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Abstract—This paper proposes a new approach to accelerate
spectral norm estimation for a kernel matrix of n data points.
Our key intuition is that, by applying the seminal random feature
technique, we can well estimate the norm without computing or
operating on the n-by-n kernel matrix but only an n-by-q random
feature matrix with q ≪ n features, thereby significantly reducing
the estimation time from O(n2) to O(nq).

Technically, our analysis suggests the spectral norm of a kernel
matrix can be approximated by that of its corresponding random
feature matrix with an Õ(lnn/

√
q) relative norm approximation

error. This is comparable to the relative norm estimation error of
power iteration (PI), a popular efficient norm estimation method,
and suggests our method can be integrated with PI to further
accelerate norm estimation without deteriorating the estimation
accuracy. Based on these insights, we design a random feature-
based power iteration (RFPI) estimator for the kernel matrix
spectral norm. Experimental results on two real-world datat sets
show RFPI has significantly less estimation time than PI while
maintaining competitive estimation accuracy.

Index Terms—random feature, kernel matrix, spectral norm

I. INTRODUCTION

Kernel matrix is a main ingredient of the powerful kernel
methods [1], [2], and its spectral norm plays an important role
in analyzing the performance of many kernel methods such as
multiple kernel learning [3], matrix-valued kernel learning [4]
and kernel PCA [5]; there are also interests in analyzing the
non-asymptotic [6], [7] and asymptotic [8] norm properties.

This paper considers a practical problem on kernel matrix
spectral norm i.e., given n data points x1, . . . , xn sampled
from a population X and a kernel function k : X ×X → R,
how to efficiently estimate the spectral norm of their kernel
matrix K ∈ Rn×n where K(i, j) = k(xi, xj)?

Since spectral norm coincides with the top singular value, a
basic approach is to apply singular value decomposition (SVD)
on K to retrieve its singular values which normally consumes
O(n3) time. A more popular and efficient alternative is to
apply power iteration on K to only estimate its top singular
value which normally consumes O(n2) time. In either case,
an O(n2) estimation time seems inevitable since one needs to
compute and operate on an n-by-n kernel matrix.

This paper reduces the estimation time to O(nq) by apply-
ing the random feature technique [9], where q is the number of
random features used to approximate the kernel function and

TABLE I
NOTATIONS FOR MATRIX M

M(i, j) entry of M at row i column j

Mi: row i of M

M:j column j of M

||M || spectral norm of M

σi(M) ith singular value of M s.t. σ1(M) ≥ σ2(M) ≥ . . .

λi(M) ith eigenvalue of M s.t. λ1(M) ≥ λ2(M) ≥ . . .

is often much smaller than n. Our key intuition is that norm
estimation can be performed without computing or operating
on the kernel matrix but a much smaller n-by-q random feature
matrix. To our knowledge, random feature has been widely
studied for accelerating kernel machines e.g., [10], [11], [12],
[13], [14], [15] but not for kernel matrix norm estimation.

This paper makes several technical contributions. First, we
show the spectral norm of a kernel matrix can be approximated
by that of a smaller random feature matrix with an Õ( n√

q )

error using the matrix Bernstein’s inequality. Second, we show
this error implies an Õ( lnn√

q ) relative norm approximation
error that is comparable to the relative norm estimation error
of power iteration [16]. This suggests our method can be
integrated with power iteration to further accelerate estimation
without lowering estimation accuracy. Finally, based on the
above insights, we design a novel random feature-based power
iteration (RFPI) method to estimate kernel matrix spectral
norm. Our experimental results on real-world data sets show
RFPI is significantly more efficient than power iteration while
maintaining competitive estimation accuracy.

II. KERNEL MATRIX SPECTRAL NORM APPROXIMATION
BASED ON RANDOM FEATURES

We propose to approximate the spectral norm of a kernel
matrix by that of a random feature matrix. In this section we
analyze the approximation errors. Table I lists the main matrix
notations used in the paper. Below are more preliminaries.



