

000 001 002 003 004 005 MIAM: MODALITY IMBALANCE-AWARE MASKING 006 FOR MULTIMODAL ECOLOGICAL APPLICATIONS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

ABSTRACT

030 Multimodal learning is crucial for ecological applications, which rely on heterogeneous data sources (e.g., satellite imagery, environmental time series, tabular
031 predictors, bioacoustics) but often suffer from incomplete data across and within
032 modalities (e.g., unavailable satellite image due to cloud cover, missing records in
033 a time series). While data masking strategies have been used to improve robust-
034 ness to missing data by exposing models to varying input subsets during training,
035 existing approaches typically rely on static masking and inadequately explore the
036 space of input combinations. As a result, they fail to address modality imbalance,
037 a critical challenge in multimodal learning where dominant modalities hinder the
038 optimization of others. To fill this gap, we introduce Modality Imbalance-Aware
039 Masking (MIAM), a dynamic masking strategy that: (i) explores the full space of
040 input combinations; (ii) prioritizes informative or challenging subsets; and (iii)
041 adaptively increases the masking probability of dominant modalities based on
042 their relative performance and learning dynamics. We evaluate MIAM on two
043 key ecological datasets, GeoPlant and TaxaBench, with diverse modality config-
044 urations, and show that MIAM significantly improves robustness and predictive
045 performance over previous masking strategies. In addition, MIAM supports fine-
046 grained contribution analysis across and within modalities, revealing which vari-
047 ables, time segments, or image regions most strongly drive performance.
048

1 INTRODUCTION

049 Ecological modeling plays a central role in conservation, climate change adaptation, and environmental
050 management (Pollock et al., 2025). Capturing complex ecological processes requires data
051 that reflect multiple facets of both the environment and the species of interest. Consequently, ecological
052 datasets are inherently multimodal (Hartig et al., 2024; Miao et al., 2025), integrating diverse
053 inputs such as tabular environmental variables (e.g., elevation, soil properties), time series (e.g., cli-
054 mate records), audio (e.g., bioacoustics), natural images (e.g., species observations), and satellite
055 imagery (Picek et al., 2024; Sastry et al., 2025). Learning effectively from this heterogeneous data
056 presents several challenges. First, ecological data are frequently incomplete due to limitations in
057 data collection, such as cloud-obstructed satellite images or temporal gaps in monitoring efforts.
058 Missing data can occur at the modality level (e.g., no image available for a location) or within
059 modalities (e.g., missing entries in a climate time series). Second, quantifying the importance of
060 different inputs is critical, as these models also aim to provide ecological insights. This includes
061 contributions both across modalities (e.g., how useful is imagery vs. tabular data?) and within them
062 (e.g., which year in a time series matters the most?). Addressing these challenges requires models
063 that can flexibly operate on arbitrary and incomplete subsets of inputs.
064

065 Recent advances in multimodal learning have made progress toward this goal through data masking,
066 where a *masking strategy* specifies a probability distribution over which inputs are hidden from the
067 model during training. Models such as 4M (Mizrahi et al., 2023; Bachmann et al., 2024) implement
068 this idea by randomly masking subsets of inputs, simulating missing data. This exposes the model
069 to diverse modalities and feature combinations, promoting robustness to incomplete inputs and en-
070 abling contribution techniques such as Shapley-based feature importance (Zbinden et al., 2025).
071 However, these masking distributions do not adequately explore the space of input subsets and, be-
072 ing typically fixed and uniform, do not adapt to evolving learning dynamics or modality-specific
073 characteristics during training.
074

054 As a result, such approaches do not address
 055 a crucial challenge in multimodal learning:
 056 *modality imbalance* (also known as *modality*
 057 *competition*). This occurs when some modal-
 058 ities dominate the learning process, captur-
 059 ing most of the predictive signal and gra-
 060 dient flow, thereby impeding the optimiza-
 061 tion of other, potentially complementary, modal-
 062 ities (Wang et al., 2020; Huang et al., 2022; Wu
 063 et al., 2022). An example of modality imbal-
 064 ance is shown in Fig. 1. Several mitigation
 065 strategies have been proposed, including gra-
 066 dient reweighting (Peng et al., 2022), knowl-
 067 edge distillation from unimodal teachers (Du et al.,
 068 2021), and adaptive training schedules based on
 069 per-modality learning speeds (Wu et al., 2022).
 070 However, these methods often require addi-
 071 tional components or supervision, while even
 072 simple modality dropout (Neverova et al., 2015) has proven to be competitive with more complex
 073 approaches. Building on this, Wei et al. (2024) proposed On-the-fly Prediction Modulation (OPM), a
 074 masking strategy that adjusts per-modality probabilities based on relative performance scores. How-
 075 ever, these scores remain nearly static during training, operate only at the modality level (masking
 076 an entire modality or none of it), and fail to fully explore the space of possible input combina-
 077 tions.

078 In this work, we propose Multimodal Imbalance-Aware Masking (MIAM), a principled, dynamic,
 079 score-driven masking strategy illustrated in Fig. 2. We first formalize masking strategies as probabili-
 080 ty distributions over unit hypercubes and identify three key properties often missing from existing
 081 approaches. An effective masking strategy should have full support on the hypercube, prioritize
 082 corners while assigning higher weight to those corresponding to key input configurations, and adapt
 083 to modality imbalance by adjusting masking probabilities based on modality dominance. These
 084 insights motivate MIAM, which is designed to: i) handle arbitrary missing inputs; ii) mitigate modali-
 085 ty imbalance by adjusting masking of dominant modalities; and iii) support both within and across
 086 modality contributions. To achieve this, MIAM constructs a mixture of product beta distributions
 087 to define masking probabilities and dynamically adjusts this distribution during training based on
 088 modality-specific performance and learning speed. We evaluate MIAM on two ecological bench-
 089 marks: GeoPlant (Picek et al., 2024) for species distribution modeling and TaxaBench (Sastry et al.,
 090 2025) for multimodal species classification, spanning three and five modalities, respectively. MIAM
 091 consistently outperforms existing masking approaches, with particularly strong gains for modalities
 092 affected by modality imbalance. Beyond predictive performance, MIAM also provides ecological
 093 insight by revealing not only which modalities are the most influential, but also which predictors,
 094 temporal segments, or image regions drive model performance – highlighting key ecological sig-
 095 nals such as NDVI and heatwaves. Together, these results underscore the importance of principled
 096 masking in multimodal learning, and particularly so in ecological applications where data are het-
 097 erogeneous and incomplete.

2 RELATED WORK

098 **Multimodal learning** aims at integrating information from heterogeneous data sources such as au-
 099 dio, image, video, text, and tabular data (Baltrušaitis et al., 2018; Uppal et al., 2022; Xu et al., 2023;
 100 Zhang et al., 2023; Bachmann et al., 2024; Zong et al., 2025). Ideally, different modalities provide
 101 synergistic views of the underlying process (Dufumier et al., 2025), as in ecology, where multimodal
 102 approaches are increasingly adopted to leverage the diversity of available data sources (Miao et al.,
 103 2025; Hartig et al., 2024; Picek et al., 2024). However, combining multiple modalities often in-
 104 troduces the challenge of *modality imbalance*, where dominant modalities impede the optimiza-
 105 tion of less informative ones. This issue can arise from differences in predictive strength, input scale,
 106 or learning speed (Wang et al., 2020; Peng et al., 2022; Huang et al., 2022). Wang et al. (2020)
 107 shows that multimodal models can underperform their unimodal counterparts due to differing gen-
 108 eralization rates across modalities, and proposed gradient blending to address this effect. Building
 109 on this, Peng et al. (2022) introduces On-the-fly Gradient Modulation (OGM) to adjust gradients

Figure 1: **Modality imbalance:** On GeoPlant, a unimodal model using satellite imagery outperforms multimodal masking-based approaches evaluated on the same modality, where dominant modalities hinder effective optimization. MIAM closes this gap by adaptively increasing the masking probability of dominant modalities based on their relative performance and learning dynamics.

2 Validation AUC (%)
 Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 70 80

Unimodal (oracle)
 MIAM (ours)
 Modality dropout
 Uniform
 Constant
 Dirichlet
 OPM

20 40

Epoch

60 7

Figure 2: **Overview of MIAM.** (a) Each token of modality m is masked with probability p_m , sampled from a mixture of product beta distributions. (b) The distribution parameters are modulated by ρ_{s_m} and ρ_{d_m} , derived from the per-modality performance s_m and its absolute derivative d_m to address modality imbalance. Modalities with relatively high s_m and low d_m are masked more often.

based on the discrepancy of modalities’ contributions, while Wu et al. (2022) proposed adapting training schedules based on modality-specific learning speeds to counteract greedy optimization behaviors. Other approaches adjust training using unimodal teacher distillation Du et al. (2021) or prototype-based regularization (Fan et al., 2023). While effective when all modalities are present, these methods assume complete inputs and are not designed to cope with missing modalities or arbitrary subsets – conditions that are especially common in ecological datasets.

