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Abstract
The improved semantic understanding of vision-
language pretrained (VLP) models has made it
increasingly difficult to protect publicly posted
images from being exploited by search engines
and other similar tools. In this context, this pa-
per seeks to protect users’ privacy by implement-
ing defenses at the image compression stage to
prevent exploitation. Specifically, we propose a
flexible coding method, termed Privacy-Shielded
Image Compression (PSIC), that can produce bit-
streams with multiple decoding options. By de-
fault, the bitstream is decoded to preserve satis-
factory perceptual quality while preventing inter-
pretation by VLP models. Our method also re-
tains the original image compression functionality.
With a customizable input condition, the proposed
scheme can reconstruct the image that preserves
its full semantic information. A Conditional La-
tent Trigger Generation (CLTG) module is pro-
posed to produce bias information based on cus-
tomizable conditions to guide the decoding pro-
cess into different reconstructed versions, and an
Uncertainty-Aware Encryption-Oriented (UAEO)
optimization function is designed to leverage the
soft labels inferred from the target VLP model’s
uncertainty on the training data. This paper fur-
ther incorporates an adaptive multi-objective op-
timization strategy to obtain improved encrypt-
ing performance and perceptual quality simulta-
neously within a unified training process. The
proposed scheme is plug-and-play and can be
seamlessly integrated into most existing Learned
Image Compression (LIC) models. Extensive ex-
periments across multiple downstream tasks have
demonstrated the effectiveness of our design.
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Figure 1. In the default protected coding mode, our compression
model protects images by preserving content similar to the original,
while concealing machine-perceived semantics. Additionally, the
model can encode images in a way that maintains both critical
pixel fidelity and semantics.

1. Introduction
In recent years, the rapid advancement of large-scale Vision-
Language Pretrained (VLP) models has transformed tra-
ditional task-specific approaches, significantly improving
the performance across a range of vision tasks. State-of-
the-art VLP models, such as Contrastive Language-Image
Pre-training (CLIP) (Radford et al., 2021), A Large-scale
ImaGe and Noisy-Text Embedding (ALIGN) (Jia et al.,
2021), and InstructBLIP (Dai et al., 2023), demonstrate
excellent performance in a general sense for visual informa-
tion understanding. They perform well in tasks including
not only image–text retrieval (Fang et al., 2021; Ma et al.,
2022; Luo et al., 2022; Yan et al., 2023), image captioning
(Chen et al., 2015), visual question answering (Antol et al.,
2015), cross-modality grounding (Peng et al., 2023b), but
also conventional vision tasks including image classification
(Fu et al., 2022; Peng et al., 2023a; Abdelfattah et al., 2023),
facial attribute analysis (Yang et al., 2022; Zhou et al., 2024),
and image segmentation (Xu et al., 2022; Chen et al., 2023).

VLP models are highly effective at capturing semantic in-
formation, but this strength also comes with risks. Their
powerful ability to analyze semantics raises concerns about
privacy and data security. Images shared on community
platforms can be easily understood by these models, making
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it hard to stop them from being indexed by search engines
or reused as open data without the user’s permission. For
instance, in (Johan Modin, 2022), the authors demonstrate
the feasibility of tracking the trajectory of a specific vehicle
or person from a gallery of surveillance videos by provid-
ing only a textual description to the VLP model. Similarly,
by incorporating these powerful VLP models, search en-
gines could more easily retrieve relevant images without
the need for handcrafted labels. Under these circumstances,
there is significant potential to explore privacy protection
approaches in the context of defending against VLP models.
This emphasizes the need to protect user data and prevent
its misuse.