Let x1, . . . , xn ∈ Rp be n data points and K ∈ Rn×n

be their kernel matrix associated with a kernel function k :
Rp × Rp → R such that K(i, j) = k(xi, xj). Following [9],
construct a random feature matrix Z ∈ Rn×q such that

Zi: =

√
2

q

[
cos(wT

1 xi + b1), . . . , cos(w
T
q xi + bq)

]
, (1)

where w1, . . . , wq ∈ Rp are sampled i.i.d. from some distribu-
tion p (determined by the kernel) and b1, . . . , bq are sampled
i.i.d. in [0, 2π]. Our analysis will use the following tools.

Lemma II.1 (Weyl’s Inequality). For any symmetric matrices
S, T ∈ Rn×n, we have

max
i∈{1,...,n}

|λi(S)− λi(T ) | ≤ ||S − T ||. (2)

Lemma II.2 (Bernstein’s Inequality). Let E1, . . . , Eq ∈ Rn×n

be independent and zero-mean random matrices such that
||Ei|| ≤ c almost surely for each i. Then, for every ε ≥ 0,

Pr

{∣∣∣∣∣λ1

(
q∑

i=1

Ei

)∣∣∣∣∣ ≥ ε

}
≤ 2n exp

(
− ε2/2

σ2 + cε/3

)
, (3)

where σ2 = ||
∑q

i=1 EE2
i ||.

A. Main Result

Our main result states that ||K|| can be well approximated
||Z||2, as specified in the following theorem.

Theorem II.3. Suppose k is a bounded shift-invariant kernel.
For any ε > 0, we have | ||K|| − ||Z||2 | ≤ ε with probability
at least 1 − 2n exp(− ε2q

c1n2+c2nε
) over the random sampling

of Z, where c1, c1 > 0 are constants.

Proof. First note ||Z||2 = ||ZZT ||. Then Lemma II.1 implies

| ||K||−||ZZT || | = |λ1(K)−λ1(ZZT )| ≤ ||K−ZZT ||. (4)

We now aim to bound ||K − ZZT ||. Write

K − ZZT =

q∑
i=1

(
1

q
K − Z:iZ

T
:i ) =

q∑
i=1

Ei, (5)

where Ei = 1
qK − Z:iZ

T
:i . We can show Ei’s satisfy two

conditions. First, each Ei is a zero-mean matrix because

Ei(a, b) =
K(a, b)− 2 cos(wT

i xa + bi) cos(w
T
i xb + bi)

q
,

(6)
and by design (see detailed arguments in [9])

E
[√

2 cos(wT
i xa + bi)

√
2 cos(wT

i xb + bi)
]
= K(a, b). (7)

Second, Ei and Ej are independent whenever i ̸= j because
(wi, bi) and (wj , bj) are independently sampled. Based on
both conditions, we can apply Lemma II.2 and have

Pr

{∣∣∣∣∣λ1

(
q∑

i=1

Ei

)∣∣∣∣∣ ≥ ε

}
≤ 2n exp(− ε2/2

σ2 + cε/3
) (8)

where c is an upper bound of ||Ei|| and σ2=||
∑q

i=1 EE2
i ||.

Now we specify c and σ2. For c, since (6) implies

||Ei|| ≤ nmax
a,b

|Ei(a, b)| ≤
n(c∗ + 2)

q
, (9)

where c∗ is the bound of kernel, we can set c = n(c∗+2)
q .

For σ2, we have

σ2 = q||EE2
i || ≤ qnmax

a,b
|EE2

i (a, b)| ≤
n2(c2∗ + 4)

q
, (10)

where the last inequality is based on (7) which implies

EE2
i = E(Z:iZ

T
:i )

2 − K2

q2
, (11)

and thus

|EE2
i (a, b) |

=

∣∣∣∣∣∣
n∑

j=1

EZ(a, i)Z(b, i)Z(j, i)2 − 1

q2
K(a, j)K(j, b)

∣∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣EZ(a, i)Z(b, i)Z(j, i)2 − 1

q2
K(a, j)K(j, b)

∣∣∣∣
≤ nmax

j

∣∣∣∣EZ(a, i)Z(b, i)Z(j, i)2 − 1

q2
K(a, j)K(j, b)

∣∣∣∣
≤ n(c2∗ + 4)

q2
,

(12)

where the last inequality holds as Z(a, b) ∈ [−
√

2
q ,
√

2
q ].

