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ABSTRACT

We propose a framework for adapting neural networks to distribution shifts at
test-time. The primary idea is to leverage proper adaptation objectives based on
known general properties of the target task, e.g. multi-view geometry for 3D
tasks, or hierarchical structure for semantic tasks. These properties can be in-
stantiated as adaptation signals at test-time, which we refer to as “hints”. These
hints are robust to distribution shifts, thus, they make adaptation more reliable
compared to existing test-time adaptation methods, e.g. entropy minimization.
Next, we show that this optimization during test-time can be amortized using a
side-network, thus, making the adaptation orders of magnitude faster. We call this
variant of test-time adaption Rapid Network Adaptation (RNA). We demonstrate
consistent improvements over the baselines on diverse tasks (depth, optical flow,
semantic segmentation, classification), datasets (Taskonomy, Replica, ScanNet,
COCO, ImageNet) and distribution shifts (Common Corruptions, 3D Common
Corruptions, cross-datasets).

1 INTRODUCTION

Neural networks are unreliable against distribution shifts. Examples of such shifts include blur due
to camera motion, object occlusions, changes in weather conditions and lighting. Dealing with
such shifts is difficult mainly because they are numerous and unpredictable. Therefore, training-
time strategies that attempt to take anticipatory measures for every possible shift (e.g., augmenting
the training data accordingly or changing the architecture with corresponding robustness inductive
biases) have inherent limitations. This is the main motivation behind test-time adaptation methods,
which instead aim to adapt to such shifts as they occur. In other words, these methods choose
adaptation over anticipation. In this work, we propose a test-time adaptation framework that aims
to answer the following questions: 1. What should be used as the test-time optimization objective?
2. How should a model be adapted?

For the first question, we observe that existing test-time adaptation methods are insufficient (Boudiaf
et al., 2022; Gandelsman et al., 2022). These methods aim to be adaptation strategies that work well
for any task. Therefore, they employ proxy losses that are too general and largely task-unaware
(e.g., reducing entropy Wang et al. (2020)). Due to this misalignment between such task-unaware
objectives and the target task’s original objective, the improvement in one may not translate to the
other (see Fig. 2). Instead, we observe that known properties of the target task and/or the world
from which the data is collected can be used for adaptation. For example, geometric computer
vision tasks follow multi-view geometry constraints or semantic categories in a recognition task
often follow a hierarchical structure (See Fig. 1). Inspired by the early investigations on this topic
in the community Abu-Mostafa (1995), we call such properties “hints”, and the instantiations of
these hints, task-aware proxies. We empirically investigate the benefits of using them for test-time
adaptation.

For the second question, we propose two ways to use these proxies. The first is as an optimization
objective, similar to previous works (Wang et al., 2020; Zhang et al., 2021; Gandelsman et al.,
2022). While this works, it is unnecessarily inefficient and unconducive for real-world applications.
We show that this optimization process can actually be amortized using a single forward-pass from
a side-network, yielding orders of magnitude faster adaptation (See Fig. 1, Sec. 4.1).

Contributions. We demonstrate that for many fundamental computer vision tasks (e.g., depth esti-
mation, semantic segmentation, optical flow, image classification), test-time hints are readily avail-
able. We also empirically show that for these tasks, incorporating even the simplest hints into the
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Figure 1: Test-time adaptation using hints. Adaptation signals based on Hints are properties of the target
task known to us. For example, for depth estimation, the theorems of multi-view geometry hold for all inputs,
and for classification all semantic categories follow a hierarchical structure. Left: When presented with a
batch of inputs B, one can use a hint g to represent such properties explicitly in a form g(B) that can later
be processed by a downstream test-time adaptation process. Right: Given a pre-trained model fθ , we explore
two ways of adapting it to a distribution shift at the test-time: 1. Test-time Optimization (TTO), where hint
representations are used as proxy losses L( ∗ , g(B)) that are minimized to update the parameters θ, and 2.
where hint representations take the form of proxy inputs passed to a side-network hϕ( ∗ , g(B)) that predicts
updates to θ in a single forward-pass. This is a form of amortizing the optimization process of TTO, and
consequently, gaining efficiency. We call it Rapid Network Adaptation (RNA). We demonstrate in Sec. 4 that
using even the simplest hints can result in a striking performance increase compared to existing methods.

test-time adaptation process can provide a striking performance increase compared to existing meth-
ods. Finally, we propose a fast way to adapt a given computer vision model using hints.

2 SHORTCOMINGS OF EXISTING TEST-TIME ADAPTATION METHODS

Existing adaptation methods optimize either part or all of a model’s parameters to minimize different
proxy losses, which we refer to as test-time optimization (TTO). Common proxy losses include
entropy of the predictions (Wang et al., 2020), errors on self-supervised pretext tasks such as rotation
prediction (Sun et al., 2020), or spatial autoencoding (Gandelsman et al., 2022), and consistency
measures between different middle domains (Yeo et al., 2021; Zamir et al., 2020). While posing
the adaptation process as an optimization problem is a general and powerful approach, optimizing a
quantity at test-time that is not well aligned with the target task’s loss may lead to unstable behaviour.
To empirically illustrate this, Fig. 2 (left) shows how the original loss on the target task changes
as different proxy losses from the literature are minimized. In all cases the proxy loss decreases,
however the degree to which this translates to an improvement on the target loss varies. Therefore,
it can be concluded that successful optimization of existing task-unaware proxy losses does not
necessarily lead to better performance on the target task.

A possible solution to the above problem is to find the optimal hyperparameters for TTO, e.g. batch
size, optimizers. However, as shown in Boudiaf et al. (2022), even if one tunes the hyperparameters
on a distribution shift (assuming access to the ground truth labels), different distribution shifts re-
quire different hyperparameters. Thus, one also has to anticipate the shift that will occur, defeating
the purpose of test-time adaptation. In the rest of the paper, we show that using proxy losses that
are task-aware results in lower sensitivity to hyperparameters. We also show that this optimization
process can be amortized using a side-network, thus removing the need to tune any hyperparameters
at test-time while being much faster.

3 TEST-TIME ADAPTATION USING HINTS

This section provides examples of hints for common computer vision tasks, and discusses methods
to incorporate them in the test-time adaptation process.