An intuitive idea is to embed certain information into image
coding (compression or transcoding) that does not affect
visual perception, enabling a universal and efficient way to
protect the content of the image. A related research direction
focuses on the vulnerability of deep learning models to spe-
cific noise patterns. In particular, existing backdoor attack
schemes (Yu et al., 2023; 2024) follow a similar approach
by embedding invisible triggers into input images. These
triggers are designed to degrade compression processes and
transform them into adversarial attack patterns, effectively
misleading downstream machine vision models. Directly
applying these methods to address the proposed new prob-
lem faces two key challenges: 1) In the context of designing
privacy-protecting compression networks, injecting triggers
at the input stage inevitably reduces flexibility and com-
pression efficiency. Specifically, this backdoor attack is an
irreversible process, leading to a coding practice that re-
quires separate encoding steps—one with trigger injection
and one without—in order to generate distinct bitstreams for
attacking and normal purposes. 2) Since an ideal privacy-
preserving coding could support both visual perception and
machine recognition (may under different coding modes),
the challenge lies in efficiently coding both types of infor-
mation and activating them under specific conditions. This
issue has not been explored in previous methods.

In this paper, we focus on Image Compression problem un-
der the consideration of privacy protection problem and pro-
pose a novel Privacy-Shielded Image Compression (PSIC)
framework. 1 This framework builds on a formulation sim-
ilar to backdoor attacks and introduces new innovations
to significantly improve coding flexibility and efficiency,
while also ensuring compactness, human perception compat-
ibility, and encryption requirements, among other valuable
attributes. In detail, the proposed PSIC enables a single
bitstream to be decoded into two distinct versions through a
conditional trigger injection module takes the mode indica-
tor (encrypted or full) as an additional input: the encrypted
version, produced as default, which embeds invisible attack

1Code is available at https://github.com/JiayinXu5499/PSIC.

patterns capable of significantly misleading the targeted
VLP model; and the full version, which, with a customiz-
able input condition (e.g., keywords), provides the image’s
full semantic information. Moreover, to fulfill these mu-
tually exclusive requirements within a single network, the
proposed PSIC incorporates an adaptive multi-objective op-
timization strategy, where the model alternates between
training under the rate-distortion and rate-encryption crite-
ria, guided by the corresponding mode indicator. Besides
using the intuitive optimization function that minimizes the
similarity between the reconstructed image and its corre-
sponding text counterpart (interfering with the fitting to
certain labels), we further propose an Uncertainty-Aware
Encryption-Oriented (UAEO) optimization function. The
proposed UAEO automatically identifies uncertainty among
the image-text pairs using the Dempster-Shafer Theory, and
to maximize the similarity between cross-modal matches
with higher matching uncertainty (forcing fitting to uncer-
tain wrong labels) during the training process. The proposed
PSIC scheme is plug-and-play and can be seamlessly inte-
grated into most existing learned image compression (LIC)
models. Extensive experiments demonstrate that the pro-
posed scheme effectively conceals privacy information by
misleading VLP-based applications, such as text–image re-
trieval and image captioning, as well as common computer
vision tasks like image classification and facial attribute
analysis, all while maintaining the same rate-distortion per-
formance as baseline LIC models. We summarize the main
contributions as follows:

• We propose a flexible image compression network that
can adapt to user needs by controlling whether images
can be accessed by downstream VLP models, all while
maintaining good perceptual quality.

• We propose a Conditional Latent Trigger Generation
(CLTG) module and an adaptive multi-objective op-
timization strategy to enable a single bitstream to be
decoded into two versions with mutually exclusive ob-
jectives.

• We introduce an Uncertainty-Aware Encryption-
Oriented (UAEO) Optimization Function that exam-
ines the uncertainty within the target model’s prior
knowledge, thereby enhancing robustness and increas-
ing the success rate of misleading the target VLP
model.

