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ABSTRACT

Remote monitoring of patients with insertable cardiac monitors (ICMs) has rev-
olutionized follow-up procedures and enhanced the timely diagnosis of cardiac
arrhythmias. Despite these advancements, challenges persist in managing and
adjudicating the data generated, placing strain on clinic resources. In response,
various studies have explored the application of Convolutional Neural Networks
(CNNps) to classify raw electrocardiograms (ECGs).

The objective of this study was to create and assess a CNN tailored for the re-
duction of inappropriate pause detections in ICMs. A customized end-to-end
CNN model comprising 5 convolutional layers for rhythm classification of ICM-
detected pause episodes was developed. The training data consisted of ICM-
detected pause episodes from 1,173 patients. After training the model, we evalu-
ated its performance using a test dataset of ICM-detected pause episodes from 750
independent patients. All pause episodes utilized in training and testing were ad-
judicated manually as either true or false detection. The training dataset consisted
of 4,308 pause episodes (2,722 true episodes from 960 patients and 1,586 false
episodes from 251 patients). The validation dataset includes 1,095 detected Pause
episodes from 256 patients (677 true pause from 203 patients and 418 false pause
episodes from 58 patients) and had an area under the curve (AUC) of 0.994 for the
proposed CNN. The optimal threshold was chosen to obtain 99.26% sensitivity
and 96.89%. The test dataset consisted of 1,986 episodes (744 true episodes from
382 patients and 1,242 false episodes from 485 patients. The model demonstrated
an AUC of 0.9942, 99.06% sensitivity, and 95.17% specificity in the test dataset.

The customized CNN model, 737 out of 744 episodes were correctly identified
as pauses, resulting in a positive predictive value of 92.47%. Consequently, there
was a reduction of EGM burden by 59.87%.

1 INTRODUCTION

Subcutaneous implanted insertable cardiac monitors (ICMs) have gained widespread use in clinical
practices for rhythm diagnosis and management of cardiac arrhythmias in patients with unexplained
syncope, palpitations, cryptogenic stroke, and following ablation procedures Brignole et al.| (2018));
Al-Khatib et al.| (2018). These devices offer patient-triggered electrocardiogram (ECG) storage and
automatic detection of various cardiac arrhythmias, including pauses, bradycardia, tachycardia, and
atrial fibrillation, with high sensitivity. The miniaturization of ICMs, simplified implant procedures,
enhanced automation, and wireless data transmission to patient care networks have significantly
improved their acceptance among physicians and patients.

Long term follow-up and remote monitoring produces a substantial volume of ECG’s estimated at
> 100 million per year in the U.S. alone Tison et al.|(2019). False pause detection, primarily due to
QRS wave undersensing, presents a common challenge in the existing ICM systems. These falsely
triggered episodes cause additional review burden and resource utilization since device clinics need
to go through all device detected episodes to identify clinically important arrhythmias. This manual
review and interpretation of ECG data is repetitive, tedious, and time-consuming, which leads, in
some cases, to misclassifications and undiagnosed patients. As the use of ICMs continues to in-
crease and monitoring durations extend, minimizing false pause detections has become increasingly
1mportant.
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In addressing this challenge, we have harnessed the power of deep learning models, specifically
convolutional neural networks (CNNs), which have demonstrated promising results in the realm of
ECG classification |Ali et al.| (2022); Liu et al.| (2021)); [Huang et al.| (2023); |[Ebrahimi et al.| (2020).
These CNN models are designed to directly process the raw ECG signal, enabling the automatic
extraction of pertinent features as the deep learning network refines its capabilities over multiple
iterations and epochs. Moreover, our innovative approach involves the deployment of a cloud-based
solution, affording all users of ICM devices immediate access to algorithmic enhancements as soon
as they are released. This seamless integration ensures that our users always have access to the most
current and precise algorithms, elevating the overall performance and dependability of our devices.