3.1 EXAMPLES OF HINTS FOR COMPUTER VISION TASKS

Empirically, we find that even hints that are extremely sparse in information content can work sur-
prisingly well for adaptation. Figure 3 shows this point with a proof-of-concept experiment where
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Figure 2: Existing proxy losses are task-unaware, thus, optimizing them does not necessarily improve
performance on the target task. Left: We show the results of adapting a pre-trained depth estimation model
to a defocus blur corruption by optimizing different proxy losses: prediction entropy (Wang et al., 2020),
multi-task consistency (Zamir et al., 2020), and a task-aware proxy loss obtained from a hint (Sec. 3). The
plots show how the ℓ1 error with respect to ground-truth depth (green, left axis) changes as the proxy losses
(blue, right axis) are optimized. Shaded regions represent the 95% confidence intervals across multiple runs
of stochastic gradient descent (SGD) with different learning rates. Optimization converges quickly for the
task-aware loss, and is the only one where the proxy loss correlates well with improvements on the target task.
Right: Visualizations of how predictions change with increasing numbers of SGD iterations. The distribution
shift causes the baseline predictions to collapse to low values (i.e., black images). Consistent with the loss plots,
optimizing task-unaware losses does not improve these collapsed predictions, unlike the task-aware proxy loss.

a monocular depth estimation model is being provided with an increasing number of pixels with
ground truth (GT) depth annotations. The model is adapted by optimizing the error solely computed
on these few annotated pixels. The plot shows the ℓ1 error averaged over all pixels at the end of
optimization, for different levels of GT supervision. The largest decrease in error occurs from 0%
to 0.01% supervision, which corresponds to using only 6 pixels with GT supervision. We observe
in Fig. 3 (right) that the adapted model recovers the coarse geometric outline of the scene (e.g., the
walls, door, bed) from completely collapsed predictions.

We now discuss how such hints can be obtained under realistic assumptions for different computer
vision tasks. Our exposition roughly divides computer vision tasks into two groups: geometric and
semantic tasks.

Geometric Tasks. The field of multi-view geometry and its theories, rooted in the 3D spatial struc-
ture of the world, provide a rich source of hints for geometric tasks. We provide experiments on
three examples: monocular depth estimation, dense optical-flow estimation, and dense 3D recon-
struction. For all these tasks, we use COLMAP (Schönberger & Frahm, 2016) to run structure from
motion (SFM), which provides: 1. 3D coordinates of a sparse set of keypoints, 2. matches between
pixels that correspond to the projections of these keypoints across images, 3. 6DOF camera poses.
For depth estimation, we employ the z-coordinates of the sparse set of keypoints visible from each
image as a hint. For dense optical flow estimation, we perform keypoint matching across images
(which returns sparse optical flow). For dense 3D reconstruction, in addition to the previous two
sources of hints, we employ the consistency between depth and optical flow predictions as another
hint.

Semantic Tasks. We also show results on semantic segmentation and image classification tasks.
For semantic segmentation, we follow existing works on active annotation tools (Cheng et al., 2022;
Shin et al., 2021; Papadopoulos et al., 2017) and use a low number of click annotations for each
class as a hint. For classification, we use the hierarchical structure of semantic classes, and use
coarse labels generated from the WordNet tree (Miller, 1994), similar to Huh et al. (2016b).

3.2 METHOD

Notation. We use X to denote the image domain, and Y to denote the target domain for a given task.
A hint is defined as a function g : XM → Z that maps a batch of images B = {I1, ..., IM} ∈ XM

to a vector g(B) = z ∈ Z that represents the hint. This function g is given and not learnt. We
use fθ : X → Y to denote the model to be adapted, where θ denotes the weights. We denote the
model before and after adaptation as fθ and fθ̂ respectively, where the latter is used to get the final
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Figure 3: Simple hints are sufficient for successful adaptation. We adapt a pre-trained model to a distri-
bution shift by optimizing our task-aware proxy loss via test-time optimization (TTO). We perform episodic
optimization (Wang et al., 2020), i.e. after optimizing on a batch of inputs, its weights are reset back to that of
the pre-trained model’s weights. Left: We show the ℓ1 error vs % GT supervision for monocular depth predic-
tion. x% GT supervision means each image has access to x% pixels of the GT to be used for TTO. The error
is averaged over all corruptions from Common Corruptions for all severities. Having only 0.01% supervision
(6 pixels) per image and with only 32 images, TTO can reduce the error by 44%. Right: Predictions on two
random query images from Taskonomy with increasing supervision. Even when the initial predictions have
completely collapsed (see Baseline predictions), significant geometric structure can be recovered.

predictions after adaptation. L and D denote the original training loss and training dataset of fθ. As
illustrated in Fig. 1, we explore two ways of adapting fθ, which we call test-time optimization (TTO)
and rapid network adaptation (RNA).

In TTO, hint representations parameterize a space of proxy loss functions L(fθ(B), z). For exam-
ple, L can be the ℓ1-norm for monocular depth and cross-entropy for semantic segmentation. The
weights of f are adapted by running SGD on the objective: θ̂ = argminθ L(fθ(B), z).
In RNA, hint representations act as proxy inputs to a side-network denoted as hϕ. Unlike TTO,
hϕ does not update θ by running SGD at test-time, but is instead trained to regress the parameters
θ̂(ϕ) = hϕ(fθ(B), z). This corresponds to an objective-based amortization of the TTO process
Amos (2022). The training objective for hϕ is minϕ ED [L(fθ̂(ϕ)(B), y)], where (B, y) ∼ D is a
training batch sampled from D.

We use feature-wise modulation (Dumoulin et al., 2018) to implement hϕ, and insert k Feature-
wise Linear Modulation (FiLM) layers Perez et al. (2018) into the network fθ. Each FiLM layer
performs the operation FiLM(xi; γi, βi) = γi ⊙ xi + βi, where xi is the activation of layer i. hϕ is
a convolutional network that takes as input the hint representation g(B) defined above and outputs
the coefficients {γi, βi} of all k FiLM layers. We also note that hϕ is trained on the same dataset D
as fθ, therefore it is never exposed to distribution shifts unlike TTO.

4 EXPERIMENTS

We demonstrate that our approach consistently outperforms the baselines for different distribution
shifts (Common Corruptions Hendrycks & Dietterich (2019), 3D Common Corruptions Kar et al.
(2022a), cross-dataset evaluations), over different tasks (monocular depth, image classification, se-
mantic segmentation, optical flow) and datasets (Taskonomy Zamir et al. (2018), Replica Straub
et al. (2019), ImageNet Deng et al. (2009), COCO Lin et al. (2014), ScanNet Dai et al. (2017)). Our
development code is provided in the supplementary material for reference.

4.1 EVALUATIONS ON MONOCULAR DEPTH

Model. We use a UNet Ronneberger et al. (2015) model trained on Taskonomy Zamir et al. (2018)
which includes 4 million real images of indoor scenes. In all the experiments, we use the same
architecture for our method and the baselines. See A.2.1 for further training details.