2. Related Work
2.1. Visual Language Pre-trained Models

VLP involves a new machine learning paradigm trained on
large datasets of images and corresponding text, aiming to
develop generalized models that understand content integrat-
ing both visual and linguistic information. Existing VLP
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models can be mainly categorized into single-stream and
dual-stream architectures (Du et al., 2022). The former (Li
et al., 2019) leverages a single network, e.g., transformer, to
fuse both image and text features, facilitating downstream
tasks. In contrast, the latter utilizes separate encoders for
images and texts. A representative example is CLIP (Rad-
ford et al., 2021), which employed distinct image and text
encoders to align embeddings through a contrastive learning
approach, thereby learning a shared representation between
images and texts. CLIP has demonstrated excellent perfor-
mance in a variety of tasks such as zero-shot classification
and image captioning. Recent approaches have integrated
the strengths of both single-stream and dual-stream archi-
tectures to enhance performance. For instance, BLIP (Li
et al., 2022) introduced a multimodal mixture of encoder-
decoder architecture along with a captioning and filtering
mechanism to tackle vision-language understanding and
generation tasks. Building upon this, BLIP-2 (Li et al.,
2023) incorporated a lightweight Querying Transformer (Q-
Former) to align image and text features, thereby improving
multimodal processing capabilities and computational effi-
ciency. Further advancing this line of research, InstructBLIP
(Dai et al., 2023) integrated an instruction-aware feature
extraction method, enabling the model to derive specific
representations from images based on varying instructions.

2.2. Learned Image Compression

In the past decade, significant progress has been made in
the field of LIC. Ballé et al. (Ballé et al., 2017) were the pi-
oneers in proposing the first end-to-end image compression
network based on Variational Autoencoders (VAE) (Kingma
& Welling, 2013). This was followed by the introduction of
prior networks and context-based entropy models, which sig-
nificantly improved the rate-distortion performance. Along
this research direction, many efforts have been dedicated to
further improving the entropy module. For example, Guo et
al. (Guo et al., 2021) introduced enhanced entropy coding
with global contextual information, while the chessboard
context model and channel context were introduced in He
et al. (He et al., 2021) and Minnen et al. (Minnen & Singh,
2020), respectively, to reduce the computational complexity
of entropy encoding. Furthermore, Jiang et al. (Jiang et al.,
2023) combined local spatial, global spatial, and channel
context to propose a multi-reference entropy model, achiev-
ing state-of-the-art performance at the time. Beyond entropy
models, other research works have focused on improving
compression performance by adopting more powerful back-
bone networks. Notably, Rippel et al. (Rippel & Bourdev,
2017) proposed a GAN-based image encoder that improved
reconstruction quality through adversarial loss. Recently,
Yang et al. (Yang & Mandt, 2024) introduced an end-to-end
optimized compression framework based on diffusion gen-
erative models, further advancing the development of lossy

image compression techniques.

2.3. Backdoor Attacks

Deep learning has been shown to be highly susceptible to
backdoor attacks. These attacks typically involve modify-
ing a model’s parameters or input data, with the goal of
poisoning training samples by injecting triggers to embed
malicious patterns (Gao et al., 2023). When the model
encounters a specific trigger during inference, it produces
incorrect outputs. Due to the malicious nature of backdoor
attacks, they have garnered significant attention across vari-
ous domains, such as BadNet (Gu et al., 2017), SIG (Barni
et al., 2019), and SSBA (Li et al., 2021). In the field of
Vision-Language Pretraining (VLP), various strategies are
employed for attacking purposes. For instance, targeting
CLIP, Yang et al. (Yang et al., 2023) adjusted the encoder
to maximize the cosine similarity between image and text
embeddings, leading to misclassification in image-text re-
trieval tasks. Meanwhile, Bai et al. (Bai et al., 2024) utilized
prompt learning techniques to train learnable parameters that
distort the latent representations generated by the encoder.
Liang et al. (Liang et al., 2024) proposed a dual-embedding
guided framework for backdoor attacks, characterized by
its stealthiness against backdoor detection due to the subtle
parameter changes it induces.

While these attack methods have demonstrated significant
effectiveness, they operate under the assumption that input
images are pristine. However, in practical scenarios, images
are typically compressed before being delivered to the target
model. Overlooking the compression process can inevitably
lead to unsatisfactory attack performance. In this context,
Yu et al. (Yu et al., 2023; 2024) investigated how specific
trigger patterns can be disrupted during the compression
process, leading to compressed images that mislead down-
stream machine analytic tasks.