Masking is widely used in self-supervised learning (SSL) as a pretext task to learn robust, general-purpose representations. By reconstructing masked inputs from partial context, models can learn without labels and develop deeper contextual understanding (Devlin et al., 2019; He et al., 2022). Beyond SSL, masking also promotes robustness to missing inputs. In supervised settings, modality dropout (Neverova et al., 2015) – randomly masking modalities during training – has shown competitive performance for handling missing modalities. MultiMAE (Bachmann et al., 2022) and 4M (Mizrahi et al., 2023; Bachmann et al., 2024) extend this idea by masking and reconstructing both across and within modalities, enabling models to flexibly handle arbitrary subsets of inputs while also supporting per-modality performance analysis. Similarly, Covert et al. (2023) leverages masking to estimate image patch contributions through Shapley values. In ecology, MaskSDM (Zbinden et al., 2025) applies uniform random masking to tabular predictors and satellite embeddings, improving robustness to missing data both across and within modalities. In another direction, Wei et al. (2024) adapts masking to address modality imbalance by adjusting dropout probabilities based on per-modality performance scores. Despite their success, most of the existing masking strategies rely on uniform distributions over a limited subset of input combinations, overlooking modality imbalance and lacking robustness to arbitrary missing inputs. In Section 3.1, we formalize existing masking strategies, identify their limitations, and propose key principles for effective masking in multimodal settings that serve as the foundation for MIAM.

3 METHODOLOGY

3.1 PROBLEM SETUP AND MASKING FORMULATION

In our multimodal setup, each input sample x consists of M modalities, represented as a tuple $x = (x^1, x^2, \dots, x^M)$, where each modality x^m is associated with T_m tokens: $x^m = (x_1^m, x_2^m, \dots, x_{T_m}^m)$. Each token is a high-dimensional vector obtained through a tokenizer and encodes distinct, non-overlapping information within its modality. These tokens are then fused to produce the final prediction, here using a transformer architecture (Vaswani et al., 2017; Mizrahi et al., 2023). Importantly, we assume that all tokens within a given modality share the same masking probability, denoted p_m . Collectively, these form the masking probability vector $\mathbf{p} = (p_1, p_2, \dots, p_M) \in$

Figure 3: **Masking strategies** viewed as probability distributions $\mathbf{p} = (p_1, p_2, p_3)$ over the unit hypercube, illustrated with three modalities where modality 3 is dominated. 5000 points are drawn per strategy to visualize the distribution. (a) Constant masking (e.g., 0.75) (b) Shared probability $p \sim \mathcal{U}(0, 1)$ across modalities (Zbinden et al., 2025) (c) Symmetric Dirichlet with $\alpha = \mathbf{1}_M$ (Mizrahi et al., 2023). (d) Modality dropout with fixed probability (Neverova et al., 2015) (e) OPM (dynamic masking): modality 3 is never masked (Wei et al., 2024) (f) Uniform hypercube: independent $p_m \sim \mathcal{U}(0, 1)$ per modality for full support. (g) Beta hypercube: mixture of product beta distributions to prioritize corners (h) MIAM (dynamic masking): beta hypercube with imbalance-aware adjustments, causing modality 3 to be masked less often than the others.

$[0, 1]^M$, which lies in the M -dimensional unit hypercube. A masking strategy is then defined as a probability distribution over this hypercube, which may evolve during training.

Existing masking strategies. The simplest strategy assigns fixed masking probability to all modalities, e.g., a constant $p_m = 0.75$ (He et al., 2022). To introduce variability in the number of observed tokens, MaskSDM (Zbinden et al., 2025) samples a single masking probability $p \sim \mathcal{U}(0, 1)$ per batch and applies it uniformly: $\mathbf{p} = p \cdot \mathbf{1}_M$. However, when modalities contain multiple tokens, the chance of observing only one modality m' (i.e., all others being fully masked) scales as $\prod_{m:m \neq m'} p_m^{T_m}$, which decreases exponentially with the number of tokens. Thus, it is highly probable that the model is exposed to at least one token from a dominant modality, making it difficult to learn from other modalities. To encourage more structured input variations, 4M (Mizrahi et al., 2023) samples \mathbf{p} from a symmetric Dirichlet distribution: $\mathbf{p} \sim \text{Dir}(\alpha)$ with $\alpha = \mathbf{1}_M$, resulting in uniform sampling over the simplex. However, this constrains the expected proportion of visible tokens to approximately $1/M$ at each iteration, thereby limiting the diversity of the observed input configurations. Modality dropout (Neverova et al., 2015) masks each modality with a fixed probability and, like 4M, treats all modalities equally – thereby ignoring modality competition. OPM (Wei et al., 2024) builds on modality dropout by masking more discriminative modalities more frequently. However, OPM restricts $\mathbf{p} \in \{0, 1\}^M$: each modality is either fully masked or fully visible – preventing partial masking and limiting fine-grained contribution. Moreover, modalities with low performance scores are never masked ($p_m = 0$), while others are masked at near-constant rates (see Appendix A.3). For clarity, the masking strategies discussed above are illustrated in Fig. 3 using a 3-dimensional hypercube (i.e., three modalities).

Design principles for effective masking. We identify three key properties that an effective masking strategy over $\mathbf{p} \in [0, 1]^M$ should satisfy. (i) **Full support**: the distribution should assign non-zero probability to every \mathbf{p} , ensuring that any combination of masked and unmasked tokens can occur. (ii) **Corner prioritization**: points near the corners of the hypercube should be sampled more often, ensuring that the model frequently observes combinations with either almost all tokens or almost

216 none from each modality. In ecological settings, incomplete data often occurs at the modality level
 217 rather than at the token level, making full-presence and full-absence cases especially important. In
 218 addition, the corners corresponding to $(0, 0, \dots, 0)$ and $(1, 1, \dots, 1)$ should be prioritized, as they
 219 expose the model to scenarios where either all modalities are available or only a few tokens remain.
 220 This helps the model remain reliable both when all modalities are present and when fine-grained
 221 contribution analyses require operating with very few tokens. Further motivation for corner pri-
 222 oritization is provided in Appendix A.2.2. (iii) **Imbalance-awareness**: the masking distribution
 223 should explicitly address modality competition by assigning higher masking probabilities to dom-
 224 inant modalities, which can be identified based on metrics like modality performance or learning
 225 speed.

227 3.2 MIAM: MODALITY IMBALANCE-AWARE MASKING

228 We introduce MIAM, a masking strategy designed to satisfy the three key principles outlined above.
 229 First, to ensure full support, we consider the *uniform hypercube* distribution, sampling \mathbf{p} uniformly
 230 over the hypercube $[0, 1]^M$, i.e., drawing each $p_m \sim \mathcal{U}(0, 1)$ independently. Second, to prioritize
 231 the corners of the hypercube, we construct a mixture of product beta distributions, each concentrat-
 232 ing probability mass around a different corner of the hypercube. This formulation also allows us to
 233 increase the likelihood of sampling near the two key corners $(0, 0, \dots, 0)$ and $(1, 1, \dots, 1)$, which
 234 we call the *beta hypercube* distribution. Finally, MIAM addresses modality imbalance by dynami-
 235 cally adjusting the parameters of the beta hypercube distribution based on modality-specific learning
 236 dynamics. We identify dominant modalities by jointly considering their relative performance and
 237 learning speed, with the latter estimated as the temporal derivative of performance during train-
 238 ing. These modalities are then masked more frequently, encouraging the model to better leverage
 239 under-optimized inputs.

240 **Corner-anchored mixture of product beta distributions.** To construct a flexible, non-uniform
 241 probability distribution over the hypercube $[0, 1]^M$, we define a mixture of product beta distributions,
 242 where each mixture component is designed to concentrate most of its probability mass near one of
 243 the 2^M corners. Let $\text{Beta}(p_m; \alpha, \beta)$ denote the beta probability density function evaluated at $p_m \in$
 244 $(0, 1)$. For a given corner $c = (c_1, \dots, c_M) \in \{0, 1\}^M$ and input $\mathbf{p} = (p_1, \dots, p_M) \in [0, 1]^M$, we
 245 define the product beta distribution anchored at corner c as:

$$246 \quad 247 \quad 248 \quad f_c(\mathbf{p}) = \prod_{m=1}^M \begin{cases} \text{Beta}(p_m; 1, \kappa) & \text{if } c_m = 0, \\ \text{Beta}(p_m; \kappa, 1) & \text{if } c_m = 1, \end{cases} \quad (1)$$

249 where the sharpness parameter $\kappa > 1$ controls the concentration around the corner. We then define
 250 the mixture distribution over the set of corners $\mathcal{C} = \{0, 1\}^M$:

$$252 \quad 253 \quad 254 \quad \text{MixProdBeta}(\mathbf{p}) = \sum_{c \in \mathcal{C}} w_c \cdot f_c(\mathbf{p}), \quad (2)$$

255 where the weights $\{w_c\}_{c \in \mathcal{C}}$ are nonnegative and sum to 1. We allow asymmetric weighting to
 256 emphasize specific corners – for example, assigning larger weights to the corners $(0, \dots, 0)$ and
 257 $(1, \dots, 1)$. Specifically, we set

$$258 \quad 259 \quad 260 \quad w_c = \begin{cases} \frac{1}{4} & \text{if } c \in \{(0, \dots, 0), (1, \dots, 1)\}, \\ \frac{1}{2(2^M-2)} & \text{otherwise.} \end{cases} \quad (3)$$

262 This weighting allocates half of the mass to the two selected corners and evenly distributes the rest
 263 between the remaining $2^M - 2$ corners. In the particular case when each modality has only one
 264 token, prioritizing corner $(1, \dots, 1)$ is meaningless, as it masks all inputs. In this case, we reassign
 265 its weight to corner $(0, \dots, 0)$, yielding $w_c = \frac{1}{2}$.