Evaluation datasets and supervision.
Taskonomy under Common Corruptions (Taskonomy-CC) with masked GT: Common Corruptions
applied on the test set of Taskonomy. As running SFM to get sparse depth on the Taskonomy test
set is expensive, we simulate this by uniformly masking the GT (0.01-0.1% valid pixels, unless
stated otherwise).
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Figure 4: Qualitative results of our proposed method vs the baselines for semantic segmentation on random
query images on COCO-CC (left) and depth on images from ScanNet, Taskonomy-3DCC and Replica-CC
(right). For semantic segmentation, we assume access to 15 pixels per class. For Taskonomy-3DCC, we
assume access to 0.05% of GT (30 pixels per image). See Fig. 5 for results on different supervision levels. For
ScanNet and Replica-CC, supervision is from SFM (Schönberger & Frahm, 2016). The predictions from our
proposed method is shown in the last two rows. They are noticeably more accurate compared to the baselines.
Comparing TTO and RNA, RNA’s predictions are less noisy for segmentation, and sharper than TTO for depth
(see the ellipses) while significantly faster. See Fig. 16, 25-27 in the Appendix for more results.
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Figure 5: Qualitative results of our proposed method vs densification control baseline for semantic seg-
mentation on random query images on COCO-CC (left) and monocular depth on images from Taskonomy-
CC (right). Our method notably improves the prediction quality using as few as 3 pixels for segmentation and
6 pixels for depth estimation as supervision. See Fig. 8 for the quantitative results.

Taskonomy under 3D Common Corruptions (Taskonomy-3DCC) with masked GT: 3D Common
Corruptions applied on the test set of Taskonomy. 3DCC incorporates the geometry of the scene
into the transforms, resulting in more realistic corruptions.
Replica with sparse depth from SFM: We generate 7 episodes, a total of 300 images, in different
apartments from Replica and run SFM to get sparse depth (0.18% valid depth pixels).
Replica under Common Corruptions (Replica-CC) with sparse depth from SFM: We use the same
episodes as above, apply the corruptions, then run SFM to get noisy sparse depth (0.16% valid
depth pixels).
ScanNet with sparse depth from SFM: We use the publicly available dataset from Roessle et al.
(2022). It comes with sparse depth points computed with SFM (0.04% valid depth pixels).

Our setups. We evaluate following variants of the adaptation mechanisms proposed in Sec. 3.2.
TTO (episodic): We adapt the Baseline model to each episode by optimizing the proxy loss (see
Sec. 3.2) at test-time. Its weights are reset back to those of the Baseline model after optimizing on
that batch. For the Replica and ScanNet datasets, an episode consists of all the images generated
from the same scene or apartment, thus, the batch size is given by the number of images in that
episode, and 32 for Taskonomy. See App. A.2.1 for more details.
TTO (online): We continually adapt to a distribution shift defined by a corruption and severity.
We assume that the test data arrives in a stream, and each data point has the same distribution
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shift, e.g. Gaussian noise with a fixed standard deviation. Concretely, the difference with the
episodic case is that the model weights are not reset after each iteration.

RNA: This uses the side model described in Sec. 3.2 to adapt the Baseline model where θ̂(ϕ) =
hϕ(z), i.e. model predictions are not passed.
RNA-Feedback: We also train the side model with the predictions from the Baseline model where
θ̂(ϕ) = hϕ(fθ(B), z), i.e. both hints z and the model predictions fθ(B) are used for adaptation.
Note that this RNA variant requires two forward passes, unlike RNA, but it empirically improves
the results in some cases (See Fig. 8).
RNA-Scratch: Instead of freezing the weights of the Baseline model, we train it jointly with the
side-network. Note that this variant requires longer training than vanilla RNA.

Figure 6: RNA achieves similar performance as TTO
while being orders of magnitude faster. We compare
how the ℓ1 errors of the proposed adaptation mechanisms
decrease over time. The errors are averaged over all
episodes (and all corruptions for Replica-CC). RNA only
requires a forward pass at test-time, while TTO requires
multiple forward and backward passes. On ScanNet and
Replica-CC, RNA takes 0.01s, while TTO takes 3s to
achieve similar performance. Furthermore, RNA is not
trained with test-time shifts unlike TTO, thus, it learned
to use the additional supervision to adapt to unseen shifts.
RNA (scratch) gives a further boost in performance at the
expense of longer training.

Dataset Taskonomy Replica ScanNet

Shift None CC 3DCC CDS CC CDS

Baseline UNet 2.68 5.74 4.75 1.75 6.08 3.30
Densification 1.72 1.72 1.72 2.50 4.19 2.35
TENT Wang et al. (2020) 5.51 5.51 4.48 2.03 6.09 4.03
TTO-Edges Sun et al. (2020) 2.70 5.69 4.74 1.73 6.14 3.28

TTO (Episodic) 1.62 2.99 2.31 1.72 3.31 1.85
TTO (Online) 1.13 1.48 1.34 1.82 3.16 1.85
RNA-Feedback 1.12 1.68 1.49 1.72 4.26 1.77
RNA 1.28 1.79 1.61 1.59 3.75 1.69
RNA-Scratch 1.07 1.35 1.26 1.58 3.50 1.66

Table 1: Quantitative evaluations of our pro-
posed framework vs the baselines. ℓ1 errors on
the depth prediction task. (Lower is better. Mul-
tiplied by 100 for readability.) We generate dis-
tribution shifts by applying Common Corruptions
(CC), 3D Common Corruptions (3DCC) and from
performing cross-dataset evaluations (CDS). The
results from CC and 3DCC are averaged over all
distortions and severity levels on Taskonomy and
3 severity levels on Replica data. The supervision
from Taskonomy is masked GT (fixed at 0.05%
valid pixels) while that from Replica and Scan-
Net is sparse depth from SFM. Our variants no-
tably outperform the baselines. See App. A.2.2
for the losses for different corruption types, super-
vison levels, and the results of applying RNA to
other proxies (entropy and edges).

Baselines. We evaluate the following baselines:

Baseline: A network that maps from RGB to depth, with no test-time adaptation.
Densification: A network that maps from the given supervision to depth. This is a control baseline
and shows what can be learned from the test-time supervision alone, without employing RGB
information.
Episodic TTO with Entropy supervision (TENT): We adapt a Baseline UNet model trained with
log-likelihood loss by optimizing the entropy of the predictions. This is to reveal the effectiveness
of entropy as a supervision signal as proposed in Wang et al. (2020).
Episodic TTO with Sobel Edges supervision (TTO-Edges): We adapt the Baseline UNet model
trained with an additional decoder that predicts a self-supervised task, similar to Sun et al. (2020).
We choose to predict Sobel edges as it has been shown to be robust to certain shifts (Yeo et al.,
2021). We optimize the error of the edges predicted by the model and edges extracted from the
RGB image. This is to reveal the effectiveness of Sobel edge error as a supervision signal.

4.1.1 COMPARISONS OF ADAPTATION METHODS

RNA is efficient. Being able to adapt efficiently at test-time is crucial for some real-world problems.
In Fig. 6, we compare the runtime of adaption with RNA and TTO. On average, for a given episode,
RNA is able to attain similar performance as TTO in 0.01s, compared to TTO’s 3-5s.

Furthermore, RNA’s training is also efficient as it only requires training a small model i.e. 5% of
the Baseline UNet model’s parameters. Training RNA takes 36hrs on average on a single V100 gpu.
Thus, RNA has a fixed overhead, but small added cost at test-time.
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RNA’s predictions are sharper than TTO. This can be seen in the last two rows of Fig. 4. As
seen in Sec. 3.2, RNA was only trained with GT, while TTO was trained at test-time with sparse and
possibly noisy supervision, thus TTO is more likely to lose details.