3. Privacy-Shielded Image Compression
3.1. Overview and Motivations

As mentioned above, our method Privacy-Shielded Image
Compression (PSIC) is designed based on the critical mo-
tivation: supporting both visual perception and machine
recognition, potentially under different encoding modes
through coding and integrating these two types of infor-
mation and activating them under specific conditions. In
general, PSIC is characterized by its flexible conditional
representation capacity, allowing a single bitstream to be
decoded into two different versions: the full version, which
preserves satisfactory perceptual quality and full seman-
tic information, and the encrypted version, which contains
nearly invisible adversarial attack patterns that significantly
mislead downstream VLP or machine vision models. More-
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Figure 2. (a) Compressing pipeline of the proposed Privacy-Shielded Image Compression (PSIC). (b) Details of the proposed Conditional
Latent trigger Generation (CLTG) module. (c) Intuitive illustration of the introduced Uncertainty-Aware Encryption-Oriented (UAEO)
optimization function.

over, under the default setting, only the encrypted version
is produced. The full version is generated only when users
provide customizable conditions (e.g., keywords) to the de-
coding side.

The overall framework is illustrated in Fig. 2 (a). At the
encoding side, the input image x would be first fed to an
encoder E(·) to obtain its compact latent representation ŷ,

ŷ = E(x). (1)

An entropy model Q(·) is leveraged to produce the binary
bitstream of ŷ and provide its bitrate indices r. Moreover,
alongside the bitstream, the customizable condition β must
also be provided by the users and transmitted to the decoding
side. For clarity, we denote the βe and βf as the indicators
for the encrypted version and full version, respectively.

At the decoding side, the β ∈ [βe, βf ] would be fed to a
trigger generator T (·), obtaining corresponding feature-wise
triggers τ ∈ [τe, τf ],

τe = T (βe), τf = T (βf ). (2)

The triggers would be injected to the latent representation

ŷ and jointly fed to the decoder D(·), generating the corre-
sponding version tailored to the user’s requirements,

x̂e = D(ŷ, τe), x̂f = D(ŷ, τf ), (3)

where x̂e and x̂f denote the encrypted version and full ver-
sion, respectively.

In realizing the challenging coding pipeline mentioned
above with satisfactory compression efficiency, three in-
novative designs play key roles: 1) the Conditional Latent
Trigger Generation (CLTG) module, which enables the
generation of different triggers through a single module, in-
fluences the decoding process to achieve mutually exclusive
objectives; 2) the Uncertainty-Aware Encryption-Oriented
(UAEO) optimization function, which leverages the CLIP
model as the attacking target, being capable of automati-
cally identifing low-confidence cross-modal matches in the
training set via Dempster-Shafer Theory, enhancing robust-
ness and the success rate of attacks; 3) the adaptive multi-
objective optimization strategy automatically balances the
distinct requirements of encrypted and full version recon-
struction, instead of relying on an empirically decided ap-
proach, leading to improved compression performance. In
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the following subsections, the CLTG module, the UAEO
optimization function, and the adaptive multi-objective opti-
mization strategy will be detailed in Subsec. 3.2, Subsec. 3.3
and Subsec. 3.4, respectively.

3.2. Conditional Latent Trigger Generation Module

Compared to existing LIC-oriented backdoor attack ap-
proaches, where the trigger generation process considers
only the attacking purpose, PSIC faces a more significant
challenge: it aims to reconstruct a single bitstream into
two versions with mutually exclusive objectives. To ad-
dress this, we propose a progressive trigger injection strat-
egy that deploys a series of CLTG modules with indepen-
dent parameters at each decoding block, as shown in Fig. 2
(b). The deployed CLTG modules take the mode indicator
β ∈ {βe, βf} as input and adaptively produce bias informa-
tion at different representation stages.

In particular, within the CLTG module, the mode indicator
β would be first fed in to a 2-layer MLP, obtaining the
corresponding conditional bias feature fβ . This bias feature,
fβ , is then fused with the image feature to bias the decoding
process towards its indicated preference,

fCLTG = fβWd + fdec, (4)

where fCLTG and fdec denote the output and the input
features of the CLTG module respectively, Wd is the feature
element-wise weighting map with d denoting the channel
depth aligned with the input features.

