintains short-
term and long-term semantic memories, and CBA (Wang
et al., 2023) proposes to correct the recency bias through a
proposed bias attractor with the help of previous examples
inM. In this paper, we revisit current replay-based meth-
ods from the gradient perspective and then propose a novel
Pareto-Optimized CL algorithm. Compared to the existing
replay-based methods, our method additionally takes into
account the interrelationships among past tasks and achieves
an overall superior performance.

6. Conclusion
In this paper, for replay-based CL methods, we have first
mathematically formulated them as a hierarchical gradient
aggregation framework that combines the gradient of the
current task and the gradient-weighted sum of each previous
task in the update direction. Then we have proposed the
Pareto-Optimized CL (POCL) by modeling the interrelation-
ships among previous tasks to enhance the integrated knowl-
edge of previous tasks, thereby reducing catastrophic forget-
ting. Comprehensive experiments across various datasets
and settings have finely substantiated the superiority of the
proposed POCL as well as its good applicability beyond the
current state-of-the-art continual learning methods.
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A. Theoretical Analysis
A.1. The MiniMax Theorem

MiniMax Theorem. (Du & Pardalos, 1995). This theorem answers the question of in which situation the order of
minimization and maximization operations can be swapped. Concretely, let X ∈ Rn and Y ∈ Rm be two compact convex
sets. Suppose f : X × Y→ R is a continuous function that is concave-convex, i.e., f(x, ·) : Y → R is convex for fixed x
and f(·, y) : X→ R is concave for the fixed y. Then we can get that

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y). (1)

As discussed in Section 2, the optimization problem described by Eq. (4) satisfies the above requirements. Therefore, we
can interchange its optimization order and obtain the gradient weighting optimization problem in Eq. (5).

A.2. Proof of the Derivation from Eq. (12) to Eq. (13)

In the first-order meta-learning algorithm Reptile (Nichol et al., 2018), it shows that one-step hyper-gradient (i.e., gHD
j in

Eq. (12)) is of the form:

gHD
j =

∂L(fθ̃t+1
(xm), ym)

∂θt

=
∂Lm

θt

∂θt
− α

∂2Lm
θt

∂θ2t

∂Lj
θt

∂θt
− α

∂2Lj
θt

∂θ2t

∂Lm
θt

∂θt
+O(α2)

≈
∂Lm

θt

∂θt
− α

∂

∂θt
(
∂Lj

θt

∂θt
×

∂Lm
θt

∂θt
)

≈
∂(Lm

θt
− α∇θtLm

θt
· ∇θtL

j
θt
)

∂θt
,

(2)

where Lm
θt

≜ L(fθ̃t+1
(xm), ym) and Lj

θt
≜ L(fθt(xj), yj). In this way, we have finished the derivations for Eq. (13).

A.3. Convergence Analysis

To gain a deeper understanding of the proposed POCL, we also provide its regret bound, as illustrated in Theorem 1. Let the
notation Ft(θ) ≜

∑Bt

i=1 L(f(xi; θ), yi) and F (θ) =
∑T

t=1 Ft(θ), where Bt means the samples number of the t-th training
batch. There are four requiring assumptions as follows:
Assumption 1. The compact convex set C ⊆ Rd has diameter D, i.e., ∀θ, θ′ ∈ C, ∥θ − θ

′∥ ≤ D.

Assumption 2. Let gt denote the t-th update gradient, there exisits σ2 <∞ such that ∥∇Ft(θ)−∇F (θ)∥2 ≤ σ2.

Assumption 3. The difference of Ft(θ) and F (θ) is bounded over the constraint set C, i.e., ∀θ ∈ C, t ∈ {1, ..., T}, there
exists M2 <∞ such that with probability 1,

∥Ft(θ)− F (θ)∥2 ≤M2

Assumption 4. The gradient ∇Ft(θ) is unbiased and is L-Lipschitz continuous over the constraint set C, i.e.,

∥∇Ft(θ)−∇Ft(θ
′
)∥ ≤ L∥θ − θ

′
∥,∀θ, θ

′
∈ C

Theorem 1. Let T denote the training iteration. Suppose all the above four assumptions are satisfied, then with probability
at least 1− δ for any δ ∈ (0, 1), we can get,

R(T ) ≤ (log T + 1)(F (θ1)− F (θ∗)) + σ2D log T +
LD2(log T + 1)2

2
+ 4M

√
T log(8/δ).