GT
TTO (MVC) 

Compute time: 68.997 sec
L1 error: 0.299

RNA
Compute time: 0.0079s

L1 error: 0.436

TTO
Compute time: 65.902s

L1 error: 0.34

Baseline 
Compute Time: 0.0074s

L1 error: 1.332

Figure 7: Visualizations for dense 3D reconstruction. Using appropriate hints from multi-view geometry can
recover accurate 3D reconstructions. We report the average ℓ1 error between ground truth 3D coordinates and
the estimated ones. The titles above each column refers to the depth model used to get the reconstruction, as
described in Sec. 4.1. TTO (MVC) corresponds to the predictions after multi-view consistency optimization as
described in Sec.4.2. It can be seen that RNA and TTO improve the reconstructions over the baselines. Adding
multi-view consistency hints further improves reconstructions. See the figure in App. A.4 for more examples
and the error maps.

3 6 9 12 15 18 21 24
Number of pixels

10

20

30

40

50

60

M
ea

n 
IO

U Baseline Clean (60.4)
Baseline (34.78)
Densification (29.40)
TENT (35.75)
TTO (41.80)
RNA (46.72)
RNA-Feedback (51.46)

Figure 8: Quantitative evaluations using COCO-CC
for semantic segmentation task. Each point shows the
mean IOU over 15 corruptions and 5 severities. RNA
significantly improves over baselines even with 3 pixel
annotation per class. Black dashed line shows the mean
IOU of baseline model for clean validation images, and
is provided as a reference. Numbers in the legend de-
note averages over all supervision pixel counts. See
App. A.5 for a breakdown.

Dataset Clean ImageNet-C ImageNet-3DCC ImageNet-V2
Baseline 23.85 61.66 54.97 37.15

Densification 95.50 95.50 95.50 95.50
TENT 24.67 46.19 47.13 37.07

TTO 24.72 40.62 42.90 36.77
RNA 16.72 41.21 40.37 25.53

Table 2: Quantitative evaluations of our pro-
posed framework vs the baselines on Ima-
geNet classification task. We evaluate on the
clean validation set, ImageNet-C, ImageNet-
3DCC, and ImageNet-V2. We report average
error percentages for 1000-way classification
task over all corruptions and severities. For
TTO and RNA, we use 45-coarse labels as su-
pervision. This corresponds to a 22x coarser
supervision level compared to the 1000 classes
that we are evaluating on. Our proposed meth-
ods significantly outperform the baselines. See
App. A.6 for more results on other coarse sets
and details.

TTO has an advantage over RNA under (3D)CC for high severities. RNA performs better than
TTO for low severities (see App. A.2.2 for more details). However, as it was not exposed to any
corruptions during training time, its performance gets worse than TTO at higher severities, which is
exposed to corruptions at test-time.

We also trained a single model that takes as input a concatenation of the RGB image and sparse
supervision. However, its average performance on Taskonomy-CC was 42.5% worse than RNA’s
(see App. A.2.2). Among the baselines, densification is the strongest under distribution shift due to
corruptions. This is expected as it does not take the RGB image as input, thus, it is not affected by the
underlying distribution shift. However, as seen from the qualitative results in Fig. 4, its predictions
are missing fine-grained details. The results in Tab. 1 also confirm that task-unaware supervision
signals, e.g. entropy or Sobel edges, are not as effective.

4.2 EVALUATIONS ON DENSE 3D RECONSTRUCTION

This experiment combines multiple hints from multi-view geometry to solve a dense 3D reconstruc-
tion task robustly, under realistic assumptions about what information is available at test-time.
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Evaluation data and models. We use 110 consecutive images that are part of a single navigation
episode from hotel 0 from the Replica Dataset. These images have been corrupted by Gaussian
noise. This results in depth predictions that have collapsed, thus, reconstructions that are unus-
able (see Fig. 7). The weights of the baseline depth model and a pre-trained optical flow model,
RAFT (Teed & Deng, 2020), are adapted.

Test-Time Optimization details: First we adapt the weights of the depth and optical flow models
independently. The results from this adaptation can be found in Sec. 4.1 (for depth) and App. A.3 (for
optical flow). Next, the two models are adapted to make their predictions consistent with each other.
This is achieved using the same process as Luo et al. (2020). See App. A.4 for details.

Results. Figure 7 shows the point cloud visualizations before and after test-time adaptation. Thus,
using appropriate hints can allow test-time adaptation to recover a reasonably accurate and useful
(e.g., for navigation without collisions) reconstruction from an unusable one.

4.3 EVALUATIONS ON SEMANTIC SEGMENTATION

Model. We use an FCN Long et al. (2015) with a ResNet50 backbone using pre-trained weights
from PyTorch Paszke et al. (2019). It is trained on a subset of COCO training dataset corresponding
to 20 categories present in the Pascal VOC dataset 1.

Evaluation dataset and supervision. We perform our experiments on 5k validation images from
COCO distorted with 15 corruptions over 5 severities from Common Corruptions. For supervision,
we randomly generate pixel click annotations for each class in a given image.

Baselines. Similar to monocular depth estimation experiments, we include TENT and densification
models as the baselines. See the App. A.5 for training details.

Results. We demonstrate quantitatively in Fig. 8 that TTO and RNA variants make use of the
available sparse information to significantly improve upon baselines. Figure 5 (left) qualitatively
shows the improvement made by our method with only 3 pixels as supervision. Figure 4 (left)
shows further qualitative comparisons where RNA consistently outperforms the baselines.

4.4 EVALUATIONS ON IMAGE CLASSIFICATION

Model. We used a ResNet-50 pre-trained on ImageNet Deng et al. (2009) from PyTorch 2.

Evaluation dataset and supervision. We perform the evaluations on the clean ImageNet valida-
tion set, ImageNet-C (Hendrycks & Dietterich, 2019), ImageNet-3DCC (Kar et al., 2022b), and
ImageNet-V2 (Recht et al., 2019). For supervision, we generate 45 coarse labels from the 1000-way
ImageNet labels, i.e. making the labels 22x coarser, using the WordNet tree (Miller, 1994), similar
to Huh et al. (2016a). See App. A.6 for more details and results for other coarse label sets.

Baselines. We include TENT (Wang et al., 2020) as the test-time optimization baseline and densifi-
cation as the control baseline, which is the fixed mapping from the coarse labels to fine labels.

Results. Table 2 shows that the proposed method improves significantly over the baselines for all
evaluation datasets. Thus, coarse supervision provides a useful signal for adaptation while requiring
much less efforts than full annotation (Xu et al., 2021). See App. A.6 for more results.

5 RELATED WORK

Our framework has two main components, 1. defining useful test-time adaptation signals, 2. explor-
ing ways to use these signals. We give an overview of the topics relevant to these components.

