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Abstract
A well-studied generalization of the standard on-
line convex optimization (OCO) is constrained on-
line convex optimization (COCO). In COCO, on
every round, a convex cost function and a convex
constraint function are revealed to the learner after
the action for that round is chosen. The objective
is to design an online policy that simultaneously
achieves a small regret while ensuring small cu-
mulative constraint violation (CCV) against an
adaptive adversary. A long-standing open ques-
tion in COCO is whether an online policy can si-
multaneously achieve O(

√
T ) regret and O(

√
T )

CCV without any restrictive assumptions. For the
first time, we answer this in the affirmative and
show that an online policy can simultaneously
achieve O(

√
T ) regret and Õ(

√
T ) CCV. We es-

tablish this result by effectively combining the
adaptive regret bound of the AdaGrad algorithm
with Lyapunov optimization - a classic tool from
control theory. Surprisingly, the analysis is short
and elegant.

1. Introduction
We consider the Constrained Online Convex Optimization
problem (COCO for short) with adversarially chosen con-
vex cost and convex constraint functions. In COCO, on
every round, a convex cost function and a convex constraint
function are revealed to the learner, after the action for
that round is chosen. The objective is to design an online
policy that simultaneously achieves a small regret (w.r.t.
cost functions) while ensuring a small cumulative constraint
violations (CCV) (w.r.t. constraint functions) against any
adaptive adversary that is allowed to choose a single action
across all rounds.

The COCO problem has been extensively studied in the
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literature over the past decade and the best-known bounds
for simultaneouls regret and CCV are O(

√
T ) and O(T 3/4),

respectively (Guo et al., 2022; Yi et al., 2023; Sinha & Vaze,
2023), without any additional assumptions. A simultaneous
lower bound on regret and CCV is known to be Ω(

√
T ) and

Ω(
√
T ) (Sinha & Vaze, 2023). Please refer to Table 1 in the

Appendix for a summary of the major results.

It is known that with additional assumptions, simultane-
ous O(

√
T ) regret and O(

√
T ) CCV is achievable (See the

Related Work Section below). However, even after more
than a decade of sustained work on this problem, the ques-
tion: whether an online policy can simultaneously achieve
O(
√
T ) regret and O(

√
T ) CCV, without any additional as-

sumptions remains unresolved and constitutes a major open
problem in this area.

In this paper, we resolve this problem for the first time and
make the following contributions.

1. We propose an efficient policy that simultaneously
achieves O(

√
T ) regret and O(

√
T log T ) CCV for the

COCO problem. Our policy breaks the long-standing
O(T 3/4) barrier for the CCV and achieves the lower
bound up to a logarithmic term.

2. The proposed policy simply runs the standard AdaGrad
algorithm on a specially constructed sequence of surro-
gate cost functions and requires no explicit parameter
tuning. On every round, the policy needs to compute
the gradients of the cost and constraint functions at the
current action and performs an Euclidean projection.

3. Unlike the primal-dual-based algorithms in the pre-
vious works, the design of our policy employs the
Lyapunov method from the classical control theory.
The presented analysis is short and elegant, may be of
independent interest for other related problems.

2. Related Work
While the regret bound of O(

√
T ) for COCO is minimax

optimal, a number of papers have obtained tighter CCV
bounds under various assumptions, such as time-invariant
constraints (Mahdavi et al., 2012; Jenatton et al., 2016; Yuan
& Lamperski, 2018; Yu & Neely, 2020; Yi et al., 2021),
stochastic constraints (Yu et al., 2017; Sinha, 2024), Slater’s
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condition (Neely & Yu, 2017; Yi et al., 2023), or the non-
negativity of the regret (Sinha & Vaze, 2023). Furthermore,
the algorithms proposed in Guo et al. (2022); Yi et al. (2023;
2021); Yu & Neely (2020) are complex as they need to solve
a full-fledged convex optimization problem on each round.