266 **Modality imbalance coefficients.** To mitigate modality imbalance during training, we modulate the
 267 sharpness parameter κ of the corner-anchored beta distribution using two modality-specific factors
 268 ρ_{s_m} and ρ_{d_m} . The coefficient ρ_{s_m} is computed from s_m , the performance score for modality m
 269 when evaluated in isolation on a chosen validation set and metric. In contrast, ρ_{d_m} is calculated
 from the absolute derivative d_m of s_m . Both coefficients are normalized via the geometric mean

270 across modalities:

$$272 \quad \rho_{s_m} = \frac{s_m}{\left(\prod_{m'=1}^M s_{m'}\right)^{1/M}}, \quad \rho_{d_m} = \frac{d_m}{\left(\prod_{m'=1}^M d_{m'}\right)^{1/M}}. \quad (4)$$

$$273$$

$$274$$

275 A high ρ_{s_m} indicates that modality m achieves strong unimodal performance, whereas a high ρ_{d_m}
 276 reflects rapid improvement or decline in performance. The ratio ρ_{s_m}/ρ_{d_m} thus guides masking:
 277 modalities with high and stable performance (high ratio) are masked more frequently, allowing the
 278 model to focus on modalities that are less performant or still learning, while continuing to explore all
 279 input combinations during training¹. We incorporate this adaptive masking into the corner-anchored
 280 beta distributions by adjusting κ asymmetrically, depending on the corner vector c :

$$281 \quad f_c(\mathbf{p}) = \prod_{m=1}^M \begin{cases} \text{Beta} \left(p_m; 1, \kappa \cdot \left(\frac{\rho_{s_m}}{\rho_{d_m}} \right)^{-\lambda} \right) & \text{if } c_m = 0. \\ \text{Beta} \left(p_m; \kappa \cdot \left(\frac{\rho_{s_m}}{\rho_{d_m}} \right)^\lambda, 1 \right) & \text{if } c_m = 1. \end{cases} \quad (5)$$

$$282$$

$$283$$

$$284$$

285 Here, $\lambda > 0$ controls the influence of the imbalance ratio $\frac{\rho_{s_m}}{\rho_{d_m}}$ on the sharpness adjustment. Modalities
 286 with higher ratios produce beta distributions more concentrated near 1, increasing the probability
 287 of their masking. For intuition, the marginal distribution of MIAM is shown in Appendix A.2.1.

290 4 EXPERIMENTS

291 4.1 EXPERIMENTAL SETUP

294 We evaluate MIAM’s ability to handle incomplete data within and across modalities on two eco-
 295 logical datasets with diverse modality types and configurations: GeoPlant (Picek et al., 2024) for
 296 species distribution modeling (SDM) and TaxaBench (Sastry et al., 2025) for multimodal species
 297 classification. SDM is a cornerstone ecological task that relates species occurrence records to envi-
 298 ronmental variables (Elith & Leathwick, 2009), where robustness to missing inputs and fine-grained
 299 interpretability are both essential. Increasingly, these occurrence records span heterogeneous and
 300 often incomplete modalities (e.g., image, audio, geolocation), highlighting the need for models ca-
 301 pable of robust multimodal species classification, as evaluated by TaxaBench. A brief overview of
 302 each dataset is given here, with full details in Appendix A.1.

302 **GeoPlant** (Picek et al., 2024) integrates three modalities: tabular environmental predictors, Sentinel-
 303 2 satellite imagery, and time series from both climate and Landsat satellite data. The task is to predict
 304 the presence or absence of plant species at locations across Europe, formulated as a multi-label clas-
 305 sification problem. We use the provided vegetation plot survey labels (presence-absence data) and
 306 split the data into training (70%), validation (15%), and test (15%) sets using spatial block cross-
 307 validation (Roberts et al., 2017). To mitigate spatial autocorrelation, we employ large block sizes
 308 ($1^\circ \times 1^\circ$). We retain only species with more than 20 observations and evaluate those with at least
 309 one presence record in all three splits, yielding 1783 species. Model performance is assessed using
 310 the Area Under the ROC Curve (AUC) averaged across species, the standard metric in SDM. For
 311 methods requiring per-modality performance scores (OPM and MIAM), we compute the validation
 312 AUC at each epoch, with $\lambda = 3$ and $\kappa = 10$ for MIAM. We tokenize the satellite images at both the
 313 patch level (5×5 patches) and the channel level (Red, Green, Blue, NIR) level; the time series at both
 314 the year (2000–2018 for climate; 2000–2020 for Landsat) and channel level (4 climatic variables; 6
 315 Landsat bands); and assign one token to each of the 48 tabular variables. The tokenization linearly
 316 encodes image patches and time series segments with positional embeddings (Dosovitskiy et al.,
 317 2020), while tabular variables are tokenized as in Gorishniy et al. (2022). This fine-grained tok-
 318 enization enables experiments that isolate the contribution of specific inputs, such as specific tabular
 319 variables (e.g., BIO1, the annual mean temperature), groups of tabular variables (e.g., WorldClim),
 320 individual years of the climatic time series (e.g., 2018), multi-year segments (e.g., 2000–2018), and
 321 specific patches (e.g., the center patch) of the satellite image.

321 **TaxaBench** (Sastry et al., 2025) consists of species observations sourced from iNaturalist (Van Horn
 322 et al., 2018), each associated with five modalities: a ground-level image, a satellite image, an audio

323 ¹A small constant such as $\epsilon = 0.001$ can be added to s_m, d_m , and ρ_{d_m} to prevent division by zero.

Modality	Input Type										Avg.		
	Partial Unimodal			Unimodal			Bimodal		All				
	✓	✓			✓		✓	✓		✓			
Tabular	BIO1	✓	✓				✓		✓	✓			
WorldClim			✓				✓		✓	✓			
Others					✓		✓	✓	✓	✓			
Time series	Clim: 2018			✓	✓		✓		✓	✓			
	Clim: 2000-2018				✓		✓		✓	✓			
	Landsat					✓	✓		✓	✓			
Sat. image	Center patch				✓		✓		✓	✓			
	Others					✓		✓	✓	✓			
Constant	68.6	82.4	84.7	86.7	55.1	83.3	90.0	63.6	90.0	83.3	89.2	87.9	80.4
Uniform	73.3	85.7	86.3	87.2	61.2	86.9	91.1	65.6	91.6	86.2	91.8	92.0	83.2
Dirichlet	65.1	82.7	77.8	86.8	54.9	87.5	91.1	58.2	91.8	88.6	91.7	91.4	80.6
Modality dropout	48.7	80.8	77.4	86.4	66.2	88.6	91.4	73.2	92.0	89.2	91.7	92.0	81.5
OPM	68.0	81.9	80.7	85.3	68.1	88.4	90.2	81.1	90.7	89.5	91.1	91.2	83.8
MIAM (ours)	78.4	86.7	86.0	87.0	70.8	89.0	91.4	80.1	91.7	89.5	91.5	91.7	86.1
Oracle (one model per column)	78.0	87.1	87.7	87.6	77.1	89.3	92.2	81.4	92.3	89.7	91.7	92.0	87.2

Table 1: **AUC performance on the GeoPlant test set.** Each column corresponds to a different input subset, showing the performance of each masking strategy on that subset. **For each masking strategy, the same trained model is evaluated on all subsets.** The best score per subset is written in bold, and the average score across input subsets is reported in the last column.

recording, environmental tabular predictors, and the geolocation. The task is to classify the species represented in each sample. Since the dataset was originally designed for zero-shot classification, no predefined splits are available. We therefore retain only species with at least 10 observations (199 species) and stratify the remaining 4876 samples into train (80%), validation (10%), and test (10%) sets, ensuring the same proportions of species in all splits. The validation loss at each epoch is used to compute per-modality scores, **and we set $\lambda = 1$ and $\kappa = 10$ for MIAM.** We reuse the pre-trained encoders from Sastry et al. (2025), where each encoder outputs a single token per modality. The resulting five tokens are then masked according to the masking strategy and passed to the transformer for the final prediction. Since we consider only one token per modality, the constant and modality dropout masking strategies are equivalent.

In Section 4.2.1, we compare MIAM against existing masking strategies and an *oracle* baseline: a non-masking model trained directly on the exact subset of tokens under evaluation. Since the number of possible subsets grows exponentially, $O(2^{\sum_{m=1}^M T_m})$, oracle models are impractical at scale. We therefore include them only as an approximate upper bound on performance for specific input subsets and under the given model and training setup. When restricted to a single modality, the oracle reduces to a unimodal baseline. All models and baselines are trained under the same protocol for a given dataset (detailed in Appendix A.1 and A.3), differing only in their masking strategies. **For each masking strategy, the same trained model is evaluated across all input subsets, meaning that no retraining is performed when switching subsets.** An ablation and sensitivity analysis of MIAM are presented in Section 4.2.2 and Appendix A.4.1.