Encoding inductive biases using task-aware losses. Adding losses to the target task loss function
is a flexible way of encoding biases, e.g. energy should be conserved when predicting planetary
movements (Alet et al., 2021), forecasts in foreign exchange markets should be symmetric across
different currencies (Abu-Mostafa, 1995), depth predictions from video frames should be geometri-

1See here for details.
2Accessed from here.
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cally consistent (Luo et al., 2020). We call these losses task-aware, as they are tailored to each task
(See Sec. 3). Our paper shares a similar motivation by using task-aware losses for adaptation.

Test-time adaptation methods. Most of these works involve optimizing a self-supervised objective
at test-time (Sun et al., 2020; Wang et al., 2020; Liu et al., 2021; Gandelsman et al., 2022; Gao et al.,
2022; Zhang et al., 2021; Boudiaf et al., 2022; Liang et al., 2020). They differ in the choice of self-
supervised objectives, e.g. prediction entropy (Wang et al., 2020), mutual information (Liang et al.,
2020), and parameters optimized. However, as discussed in Sec. 3, and shown by Boudiaf et al.
(2022); Gandelsman et al. (2022), existing methods can fail silently, i.e. successful optimization
of the proposed proxy loss does not necessarily result in better performance on the target task. We
propose task-aware losses that boosts adaptation performance (See Sec. 3). The most similar work
to our sparse depth proxy is that of Wang et al. (2019). They propose optimizing sparse depth at
test-time to adapt a model, using simulated sensor data as supervision. We differ in assuming only
access to RGB images to attain supervision via SFM (Schönberger & Frahm, 2016). Furthermore,
we also show that this optimization process can be amortized (See Sec. 3.2) resulting in similar
performance as performing optimization but at a fraction of the time.

Weak supervision for semantic tasks uses imperfect e.g. sparse, noisy supervision for learning.
In the case of semantic segmentation, examples include scribbles (Lin et al., 2016), sparse annota-
tions (Bearman et al., 2016; Papadopoulos et al., 2017; Shin et al., 2021; Zhi et al., 2021; Cheng
et al., 2022). For classification, coarse labels are employed in different works (Xu et al., 2021; Huh
et al., 2016a). These papers show that models trained with imperfect supervision can achieve similar
performance to those trained with perfect supervision, i.e. full ground truth. We show that this im-
perfect supervision can also be used at test-time, resulting in significant performance improvements.

Conditioning methods uses auxilliary inputs to adapt a model. A popular method that has been
adopted in many different domains e.g. style transfer (Dumoulin et al., 2016; Ghiasi et al., 2017),
few shot learning (Oreshkin et al., 2018; Requeima et al., 2019), and settings involves performing
feature-wise normalization (Dumoulin et al., 2018; Perez et al., 2018). The underlying principle
involves training a model to use the auxilliary information to predict scaling and shift parameters
that will be applied to the features of the target model. We use this mechanism in our framework
and show that it is expressive, efficient, and able to generalize to unseen shifts.

Robustness methods anticipate the distribution shift that can occur and incorporate inductive biases
into the model to help it generalize. Popular methods include data augmentations (Madry et al.,
2017; Hendrycks et al., 2019; 2021; Kar et al., 2022a), pre-training (Eftekhar et al., 2021; Ranftl
et al., 2022), architectural changes (Cohen & Welling, 2016) or ensembling from diverse cues (Yeo
et al., 2021; Jain et al., 2022). In our case, we focus on adaptation mechanisms and identifying
useful adaptation signals that can be used at test-time.

6 CONCLUSION AND LIMITATIONS

We propose using proxies that are task-aware, making adaptation via test-time optimization (TTO)
reliable. We show that this optimization process can be amortized with a side-network, which we
call rapid network adaptation (RNA). We show empirically that RNA generalizes to distribution
shifts, and is orders of magnitude faster than TTO.

We briefly discuss some of the limitations of our framework:

Finding hints for a given task: We demonstrate the usefulness of hints for several core vision tasks,
but there are still many others which can benefit from hints, e.g. object detection or pose estimation.
Finding such hints requires knowledge of the target task. We believe this work can open up a
promising direction for incorporating this knowledge into adaptation process.

Analysis of different amortization methods. While we do not extensively explore different ways
of amortizing TTO with a side-network, e.g. HyperNetworks (Ha et al., 2016), or cross-
attention (Vaswani et al., 2017), such efforts could be worthwhile. We leave it to future work.

Combining proxies from different sources. Our framework can easily be extended to take in multiple
proxies, e.g. depth from LiDAR sensors, in addition to the sparse depth from SFM. These proxies
have their own strength and weaknesses, thus, combining them can result in more robust predictions.
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Amir Zamir, Alexander Sax, Teresa Yeo, Oğuzhan Kar, Nikhil Cheerla, Rohan Suri, Zhangjie Cao,
Jitendra Malik, and Leonidas Guibas. Robust learning through cross-task consistency. arXiv
preprint arXiv:2006.04096, 2020.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 3712–3722, 2018.

Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and
augmentation. arXiv preprint arXiv:2110.09506, 2021.

Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew J Davison. In-place scene la-
belling and understanding with implicit scene representation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 15838–15847, 2021.

13



Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 OVERVIEW

We provide further details and evaluations about our method in the following sections.

• Additional details and results for monocular depth (Appendix A.2)

• Additional details and results for optical flow (Appendix A.3)

• Additional details and results for dense 3D reconstruction (Appendix A.4)

• Additional details and results for semantic segmentation (Appendix A.5)

• Additional details and results for image classification (Appendix A.6)

A.2 MONOCULAR DEPTH

A.2.1 TRAINING DETAILS

All networks for our method and baselines use the same UNet architecture Ronneberger et al. (2015)
and were trained with AMSGrad Reddi et al. (2019), with a learning rate of 5× 10−4, weight decay
2 × 10−6 and batch size of 64. The h models were trained by randomly masking the GT, with
sparsity ratio ranging from 0% to 0.025%.

To simulate the sparse depth from SFM, we use the model from DeTone et al. (2018) to extract
keypoints locations. This creates a sparse binary mask that we apply on the GT. We then add
Gaussian Noise to the masked GT to account for outliers at test-time.

We assume that we are given a function fθ to be adapted. The choice of function g that extracts the
adaptation signal is discussed in Sec. 3.1.

Test-Time Opimization (TTO) minimizes the following loss function:

min
θ̂

L =

N∑
n=1

∥fθ(xn)⊙mn, zn∥1. (1)

ℓ is the ℓ1 norm for depth. N is the number of datapoints, ⊙ is the element-wise product and θ̂ is
the subset of parameters of fθ that is updated i.e. θ̂ ⊆ θ.

Rapid Network Adaptation (RNA). We aim to fuse the additional information provided by g at
test-time into fθ via a small network, hϕ. This is also called conditioning as the computations done
by fθ will be conditioned on the information provided by g.