3.3. Uncertainty-Aware Encryption-Oriented (UAEO)
Optimization Function

In the proposed PSIC, the decoded encrypted version is
expected to contain adversarial patterns that significantly
mislead the target CLIP model. To this end, a simple strat-
egy involves setting an objective function for the encrypted
version x̂e reconstruction by minimizing the cosine similar-
ity between x̂e and its textual prompt t in the CLIP feature
space. However, this approach is inevitably not capable
of providing a stable and efficient optimization path, as it
does not identify a specific target during the training pro-
cess. Moreover, acknowledging that the existing multimodal
training data is often quite raw, with many datasets collected
from the Internet, it inevitably contains image pairs that
are not well aligned. Directly applying the naive objective
function may result in issues with robustness and efficiency.
Given the above considerations, we are motivated to capture
and leverage the uncertainty within the CLIP model’s prior
knowledge, as illustrated in Fig. 2 (c). In general, the en-
cryption-oriented optimization involves in maximizing the
similarity between cross-modal matches with higher match-
ing uncertainty, while decreasing the similarity with the rest
within a training batch. The Dempster-Shafer Theory (DST)

(Dempster, 2008) of evidence, which combines evidence
from different sources with a degree of belief (also known
as the belief function), is adapted to obtain pair uncertainty.

To be specific, consider the input image xi, and text tj
within a batch of size K, i.e., i, j ∈ [1,K], where i = j
indicates they are labeled as a pair. For a certain image-text
pairs (xi, tj), we employ the evidence extractor proposed in
(Qin et al., 2022) Θ(·) to obtain their evidence eij ,

eij = Θ(xi, tj) = exptanh(Clip(xi,tj)/s), (5)

where Clip(·, ·) denotes the cosine similarly in the CLIP
feature space, s ∈ (0, 1) is a scaling factor.

Accordingly, the image-to-test evidence vector within a
batch ei2ti = [ei1, ei2, ..., eiK ] would be obtained, as well as
the test-to-image evidence vector et2ij = [e1j , e2j , ..., eKj ].
Then, we calculate the cross-modal bidirectional evidence
vector via,

ebi = ei2ti + et2ii = [ebi1, ..., e
b
iK ]. (6)

Thus, the corresponding Dirichlet distribution strength is
parameterized by [ebi1 + 1, ebi2 + 1, ..., ebiK + 1] with the
distribution strength approximated by

∑K
j=1(e

b
ij + 1). And

the uncertainty mass uij of the image-text pair (xi, tj) can
be calculated as

uij =
ebij∑K

j=1(e
b
ij + 1)

. (7)

Subsequently, for the i-th image xi, the corresponding
prompt tn with highest uncertainty could be obtained via,

tn = argmin
n

uin, (8)

Thus, the encryption-oriented optimization function LUC
can be formulated by,

LUC(xi) = −log exp(CLIP(f(xi), g(tn))/s)∑K
j=1 exp(CLIP(f(xi), g(tj))/s)

. (9)

3.4. The Adaptive Multi-Objective Optimization
Strategy

The proposed PSIC is designed to obtain a compact latent
representation from the encoding stage, which is then adap-
tively decoded into two versions that meet the encryption
and perception requirements, respectively. Given the sig-
nificant challenges posed by the mutual exclusivity of the
three objectives, we develop a two-stage training strategy.
The first stage focuses on compactness, while the second
stage addresses the divergent representations tailored for
encryption and perception requirements.
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(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 3. Performance comparisons regarding the four employed downstream tasks.

First Stage. As for the first stage, the encoder Eθ, entropy
model Qϕ, and the conditional decoder Dψ , parameterized
by θ, ϕ, ψ, respectively, are jointly optimized by alternating
between rate-encryption and rate-perception criteria. In
particular, we split the training iterations within one epoch
into two sessions, and the corresponding training process
can be formulated by:

S 1-1:θ̄, ϕ̄, ψ̄ = argmin
(ϕ,ψ,θ)

∑
(x∈X)

λ · L2(x,Dψ(Eθ(x), βf ))

+Qϕ(ŷ),

S 1-2:θ̃, ϕ̃, ψ̃ = argmin
(θ̄,ϕ̄,ψ̄)

∑
(x∈X)

λ ·
(
L2(x,Dψ̄(Eθ̄(x), βe))

+ LUC(Dψ̄(Eθ̄(x), βe))
)
+Qϕ̄(ŷ),

where λ is a Lagrange parameter to obtain the ICM models
at different compression levels.