4.2 RESULTS

4.2.1 COMPARISON AMONG MASKING STRATEGIES

Table 1 shows the AUC performance of the different masking strategies on the GeoPlant dataset. Overall, MIAM outperforms all baselines, with an average gain of 2.3% over the second-best method. MIAM performs strongly across all unimodal setups, substantially narrowing the gap caused by modality imbalance, which is most evident for satellite imagery. OPM performs slightly better on satellite imagery and on some of the subsets it favors during training (e.g., satellite & tabular or satellite & time series). However, it fails considerably on subsets it never encounters, particularly partial unimodal setups, where MIAM remains robust and uniform masking is the main competitor. Yet, uniform masking does not account for modality dominance, resulting in poor performance on satellite imagery. When using all modalities, MIAM performs slightly below modality dropout and uniform masking. However, this gap is eliminated by reducing the strength of the

Modality	Input Type										Avg.	
	Unimodal		Bimodal		Trimodal		Quadri.		All			
Ground-level image	✓				✓	✓	✓	✓	✓	✓		
Audio		✓			✓	✓	✓	✓	✓	✓		
Geographic location			✓		✓	✓	✓	✓	✓	✓		
Environmental features				✓		✓	✓	✓	✓	✓		
Satellite image				✓		✓	✓	✓	✓	✓		
Uniform	42.4	41.2	8.40	7.99	6.76	59.2	48.8	64.3	9.02	51.2	46.9	65.8
Dirichlet	42.2	40.8	5.33	5.12	7.58	59.2	48.4	65.0	9.63	51.4	45.9	67.8
Modality dropout	41.4	39.8	5.53	4.51	8.2	57.2	44.3	59.2	9.63	51.0	45.1	65.0
OPM	33.2	35.0	5.74	5.12	7.79	46.3	34.4	50.0	10.9	43.6	42.6	59.4
MIAM (ours)	42.2	41.8	6.56	7.38	9.84	60.9	50.2	65.4	10.2	52.0	49.0	69.1
Oracle (one model per column)	45.3	44.9	7.58	9.43	12.9	63.3	50.0	66.6	13.1	51.8	46.5	69.1
												40.0

Table 2: **Top-1 accuracy on the test set of TaxaBench.** Each column corresponds to a different input subset, showing the performance of each masking strategy on that subset. **For each masking strategy, the same trained model is evaluated on all subsets.** The best score per subset is highlighted in bold, and the average performance for each masking strategy across input subsets is reported in the last column.

Figure 4: **Ablation study and effect of dynamic masking.** Validation AUC on GeoPlant for each modality and intermediate masking strategies leading to MIAM (left), and evolution of MIAM’s modality imbalance coefficients ρ_{sm} and ρ_{dm} during training (right).

imbalance-aware coefficients via λ , which controls the tradeoff between dominant and dominated modalities (see Appendix A.4.1 for our hyperparameter analysis). Finally, the gap between MIAM and the oracle baseline is small, indicating that MIAM approaches the performance of specialized models trained directly on each input subset, while remaining broadly flexible.

Table 2 reports the top-1 accuracy of different masking strategies on the TaxaBench dataset. On average, MIAM achieves the strongest performance, particularly in multimodal settings. The only exception is the trimodal case excluding the dominant ground-level image and audio, where OPM performs better since this subset appears most frequently during its training. In unimodal cases, both MIAM and uniform masking remain strong baselines. Additional metrics (top-5 accuracy and F1-score) are reported in Appendix A.4.2 and show the same trends as the top-1 accuracy.

4.2.2 ABLATION STUDY

In the left side of Fig. 4, we show validation performance on GeoPlant during training for uniform masking and the successive variants of MIAM: starting with the uniform hypercube (full-support principle), extending to the beta hypercube (corner-prioritization principle), and finally to MIAM (imbalance-aware principle). While performance is similar for the dominant time-series modality and for all modalities combined, each added principle consistently improves results on the other modalities, most notably for satellite imagery. MIAM also displays cyclic patterns, driven by fluc-

Figure 5: **Contribution analysis for ecological insights.** MIAM enables fine-grained contribution within modalities. **(a)** The Red and NIR bands are particularly important as they are used to compute vegetation indices such as NDVI. **(b)** Extending the temporal context (longer time series) captures signals from past extreme events, such as heatwaves.

tuations in the relative learning speed ρ_{d_m} , which periodically shift the training focus across modalities. This link is evident in the correspondence between the ρ_d curve (right side of Fig. 4) and the validation performance curve of MIAM. We hypothesize that such cyclic effects are beneficial for learning, similar to periodic learning-rate schedules. By contrast, the relative performance scores ρ_{s_m} remain fairly stable throughout training: while they provide a useful prior for identifying dominant modalities, relying solely on them, as in OPM, leads to suboptimal performance because the masking distribution evolves little over time (see Appendix A.4.1 for numerical results).

Table 3 illustrates the positive effect of using non-uniform corner weights w_c , which prioritize the corners $(0, 0, \dots, 0)$ and $(1, 1, \dots, 1)$. The table reports the average performance gain across the input subsets of Table 1 and Table 2 on their validation sets. While the improvement is modest on GeoPlant, the gain on TaxaBench is more pronounced – potentially because it includes more modalities, making these key corners occur even less frequently under uniform corner weights. Additional ablation studies and a sensitivity analysis of the hyperparameters are provided in Appendix A.4.1.

5 DISCUSSION

The strong performance of MIAM on incomplete multimodal data, both across and within modalities, enables more accurate estimation of input contributions. By comparing performance across modalities or subsets of tokens, we can identify which inputs drive performance and may play critical ecological roles. For example, in the GeoPlant dataset, we find that model performance consistently improves when the Red and NIR spectral bands of satellite imagery are used together (Fig. 5a). This aligns with well-established knowledge in remote sensing and vegetation monitoring: Red and NIR bands are used to compute the Normalized Difference Vegetation Index (NDVI), which captures biomass and phenological patterns of vegetation (Pettorelli et al., 2005; He et al., 2015). In addition, our results indicate that model performance generally improves with longer time series (Fig. 5b). We observe a significant increase in performance when the time series includes the 2003 European heatwave, highlighting the importance of including temporal scales that capture key information such as extreme events (Lynch et al., 2014; Fonteyn et al., 2025). However, analyses such as in Fig. 5a rely on manual inspection of selected subsets, which becomes impractical as the number of tokens grows. To obtain systematic and interpretable measures, as future work, we plan to compute token-level Shapley values, yielding a single contribution score per token, thus extending prior approaches to multimodal settings (Covert et al., 2023; Zbinden et al., 2025).

	GeoPlant	TaxaBench
Uniform w_c	85.2	36.0
Non-uniform w_c	85.4	37.1

Table 3: **Average performance impact of the prioritization of key corners by using a non-uniform w_c , evaluated on the validation sets of GeoPlant (AUC) and TaxaBench (Top-1 accuracy).**

486 Additionally, the formulation of masking for multimodal learning developed in this work can serve
 487 as a foundation for designing new strategies tailored to specific multimodal learning challenges. For
 488 instance, if particular token subsets are of higher importance than the others, the corner weights w_c
 489 can be adjusted accordingly. MIAM can also be beneficial for large multimodal models such as
 490 4M (Mizrahi et al., 2023), which currently rely on the Dirichlet distribution and may suffer from
 491 modality imbalance during training. In particular, its advantages are most evident in datasets with
 492 many modalities and more than one token per modality. Our experiments on the bimodal SatBird
 493 dataset (Teng et al., 2023) show that, in such a simple setting, all masking strategies perform sim-
 494 ilarly (see Appendix A.4.3). This highlights the need for richer multimodal benchmarks, both in
 495 ecology and in machine learning more broadly, that incorporate more than two modalities.
 496

497 Finally, while we focus on supervised setups in this work, masking strategies are often used for
 498 self-supervised pre-training. However, to the best of our knowledge, modality imbalance has
 499 not been explored in the context of SSL. To assess the potential of MIAM in an SSL setting,
 500 we conduct a small-scale, proof-of-concept experiment. Although the Beta hypercube variant
 501 (MIAM with $\lambda = 0$) can be implemented directly, MIAM requires per-modality performance
 502 scores, which are difficult to obtain in SSL because labels are absent. For this experiment,
 503 we estimate modality performance using the reconstruction losses computed on the training set.
 504 While alternative approaches could be explored, this choice is simple and broadly applicable. The experimental design follows the
 505 MultiMAE framework (Bachmann et al., 2022), adapted to the
 506 modalities in GeoPlant. The model is pre-trained on the training
 507 set using a given masking strategy, linear weights for linear prob-
 508 ing (LP) are learned on the validation set, and evaluation across
 509 input subsets is performed on the test set. Full experimental de-
 510 tails and per-subset results are provided in Appendix A.4.4, with
 511 a summary shown in Table 4. Overall, MIAM outperforms the
 512 other masking strategies under LP, demonstrating its promise for
 513 self-supervised settings, with the uniform strategy (Zbinden et al.,
 514 2025) performing comparably. Although this is a small-scale ex-
 515 periment, it highlights the importance of exploring masking strate-
 516 gies in self-supervised multimodal learning and suggests that the
 517 commonly used Dirichlet distribution may not be optimal, given
 518 MIAM’s consistent improvements.

519 6 CONCLUSION

520 Leveraging multimodal learning with masking strategies is essential in ecological applications,
 521 where data is heterogeneous, incomplete, and requires interpretable input contributions. By formal-
 522 izing masking strategies for multimodal settings, we introduce MIAM, a dynamic masking strategy
 523 that effectively covers the space of input subsets while addressing modality imbalance, a central
 524 challenge in multimodal learning. Our results demonstrate that MIAM consistently outperforms ex-
 525 isting masking approaches across multiple ecological datasets, enabling models to handle arbitrary
 526 input subsets and yielding valuable ecological insights through fine-grained contribution analysis.

527 529 REPRODUCIBILITY STATEMENT

530 We include all necessary details to ensure reproducibility. Model architectures and experimental
 531 setups are presented in the main text and appendix, and the code and model weights will be publicly
 532 available upon acceptance.

533 535 REFERENCES

536 Roman Bachmann, David Mizrahi, Andrei Atanov, and Amir Zamir. Multimae: Multi-modal multi-
 537 task masked autoencoders. In *European Conference on Computer Vision*, pp. 348–367. Springer,
 538 2022.