3. Problem formulation
Consider a repeated game between an online policy and
an adaptive adversary. In this game, on each round t ≥ 1,
the policy chooses a feasible action xt from an admissible
set X . The set X is assumed to be non-empty, closed, and
convex with a finite Euclidean diameter D. Upon observing
the current action xt, the adversary chooses two convex
functions - a cost function ft : X → R and a constraint
function gt : X → R. The constraint function gt correspond
to an online constraint of the form gt(x) ≤ 0. Since the
constraints are adaptively chosen, they cannot be expected to
be satisfied by the policy on each round. Consequently, the
policy incurs a cost of ft(xt) and an instantaneous constraint
violation of max(0, gt(xt)). Our high-level objective is to
design an online policy that achieves a small cumulative cost
while approximately satisfying the constraints in the long
term. Throughout the paper, we assume that all cost and
constraint functions are convex and G-Lipschitz. The regret
of any policy is computed by comparing its cumulative cost
against that of a fixed feasible action x⋆ ∈ X that satisfies
all constraints on each rounds. Specifically, let X ⋆ ⊆ X be
the set consisting of all actions satisfying all constraints:

X ⋆ = {x ∈ X : gt(x) ≤ 0, ∀t ≥ 1}. (1)

We assume that the feasible set is non-empty, i.e., X ⋆ ̸= ∅.
We then define the Regret and the CCV of any policy as

RegretT = sup
x⋆∈X⋆

T∑
t=1

(
ft(xt)− ft(x

⋆)
)
, (2)

CCVT =

T∑
t=1

(gt(xt))
+, (3)

where we have defined (y)+ ≡ max(0, y), y ∈ R.

In the standard OCO problem, only the cost functions are
revealed on every round and there is no online constraint
function. The goal for the standard OCO problem is to only
minimize the regret. Hence, the standard OCO problem can
be seen to be a special case of COCO where gt = 0,∀t, and
hence, X ⋆ = X .

Note: We may consider an extension of the above problem
where k > 1 constraints of the form gt,i(x) ≤ 0, i ∈ [k],
are revealed on each round. These multiple constraints can
be combined to a single constraint by replacing them with a
new constraint gt(x) ≤ 0, where the function gt is taken to
be the point wise max, i.e., gt(x) ≡ maxki=1 gt,i(x).

4. Optimal Regret and Constraint Violation
Bounds for COCO

4.1. Overview of the technique

Compared to the standard online convex optimization prob-
lem where the objective is to minimize the Regret (Hazan,
2022), in this problem our objective is two fold - to simulta-
neously control the Regret and the CCV. Towards this end,
in the following, we propose a Lyapunov-based technique
that yields O(

√
T ) regret and Õ(

√
T ) CCV.

4.2. Preliminaries

We now briefly recall the first-order methods (a.k.a. Pro-
jected Online Gradient Descent (OGD)) for the standard
OCO problem. These methods differ among each other in
the way the step sizes are chosen. For a sequence of convex
cost functions {f̂t}t≥1, a projected OGD algorithm selects
the successive actions as (Orabona, 2019, Algorithm 2.1):

xt+1 = PX (xt − ηt∇t), ∀t ≥ 1, (4)

where ∇t ≡ ∇f̂t(xt) is a subgradient of the function f̂t at
xt, PX (·) is the Euclidean projection operator on the set X
and {ηt}t≥1 is a specified step size sequence. The (diagonal
version of the) AdaGrad policy adaptively chooses the step
size sequence as a function of the previous subgradients as
ηt =

√
2D

2
√∑t

τ=1 G2
τ

, where Gt = ||∇t||2, t ≥ 1 (Duchi et al.,

2011). 1 It enjoys the following adaptive regret bound.

Theorem 4.1. (Orabona, 2019, Theorem 4.14) The Ada-
Grad policy, with the above step size sequence, achieves the
following regret bound for the standard OCO problem:

RegretT ≤
√
2D

√√√√ T∑
t=1

G2
t . (5)

4.3. Design and Analysis of the Algorithm

To simplify the analysis, we pre-process the cost and con-
straint functions as follows.

Pre-processing: On every round, we clip the negative part
of the constraint to zero by passing it through the standard
ReLU unit. Next, we scale both the cost and constraint
functions by a factor of α ≡ (2GD)−1. More precisely, we
define f̃t ← αft, g̃t ← α(gt)

+. Hence, the pre-processed
functions are αG = (2D)−1-Lipschitz with g̃t ≥ 0,∀t.

In the following, we will derive the Regret and CCV bounds
for the pre-processed functions. The corresponding bounds
for the original unscaled functions are obtained upon scaling
the results back by α−1 in the final step.