Proof. Then we will prove the regret bound R(T ) of POCL as follows,

R(T ) ≜
T∑

t=1

Ft(θt)−minθ

T∑
t=1

Ft(θ). (3)

12



Mitigating CF in Online Continual Learning by Modeling Previous Task Interrelations via Pareto Optimization

Let θ∗ = argminθ
∑T

t=1 Ft(θ), then we can get,

R(T ) =

T∑
t=1

Ft(θt)−minθ

T∑
t=1

Ft(θ)

=

T∑
t=1

Ft(θt)−
T∑

t=1

Ft(θ
∗)

=

T∑
t=1

[Ft(θt)− Ft(θ
∗)].

(4)

Then, through calculating the term Ft(θt) − Ft(θ
∗), we can get the regret bound. We first define a sequence st =

F̃t(θt)− Ft(θ
∗)− (F (θt)− F (θ∗)), t = 1, ..., T . It can be observed that E [st | Ft−1] = 0, where Ft−1 is the σ-algebra

generated by {F1, ϵ1, ..., Ft−1, ϵt−1}. It means that {st}Tt=1 is a martingale difference sequence. According to Assumption
4, we can derive that,

∥st∥ = ∥Ft(θt)− Ft(θ
∗)− (F (θt)− F (θ∗)∥ ≤ 2M.

Based on the Theorem 3.5 in (Pinelis, 1994), we can get

P

(
∥

T∑
t=1

st∥ ≥ λ

)
≤ 4 exp

(
− λ2

16TM2

)
,

where λ > 0. By setting λ = 4M
√
T log(8/δ) , we have with probability at least 1− δ/2,

T∑
t=1

st =

T∑
t=1

(Ft(θt)− Ft(θ
∗))−

T∑
t=1

(F (θt)− F (θ∗)) ≤ 4M
√

T log(8/δ).

Combining this term with Eq. (4), we can get,

R(T ) ≤
T∑

t=1

(F (θt)− F (θ∗)) + 4M
√
T log(8/δ).

Let βt =
1
t denote the learning rate, ϵt = gt −∇F (θt) then we can get,

F (θt)− F (θ∗) = (1− βt)(F (θt−1)− F (θ∗)) + αtD∥ϵt−1∥2 +
LD2β2

t

2

≤
t−1∏
τ=1

(1− βτ )(F (θ1)− F (θ∗)) +

t−1∑
τ=1

βτ (D∥ϵτ∥2 +
LD2βτ

2
)

t−1∏
k=τ+1

(1− βk)

≤ 1

t
(F (θ1)− F (θ∗)) +

D

t

t−1∑
τ=1

∥ϵτ∥2 +
LD2 log t

2t
.

T∑
t=1

F (θt)− F (θ∗) =

T∑
t=1

1

t
(F (θ1)− F (θ∗)) +

T∑
t=1

D

t

t−1∑
τ=1

∥ϵτ∥2 +
T∑

t=1

LD2 log t

2t

≤ (log T + 1)(F (θ1)− F (θ∗)) + σ2D log T +
LD2(log T + 1)2

2
.

Therefore, the final regret bound is,

R(T ) ≤ (log T + 1)(F (θ1)− F (θ∗)) + σ2D log T +
LD2(log T + 1)2

2
+ 4M

√
T log(8/δ).
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B. Analysis of the Gradient Aggregation in Eq. (5)

By utilizing the MiniMax theorem in Appendix A.1, we have transformed the gradient alignment method into a gradient
weighting problem, as shown in Eq. (5). The resulting optimization direction can be expressed as u∗ = gn + g(λ∗),
where λ∗ is solved to minimize the objective function 1

2∥g(λ) + gn∥22. To gain a deeper understanding of the optimization
direction u∗, we conduct an analysis of simple cases (i.e., n = 2, 3) in two-dimensional scenarios. These simplified cases
allow us to examine the derived hierarchical gradient aggregation framework more straightforwardly, facilitating a clear
comparison with other gradient alignment methods.

Comparing with Other Replay-based Methods. As depicted in Fig. 4 where n=2, there are two different situations.
According to our derived optimization objective as shown in Eq. (5), our goal is to get λ1 such that ∥λ1g

m
1 + g2∥22 as small

as possible. Concretely, in the situation (a) where ⟨g2, gm
1 ⟩ ≥ 0, there is no interference between the two directions, leading

to the final optimization direction u∗ being u∗ = 0 · gm
1 + g2 = g2. In contrast, in situation (b), where ⟨g2, gm

1 ⟩ < 0,
interference between the two directions is observed. In this case, the final optimization direction is u∗ = g2 − ⟨g2,g

m
1 ⟩

∥g1∥2 gm
1 .