Plugging (9) and (12) back to (8) gives

Pr

{∣∣∣∣∣λ1

(
q∑

i=1

Ei

)∣∣∣∣∣ ≥ ε

}
≤ 2n exp(− ε2q

c1n2 + c2nε
), (13)

where c1 = 2(c2∗ + 4) and c2 = 2(c∗ + 2)/3. Combining this
with (4) and (5) proves the theorem.

B. Implications of the Main Result

A practical implication of Theorem II.3 is we can estimate
||Z||2 as an approximation of ||K||, and the former estimation
is more efficient since Z is often much smaller than K.

On the theory side, note Theorem II.3 implies the following
relative norm approximation error.

Corollary II.4. If ||K|| = Θ(n), then Theorem II.3 implies

Pr

{∣∣||K|| − ||Z||2
∣∣

||K||
> ε

}
≤ Õ(n exp(−ε2q)). (14)

Proof. In Theorem II.3, replace ε with ε||K|| gives a failure
probability Õ(n exp(− ε2q||K||2

n2 )). Plugging ||K|| = Θ(n) into
this probability proves the corollary.

We can compare this error with the relative estimation error
of power iteration in [16, Theorem 4.1], rephrased as follows.



Theorem II.5. For any symmetric positive definite matrix A ∈
Rn×n and T ≥ 2, the power method with T updates gives an
estimate of ||A||, denoted as ||Ã||, with

Pr

{∣∣∥A∥ − ∥Ã∥
∣∣

∥A∥
> ε

}
≤ O(

√
(1− ε)2T

εT
). (15)

Now we compare the two guarantees. Corollary II.4 sug-
gests our norm approximation method has an Õ( lnn√

q ) relative
error. In Theorem II.5, by relaxing (1− ε)T ≤ exp(−εT ), we
see the power iteration norm estimation method has an Õ( lnn

T )
relative error. Note that both errors have the same logarithmic
dependence on n, suggesting our method can be integrated
with power iteration to further accelerate norm estimation
without significantly lowering its estimation accuracy (as n
increases). This motivates us to design a random feature-based
power iteration method to estimate the kernel matrix spectral
norm, which is presented in the next section.

III. RANDOM FEATURE-BASED POWER ITERATION

Our designed random feature-based power iteration (RFPI)
estimation method is presented in Algorithm 1. Note it con-
sumes O(nq) time as each of Steps 1, 3 and 4 does so, which
is more efficient than the O(n2) time of power iteration. It
also inherits the following standard convergence guarantee.

Lemma III.1. In RFPI, ||Z̃|| converges to ||Z|| as T → ∞.

Proof. Let v(t) be v after t rounds of update. We will show
it converges to the right singular vector of Z associated with
the top singular value. Let v(0) be the randomly initialized v.
By the update rules we have

v(t) =
(ZTZ)t · v(0)

∥(ZTZ)t · v(0)∥F
. (16)

Let v1, · · · , vq be a set of orthonormal eigenvectors of ZTZ
and λ1, · · · , λq be the associated eigenvalues such that λ1 >
λ2 > . . .. Since vi’s form a basis of Rq , there exist some
constants c1, · · · , cq ∈ R such that

v(0) = c1v1 + · · ·+ cqvq. (17)

This implies(
ZTZ

)t
v(0) =

q∑
i=1

ci
(
ZTZ

)t
vi =

q∑
i=1

ciλ
t
ivi. (18)

Plugging this back to (16) gives

v(t) =
c1v1 + c2

λt
2

λt
1
v2 + · · ·+ cq

λt
q

λt
1
vq

||c1v1 + c2
λt
2

λt
1
v2 + · · ·+ cq

λt
q

λt
1
vq||F

. (19)

It is clear that (19) converges to v1 as t → ∞ if λ1 is unique.
In fact, with minor modifications of the arguments, we can
show the conclusion holds when λ1 is not unique.