1We set ηt = 0 if Gt = 0.
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Algorithm 1 Online Policy for COCO
1: Input: Horizon length T, Sequence of convex cost

functions {ft}Tt=1 and constraint functions {gt}Tt=1, an
upper bound G to the norm of their (sub)-gradients,
Diameter D of the admissible set X

2: Parameters: V = 1, λ = 1/(2
√
T ),Φ(x) =

exp(λx)− 1, α = (2GD)−1.
3: Initialization: Set x1 = PX (0), Q(0) = 0.
4: for t = 1 : T do
5: Choose xt, observe ft, gt, incur a cost of ft(xt) and

constraint violation of (gt(xt))
+

6: f̃t ← αft, g̃t ← αmax(0, gt).
7: Q(t) = Q(t− 1) + g̃t(xt).

8: Compute ∇t = ∇f̂t(xt), where f̂t is defined in (8)
9: xt+1 = PX (xt − ηt∇t), where ηt =√

2D

2
√∑t

τ=1 ||∇τ ||22
.

10: end for

4.3.1. SURROGATE COST FUNCTIONS

Let Q(t) denote the CCV for the pre-processed constraints
up to round t. Clearly, Q(t) satisfies the simple recursion
Q(t) = Q(t−1)+g̃t(xt), t ≥ 1, with Q(0) = 0. Recall that
one of our objectives is to make Q(t) as small as possible.
Towards this, let Φ : R+ → R+ be any non-decreasing
convex potential (Lyapunov) function such that Φ(0) = 0.
Using the convexity of the function Φ(·), we have

Φ(Q(t)) ≤ Φ(Q(t− 1)) + Φ′(Q(t))(Q(t)−Q(t− 1))

= Φ(Q(t− 1)) + Φ′(Q(t))g̃t(xt). (6)

Hence, the one-step change (drift) of the potential function
Φ(Q(t)) can be upper bounded as

Φ(Q(t))− Φ(Q(t− 1)) ≤ Φ′(Q(t))g̃t(xt). (7)

Recall that, in addition to controlling the CCV, we also want
to minimize the cumulative cost (which is equivalent to the
regret minimization). Inspired by the stochastic drift-plus-
penalty framework of Neely (2010), we combine these two
objectives to a single objective of minimizing a sequence
of surrogate cost functions {f̂t}Tt=1 which is obtained by
taking a positive linear combination of the drift upper bound
(7) and the cost function. More precisely, we define

f̂t(x) := V f̃t(x) + Φ′(Q(t))g̃t(x), t ≥ 1. (8)

In the above, V is a suitably chosen non-negative parameter
to be fixed later. Our proposed policy for COCO, described
in Algorithm 1, simply runs the AdaGrad algorithm on the
surrogate cost function sequence {f̂t}t≥1, for a specific
choice of Φ(·) and V as dictated by the following analysis.

4.3.2. THE REGRET DECOMPOSITION INEQUALITY

Let x⋆ ∈ X ⋆ be any feasible action as defined in (1). Using
the drift inequality from Eqn. (7), the definition of surrogate
costs (8), and the fact that gτ (x⋆) ≤ 0,∀τ ≥ 1, we have

Φ(Q(τ))− Φ(Q(τ − 1)) + V (f̃τ (xτ )− f̃τ (x
⋆))

≤ f̂τ (xτ )− f̂τ (x
⋆), ∀τ ≥ 1.

Summing up the above inequalities for 1 ≤ τ ≤ t, and
using the fact that Φ(0) = 0, we obtain

Φ(Q(t)) + V Regrett(x
⋆) ≤ Regret′t(x

⋆), ∀x⋆ ∈ Ω⋆, (9)

where Regrett on the LHS and Regret′t on the RHS of (9)
refers to the regret for learning the pre-processed cost func-
tions {f̃t}t≥1 and the surrogate cost functions {f̂t}t≥1 re-
spectively. Since Algorithm 1 uses the AdaGrad algorithm
for learning the surrogate cost functions, from (5), we need
to upper bound the gradients of the surrogate functions to
derive the regret bound. Towards this, the ℓ2-norm of the gra-
dients Gt of the surrogate cost function f̂t can be bounded
using the triangle inequality as follows:

Gt ≤ V ||∇f̃t(xt)||2 +Φ′(Q(t))||∇g̃t(xt)||2
≤ (2D)−1

(
V +Φ′(Q(t)

)
. (10)

where in the last step, we have used the fact that the pre-
processed functions are (2D)−1-Lipschitz. Hence, plugging
in the adaptive regret bound (5) on the RHS of (9), we arrive
at the following generalized regret decomposition inequality
valid for any t ≥ 1 :

Φ(Q(t)) + V Regrett(x
⋆) ≤

√√√√ t∑
τ=1

(
Φ′(Q(τ))

)2
+ V
√
t. (11)

where we have utilized simple algebraic inequalities (x +
y)2 ≤ 2(x2 + y2) and

√
a+ b ≤

√
a+
√
b, a, b ≥ 0.