2 METHOD

2.1 PAUSE DETECTION IN ICM

Pause detection in ICMs is primarily based on sensing R-waves and detecting RR intervals longer
than clinician programming of actionable pause duration. However, deciding based on sensed RR
intervals alone is prone to inappropriate pause detection due to scenarios of undersensing chang-
ing R-waves peak amplitudes (e.g., body postural changes, heart axis deviations, varying tissue-
electrode contact including loss of contact, ECG noise and motion artifact affecting signal baseline
and signal saturation). Additional discriminators are used to further improve the accuracy of pause
episode detection including secondary evaluation using fine-tuned sensing threshold to detect under-
sense or smaller amplitude R-wave peaks, ECG baseline wandering detection noise detection. Once
an episode is detected and confirmed by additional discriminators, a number of seconds of prior and
preceding the pause event are stored as well as supplementary diagnostics and contextual informa-
tion such as episode duration/time of day, posture/activity/AF status, etc. Device-based algorithms
are limited in terms of complexity given constraints on size and battery capacity.

Recent advancements in device capabilities enable temporaneous transmission of stored episodes
via Bluetooth technology to smartphone apps which in turn relay data to remote monitoring cloud
servers and services capable of more complex computations and processing to organize streams of
data from ICMs, alert clinics about episodes, and generate reports for clinic review.

2.2 DEEP LEARNING—BASED EPISODE CLASSIFICATION

The proposed CNN model consists of 5 convolutional layers, batch normalization, max pooling,
dropout, global average pooling along with one fully connected and Softmax layer Figure [T} Model
development and training were done using Python 3, TensorFlow v. 2.0, and Keras on a Windows
10 workstation with a Nvidia RTX 2080 GPU, Intel Xeon W-2125 CPU, and 32GB of RAM.
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Figure 1: The basic architecture of the proposed CNN with 5 blocks of convolution layers, global
average pooling, fully connected, and SoftMax.
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3 RESULT

3.1 DATASET

A total of 4,308 detected Pause episodes from 1,173 patients (2,722 true pause episodes from 960
patients and, 1,586 false pause episodes from 251 patients) were used to train the CNN from ini-
tial random weights. The validation dataset had 1,095 detected Pause episodes from 256 patients
(677 true pause from 203 patients and 418 false pause episodes from 58 patients). The validation set
receiver-operating characteristic (ROC) curve was used to choose a probability threshold for classifi-
cation into Pause vs. non-Pause episodes. Furthermore, to evaluate the performance of our proposed
CNN, we conducted comparisons between the dense neural network (NN), Conv Net-Dense NN,
Conv Net-GAP. The hyperparameters for each model such as activation, learning rate, kernel size,
optimizer, regularization etc. are tuned accordingly.

The three proposed architectures were trained on the training dataset. Then, to evaluate the archi-
tecture, we checked the validation accuracy scores for different thresholds. We then selected the
network architecture with the highest average accuracy score for all the thresholds. All networks
were trained for 1000 epochs using an early stopping condition—i.e., when the accuracy on the val-
idation set did not improve for 25 epochs, training stopped. All models were trained using ten-fold
cross-validation. This cross-validation procedure requires a given model to be trained ten distinct
times (re-initializing the network parameters each time) and ensures that, on the one hand, different
subsets of the data are used for training and testing, while on the other hand, each data point serves
as part of the training set (nine times) and in the test set (once). To be clear, when we performed
cross-validation, we used data partitions that were not used during the hyperparameter search.

Moreover, increasing the size of the training dataset enhances the generalizability of any trained net-
work. Data augmentation was employed with a magnification factor of 2, taking into account pos-
sible variations in the ICM device’s positioning and movement, which could result in the presence
of negative R-peaks in the dataset. To ensure transparency and reproducibility, the study reports re-
sults both with and without data augmentation for all baseline models, aiming to improve the quality
and reproducibility of work in the field of data augmentation on deep learning-based ECG analysis.
Figure [2] compares the performance metrics of sensitivity, specificity, accuracy, and F1-score for
different models: baseline models proposed CNN (Conv Net-GAP), and variations with and without
data augmentation (DA). The primary objective is to achieve high sensitivity while maintaining high
performance across other metrics.