Second Stage. In the second stage, the parameters of the
encoder and entropy model are frozen, allowing the focus to
shift towards the divergent representations needed to fulfill
the encryption and perception requirements. Specifically,
the iterations within each epoch are alternately optimized
with the following criteria,

S 2-1:ψ̄ = argmin
(ψ)

∑
(x∈X)

L2(x,Dψ(Eθ(x), βf )),

S 2-2:ψ̃ = argmin
(ψ̄)

∑
(x∈X)

LUC(Dψ̄(Eθ(x), βe)).

4. Experiments
During our experiments, we compare LIC networks both
with and without our PSIC implementation to assess per-
ceptual quality and encryption effectiveness. Additionally,
we employ a cutting-edge LIC-oriented backdoor attack
method to demonstrate the superiority of the proposed PSIC.
Furthermore, we conduct comprehensive ablation studies to
highlight the effectiveness of our specially designed mod-
ules.

4.1. Experimental Setup

Benchmark. Four downstream tasks are employed for com-
prehensive evaluation, including two cross-modal applica-
tions (image-text retrieval and image captioning) and two
common machine vision tasks (image classification and
facial attribute analysis).

In particular, image-text retrieval, image classification, and
facial attribute analysis are performed directly by the tar-
get model, CLIP (ViT-B/32), during training. Meanwhile,
image captioning is conducted on the unseen BLIP-2 (OPT-
2.7b) (Li et al., 2023), to demonstrate the generalization
capacity.

• Image-text retrieval: Performances for both the image-
to-text (i2t) and text-to-image (t2i) tasks are evaluated
using Recall@1 (R@1).

• Image classification: We employ 5,000 images
from the ILSVRC 2012 dataset (Deng et al., 2009)
(ImageNet-1k). Performance is assessed using Top-1
accuracy.
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Figure 4. Perceptual quality comparisons in terms of PSNR among
the proposed PSIC, the LIC backbone network, and BAvAFT.

• Facial attribute analysis: We utilize 10,000 images
from the CelebA dataset (Liu et al., 2018), each la-
beled with 40 attributes (e.g., gender, age, expression).
Performance is evaluated using Top-1 accuracy.

• Image captioning: The entire validation set of Flickr8k
dataset (Hodosh et al., 2013) is employed. The perfor-
mance is indexed by BLEU@4, CIDEr, and SPICE.
In particular, BLEU@n analyzes the proportion of n-
grams in the candidate translation that appear in the
reference translation. CIDEr primarily assesses the
quality of image captions by calculating the similarity
between the generated description and a set of refer-
ence descriptions. SPICE, on the other hand, focuses
on semantic accuracy by using scene graphs to compare
objects, attributes, and relationships in the captions.

• Human perception: The Kodak dataset (Kodak, 1993)
is utilized to evaluate perceptual quality, with PSNR
serving as the assessment metric.

To intuitively demonstrate the effectiveness of misleading
downstream tasks, we additionally adopt the Attack Success
Rate (ASR) metric for image-text retrieval, image classifica-
tion, and facial attribute analysis. In particular, the ASR is
defined as the percentage of samples that are misclassified
due to adversarial attacks. In our context, ASR measures
the proportion of samples from the baseline Learned Image
Compression (LIC) model that are correctly processed in
downstream tasks but are misled when processed through
our proposed model.

Baseline. Regarding the backbone LIC network, the mile-
stone AE-Hyperprior (Ballé et al., 2018) is adopted. Specifi-
cally, both the proposed PSIC and the backbone network are
trained by randomly selected 70,000 image-text pairs from
the CC3M dataset (Sharma et al., 2018) from scratch for
a fair comparison. Moreover, a cutting-edge LIC-oriented
backdoor attack method, BAvAFT, is also employed for

comparison. Specifically, BAvAFT involves injecting trig-
gers into the input images with the expectation that the
reconstructed images will significantly mislead downstream
models. We implemented the BAvAFT on the same back-
bone LIC network, training it from scratch using the same
training set and targeting the Vision Transformer model
ViT-B/32, consistent with our PSIC.