In this paper, we use feature-wise modulations. Concretely, we insert k Feature-wise Linear Modu-
lation (FiLM) layers into the network fθ, we denote this network as fθ. Each FiLM layer performs
the following operation FiLM(xi; γi, βi) = γi ⊙ xi + βi, where xi is the activation of layer i. hϕ

is trained to output the coefficients {γi, βi} of all k FiLM layers given g. hϕ is trained using the
following loss function:

min
ϕ

L =

N∑
n=1

∥fθ(xn;hϕ(yn ⊙ m̄n))− yn∥1 (2)

where m̄n is the mask that simulates the sparsity pattern that will be encountered at test-time. If g
extracts sparse depth via SFM, we use a feature extractor that samples keypoints to generate m̄, and
add Gaussian noise to yn ⊙ m̄n to account for potential outliers. At test-time, RNA only requires a
forward pass through hϕ and fθ.

Test-Time Optimization details. We use the same optimization parameters as in training time.
Optimization is done for 10 iterations for each batch. With the exception of the TENT baseline, all
parameters of the model were updated. For TENT, only the GroupNorm parameters were updates
as it results in more stable optimization.
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A.2.2 ADDITIONAL RESULTS

RNA with existing supervision signals. We show that one can train a side-network to also use
supervision from existing sources e.g. prediction entropy and Sobel edges to get better performance
at test time. As described in 4.1, to use supervision from entropy, we train a Baseline UNet model
with NLL loss. The model outputs the prediction and its uncertainty estimate of the predictions. We
show results with the model from Yeo et al. (2021) that calibrates the uncertainty estimates as it was
shown to predict uncertainties that are better correlated with error,

ℓ1 error for different levels of GT supervision. We show how the error changes with increasing
GT supervision for our proposed methods and the baselines.

RNA performs better a than training a single model that takes as input the RGB image and
sparse supervision concatenated. We call this model multi-domain. For 0.05% GT supervision,
RNA has an average loss, over all distortions and severities of 0.0179 while the multi-domain model
has an average loss of 0.0255.
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Figure 9: ℓ1 error vs different levels of GT supervision. These results are on Taskonomy-CC data, as
described in Sec 4.1. Each curve shows an average over all the distortions listed in the title.

Method/Supervision Sobel edge Entropy Entropy (calibrated) Sparse GT
RNA 0.29 0.07 0.12 4.06

TTO (GN) -0.02 -0.11 0.04 0.55
TTO (F) 0.06 -1.21 0.06 2.76

Table 3: RNA can be used with existing supervision signals. F denotes TTO by opimizing all parameters and,
GN, TTO by optimizing only GN parameters.

Qualitative results. We provide more qualitative results in Fig. 16 where our method outperforms
the baselines qualitatively.
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Figure 10: Quantiative results for optical flow. These results were attained from Replica+CC data, as de-
scribed in Sec 4.1.

A.3 OPTICAL FLOW EXPERIMENTS

To predict optical flow, we use a pre-trained RAFT model from Teed & Deng (2020). We use
sparse optical flow as our supervision signal, attained from keypoint matching between images. We
perform TTO to adapt the model. We use the same episodes from Replica+CC as described in
Sec. 4.1. TTO was done for 10 iterations for each episode, all parameters of the RAFT model were
updated. Figure 10 shows the results. Adaptation with TTO results in an 8.5% improvement over
the baseline.

A.4 DENSE 3D RECONSTRUCTION

Test-Time Optimization details. As mentioned in the main paper, we achieve multi-view con-
sistency using the same process as Luo et al. (2020), where: 1. every pixel is backprojected into
3D world-coordinates using the estimated depth and camera poses, 2. optical-flow predictions are
employed to establish dense correspondences across pixels, 3. weights of the depth model are op-
timized to minimize the discrepancy between the estimated 3D world coordinates of corresponding
pixels.

We provide additional qualitative results and the corresponding error images in Fig. 11.

A.5 SEMANTIC SEGMENTATION

A.5.1 TRAINING DETAILS

TTO. We optimize by SGD with 0.0001 learning rate, 0.9 momentum, batch size 2 for 10 iterations
per batch.

TENT. Following Wang et al. (2020), we optimize by SGD with 0.0001 learning rate, 0.9 momen-
tum, batch size 1. As TENT is unstable for online and multi-iteration optimization, we restart the
model after each batch, i.e. episodic optimization, and run 1 iteration per batch.

TENT (all). In contrast to Wang et al. (2020) which only updates batch normalization parameters
at test-time, we also included a TENT baseline that optimizes all parameters. We optimize by SGD
with 0.00001 learning rate, 0.9 momentum, batch size 1. We run the optimization for each image
for 10 iterations to be comparable to the TTO model. Note that we reduced learning rate by a factor
of 10 as TENT was unstable. Since TENT and TENT (all) models perform similarly, we only show
the TENT results in the main paper. See A.5.2 for all results.

RNA. As an encoder we used a small CNN with 3 downsampling blocks. We trained the FiLM
generator with frozen segmentation model on the clean COCO training dataset with cross entropy
losses. During the training we sparsify the target segmentation mask uniformly in [0,30] pixels to
generate sparse ground truth inputs to the encoder. We optimize by Adam with 0.0001 learning rate
and 0.0001 weight decay. We select the model with highest mean IOU on the clean validation set.

RNA-feedback. This model is trained with two forward passes. During the first pass the input
to FiLM encoder is sparse ground truth and zeros as prediction. After this, in the second pass
the encoder takes the sparse ground truth and the prediction from the previous pass as input. We
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Figure 11: Extension of Fig. 7 to show more examples and error maps.

compute the cross-entropy loss for the prediction of second pass. We use the same hyperparameters
as RNA and again select the model with highest mean IOU on the clean validation set.

Densification. It uses the same FCN-ResNet50 model as other baselines and is trained with the
same setup as RNA variants.

A.5.2 ADDITIONAL RESULTS

Quantitative Results. We provide the results for mean IOU vs number of pixels for different sever-
ities in Fig. 17. Figures 18, 19, 20, 21, 22, 23, 24 give a breakdown of the performance for our
methods and baselines for each corruption, severity level, and number of pixel annotations.

Qualitative Results. We include additional qualitative comparisons between our methods and base-
lines in Figures 25, 26, 27.

A.6 IMAGE CLASSIFICATION

A.6.1 GENERATING COARSE LABEL SETS

One method to generate coarse label sets using WordNet tree Miller (1994) is proposed in Huh et al.
(2016a). This method and other clustering methods create imbalanced coarse labels and too many
ImageNet classes are assigned to coarse labels that are either too coarse or too fine-grained (See
Figure 12 and Table 8 for the statistics). As we aim to use coarse supervision to adapt models at
test-time, we focus on generating more balanced coarse labels, as explained below.