Let u(t) be u after t rounds of update. By similar arguments,
we can show it converges to the top left singular vector of Z.
This completes the proof.

Algorithm 1 The RFPI Algorithm

Input: data points x1, . . . , xn ∈ Rp, hyper-parameter q
1: Compute random feature matrix Z ∈ Rn×q based on (1)
2: Randomly initialize u ∈ Rn and v ∈ Rq

for iteration = 1, . . . , T do
3: Update v = ZTu

||ZTu||F
4: Update u = Zv

||Zv||F
end for

Output: ||Z̃|| := (uTZv)2 as an estimate of ||Z||.

Note in Algorithm 1, applying power iteration to estimate
the top singular value of the rectangular matrix Z is crucial.
Although in theory it is equivalent (and perhaps more popular)
to apply power iteration to estimate the top eigenvector of
ZZT , in practice the former is faster as it avoids computing
ZZT – again, this reinforces the key intuition of our proposed
accelerated estimator, which is to avoid computing the kernel
matrix and rely on the random feature matrix solely.

IV. EXPERIMENT

We experiment on the Communities and Crime data set and
White Wine Quality data set. On each set, we treat the first n
instances as input data and estimate the spectral norm of their
kernel matrix. The following methods are evaluated.

• SVD: apply SVD on the kernel matrix. The result will be
treated as ground truth to evaluate estimation accuracy.

• PI: apply power iteration on the kernel matrix.
• RFPI: the proposed method in Algorithm 1.

We use the Gaussian kernel k(xi, xj) = exp(− ||xi−xj ||2F
2σ2 )

with σ = 0.1. For RFPI, w is sampled from N(0, I) where
I is an identity matrix. All features are standardized and all
reported results are averaged over 50 random trials.

A. Estimation Performance versus Data Size

We first evaluate the impact of input data size on estimation.
For RFPI, we fix q to 50 on Crime and 150 on Wine, and the
number of power updates to 5. These hyper-parameters are
chosen based on our sensitivity analysis in the next section.

Figure 1 shows the impact on estimation time. We see RFPI
is more efficient than PI and SVD, and the gap increases as
data size increases. Moreover, RFPI time scales almost linearly
as data size increases whereas, comparatively, PI time scales
quadratically and SVD time scales cubically. These coincide
with our computational complexity analysis.

Figures 2(a) and 2(b) show the estimation accuracy. We see
RFPI is very close to the PI and SVD across different data
sizes, which verifies its effectiveness and coincides with our
theoretical implication that RFPI and PI have close error rates.

Detailed estimates on both data sets are listed in Tables II
and III. We see RFPI is close to both SVD and PI on average,
but we also observe that its estimate has a large variance e.g.,
often 5∼10% of the estimate. We believe this variance is partly



(a) Time on Crime (log-scale) (b) Time on Wine (log-scale) (c) Time on Crime (linear-scale) (d) Time on Wine (linear-scale)

Fig. 1. Estimation Time versus Data Size

(a) Norm Estimate on Crime (b) Norm Estimate on Wine (c) Estimate vs Power Updates (d) Estimate vs # Random Features

Fig. 2. Estimation Performance

TABLE II
NORM ESTIMATES ON CRIME

n .2k .5k .8k 1.1k 1.4k 1.7k
SVD 90 228 369 505 643 778

PI 90 228 369 505 643 778

RFPI 92 229 390 507 644 784

inherited from the random feature technique, since it decreases
as the number of random features increases, establishing a
somewhat reasonable tradeoff between estimation variance and
efficiency. Still, how to reduce this tradeoff and estimation
variance remains an open challenge for RFPI.

B. Sensitivity Analysis

Figure 2(c) shows the estimate versus the number of power
updates on Crime. We see both PI and RFPI converge after 5
updates, which justifies our choice in previous experiments.