Method	Avg.
Constant	78.3
Uniform	79.3
Dirichlet	77.0
Modality dropout	77.5
OPM	75.3
MIAM (ours)	79.5

539 Table 4: Average AUC performance of masking strate-
 540 gies on GeoPlant with SSL
 541 pre-training evaluated via lin-
 542 ear probing. Per-subset re-
 543 sults are provided in Table 10.

- 540 Roman Bachmann, Oğuzhan Fatih Kar, David Mizrahi, Ali Garjani, Mingfei Gao, David Griffiths,
 541 Jiaming Hu, Afshin Dehghan, and Amir Zamir. 4m-21: An any-to-any vision model for tens of
 542 tasks and modalities. *Advances in Neural Information Processing Systems*, 37, 2024.
- 543
- 544 Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning:
 545 A survey and taxonomy. *IEEE transactions on pattern analysis and machine intelligence*, 41(2):
 546 423–443, 2018.
- 547
- 548 Ian Connick Covert, Chanwoo Kim, and Su-In Lee. Learning to estimate shapley values with vision
 549 transformers. In *The Eleventh International Conference on Learning Representations*, 2023.
- 550
- 551 Aaron Defazio, Xingyu Yang, Ahmed Khaled, Konstantin Mishchenko, Harsh Mehta, and Ashok
 552 Cutkosky. The road less scheduled. *Advances in Neural Information Processing Systems*, 37:
 553 9974–10007, 2024.
- 554
- 555 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 556 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
 557 the North American chapter of the association for computational linguistics: human language
 558 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.
- 559
- 560 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 561 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
 562 age is worth 16x16 words: Transformers for image recognition at scale. In *International Confer-
 563 ence on Learning Representations*, 2020.
- 564
- 565 Chenzhuang Du, Tingle Li, Yichen Liu, Zixin Wen, Tianyu Hua, Yue Wang, and Hang Zhao. Im-
 566 proving multi-modal learning with uni-modal teachers. *arXiv preprint arXiv:2106.11059*, 2021.
- 567
- 568 Benoit Dufumier, Javiera Castillo Navarro, Devis Tuia, and Jean-Philippe Thiran. What to align
 569 in multimodal contrastive learning? In *The Thirteenth International Conference on Learning
 570 Representations*, 2025.
- 571
- 572 Jane Elith and John R Leathwick. Species distribution models: ecological explanation and prediction
 573 across space and time. *Annual Review of Ecology, Evolution and Systematics*, 40(1):677–697,
 574 2009.
- 575
- 576 Yunfeng Fan, Wenchao Xu, Haozhao Wang, Junxiao Wang, and Song Guo. Pmr: Prototypical modal
 577 rebalance for multimodal learning. In *Proceedings of the IEEE/CVF Conference on Computer
 578 Vision and Pattern Recognition*, pp. 20029–20038, 2023.
- 579
- 580 Ward Fonteyn, Josep M Serra-Diaz, Bart Muys, and Koenraad Van Meerbeek. Incorporating cli-
 581 matic extremes using the gev distribution improves sdm range edge performance. *Journal of
 582 Biogeography*, 52(3):780–791, 2025.
- 583
- 584 Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
 585 models for tabular data. *Advances in Neural Information Processing Systems*, 34:18932–18943,
 586 2021.
- 587
- 588 Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
 589 tabular deep learning. *Advances in Neural Information Processing Systems*, 35:24991–25004,
 590 2022.
- 591
- 592 Florian Hartig, Nerea Abrego, Alex Bush, Jonathan M Chase, Gurutzeta Guillera-Arroita, Mathew A
 593 Leibold, Otso Ovaskainen, Loïc Pellissier, Maximilian Pichler, Giovanni Poggiato, et al. Novel
 594 community data in ecology-properties and prospects. *Trends in Ecology & Evolution*, 39(3):
 595 280–293, 2024.
- 596
- 597 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
 598 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer
 599 vision and pattern recognition*, pp. 16000–16009, 2022.

- 594 Kate S He, Bethany A Bradley, Anna F Cord, Duccio Rocchini, Mao-Ning Tuanmu, Sebastian
 595 Schmidlein, Woody Turner, Martin Wegmann, and Nathalie Pettorelli. Will remote sensing shape
 596 the next generation of species distribution models? *Remote Sensing in Ecology and Conservation*,
 597 1(1):4–18, 2015.
- 598 Yu Huang, Junyang Lin, Chang Zhou, Hongxia Yang, and Longbo Huang. Modality competition:
 599 What makes joint training of multi-modal network fail in deep learning?(provably). In *International
 600 conference on machine learning*, pp. 9226–9259. PMLR, 2022.
- 602 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 603 lutional neural networks. *Advances in neural information processing systems*, 25, 2012.
- 605 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 606 ence on Learning Representations*, 2017.
- 607 Heather J Lynch, Marc Rhainds, Justin M Calabrese, Stephen Cantrell, Chris Cosner, and William F
 608 Fagan. How climate extremes—not means—define a species’ geographic range boundary via a
 609 demographic tipping point. *Ecological Monographs*, 84(1):131–149, 2014.
- 611 Zhongqi Miao, Yuanhan Zhang, Zalan Fabian, Andres Hernandez Celis, Sara Beery, Chunyuan Li,
 612 Ziwei Liu, Amrita Gupta, Md Nasir, Wanhu Li, Jason Holmberg, Meredith Palmer, Kaitlyn
 613 Gaynor, Pablo Arbelaez, Pengce Wang, Rahul Dodhia, and Juan Lavista Ferres. New frontiers in
 614 artificial intelligence for biodiversity research and conservation with multimodal language mod-
 615 els. *Methods in Ecology and Evolution*, 2025.
- 616 David Mizrahi, Roman Bachmann, Oguzhan Kar, Teresa Yeo, Mingfei Gao, Afshin Dehghan, and
 617 Amir Zamir. 4M: Massively multimodal masked modeling. *Advances in Neural Information
 618 Processing Systems*, 36, 2023.
- 619 Natalia Neverova, Christian Wolf, Graham Taylor, and Florian Neubout. Moddrop: adaptive multi-
 620 modal gesture recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 38
 621 (8):1692–1706, 2015.
- 623 Xiaokang Peng, Yake Wei, Andong Deng, Dong Wang, and Di Hu. Balanced multimodal learning
 624 via on-the-fly gradient modulation. In *Proceedings of the IEEE/CVF conference on computer
 625 vision and pattern recognition*, pp. 8238–8247, 2022.
- 626 Nathalie Pettorelli, Jon Olav Vik, Atle Mysterud, Jean-Michel Gaillard, Compton J Tucker, and
 627 Nils Chr Stenseth. Using the satellite-derived ndvi to assess ecological responses to environmental
 628 change. *Trends in ecology & evolution*, 20(9):503–510, 2005.
- 630 Lukas Picek, Christophe Botella, Maximilien Servajean, César Leblanc, Rémi Palard, Théo Larcher,
 631 Benjamin Deneu, Diego Marcos, Pierre Bonnet, and Alexis Joly. Geoplant: Spatial plant species
 632 prediction dataset. *Advances in Neural Information Processing Systems*, 37:126653–126676,
 633 2024.
- 634 Laura Pollock, Sara Beery, Kaitlyn Gaynor, Marta Jarzyna, Oisin Mac Aodha, Bernd Meyer, David
 635 Rolnick, Graham Taylor, Devis Tuia, Tanya Berger-Wolf, and Justin Kitzes. Harnessing AI to fill
 636 global biodiversity shortfalls. *Nature Reviews Biodiversity*, 1:166–182, 2025.
- 638 David R Roberts, Volker Bahn, Simone Ciuti, Mark S Boyce, Jane Elith, Gurutzeta Guillera-Arroita,
 639 Severin Hauenstein, José J Lahoz-Monfort, Boris Schröder, Wilfried Thuiller, et al. Cross-
 640 validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. *Ecog-
 641 raphy*, 40(8):913–929, 2017.
- 642 Srikumar Sastry, Subash Khanal, Aayush Dhakal, Adeel Ahmad, and Nathan Jacobs. Taxabind: A
 643 unified embedding space for ecological applications. In *2025 IEEE/CVF Winter Conference on
 644 Applications of Computer Vision (WACV)*, pp. 1765–1774. IEEE, 2025.
- 646 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 647 Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine
 learning research*, 15(1):1929–1958, 2014.