It is worth noting that the solutions are exactly the same as those obtained from AGEM (Chaudhry et al., 2018), which
implies that AGEM can be regarded as a special case within our hierarchical gradient aggregation framework. Additionally,
La-MAML (Gupta et al., 2020), a simplified version of MER (Riemer et al., 2019), has derived an equivalent form of its
bi-level optimization goal that coincides with optimizing the CL objective of AGEM. This equivalence demonstrates that
La-MAML can also be regarded as a specific instance. Similarly, MEGA (Guo et al., 2020) just manually assigns weights to
gradients of different tasks. Therefore, all these replay-based methods can be analyzed within this framework.
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Figure 4. Illustration of the final determined optimization direction for our derived Eq. (5) with two Tasks (i.e., n=2) in the simplest
two-dimensional context.
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Figure 5. Illustration of the final optimization direction determined our derived Eq. (5) with three Tasks (i.e., n= 3) in the simplest
two-dimensional context.

C. More Details of the Experiments
Benchmark Datasets. Both CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009) consist of 50,000 training images
and 10,000 testing images, all with a size of 32× 32 pixels. However, they differ in the number of classes: CIFAR-10
contains 10 classes, while CIFAR-100 includes 100 classes. Following (Chen et al., 2022), the CIFAR-10 and CIFAR-100
are evenly split into 5 tasks and 20 tasks respectively, denoted as Split CIFAR-10 and Split CIFAR-100. Similarly, the
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TinyImageNet dataset (Buzzega et al., 2020), which contains 200 classes and 100,000 images with a size of 64×64 pixels, is
divided into 20 tasks, with each task containing 10 classes.

Details of the Comparison Methods. In this study, we compare the proposed POCL method with other gradient alignment
methods as well as other representative CL methods. Here is a brief introduction to these comparison methods:

Gradient Alignment Methods:

• GEM (Lopez-Paz & Ranzato, 2017). This method manipulates the gradient of the current task in a way that ensures the
final update direction satisfies the non-negative inner-product constraints w.r.t. the gradients of previous tasks.

• AGEM (Chaudhry et al., 2018). Since GEM solves its constrained optimization problem through quadratic programming,
which is time-consuming, AGEM opts to simplify the problem by merging all previous tasks into one. This enables the
derivation of a closed-form solution.

• MEGA (Guo et al., 2020). This method proposes to manually assign weights to gradients of different tasks and then
update the model in the weighted direction.

• MER (Riemer et al., 2019). This approach utilizes replay examples to align the gradients of previous tasks and the
current task to maximize the transfer from previous tasks and minimize interference.

• La-MAML (Gupta et al., 2020). This method simplifies the optimization process of MER and shares a similar gradient
alignment objective.

Experience Replay Methods:

• ER (Rolnick et al., 2019). It constructs a memory buffer to store samples of previous tasks and utilize them during the
sequential training.

• DER++ (Buzzega et al., 2020). Building upon the foundation of ER, DER++ stores the predicted logits of each example.
This strategy is employed to apply a distillation loss during the training process.

• CLSER (Arani et al., 2022). On the basis of ER, CLSER employs the dual memory which maintains short-term and
long-term semantic memories.

• ER-ACE (Caccia et al., 2022). This method introduces a novel training approach that primarily focuses on previous
tasks, aiming to avoid abrupt feature changes associated with these tasks.

• CBA (Wang et al., 2023). It proposes to correct the recency bias through a proposed bias attractor with the help of
previous examples inM.

D. Other Experimental Results
Full Table with Confidence Interval. In order to better present the results, we provide the mean performance of AAA,
Acc, and FM metrics, along with their 95% confidence intervals, specifically for each dataset, as shown in Table 7, Table 8,
and Table 9. The results clearly demonstrate that the proposed POCL method consistently achieves the highest average
performance in terms of AAA and Acc across all three datasets under different buffer sizes. With respect to the FM metric,
aside from ER-ACE and La-MAML, methods that inherently have an extremely high a∗i as analyzed in Sec.4, our method
also outperforms other methods, achieving the best FM performance.