To generate balanced coarse label sets, instead of going from top to bottom or bottom to top for a
fixed depth in WordNet tree, we follow a different approach. For each ImageNet class we go up
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until we get to a hypernym that has a certain number of hyponyms that are ImageNet classes. That
number determines the coarsity level of the coarse label. To achieve this, we use a priority-based
selection criteria where we define certain ranges to reach a given coarsity level. Using this approach,
we created three different coarse sets with 26, 45, and 85 coarse labels. See Tables 4, 5, 6, 7 for
the coarse labels and their IDs. The resulting sets are more balanced than the 127-label set provided
in (Huh et al., 2016a). See Figures 12 13 14 15 and Table 8 for more details about the statistics of
the coarse label sets.

n01428580 soft-finned fish
n01482330 shark
n01495701 ray
n01503061 bird
n01629276 salamander
n01639765 frog
n01662784 turtle
n01674990 gecko
n01676755 iguanid
n01685439 teiid lizard
n01687665 agamid
n01689411 anguid lizard
n01691951 venomous lizard
n01692864 lacertid lizard
n01693783 chameleon
n01694709 monitor
n01697178 crocodile
n01698434 alligator
n01703569 ceratopsian
n01726692 snake
n01767661 arthropod
n01861778 mammal
n01909422 coelenterate
n01922303 worm
n01940736 mollusk
n02316707 echinoderm
n02512938 food fish
n02605316 butterfly fish
n02606384 damselfish
n02638596 ganoid
n02642644 scorpaenid
n02652668 plectognath

n02807260 bath linen
n02856463 board
n02858304 boat
n02924116 bus
n02942699 camera
n02954340 cap
n03035510 cistern
n03039947 cleaning implement
n03094503 container
n03101156 cooker
n03122748 covering
n03151500 cushion
n03183080 device
n03236735 dress
n03241093 drill rig
n03257586 duplicator
n03278248 electronic equipment
n03294833 eraser
n03309808 fabric
n03405725 furniture
n03414162 game equipment
n03419014 garment
n03441112 glove
n03446832 golf equipment
n03450516 gown
n03472232 gymnastic apparatus
n03476083 hairpiece
n03497657 hat
n03510583 heavier-than-air craft
n03513137 helmet
n03528263 home appliance
n03540267 hosiery

n03597469 jewelry
n03613592 key
n03619396 kit
n03664943 ligament
n03666917 lighter-than-air craft
n03678362 litter
n03764276 military vehicle
n03825080 nightwear
n03837422 oar
n03880531 pan
n03896233 passenger train
n03906997 pen
n03961939 platform
n03964744 plaything
n03990474 pot
n04015204 protective garment
n04077734 rescue equipment
n04099429 rocket
n04100174 rod
n04125853 safety belt
n04128837 sailing vessel
n04185071 sharpener
n04194289 ship
n04235291 sled
n04264914 spacecraft
n04285622 sports implement
n04317420 stick
n04341686 structure
n04377057 system
n04447443 toiletry
n04451818 tool
n04500060 turner

n04509592 uniform
n04571292 weight
n06595351 magazine
n06793231 sign
n06874019 light
n07557434 dish
n07560652 fare
n07579575 entree
n07582609 dip
n07611358 frozen dessert
n07612996 pudding
n07680932 bun
n07681926 cracker
n07683786 loaf of bread
n07707451 vegetable
n07800740 fodder
n07829412 sauce
n07882497 concoction
n07891726 wine
n07929519 coffee
n07930554 punch
n09214060 bar
n09287968 geological formation
n09289709 globule
n09820263 athlete
n10019552 diver
n10401829 participant
n11669921 flower
n12992868 fungus
n13134947 fruit

n15074962 tissue

Table 4: The classes used in the 127-coarse label set from Huh et al. (2016a). See Figure 12 for more
details.

n00002137 abstraction
n00004475 organism
n00007347 causal agent
n00020090 substance
n00020827 matter
n00021265 food
n00021939 artifact
n01503061 bird
n01525720 oscine
n01627424 amphibian
n01661091 reptile
n01661818 diapsid
n01674464 lizard
n01726692 snake
n01767661 arthropod
n01844917 aquatic bird
n01861778 mammal
n01886756 placental
n01905661 invertebrate
n02000954 wading bird
n02075296 carnivore
n02083346 canine

n02084071 dog
n02087122 hunting dog
n02087551 hound
n02092468 terrier
n02098550 sporting dog
n02103406 working dog
n02104523 shepherd dog
n02120997 feline
n02159955 insect
n02329401 rodent
n02370806 ungulate
n02394477 even-toed ungulate
n02469914 primate
n02484322 monkey
n02512053 fish
n02528163 teleost fish
n02778669 ball
n02913152 building
n02958343 car
n03051540 clothing
n03076708 commodity
n03094503 container

n03100490 conveyance
n03122748 covering
n03125870 craft
n03183080 device
n03257877 durables
n03278248 electronic equipment
n03294048 equipment
n03297735 establishment
n03309808 fabric
n03405265 furnishing
n03405725 furniture
n03414162 game equipment
n03419014 garment
n03528263 home appliance
n03563967 implement
n03574816 instrument
n03575240 instrumentality
n03699975 machine
n03733925 measuring instrument
n03738472 mechanism
n03791235 motor vehicle
n03800933 musical instrument

n03839993 obstruction
n04014297 protective covering
n04081844 restraint
n04170037 self-propelled vehicle
n04285146 sports equipment
n04341686 structure
n04447443 toiletry
n04451818 tool
n04524313 vehicle
n04530566 vessel
n04531098 vessel
n04576211 wheeled vehicle
n04586932 wind instrument
n07570720 nutriment
n07705931 edible fruit
n07707451 vegetable
n09287968 geological formation
n12992868 fungus
n13134947 fruit

Table 5: The classes used in the 85-coarse label set. See Figure 13 for more details.
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n00002137 abstraction
n00004475 organism
n00007347 causal agent
n00019128 natural object
n00020827 matter
n00021939 artifact
n01503061 bird
n01627424 amphibian
n01661091 reptile
n01861778 mammal
n01886756 placental
n01905661 invertebrate

n02075296 carnivore
n02083346 canine
n02084071 dog
n02087551 hound
n02092468 terrier
n02098550 sporting dog
n02103406 working dog
n02120997 feline
n02370806 ungulate
n02441326 musteline mammal
n02469914 primate
n02512053 fish

n03093574 consumer goods
n03094503 container
n03100490 conveyance
n03122748 covering
n03183080 device
n03294048 equipment
n03309808 fabric
n03405265 furnishing
n03563967 implement
n03574816 instrument
n03575240 instrumentality
n03699975 machine

n03738472 mechanism
n03800933 musical instrument
n04014297 protective covering
n04081844 restraint
n04341686 structure
n04524313 vehicle
n04531098 vessel
n09287968 geological formation
n12992868 fungus

Table 6: The classes used in the 45-coarse label set. See Figure 14 for more details.

n00002137 abstraction
n00004475 organism
n00007347 causal agent
n00020827 matter
n00021939 artifact
n01503061 bird
n01627424 amphibian

n01661091 reptile
n01861778 mammal
n01905661 invertebrate
n02075296 carnivore
n02512053 fish
n03122748 covering
n03183080 device

n03257877 durables
n03294048 equipment
n03309808 fabric
n03405265 furnishing
n03563967 implement
n03575240 instrumentality
n04341686 structure

n04524313 vehicle
n04531098 vessel
n09287968 geological formation
n12992868 fungus
n13134947 fruit

Table 7: The classes used in the 26-coarse label set. See Figure 15 for more details.