Finally, recall that the sequence {Q(t)}t≥1 is non-negative
and non-decreasing as g̃t ≥ 0. Furthermore, the derivative
Φ′(·) is non-decreasing as the function Φ is assumed to be
convex. Hence, upper-bounding all terms in the summa-
tion of the RHS of (11) by the last term, we arrive at the
following simplified bound

Φ(Q(t)) + V Regrett(x
⋆) ≤ Φ′(Q(t)

)√
t+ V

√
t. (12)

The regret decomposition inequality (12) constitutes the key
step for the subsequent analysis.

4.3.3. ANALYSIS

An Exponential Lyapunov function: We now derive the
Regret and CCV bounds for the proposed policy with an
exponential Lyapunov function Φ(x) ≡ exp(λx) − 1, for
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some parameter λ ≥ 0 to be fixed later. An analysis with a
power-law potential function is given in Appendix B, which
also yields similar bounds. It is easy to verify that the func-
tion Φ(·) satisfies required conditions- it is a non-decreasing
and convex function with Φ(0) = 0.

Bounding the Regret: From (12), for any feasible x⋆ ∈
X ⋆ and for any t ∈ [T ], we have

exp(λQ(t)) + V Regrett(x
∗) ≤ λ exp(λQ(t))

√
t+ V

√
t.

Transposing, this yields the following bound on Regret:

Regrett(x
⋆) ≤

√
t+

1

V
+

exp(λQ(t))

V
(λ
√
t− 1). (13)

Choosing any λ ≤ 1√
T
, the last term in the above inequality

becomes non-positive for any t ∈ [T ]. Hence, for any x⋆ ∈
X ⋆, we have

Regrett(x
⋆) ≤

√
t+

1

V
. ∀t ∈ [T ]. (14)

Bounding the CCV: Since all pre-processed cost
functions are (2D)−1-Lipschitz, we trivially have
Regrett(x

⋆) ≥ −Dt
2D ≥ −

t
2 . Hence, from Eqn. (13), we

have for any λ < 1√
T

and any t ∈ [T ] :

exp(λQ(t))

V
(1− λ

√
t) ≤ 2t+

1

V

=⇒ Q(t) ≤ 1

λ
ln

1 + 2V t

1− λ
√
t
. (15)

Finally, setting λ = 1
2
√
T

and V = 1, and scaling the bounds
back by α−1 ≡ 2GD, we arrive at our main result.

Theorem 4.2. For the COCO problem with adversarially
chosen G-Lipschitz cost and constraint functions, Algorithm
1 yields the following Regret and CCV bounds for any hori-
zon length T ≥ 1 :

Regrett ≤ 2GD(
√
t+ 1), ∀t ∈ [T ]

CCVT ≤ 4GD ln(2
(
1 + 2T )

)√
T .

In the above, D denotes the Euclidean diameter of the closed
and convex admissible set X .

Remarks: Although, in the above, we assume that the
horizon length T is known, we can use the standard doubling
trick for unknown T.

In the final section, we show that in addition to a small regret
and CCV bounds, the proposed Algorithm 1 also has a small
movement cost measured in the (squared) Euclidean metric.
These features make it attractive for practical applications.

4.4. Bounding the movement cost

The movement cost of the AdaGrad policy can be bounded
as

||xt+1 − xt||22
(a)

≤ ||ηt∇t||22 =
D2

2

G2
t∑t

τ=1 G
2
τ

≤ D2

2

∫ ∑t
τ=1 G2

τ∑t−1
τ=1 G2

τ

dx

x
,

where in step (a), we have used the Pythagorean theorem for
Euclidean projection (Hazan, 2022, Theorem 4). Summing
up, the cumulative squared-Euclidean movement cost of the
AdaGrad policy for T rounds can be bounded as

T∑
t=1

||xt+1 − xt||22 ≤ D2

2

(
1 + ln(

T∑
τ=1

G2
τ )− lnG2

1

)
. (16)

Equation (16) gives an upper bound to the movement cost
for the AdaGrad policy for any sequence of cost functions.