Other Analysis Results. To better validate the effectiveness of the proposed POCL, we also provide the accuracy of each
task on Split CIFAR-100 and Split TinyImageNet, as shown in Fig. 6. It is evident from the results that our method, on
average, covers a large area, thereby validating that our proposed POCL can indeed sustain the performance of previous
tasks and effectively mitigate forgetting. Moreover, we also provide the confusion matrix of other CL methods, including
ER, DER++, CLSER, and ER-ACE. By comparing with Fig. 3, it can be seen that all the four methods cannot distinguish
T2 and T3, while the proposed POCL exhibits much better performance. This further confirms that our proposed POCL,
by introducing Pareto optimization to mitigate catastrophic forgetting, can effectively capture and model the relationships
among past tasks.

Time Complexity Analysis. To analyze the time complexity of the proposed POCL algorithm, we conducted a comparison
of training times on the Split CIFAR10 dataset with other CL methods that also utilize hyper-gradients, namely MER (Riemer
et al., 2019) and La-MAML (Gupta et al., 2020). The results clearly indicate that the proposed POCL algorithm significantly
reduces training time compared to MER (Riemer et al., 2019), while achieving comparable training costs to La-MAML.
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Table 7. Performance of all the comparing methods on Split CIFAR-10 under different memory buffer size |M|. All the reported results
are averagely computed over 5 repetitions.

Method
Split CIFAR-10 (N = 5)

|M| = 0.6k |M| = 1k
AAA Acc FM AAA Acc FM

SGD 34.04±3.10 16.68±0.27 -61.01±3.30 34.04±3.10 16.68±0.27 -61.01±3.30
EWC (Huszár, 2017) 36.51±0.75 18.37±0.30 -64.21±0.86 36.51±0.75 18.37±0.30 -64.21±0.86
GEM (Lopez-Paz & Ranzato, 2017) 37.78±1.98 18.84±1.17 -58.09±3.90 37.00±0.47 18.73±0.76 -57.64±2.70
AGEM (Chaudhry et al., 2018) 37.67±1.76 18.51±0.07 -66.17±1.61 37.62±1.53 18.03±0.43 -66.61±1.60
ER (Rolnick et al., 2019) 54.68±5.11 39.43±3.79 -35.68±3.20 54.91±1.65 42.04±4.33 -32.16±5.10
MER (Riemer et al., 2019) 45.36±1.48 24.42±0.42 -32.78±0.81 50.99±2.75 36.15±1.21 -23.33±8.06
La-MAML (Gupta et al., 2020) 47.89±1.45 30.53±3.73 -10.09±0.52 46.08±3.45 35.89±1.35 -5.03±0.86
DER (Buzzega et al., 2020) 49.06±1.30 25.80±0.51 -54.60±2.80 48.25±1.95 23.90±0.47 -55.22±1.70
DER++ (Buzzega et al., 2020) 57.17±1.08 47.03±1.03 -24.00±1.30 61.01±1.55 50.31±1.50 -28.01±1.31
ER-ACE (Caccia et al., 2022) 52.27±0.97 46.04±3.75 -9.12±2.94 57.42±0.99 51.17±3.44 -9.68±2.90
CLSER (Arani et al., 2022) 61.64±1.62 50.36±4.06 -29.03±3.70 63.27±0.71 53.06±1.58 -31.38±1.70
CBA (Wang et al., 2023) 63.41±1.67 53.42±1.37 -27.15±4.70 65.47±0.77 52.08±0.15 -27.31±3.70
POCL 63.62±2.65 53.42±1.17 -23.27±2.50 66.23±1.73 58.50±2.43 -16.85±2.80

Table 8. Performance of all the comparing methods on Split CIFAR-100 under different memory buffer size |M|. All the reported results
are averagely computed over 5 repetitions.

Method
Split CIFAR-100 (N = 20)