- 648 Gencer Sumbul, Chang Xu, Emanuele Dalsasso, and Devis Tuia. SMARTIES: Spectrum-aware
 649 multi-sensor auto-encoder for remote sensing images. *arXiv preprint arXiv:2506.19585*, 2025.
 650
- 651 Mélisande Teng, Amna Elmoustafa, Benjamin Akera, Yoshua Bengio, Hager Radi, Hugo Larochelle,
 652 and David Rolnick. Satbird: a dataset for bird species distribution modeling using remote sensing
 653 and citizen science data. In *Thirty-seventh Conference on Neural Information Processing Systems
 654 Datasets and Benchmarks Track*, 2023.
- 655 Shagun Uppal, Sarthak Bhagat, Devamanyu Hazarika, Navonil Majumder, Soujanya Poria, Roger
 656 Zimmermann, and Amir Zadeh. Multimodal research in vision and language: A review of current
 657 and emerging trends. *Information Fusion*, 77:149–171, 2022.
- 658 Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
 659 Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
 660 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 8769–8778,
 661 2018.
- 662 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 663 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 664 tion processing systems*, 30, 2017.
- 665 Weiyao Wang, Du Tran, and Matt Feiszli. What makes training multi-modal classification networks
 666 hard? In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 667 pp. 12695–12705, 2020.
- 668 Yake Wei, Di Hu, Henghui Du, and Ji-Rong Wen. On-the-fly modulation for balanced multimodal
 669 learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.
- 670 Nan Wu, Stanislaw Jastrzebski, Kyunghyun Cho, and Krzysztof J Geras. Characterizing and over-
 671 coming the greedy nature of learning in multi-modal deep neural networks. In *International
 672 Conference on Machine Learning*, pp. 24043–24055. PMLR, 2022.
- 673 Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal learning with transformers: A survey.
 674 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(10):12113–12132, 2023.
- 675 Robin Zbinden, Nina Van Tiel, Benjamin Kellenberger, Lloyd Hughes, and Devis Tuia. On the se-
 676 lection and effectiveness of pseudo-absences for species distribution modeling with deep learning.
 677 *Ecological Informatics*, 81:102623, 2024.
- 678 Robin Zbinden, Nina van Tiel, Gencer Sumbul, Chiara Vanalli, Benjamin Kellenberger, and De-
 679 vis Tuia. Masksdm with shapley values to improve flexibility, robustness, and explainability in
 680 species distribution modeling. *arXiv preprint arXiv:2503.13057*, 2025.
- 681 Yiyuan Zhang, Kaixiong Gong, Kaipeng Zhang, Hongsheng Li, Yu Qiao, Wanli Ouyang, and Xi-
 682 angyu Yue. Meta-transformer: A unified framework for multimodal learning. *arXiv preprint
 683 arXiv:2307.10802*, 2023.
- 684 Yongshuo Zong, Oisin Mac Aodha, and Timothy M. Hospedales. Self-supervised multimodal learn-
 685 ing: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47(7):5299–
 686 5318, 2025. doi: 10.1109/TPAMI.2024.3429301.
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

A APPENDIX

The appendix contains the following information:

- Datasets and training details (A.1)
 - MIAM marginal distributions [and the rationale behind corner prioritization](#) (A.2)
 - Baselines (A.3)
 - Additional experiments (A.4): ablation [study](#) and hyperparameter analysis, extra metrics on TaxaBench, results on SatBird, [and an evaluation of MIAM in a self-supervised learning pre-training context](#)
 - LLM usage (A.5)

A.1 DATASETS AND TRAINING DETAILS

We provide additional information on the datasets and their associated training procedures. All baselines share the same training protocol and model architecture; the only difference lies in the masking strategy. The following details are common to both GeoPlant and TaxaBench. Models are trained with AdamW (Loshchilov & Hutter, 2017) using a weight decay of 0.01, a schedule-free approach (Defazio et al., 2024), learning rate of 0.001, batch size of 128, and dropout rate of 0.1 (Srivastava et al., 2014). Training runs for 100 epochs with early stopping based on the average validation AUC across the unimodal setups and the multimodal setup with all modalities included.

The models consist of tokenizers that produce tokens for each modality, followed by a transformer (Vaswani et al., 2017) that fuses them. Tokens are masked according to the selected strategy, with masked tokens replaced by a learned mask embedding, and the resulting sequence is processed by a 3-block transformer [with 8 heads, similar to \(Gorishniy et al., 2021\)](#). The transformer outputs the same number of tokens, which are averaged to obtain a final representation and then passed through a linear layer to produce the logits. The next two sections provide details specific to each dataset.

A.1.1 GEOPLANT

The geographic distribution of the data splits is shown in Fig. 6, and the code to reproduce the exact splits is provided in Fig. 7, using the `verde`² library for block cross-validation (Roberts et al., 2017).

Figure 6: **GeoPlant geographic distribution of the data splits.** Blocks are of size $1^\circ \times 1^\circ$.

We tokenize each input part (patch, time segment, or tabular variable) independently. This yields 76 tokens for the climate time series (4 channels \times 19 years), 126 tokens for the Landsat time series (6 channels \times 21 years), 100 tokens for Landsat patches (4 channels \times 25 patches), and 48 tokens for the 48 tabular variables. Patches and time segments are encoded following Dosovitskiy et al. (2020), using a linear projection to match the token dimension along with sinusoidal positional embeddings.

²<https://www.fatiando.org/verde/latest/>

```

756 import pandas as pd
757 import verde as vd
758
759 df = pd.read_csv("/path/to/geoplant/PA_metadata_train.csv")
760 coordinates = df[["lat", "lon"]].to_numpy()
761 spacing: float = 1.
762 test_size: float = 0.15
763 val_size: float = 0.15
764
765 train_block, test_block = vd.train_test_split(
766     coordinates.transpose(),
767     df.index.to_numpy(),
768     spacing=spacing,
769     test_size=test_size,
770     random_state=42,
771 )
772 train_indices, test_indices = train_block[1][0], test_block[1][0]
773
774 train_block, val_block = vd.train_test_split(
775     coordinates[train_indices].transpose(),
776     train_indices,
777     spacing=spacing,
778     test_size=val_size / (1 - test_size),
779     random_state=42,
780 )
781 train_indices, val_indices = train_block[1][0], val_block[1][0]
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

```

Figure 7: Python code for splitting the GeoPlant data using the `verde` library for block cross-validation (Roberts et al., 2017).

```

779 import pandas as pd
780 from sklearn.model_selection import train_test_split
781 from sklearn.preprocessing import LabelEncoder
782
783 df = pd.read_csv("/path/to/taxabench/test_df.csv")
784 df = df[
785     df["scientific_name"].isin(
786         pd.DataFrame(df.value_counts(subset="scientific_name"))
787         .query("count >= 10")
788         .index
789     )
790 ]
791 y = LabelEncoder().fit_transform(df["scientific_name"])
792 X = df.drop(columns="scientific_name")
793
794 X_train, X_remainder, y_train, y_remainder = train_test_split(
795     X, y, test_size=0.2, stratify=y, random_state=42,
796 )
797 X_test, X_val, y_test, y_val = train_test_split(
798     X_remainder, y_remainder, test_size=0.5,
799     stratify=y_remainder, random_state=42,
800 )
801
802
803
804
805
806
807
808
809

```

Figure 8: Python code for stratified splitting of species observations of TaxaBench.

Tabular variables are tokenized as in Gorishniy et al. (2021) by projecting each scalar into a higher-dimensional space with periodic activation functions. All tokens have size 192. A final sigmoid is applied to the logits to predict the presence of 1783 species. The model is trained as a multi-label classifier using the weighted binary cross-entropy loss from Zbinden et al. (2024).

A.1.2 TAXABENCH

The code to generate the stratified splits is provided in Fig. 8. We reuse the pre-trained encoders released by the dataset authors (Sastry et al., 2025). Each encoder outputs a single token of size 512 per modality, resulting in a total of five tokens. A softmax function is applied to the final logits, and the model is trained with the cross-entropy loss.

Figure 9: **Marginal distributions of the beta hypercube and MIAM.** Same setup as in Fig. 3, with three modalities where modality 3 is dominated, but here showing the marginal distributions of the beta hypercube and MIAM. Each panel shows the kernel density estimate of 5000 sampled points. **(a) Beta hypercube:** a mixture of product beta distribution to prioritize corners **(b) MIAM** (dynamic masking): a beta hypercube with imbalance-aware adjustments, causing modality 3 to be masked less frequently than the others.

A.2 ADDITIONAL MIAM INTUITIONS

A.2.1 MIAM MARGINAL DISTRIBUTIONS

We provide an additional visualization in Fig. 9 showing the marginal distributions of the beta hypercube and MIAM, which offers further intuition into how MIAM operates.

A.2.2 CORNER PRIORITIZATION

The motivation for prioritizing the corners and for overweighting certain corners more than others stems from both ecological considerations and optimization behavior:

- **Prioritizing corners:** In ecological applications, incomplete data often occurs at the level of entire modalities (e.g., a satellite image at a given timestamp). Prioritizing corners reflects this situation by emphasizing full-presence or full-absence cases. Moreover, tokens from the same modality tend to be highly correlated (e.g., spectral bands, temporal segments), meaning that observing only a few tokens may already capture most of the modality’s information. This can exacerbate modality imbalance if multiple tokens of the dominant modalities are always present, further motivating the need to emphasize complete absence cases.
- **All-tokens corner:** It is also common in ecological datasets to have nearly complete observations across all modalities. Ensuring strong performance in these frequent, fully observed cases is crucial for overall accuracy and generalization. Prioritizing this corner also encourages the model to learn joint cross-modal interactions efficiently when all inputs are available, leveraging complementary information across modalities.
- **Few-tokens corner:** Given the high intra-modality correlation, it is important that the model remains capable of extracting useful information even when only a few tokens are available. This is particularly relevant for interpretability: if we wish to assess the contribution of a single token (e.g., a specific tabular variable), the model must have encountered situations in which the corresponding token appeared nearly alone during training.

Modality	Input Type										Avg.	
	Partial Unimodal			Unimodal			Bimodal		All			
	✓	✓		✓		✓	✓	✓	✓	✓		
BIO1	✓	✓				✓		✓	✓	✓		
Tabular		✓			✓		✓	✓	✓	✓		
WorldClim				✓			✓	✓	✓	✓		
Others				✓			✓	✓	✓	✓		
Clim: 2018			✓	✓		✓		✓	✓	✓		
Time series	Clim: 2000-2018			✓		✓		✓	✓	✓		
Landsat					✓		✓	✓	✓	✓		
Sat. image	Center patch			✓		✓		✓	✓	✓		
	Others					✓		✓	✓	✓		
MIAM	73.1	85.3	85.5	86.0	70.9	88.4	91.6	80.1	88.9	91.7	91.9	
MIAM w/o ρ_{s_m}	67.7	85.4	85.0	86.2	70.1	88.0	91.5	80.1	88.8	91.4	91.7	
MIAM w/o ρ_{d_m}	71.3	85.4	85.2	86.1	70.1	87.8	91.8	76.4	88.7	91.9	92.0	
MIAM w/ uniform w_c	73.0	85.2	85.3	85.9	70.6	88.3	91.4	79.5	88.9	91.3	91.6	
										91.4	85.2	

Table 5: **Ablation of MIAM components.** Validation AUC on GeoPlant when different elements of MIAM are removed. Each column corresponds to a different input subset, showing the performance of each masking strategy on that subset. For each masking strategy, the same trained model is evaluated on all subsets. The best score per subset is shown in bold and the average performance across all input subsets is reported in the final column.