4.4.1. MOVEMENT COST OF ALGORITHM 1

Since Algorithm 1 uses the AdaGrad policy on the sequence
of surrogate cost functions, we can use Eqn. (16) for bound-
ing its total movement cost. Recall that, Eqn. (10) gives an
upper bound to the gradient of the surrogate cost functions
fed to the AdaGrad policy. Hence, we have

T∑
τ=1

G2
τ ≤ G2

T∑
τ=1

(V +Φ′(Q(τ))2

(a)

≤ 2G2T (1 + λ2 exp(2λQ(T )))

(b)

≤ 4G2T (3 + 2T ), (17)

where in (a), we have used the inequality (x + y)2 ≤
2(x2+y2), substituted the value of the parameter V = 1 and
used the fact that {Q(t}t≥1 is a non-decreasing sequence. In
(b), we have used the bound from (15) and substituted for the
parameter λ = 1/(2

√
T ). Substituting the bound (17) into

(16), the squared-Euclidean movement cost for Algorithm
1 can be bounded as

∑T
t=1 ||xt+1 − xt||22 = O((log T )).

Using the Cauchy-Schwarz inequality, the Euclidean move-
ment cost can also be bounded as

∑T
t=1 ||xt+1 − xt||2 ≤

√
T
√∑T

t=1 ||xt+1 − xt||22 = Õ(
√
T ).

5. Conclusion
In this paper, we proposed an efficient online policy that
achieves the optimal regret and CCV bounds for the COCO
problem without any assumptions. We have also shown that
the squared Euclidean movement cost of the proposed policy
is small and is bounded by O((log T )2). These results are
established by using a new proof technique involving an
exponential Lyapunov function.
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A. Appendix

Table 1. Summary of the results for the COCO problem with convex cost and convex constraint functions. Unless specified otherwise in
the Assumptions, both the cost and constraint functions are assumed to be chosen by an adaptive adversary. Details of the abbreviations
appearing on the table can be found in the trailing note.

REFERENCE REGRET CCV COMPLEXITY PER ROUND ASSUMPTIONS

MAHDAVI ET AL. (2012) O(
√
T ) O(T

3/4) PROJ. FIXED CONSTR.
JENATTON ET AL. (2016) O(Tmax(β,1−β)) O(T 1−β/2) PROJ FIXED CONSTR.
YU ET AL. (2017) O(

√
T ) O(

√
T ) PROJ SLATER & STOCH.

NEELY & YU (2017) O(
√
T ) O(

√
T ) PROJ. SLATER

YU & NEELY (2020) O(
√
T ) O(1) CONV-OPT SLATER & FIXED CONSTR.

YI ET AL. (2021) O(
√
T ) O(T

1/4) CONV-OPT FIXED CONSTR.
GUO ET AL. (2022) O(

√
T ) O(T

3/4) CONV-OPT —
YI ET AL. (2023) O(Tmax(β,1−β)) O(T 1−β) CONV-OPT SLATER

SINHA & VAZE (2023) O(
√
T ) O(T

3/4) PROJ —
SINHA & VAZE (2023) O(

√
T ) O(

√
T ) PROJ REGRETT ≥ 0

THIS PAPER O(
√
T ) Õ(

√
T ) PROJ —

Notes:

1. CONV-OPT: Solution of a convex optimization problem over the convex constraint set X

2. PROJ: Euclidean projection onto the set X

3. PROJ operation is computationally much cheaper than CONV-OPT for typical X .

4. SLATER: Slater condition

5. STOCH: Stochastic constraints, i.e., the constraint functions are generated i.i.d. per slot.

6. FIXED CONSTR.: Time-invariant fixed constraint functions known to the algorithm. Here the goal is to avoid the
complex projection step onto the constraint set.

7. β is any fixed parameter in the interval [0, 1]

A.1. Details on the assumptions made in the previous papers

Slater’s condition: This condition assumes that there exists a positive ϵ > 0 and a feasible action x ∈ X such that
gt(x) ≤ −ϵ,∀t ∈ [T ]. Trivially, Slater’s condition does not hold for clipped constraints, i.e., constraints of the form
gt(x) ≡ max(0, g̃t(x)), for some convex function g̃t. Worse yet, upon assuming Slater’s condition, the CCV bounds derived
in Neely & Yu (2017, Theorem 4 (b)), Yu et al. (2017, Theorem 1), Yu & Neely (2020), and Yi et al. (2023, Theorem 2)
diverge to infinity as the slack ϵ approaches zero. This should be compared against our main result in Theorem 4.2, where
the bounds remain finite for any finite G,D, and T while making no assumption on Slater’s condition.