|M| = 1k |M| = 5k
AAA Acc FM AAA Acc FM

SGD 9.67±0.18 3.24±0.12 -54.24±1.20 9.67±0.18 3.24±0.12 -54.24±1.20
EWC (Huszár, 2017) 9.87±0.28 2.77±0.27 -56.55±1.30 9.87±0.28 2.77±0.27 -56.55±1.30
GEM (Lopez-Paz & Ranzato, 2017) 13.43±0.04 6.04±0.52 -45.83±0.69 13.71±0.23 6.46±0.93 -50.61±1.90
AGEM (Chaudhry et al., 2018) 10.61±0.09 3.75±0.18 -60.51±0.34 10.80±0.15 3.52±0.13 -60.89±0.37
ER (Rolnick et al., 2019) 17.86±0.26 11.89±0.27 -46.25±0.47 20.67±0.68 14.87±0.60 -48.54±1.10
La-MAML (Gupta et al., 2020) 17.37±0.59 10.03±0.25 -5.95±0.01 19.05±0.54 12.57±0.34 -6.45±0.33
DER (Buzzega et al., 2020) 10.96±0.20 3.71±0.11 -60.58±0.38 10.47±0.32 3.68±0.06 -59.94±1.40
DER++ (Buzzega et al., 2020) 17.30±0.30 8.72±0.52 -58.61±0.60 17.08±0.79 8.98±1.05 -61.23±0.19
ER-ACE (Caccia et al., 2022) 24.02±0.22 15.46±1.05 -12.01±0.81 24.93±1.95 20.58±0.36 -9.84±1.00
CLSER (Arani et al., 2022) 22.58±0.42 15.68±0.62 -45.63±0.62 23.25±1.34 16.42±1.52 -50.71±0.86
CBA (Wang et al., 2023) 22.46±0.53 15.54±0.44 -44.30±1.53 23.07±0.58 15.87±0.75 -50.16±2.76
POCL 26.68±0.21 16.54±0.34 -37.61±0.63 36.34±1.24 33.36±1.92 -17.55±0.36

Moreover, considering the substantial improvements in both AAA and Acc metrics, the proposed POCL algorithm
demonstrates its superiority in terms of both training efficiency and performance on the Split CIFAR-10 dataset.
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Table 9. Performance of all the comparing methods on Split TinyImageNet under different memory buffer size |M|. All the reported
results are averagely computed over 5 repetitions.

Method
Split TinyImageNet (N = 20)

|M| = 2k |M| = 5k
AAA Acc FM AAA Acc FM

SGD 7.63±0.24 2.17±0.07 -43.58±0.58 7.63±0.24 2.17±0.07 -43.58±0.58
EWC (Huszár, 2017) 7.96±0.12 2.43±0.13 -44.30±1.70 7.96±0.12 2.43±0.13 -44.30±1.70
GEM (Lopez-Paz & Ranzato, 2017) 10.17±0.28 3.70±0.44 -42.30±0.11 10.27±0.07 3.81±0.15 -42.71±0.03
AGEM (Chaudhry et al., 2018) 7.66±0.35 2.33±0.18 -45.61±0.04 7.79±0.03 2.40±0.22 -45.51±0.27
ER (Rolnick et al., 2019) 16.27±0.10 10.52±0.59 -37.90±0.28 16.10±0.24 11.89±0.63 -37.43±0.81
La-MAML (Gupta et al., 2020) 15.81±0.41 8.02±0.10 -3.76±0.11 16.32±0.49 9.24±0.34 -4.38±0.50
DER (Buzzega et al., 2020) 8.04±0.20 2.46±0.06 -47.11±0.65 7.65±0.11 2.04±0.15 -46.27±0.85
DER++ (Buzzega et al., 2020) 12.42±0.34 5.57±0.11 -47.13±2.00 11.93±0.34 5.26±0.21 -47.65±0.76
ER-ACE (Caccia et al., 2022) 20.57±0.49 13.23±1.13 -8.42±1.25 21.16±0.14 17.22±0.54 -6.56±0.64
CLSER (Arani et al., 2022) 18.50±0.08 10.03±0.22 -44.45±0.32 18.88±0.59 11.61±0.19 -44.21±0.14
CBA (Wang et al., 2023) 18.79±0.05 11.43±0.67 -38.17±1.56 18.98±0.85 10.98±0.14 -40.53±1.34
POCL 21.56±0.44 12.69±0.47 -31.63±1.60 25.48±0.67 19.40±0.92 -20.22±1.20

Table 10. Training time comparison of different CL methods on Seq-CIFAR10 under the online setting (i.e., the training epoch of each
task is set as one.)

Method La-MAML MER POCL
AAA/Acc 46.08%/35.89% 50.99%/36.92% 66.23%/58.50%

Training Time (s) 750.61 20697.70 1677.10

(a) Split CIFAR-100 (b) Split  TinyImageNet

Figure 6. Radar charts illustrating each task accuracy on (a) Split CIFAR-100 dataset and (b) Split TinyImageNet with |M|=5k.
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