While these motivations are partly hypothesis-driven, we observe empirical support for them. Fig. 4 highlights the performance impact on dominated modalities (high difference between Beta and Uniform hypercubes), and the ablation study in Table 3 shows consistent performance gains – especially for dominated modalities like satellite imagery (see Table 5) – when using non-uniform corners weights w_c . Importantly, as mentioned in the discussion, MIAM remains flexible: for different applications, w_c can be adapted to emphasize alternative corners that better reflect application-specific data patterns.

A.3 BASELINES DETAILS

We provide additional details on the baselines and explain why OPM constitutes a suboptimal masking strategy.

- **Constant:** the probability of masking each token is fixed at 0.75, following He et al. (2022).
- **Uniform:** at every iteration, a shared masking probability $p \sim \mathcal{U}(0, 1)$ is sampled and applied across modalities.
- **Dirichlet:** following Mizrahi et al. (2023), we use a symmetric Dirichlet with $\alpha = \mathbf{1}_M$.
- **Modality dropout:** following Neverova et al. (2015), all tokens from a given modality are masked with probability 0.1.
- **OPM:** we follow the definition from Wei et al. (2024) and adopt their hyperparameters, $q_{base} = 0.5$ and $\lambda = 0.4$. In practice, this formulation produces largely fixed masking behavior during training, as per-modality performance scores remain nearly constant. Relying solely on these scores can also be misleading, since low-performing modalities may simply be uninformative rather than worth emphasizing. Another limitation is that dominated modalities are never masked, which prevents the model from being exposed to the full range of modality combinations. Finally, OPM, as originally defined, only drops entire modalities, without enabling fine-grained masking within them.

A.4 ADDITIONAL EXPERIMENTS

A.4.1 ABLATION AND SENSITIVITY ANALYSIS

Table 5 highlights the importance of incorporating both modality imbalance coefficients, ρ_{s_m} and ρ_{d_m} : removing either reduces performance by at least 0.5% on average. In particular, dropping ρ_{d_m} substantially degrades the unimodal setup on satellite imagery, underscoring its role in identifying

Figure 10: **Sensitivity of MIAM to λ and κ on the GeoPlant dataset.** The reported metric is the validation AUC as λ and κ are varied.

Figure 11: **Sensitivity of MIAM to λ and κ on the TaxaBench dataset.** The reported metric is the validation Top-1 accuracy as λ and κ are varied.

dominated modalities. The same figure also shows a positive effect from using non-uniform corner weights w_c , which prioritize the corners $(0, 0, \dots, 0)$ and $(1, 1, \dots, 1)$ and yield a modest but consistent improvement across all subsets.

MIAM depends on the hyperparameters λ and κ . In Fig. 10, we observe that λ controls the tradeoff between dominant and dominated modalities on GeoPlant, with larger values improving the performance of dominated modalities, i.e., satellite imagery. The same figure demonstrates that κ also plays an important role, particularly for setups with fewer tokens, where we see more variation in performance depending on its value. However, a similar experiment on the TaxaBench dataset (Fig. 11) indicates that these hyperparameters are less critical in some settings (notably TaxaBench, which contains only one token per modality), as performance remains stable across different values. We recommend setting $\kappa = 10$ and choosing λ between 1 and 5, depending on the degree of modality imbalance. Note that because λ and κ parameterize the masking distribution, their effects can be inspected directly by varying them and visualizing the resulting distributions (e.g., Fig. 3 and Fig. 9), without requiring model retraining. Naturally, they can also be fine-tuned like any other hyperparameter using a validation set.

In Table 6, we evaluate the masking strategies using higher-capacity models to assess whether our findings hold at larger scales. We consider a relatively large transformer variant (6 layers, 256-dimensional tokens) and a relatively huge variant (12 layers, 512-dimensional tokens), and evaluate the masking strategies on them. Across both larger models, MIAM remains the strongest masking strategy on average, outperforming the other baselines by a clear margin. However, we also observe a decline in overall performance as model size increases, which may indicate overfitting and suggest that additional data would be needed to fully leverage these larger models.

972
973
974
975
976
977
978
979
980
981

Modality	Input Type										Avg.	
	Partial Unimodal			Unimodal			Bimodal		All			
	BIO1	✓	✓	✓	✓	✓	✓	✓	✓	✓		
Tabular	WorldClim	✓										
	Others				✓			✓	✓			
Time series	Clim: 2018		✓	✓		✓		✓		✓		
	Clim: 2000-2018			✓		✓		✓		✓		
	Landsat				✓		✓		✓			
Sat. image	Center patch			✓		✓		✓	✓			
	Others					✓		✓	✓			
Base: 3 layers, 192 dimensions												
Constant	68.6	82.4	84.7	86.7	55.1	83.3	90.0	63.6	90.0	83.3	89.2	
Uniform	73.3	85.7	86.3	87.2	61.2	86.9	91.1	65.6	91.6	86.2	91.8	
Dirichlet	65.1	82.7	77.8	86.8	54.9	87.5	91.1	58.2	91.8	88.6	91.7	
Modality dropout	48.7	80.8	77.4	86.4	66.2	88.6	91.4	73.2	92.0	89.2	91.7	
OPM	68.0	81.9	80.7	85.3	68.1	88.4	90.2	81.1	90.7	89.5	91.1	
MIAM (ours)	78.4	86.7	86.0	87.0	70.8	89.0	91.4	80.1	91.7	89.5	91.5	
Large: 6 layers, 256 dimensions												
Constant	58.0	82.2	83.9	86.8	55.1	81.4	89.6	55.4	89.9	81.2	90.5	
Uniform	68.7	84.5	86.4	86.9	65.3	86.1	90.4	66.6	90.7	86.1	91.4	
Dirichlet	69.1	84.3	79.2	85.6	53.5	87.6	91.2	59.3	92.0	88.5	92.0	
Modality dropout	66.0	81.9	74.5	86.1	65.0	88.4	91.5	73.7	91.9	88.9	91.8	
OPM	62.0	82.4	68.1	86.1	69.5	86.8	88.6	80.0	88.8	89.0	90.1	
MIAM (ours)	74.5	86.0	85.0	87.3	70.3	88.5	90.7	78.7	90.9	89.2	90.9	
Huge: 12 layers, 512 dimensions												
Constant	58.6	72.0	<u>84.5</u>	85.5	57.8	75.2	88.1	61.1	88.3	78.3	88.8	
Uniform	<u>69.6</u>	77.4	84.2	85.6	62.4	81.8	86.5	64.3	87.3	83.7	88.9	
Dirichlet	57.4	79.1	81.5	86.3	60.9	83.8	<u>89.9</u>	62.1	<u>90.6</u>	85.5	<u>91.0</u>	
Modality dropout	54.0	77.8	72.8	<u>86.4</u>	65.0	<u>87.0</u>	88.7	70.5	89.8	88.0	89.7	
OPM	62.1	81.0	73.7	81.5	66.0	84.4	82.9	<u>75.4</u>	84.9	87.1	86.9	
MIAM (ours)	63.8	<u>82.7</u>	83.0	85.9	<u>67.6</u>	84.9	86.8	<u>75.4</u>	86.9	87.4	88.6	

Table 6: **AUC performance on the GeoPlant test set with increased model size.** Model size is varied by adjusting the number of layers and the token dimension; the base configuration is the one used throughout the main paper (see Table 1). Each column corresponds to a different input subset, showing the performance of each masking strategy on that subset. For each masking strategy, the same trained model is evaluated on all subsets. The best score per subset is shown in bold, the best score per subset within each model size setting is underlined, and the average performance across all input subsets is reported in the final column.

1017
1018
1019
1020
1021
1022
1023
1024
1025

Modality	Input Type										Avg.	
	Unimodal			Bimodal		Trimodal		Quadri.		All		
Ground-level image	✓			✓	✓	✓		✓	✓	✓		
Audio		✓		✓		✓		✓	✓	✓		
Geographic location			✓		✓		✓		✓	✓		
Environmental features				✓		✓		✓	✓	✓		
Satellite image				✓		✓		✓	✓	✓		
Uniform	65.6	67.4	21.5	22.5	23.2	84.0	71.7	87.3	26.6	73.8	72.7	88.3
Dirichlet	65.6	64.5	19.1	17.2	25.2	84.2	72.5	85.9	26.0	75.8	75.2	91.0
Modality dropout	63.1	62.3	15.8	18.4	21.5	80.1	68.4	83.2	23.0	74.4	71.9	86.9
OPM	60.0	59.8	13.3	17.2	24.2	75.2	62.1	77.3	28.9	71.3	69.5	87.1
MIAM (ours)	66.0	65.0	24.0	22.7	25.0	83.4	73.8	88.3	25.2	75.8	72.1	88.3
Oracle (one model per column)	64.1	67.0	21.3	28.3	31.1	84.2	72.3	87.1	31.8	74.2	75.8	89.5

Table 7: **Top-5 accuracy on the test set of TaxaBench.** Each column corresponds to a different input subset, showing the performance of each masking strategy on that subset. **For each masking strategy, the same trained model is evaluated on all subsets.** The best score per subset is written in bold, and the average score across input subsets is reported in the last column.