Figure 2(d) shows the estimate versus the number of random
features q on Crime. We treat all data points as input and report
results averaged over 100 random trials. We see RFPI becomes
close to the baseline at q = 50 on Crime, which is way smaller
than the input data size n = 1993. More interestingly, we see
RFPI converges at a rate close to Q̃(1/

√
q), which coincides

with the implication of our theoretical guarantee.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel approach to efficiently estimate
the spectral norm of a kernel matrix for n data points that
consumes only O(n) time. Its main idea is to approximate the
spectral norm of an n-by-n kernel matrix using that of a much

TABLE III
NORM ESTIMATES ON WINE

n .9k 1.6k 2.4k 3.2k 4.0k 4.8k
SVD .81k 1.44k 2.16k 2.88k 3.60k 4.32k

PI .81k 1.44k 2.16k 2.88k 3.60k 4.32k

RFPI .83k 1.43k 2.17k 2.88k 3.58k 4.38k

smaller n-by-q random feature matrix. Our analysis suggests
an Õ( n√

q ) absolute norm approximation error and an Õ( lnn√
q )

relative norm approximation error. The latter is comparable to
the relative estimation error of power iteration (PI), suggesting
our method can be integrated with PI to further accelerate
estimation without sacrificing estimation accuracy. Motivated
by this observation, we design a random feature-based power
iteration (RFPI) estimator which consumes only O(nq) time in
contrast to the O(n2) time of power iteration. Our experimen-
tal results on two data sets show RFPI is significantly more
efficient than power iteration while maintaining competitive
estimation accuracy.

It is worth mentioning this paper explores a new direction to
accelerate kernel matrix norm estimation, which aims to avoid
computing the kernel matrix while existing solutions such as
power iteration only speed up estimation after computing the
kernel matrix. Therefore, the proposed idea may be integrated
with other efficient norm estimators such as based on Nystrom
method [17], [18] or leverage score sampling [19]. It may
also be interesting to explore the use of data/model-dependent
random feature mappings [20], [21], [22] especially those
specifically designed to approximate kernels e.g., [23], [24].



REFERENCES

[1] B. Schölkopf and A. J. Smola, Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

[2] J. Shawe-Taylor, “Kernel methods for pattern analysis,” Cambridge
University Press google schola, vol. 2, pp. 181–201, 2004.

[3] G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I.
Jordan, “Learning the kernel matrix with semidefinite programming,”
Journal of Machine learning research, vol. 5, no. Jan, pp. 27–72, 2004.

[4] V. Sindhwani, M. H. Quang, and A. C. Lozano, “Scalable matrix-valued
kernel learning for high-dimensional nonlinear multivariate regression
and granger causality,” arXiv preprint arXiv:1210.4792, 2012.

[5] J. Shawe-Taylor, C. K. Williams, N. Cristianini, and J. Kandola, “On
the eigenspectrum of the gram matrix and the generalization error of
kernel-pca,” IEEE Transactions on Information Theory, vol. 51, no. 7,
pp. 2510–2522, 2005.

[6] L. Jia and S. Liao, “Accurate probabilistic error bound for eigenvalues
of kernel matrix,” in Asian Conference on Machine Learning. Springer,
2009, pp. 162–175.

[7] S. P. Kasiviswanathan and M. Rudelson, “Spectral norm of random
kernel matrices with applications to privacy,” Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques, p.
898, 2015.

[8] Z. Fan and A. Montanari, “The spectral norm of random inner-product
kernel matrices,” Probability Theory and Related Fields, vol. 173, pp.
27–85, 2019.

[9] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” Advances in neural information processing systems, vol. 20,
2007.

[10] F. X. X. Yu, A. T. Suresh, K. M. Choromanski, D. N. Holtmann-
Rice, and S. Kumar, “Orthogonal random features,” Advances in neural
information processing systems, vol. 29, 2016.

[11] F. Bach, “On the equivalence between kernel quadrature rules and
random feature expansions,” The Journal of Machine Learning Research,
vol. 18, no. 1, pp. 714–751, 2017.

[12] T. Dao, C. M. De Sa, and C. Ré, “Gaussian quadrature for kernel
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