Figure 2] illustrates that the Conv Net-GAP model outperforms the other models in terms of overall
performance. The proposed architecture seems to be effective for the task at hand, considering
its superior performance compared to the baseline models. Additionally, the figure indicates that
data augmentation (DA) plays a significant role in enhancing performance across most cases. This
augmentation helps improve the model’s ability to generalize and capture patterns effectively.

Performance of different NN on the Pause dataset
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Figure 2: The accuracy and loss function during the training process in the training (blue line) and
validation (green line) datasets using the proposed CNN

In the case of Dense NN or fully connected NN, DA may not have as significant an impact compared
to CNNs. The reason why data augmentation may not have a substantial effect on fully connected
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networks is related to the nature of the transformations applied during augmentation. Fully con-
nected networks typically operate on flattened, vectorized representations of the input data, ignoring
the spatial structure. Since fully connected networks lack the ability to exploit spatial locality, the
potential benefits of data augmentation, which mainly aim to enhance the model’s understanding of
spatial relationships, may be limited. In contrast, CNNs are specifically designed to capture spatial
hierarchies and patterns in input data through their convolutional and pooling layers. As a result, data
augmentation can effectively enhance the performance of CNNs by introducing additional variations
in the training data and improving the model’s ability to generalize. In summary, data augmentation
is more commonly applied and tends to have a more pronounced impact on convolutional neural
networks due to their ability to capture spatial relationships and patterns in image data. Fully con-
nected networks, on the other hand, are less influenced by data augmentation, as they do not directly
leverage spatial information.

After identifying the optimal model based on training and validation datasets, we performed testing
to assess its generalization performance. The training process for the proposed CNN is shown in
Figure[3] The optimal threshold was chosen to obtain a relative sensitivity and specificity of 99.26%
and 96.89%, respectively.
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Figure 3: The accuracy and loss function during the training process in the training (blue line) and
validation (green line) datasets using the proposed CNN

The independent patient test dataset from 750 patients included 1,986 episodes (744 true pause from
382 devices, and 1,242 false pause from 485 devices). Sensitivity, specificity, PPV, and NPV derived
using the independent patient test dataset are shown in Table[T]

Figure [] shows the sensitivity and 1-specificity curve as a function of the probability threshold in
this independent patient test dataset. For the proposed CNN, an area under the curve (AUC) of
0.9942 was obtained, and a threshold of 0.65 was chosen with sensitivity and specificity of 99.06%
and 95.17% respectively. Out of the 750 patients, 740 (98.67%) were successfully classified as false
detection-free. Among the 485 patients initially identified with false positive EGMs, 468 (96.5%)
were subsequently classified as false positive-free.

Prior to employing the proposed CNN model, the independent patient test dataset consisted of 1,986
episodes, with 744 true pauses detected from 382 devices and 1,242 false pauses from 485 devices
PPV=37.46% (Figure[5). After applying the proposed CNN model, 737 out of 744 episodes were
correctly identified as pauses, resulting in a PPV of 92.47%. Consequently, there was a reduction of
EGM burden by 59.87% (100 - ((60 + 737) / (744 + 1242))) (Figure[5).
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Table 1: Performance metrics for the proposed CNN reported for the independent patient test dataset
as raw proportion of episodes and the GEE estimates adjusting for multiple episodes per patient.

METRICS PROSPOSED CNN PERCENTAGE(%) 95% CI

Sensitivity 737744 99.06 98.07-99.62
Specificity 1182/1242 95.17 93.83-96.29
PPV 73711797 92.47 90.42-94.21
NPV 1182/1189 99.41 98.79-99.76
Accuracy 1919/1986 96.63 95.74-97.38

ROC curves and AUC for independent patient dataset
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Figure 4: ROC curve and AUC as a function of the probability output from proposed CNN on
independent patient test dataset.