Modality	Input Type										Avg.	
	Unimodal			Bimodal		Trimodal		Quadri.		All		
Ground-level image	✓			✓	✓	✓		✓	✓	✓		
Audio		✓		✓		✓		✓	✓	✓		
Geographic location			✓		✓		✓		✓	✓		
Environmental features				✓		✓		✓	✓	✓		
Satellite image				✓		✓		✓	✓	✓		
Uniform	35.9	31.7	6.74	3.26	6.05	50.1	42.7	57.4	6.16	45.5	38.8	59.4
Dirichlet	34.1	29.1	3.17	2.86	5.79	43.3	41.7	52.4	5.94	46.4	38.4	61.0
Modality dropout	34.1	27.5	3.81	2.87	5.50	45.6	37.2	49.3	5.32	44.3	37.4	58.4
OPM	21.6	20.9	1.51	3.11	5.43	27.4	23.9	32.6	8.03	35.9	30.2	47.7
MIAM (ours)	33.7	31.9	4.13	3.92	6.50	49.1	45.1	55.4	6.93	46.9	42.0	61.2
Oracle (one model per column)	38.9	34.9	5.85	4.56	5.05	50.7	43.0	56.2	6.80	44.9	36.9	60.3

Table 8: **F1-score on the test set of TaxaBench.** Each column corresponds to a different input subset, showing the performance of each masking strategy on that subset. **For each masking strategy, the same trained model is evaluated on all subsets.** The best score per subset is written in bold, and the average score across input subsets is reported in the last column.

A.4.2 ADDITIONAL METRICS FOR TAXABENCH

We provide additional metrics for TaxaBench – top-5 accuracy (Table 7) and F1-Score (Table 8) – complementing the top-1 accuracy shown in the main text. Interestingly, across all three metrics, masking strategies outperform the oracle on certain modality subsets. We hypothesize that this occurs because the tokens, obtained from the pre-trained encoders of Sastry et al. (2025), are already well aligned, allowing masking strategies to exploit cross-modal features by exposing the model to more tokens. By contrast, the oracle is limited to tokens from the evaluated subset and cannot benefit from this cross-modal information. In addition, the relatively small dataset makes results more variable, and masking may provide a regularizing effect that improves generalization.

A.4.3 SATBIRD

We explore the SatBird dataset (Teng et al., 2023), a benchmark for species distribution models with only two modalities: tabular environmental predictors and Sentinel-2 satellite imagery. With just two modalities, the performance differences between baselines are minimal, making the dataset less useful for evaluating masking strategies. Nevertheless, we include it here for completeness and transparency.

Unlike GeoPlant, SatBird focuses on 670 bird species and formulates the task as a multi-target regression problem, where the model predicts encounter rates (i.e., values between 0 and 1) at each location. We use the same Summer train/validation/test splits as in Teng et al. (2023). Satellite

Modality	MAE [$\times 10^2$] ↓				Top-10 acc. ↑			Top-30 acc. ↑		
Environmental variables	✓	✓	✓	Avg.	✓	✓	✓	✓	✓	Avg.
Satellite image	✓	✓	✓		✓	✓	✓	✓	✓	
Dirichlet	1.93	2.26	2.13	2.11	47.2	28.5	35.9	37.2	62.9	56.0
Modality dropout	2.02	2.26	2.05	2.11	45.4	34.5	42.9	40.9	61.4	56.7
OPM	1.97	2.21	2.11	2.09	46.3	33.5	39.1	39.7	62.2	56.2
MIAM (ours)	1.94	2.24	2.12	2.10	45.6	32.6	40.8	39.7	62.0	57.2
Oracle (one model per column)	1.91	2.20	2.03	2.05	47.8	30.6	42.0	40.1	63.2	54.8
										63.4

Table 9: **SatBird dataset results across metrics.** Each column corresponds to a different input subset, showing the performance of each masking strategy on that subset. For each masking strategy, the same trained model is evaluated on all subsets. The best score for each subset is written in bold.

Modality	Input Type										Avg.	
	Partial Unimodal				Unimodal			Bimodal		All		
	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
BIO1	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
Tabular	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
WorldClim												
Others					✓			✓	✓	✓		
Clim: 2018			✓	✓				✓	✓	✓		
Time series	Clim: 2000-2018			✓			✓	✓	✓	✓		
Landsat						✓		✓	✓	✓		
Sat. image	Center patch				✓			✓	✓	✓		
	Others					✓		✓	✓	✓		
Constant	70.9	80.5	81.6	82.3	65.0	82.8	84.5	68.1	84.6	76.9	80.6	
Uniform	70.9	81.8	82.5	82.7	66.4	83.4	84.9	69.2	85.2	79.9	81.8	
Dirichlet	68.5	82.0	78.6	82.4	59.7	83.6	83.3	64.7	83.5	80.1	78.4	
Modality dropout	70.9	79.2	81.1	81.9	63.9	82.5	84.8	68.7	83.9	81.2	77.4	
OPM	70.8	78.1	79.2	81.0	58.8	79.3	81.2	62.8	83.1	77.1	74.9	
MIAM (ours)	70.8	81.7	81.7	81.3	65.7	83.9	85.5	70.6	85.8	82.7	82.0	

Table 10: **AUC performance of masking strategies on the GeoPlant test set with SSL pre-training under linear probing.** Each column corresponds to a different input subset, showing the performance of each masking strategy on that subset. For each masking strategy, the same trained model is evaluated on all subsets. The best score per subset is written in bold, and the average score across input subsets is reported in the last column.

features are extracted using the same ResNet-18 pretrained on ImageNet (Krizhevsky et al., 2012) as in the original work. For the tabular variables, we use a 3-layer MLP with hidden dimension 256 and ReLU activations. Both networks produce 512-dimensional vectors, which are concatenated and passed through a linear layer followed by a sigmoid to yield the final predictions. The mask token is set to a zero vector. The training procedure follows the code provided by Teng et al. (2023). For MIAM and OPM, modality scores are computed as the inverse of the validation loss.

The results in Table 9 report Mean Absolute Error (MAE) along with top-10 and top-30 accuracy. Overall, no masking strategy consistently outperforms the others: all achieve relatively low MAE, and the best method varies across metrics and modality combinations without a clear trend. As noted earlier, with only two modalities and a single token per modality, masking strategies provide little added value, making this setting less informative for evaluation.

A.4.4 MIAM FOR SELF-SUPERVISED PRE-TRAINING

MIAM is designed for supervised tasks, but its applicability may extend beyond this setting. In this section, we evaluate the potential of MIAM in a self-supervised pre-training context. The pretext task consists of reconstructing the values of each modality in the GeoPlant dataset, i.e., the tabular variables, time-series entries, and Sentinel-2 image pixels. The transformer encoder and tokenizers follow the same structure as in the main supervised GeoPlant experiment (detailed in Appendix A.1). After encoding, the tokens are passed to modality-specific decoders to reconstruct each modality. Following MultiMAE (Bachmann et al., 2022), but adapted to non-image modalities, we use one decoder per modality. Each decoder consists of layer normalization, a cross-attention layer, another

1134 layer normalization, a feedforward network, two transformer blocks, a final linear projection, and
 1135 a reshape operation to match the format of the target modality. Learned positional embeddings are
 1136 added to the tokens before entering the decoders to allow the decoder to capture both token position
 1137 and token type.

1138 This multimodal autoencoder is then trained to reconstruct the modality values using a mean squared
 1139 error loss, averaged first within each modality and then across modalities. Pre-training is performed
 1140 on the GeoPlant training set using the given masking strategy that determines which tokens to hide,
 1141 following the same procedure as in the main supervised experiment (details are in Appendix A.1). We
 1142 then evaluate the quality of the learned embeddings using linear probing (LP). We follow the
 1143 procedure of SMARTIES (Sumbul et al., 2025): a linear classifier is trained for 100 epochs with
 1144 a learning rate of 0.001 and a batch size of 1024. The linear weights are learned on the GeoPlant
 1145 validation set using a weighted binary cross-entropy loss optimized with Adam, and performance is
 1146 then evaluated across the different input subsets.

1147 Since MIAM requires computing a per-modality score to update its modality-imbalance coefficients,
 1148 we use the reconstruction losses during training as a proxy for modality performance. This choice
 1149 may not be optimal, but it is straightforward to implement across different setups. We leave the
 1150 exploration of more principled alternatives to future work.

1151 The results are reported in Table 10. Two masking strategies stand out: the uniform strat-
 1152 egy (Zbinden et al., 2025) and MIAM. MIAM performs best when all modalities are present, i.e.,
 1153 in unimodal and bimodal settings, whereas the uniform strategy performs slightly better in partial
 1154 unimodal setups. Notably, traditional masking strategies for SSL, such as the constant and Dirichlet
 1155 strategies, underperform, suggesting that they may not be well suited for learning robust representa-
 1156 tions under missing inputs. These findings indicate that stronger masking strategies tailored to SSL
 1157 are needed, and that MIAM provides a promising direction.

1158

1159 A.5 LLM USAGE

1160 We used Large Language Models (LLMs) as assistive tools during the preparation of this manuscript.
 1161 Their role was limited to polishing grammar, improving clarity, and providing feedback on the co-
 1162 herence of our ideas. They were not involved in generating research questions or designing experi-
 1163 ments.

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187