Coarse Label Set Min Max Mean Median Mode Standard Deviation
127-way 1 218 88.40 59.0 218 79.96
85-way 6 522 44.05 24.0 26 59.10
45-way 7 522 59.33 50.0 67 60.27
26-way 7 522 105.86 67.0 158 84.77

Table 8: The statistics of coarse label sets. See Figures 12 13 14 15 for more details.

A.6.2 TRAINING DETAILS

The baseline model used for classification is ResNet50 trained on ImageNet.

TTO. We optimize by SGD with 0.00025 learning rate, 0.9 momentum and batch size 64, follow-
ing (Wang et al., 2020). The following loss function is used for TTO, which is a linear combination
of cross-entropy loss on the summation of probabilities of all of the classes in the coarse label set,
and the entropy of the predictions:

min
ϕ

L = − log
∑
c∈S

pc + we

∑
c

−pc log pc (3)

where pc is the probability of class c and S is the set of classes that are present in the coarse label.

TENT. We used the optimizer and parameters that were reported in Wang et al. (2020) to adapt
TENT. For both TTO and TENT, we optimize the transformation parameters of the normalization
layers and estimate the normalization statistics from the current batch. Note that for each batch
we re-evaluate after the updates (in our experiments we run 1 iteration per batch) to get the final
predictions.

RNA. We optimize by Adam with 0.0001 learning rate, 0.0001 weight decay, batch size 64 and for
about 50 epochs. The FiLM generator we used has an encoder-decoder structure. The encoder has
one hidden layer with 128 nodes and 64 nodes for the output layer. The decoder for each FiLM
layer has one hidden layer with 64 nodes and the output size is equal to the number of FiLM layer
parameters. The FiLM layers are inserted between normalization layers and ReLUs. During training
all of the model parameters are fixed and only the FiLM generator parameters are being trained, and
cross-entropy loss is minimized.
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Figure 12: Distribution of 127-coarse label set from Huh et al. (2016a). 62 ImageNet classes are using
coarse labels with coarsity level of 1, which means for 62 classes the hint is the correct label itself. 171 classes
are using coarse labels with coarsity level of 5 or less, 222 classes are using coarse labels with coarsity level of
10 or less, and 218 classes are using the coarse labels with coarsity level of 200 or more.
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Figure 13: Distribution of 85-coarse label set. None of ImageNet classes are using coarse labels with coarsity
level of 5 or less, 114 classes are using coarse labels with coarsity level of 10 or less, and 28 classes are using
the coarse labels with coarsity level of 200 or more.
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Figure 14: Distribution of 45-coarse label set. None of ImageNet classes are using coarse labels with coarsity
level of 5 or less, 44 classes are using coarse labels with coarsity level of 10 or less, and 39 classes are using
the coarse labels with coarsity level of 200 or more.
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Figure 15: Distribution of 26-coarse label set. None of ImageNet classes are using coarse labels with coarsity
level of 5 or less, 38 classes are using coarse labels with coarsity level of 10 or less, and 113 classes are using
the coarse labels with coarsity level of 200 or more.

21



Under review as a conference paper at ICLR 2023

A.6.3 ADDITIONAL RESULTS

In Figures 28,29,30 we provide a breakdown of performance against individual corruptions from
ImageNet-C and ImageNet-3DCC using 26-,45-, and 85-way coarse labels. We also included the
results when we used 127-way coarse labels from Huh et al. (2016a) in Fig. 31. Note that this coarse
set has imbalances as explained in A.6.1, yet our methods can still benefit from it.

Figure 16: Supplementary results for monocular depth estimation. Qualitative comparison of our method
vs baselines on query images from ScanNet, Replica, and Taskonomy datasets.
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Figure 17: Supplementary results for semantic segmentation. Mean IOU vs number of pixels for different
severities. Numbers in the legend denote the average over all pixel levels.
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Figure 18: Supplementary results for semantic segmentation. Mean IOU vs individual corruptions for dif-
ferent severities when the number of pixels is 3. Numbers in the legend denote the average over the corruptions.
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Figure 19: Supplementary results for semantic segmentation. Mean IOU vs individual corruptions for dif-
ferent severities when the number of pixels is 4. Numbers in the legend denote the average over the corruptions.
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Figure 20: Supplementary results for semantic segmentation. Mean IOU vs individual corruptions for dif-
ferent severities when the number of pixels is 5. Numbers in the legend denote the average over the corruptions.
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Figure 21: Supplementary results for semantic segmentation. Mean IOU vs individual corruptions for
different severities when the number of pixels is 10. Numbers in the legend denote the average over the corrup-
tions.
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Figure 22: Supplementary results for semantic segmentation. Mean IOU vs individual corruptions for
different severities when the number of pixels is 15. Numbers in the legend denote the average over the corrup-
tions.
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Figure 23: Supplementary results for semantic segmentation. Mean IOU vs individual corruptions for
different severities when the number of pixels is 20. Numbers in the legend denote the average over the corrup-
tions.
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Figure 24: Supplementary results for semantic segmentation. Mean IOU vs individual corruptions for
different severities when the number of pixels is 25. Numbers in the legend denote the average over the corrup-
tions.
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Figure 25: Supplementary results for semantic segmentation. Qualitative comparison of our method vs
baselines for defocus blur and glass blur corruptions applied to COCO validation images.
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Figure 26: Supplementary results for semantic segmentation. Qualitative comparison of our method vs
baselines for JPEG compression and motion blur corruptions applied to COCO validation images.
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Figure 27: Supplementary results for semantic segmentation. Qualitative comparison of our method vs
baselines for shot noise corruption applied to COCO validation images.
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Figure 28: Supplementary results for ImageNet classification. Error for individual corruptions from
ImageNet-C and ImageNet-3DCC. TTO and RNA uses 26-way coarse label supervision. Numbers in the
legend denote the average over the corruptions.
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Figure 29: Supplementary results for ImageNet classification. Error for individual corruptions from
ImageNet-C and ImageNet-3DCC. TTO and RNA uses 45-way coarse label supervision. Numbers in the
legend denote the average over the corruptions.
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Figure 30: Supplementary results for ImageNet classification. Error for individual corruptions from
ImageNet-C and ImageNet-3DCC. TTO and RNA uses 85-way coarse label supervision. Numbers in the
legend denote the average over the corruptions.
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Figure 31: Supplementary results for ImageNet classification. Error for individual corruptions from
ImageNet-C and ImageNet-3DCC. TTO and RNA uses 127-way coarse label supervision from Huh et al.
(2016a). Numbers in the legend denote the average over the corruptions.
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