Non-negativity of Regret: Since the benchmark action in the regret definition (2) belongs to the feasible set X ⋆, it is
computationally non-trivial to determine whether the regret is non-negative or not (Sinha & Vaze, 2023). While it is shown in
Sinha & Vaze (2023, Theorem 9), that the improved O(

√
T ) CCV bound holds for convex adversaries and fixed constraints,

improving the CCV bound for the general case with adversarially chosen constraints and arbitrary adversaries was left as an
open problem.

B. Analysis with A Power-law Lyapunov Function
We now specialize inequality (12) by considering the power-law Lyapunov function Φ(x) ≡ xn for some integer n ≥ 2,
to be fixed later. The pseudocode for the policy remains the same as in Algorithm 1 with the new set of parameters
α = 1

2GD , n = max(2, ⌈lnT ⌉), V = (n− 1)n−1T
n−1
2 ,Φ(x) = xn.

6
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From (12), we obtain

Qn(t) + V Regrett(x
⋆) ≤ nQn−1(t)

√
t+ V

√
t. (18)

Bounding the Regret: From Eqn. (18), we have the following regret bound for any feasible x⋆ ∈ X ⋆ :

Regrett(x
⋆) ≤

√
t+

Qn−1(t)

V
(n
√
t−Q(t))

≤
√
t+

(n− 1)n−1tn/2

V
,

where the last step follows from the AM-GM inequality. Finally, upon taking V = (n− 1)n−1T
n−1
2 as in Algorithm 1, we

obtain Regrett(x
⋆) ≤ 2

√
t, ∀1 ≤ t ≤ T .

Bounding the CCV: Since all pre-processed cost functions are (2D)−1-Lipschitz, we trivially have Regrett(x
⋆) ≥

−Dt/2D ≥ − t
2 . Hence, from Eqn. (18), we obtain

Qn(t) ≤ 2V t+ nQn−1(t)
√
t. (19)

Finally, to bound Q(t) from the above, consider the case when Q(t) ≥ 2n
√
t. In this case, from (19), we have

Qn(t) ≤ 2V t+
1

2
Qn(t) =⇒ Q(t) ≤ (4V t)

1
n .

Thus, in general, the following bound holds

Q(t) ≤ max(2n
√
t, (4V t)

1
n ).

Substituting the chosen value for the parameter V and using the fact that n ≥ 2, from the above, we have

Q(t) ≤ max(2n
√
T , 2nT

1
2+

1
2n ) = 2nT

1
2+

1
2n , ∀t ∈ [T ]. (20)

Finally, setting n = max(2, ⌈lnT ⌉) as in Algorithm 1, we obtain the following CCV bound:

CCVT = Q(T ) ≤ 3.3(2 + lnT )
√
T , ∀T ≥ 1.

Recall that the above results hold for the pre-processed functions. Hence, scaling the bounds back by α−1 ≡ 2GD, we
conclude that the proposed policy yields the following Regret and CCV bounds

Regrett ≤ 4GD
√
T , ∀t ∈ [T ]

CCVT ≤ 6.6GD(2 + lnT )
)√

T .

Bounding the Movement cost As before, we only need to bound the quantity
∑T

τ=1 G
2
τ . We have

T∑
τ=1

G2
τ ≤ G2

T∑
τ=1

(V +Φ′(Q(τ))2

≤ 2G2(V 2T + n2
T∑

τ=1

Q2n−2(τ))

(a)

≤ 2G2(n2n−2Tn + (2n)2n−2Tn)

≤ G2(2n)2nTn.
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where in (a), we have substituted the value of the parameter V and used the bound from Eqn. (20). Finally, substituting the
above in (16), we conclude that the squared-Euclidean movement cost for Algorithm 1 can be bounded as

T∑
t=1

||xt+1 − xt||22 = O((log T )2),

which is slightly larger than the logarithmic movement cost with the exponential Lyapunov function. Using the Cauchy-
Schwarz inequality, its Euclidean movement cost can also be easily bounded as

T∑
t=1

||xt+1 − xt||2 ≤
√
T

√√√√ T∑
t=1

||xt+1 − xt||22 = Õ(
√
T ).
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