4 DISCUSSION

Deep learning CNN is employed to classify Pause episodes detected by ICM. The objective was to
reduce false detections while maintaining sensitivity for Pause detection. Instead of using classical
machine learning techniques with manual feature extraction, an end-to-end approach was utilized,
extracting features, and performing classification directly from the raw electrogram (EGM) signal.
A 5-layer CNN was compared against baseline models, and the statistical results demonstrated a
significant improvement.

In this study, a custom CNN was utilized with a total of 544,514 trainable parameters. This number
is significantly lower compared to other pre-trained models such as RESNET18, which typically
has more than 8 million parameters. By having a smaller number of parameters, the custom CNN
in this study offers several advantages. First, it requires less computational resources for training
and inference. Second, a smaller model size can help mitigate overfitting, a common challenge in
deep learning. With fewer parameters to learn, the custom CNN may be less prone to overfitting
the training data and therefore have improved generalization capabilities. This can be particularly
beneficial when working with limited labeled data.

The performance of the deep learning network heavily relies on the consistency of the ICM ECG
adjudication process. To ensure consistency, two reviewers were involved in the adjudication pro-
cess. The adjudication process conducted by a third adjudicator was validated against adjudications
performed by electrophysiologists using a small subset of the data, as described previously. The
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Figure 5: (Left pie) Before using proposed CNN, the independent patient test dataset included
1,986 episodes (744 true pause from 382 devices, and 1,242 false pause from 485 devices) has
PPV=37.46%. (Right pie) After using proposed CNN, 737 episodes out of 744 correctly detected as
pause has PPV=92.47%. We have 59.87% EGM burden reduction.

adjudicator’s performance showed less than 1% error compared to the electrophysiologists’ adjudi-
cations.

Furthermore, in the training and validation datasets, discordant analyses were conducted multiple
times to identify reasons for mismatches between adjudication and CNN-predicted class labels. In
cases where mismatches were attributed to manual errors, corrections were made to the erroneous
adjudications. The independent test set was adjudicated twice by the same adjudicator, and any
remaining mismatches were reviewed for a third time to establish the final adjudication. Moreover,
increasing the size of the training dataset enhances the generalizability of any trained network. Data
augmentation was employed with a magnification factor of 2, taking into account possible variations
in the ICM device’s positioning and movement, which could result in the presence of negative R-
peaks in the dataset. To ensure transparency and reproducibility, the study reports results both
with and without data augmentation for all baseline models, aiming to improve the quality and
reproducibility of work in the field of data augmentation on deep learning-based ECG analysis.

Additionally, we are actively exploring the integration of transfer learning techniques [Sun et al.

(2022); [Weimann & Conrad (2021) and personalized algorithms [Yamag¢ et al (2022) into these

models, with the aim of further enhancing their efficacy and tailoring them to meet the unique needs
of individual users.

The primary limitation of the study is that the deep learning network was trained using ECG data
obtained from a specific device with a single-lead ECG vector and electrode separation of 4 cm,
implanted at various locations and orientations. Therefore, the trained network’s generalizability to
other forms of ECG with different electrode configurations, such as 12-lead ECG systems, is limited.
However, the same methodology can be applied to train a similar network using data collected from
the chosen monitoring mode, thus enabling the potential for wider application and adaptability in
the field.

The objective of this study was to develop specific CNN models tailored to reduce inappropriate
pause episode detections in ICMs while preserving sensitivity, and evaluate the clinical performance
of the models.

By leveraging CNN models and potentially deploying them within a cloud-based solution, the study
sought to improve the accuracy and efficiency of pause detection in Abbott ICMs. This improvement
would benefit both physicians and patients by facilitating more accurate diagnoses and effective
management of cardiac arrhythmias.
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5 CONCLUSION

A customized CNN model developed and tested in this study substantially reduced false pause
episodes, with minimal impact on true pause episodes. The enhanced pause episode classifica-
tion led to reduced overall episode review burden and much improved positive predictive value in
the episodes to be reviewed by clinicians. Implementing the model on the manufacturer’s patient
care network may accelerate clinical workflow of ICM patient management.
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