Implementation details. In the first stage of the training
process, we use the Adam optimizer with a learning rate of
1e-4 and train for 200 epochs, which will be reduced to 1e-5
and train for an additional 100 epochs for the second stage.
Moreover, all models are trained with a batch size of 128,
implemented in PyTorch with CUDA support, and trained
on a single NVIDIA A8000-80G GPU. They are all trained
four times with different Lagrange parameters, obtaining
four distinct compression levels regarding bpp.

4.2. Experimental Results

Encryption efficiency. The encryption efficiency compar-
isons for image-text retrieval, image classification, and fa-
cial attribute analysis are shown in Fig. 3 (a)-(e). Encourag-
ing results have been observed, showing that the encrypted
version proposed by PSIC can significantly mislead the tar-
get CLIP model, while the full version effectively preserves
the full semantic information. In particular, compared to the
backbone LIC network, our encrypted version achieves an
average ASR of 80.8%, 72.3%, 67.0%, 51.5% for text-to-
image, image-to-text retrieval, image classification, facial
attribute analysis, respectively. Meanwhile, the full ver-
sion maintains comparable machine analytics performance
to the AE-Hyperprior. Considering both versions are re-
constructed from the same bitstream and exhibit mutually
exclusive semantic representations, these results are remark-
able, owing to our multistage trigger injection and adaptive
multi-objective optimization strategies.

Meanwhile, compared to the cutting-edge backdoor attack
method BAvAFT, the proposed PSIC offers overwhelming
advantages in encryption (attacking) efficiency, achieving
an average ASR improvement of 12.9% regarding all of
the downstream tasks. Additionally, our full version consis-
tently outperforms the clean version across multiple tasks
and bpp points. According to our analysis, the main ad-
vancement lies in injecting the triggers at the representation
stage, rather than the preprocessing stage, as this approach
allows the optimized encoder to better capture the key in-
formation critical for both attacking and normal purposes.
Moreover, the performance on the unseen image caption-
ing task in Fig. 3 (f), (g), and (h) further demonstrates the
effectiveness and superiority of our method over BAvAFT,
highlighting the robustness and generalization capability of
the PSIC.

Perceptual Quality. Perceptual quality comparisons in
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Figure 5. Visualization of performance in terms of perceptual quality and encryption efficiency.

(a)

(c)

(b)

(d)

Figure 6. Ablation results for the proposed UAEO optimization
function, illustrating encryption efficiency in (a), (b), and (c), and
perceptual quality in (d).

terms of PSNR is provided in Fig. 4. As shown, our full
version maintains the same rate-perception level as the back-
bone LIC, while also showing an improvement over the
clean mode of BAvAFT, indicated by an average increase
of 1.0 dB across the four bpp points. Moreover, consider-
ing that BAvAFT requires separate encoding processes for
clean and poison modes, the improvement is remarkable.
Meanwhile, our encrypted version also maintains favorable
perceptual quality, demonstrating its capacity to meet com-
mon perception-oriented requirements. To provide insight
into the overall performance, a group of visualized examples
is shown in Fig. 5.

4.3. Ablation Study

In this subsection, we perform an ablation study on the
UAEO optimization function to demonstrate its effective-
ness. In this ablation, we use a naive attacking objective
function—i.e., minimizing the cosine similarity between
the reconstructed encrypted version and its corresponding
text—as the ablated version. Comparison results between
our full version and the ablated version at the same compres-
sion level are provided in Fig. 6. As shown, the uncertainty-
aware strategy significantly boosts encryption efficiency,
resulting in an average ASR improvement of 6.3% and 6.2%
for text-to-image and image-to-text retrieval tasks, respec-
tively, thereby illustrating its effectiveness in capturing and
leveraging uncertainty within the training data.

5. Conclusions
This paper proposes a novel PSIC scheme aimed at pro-
tecting user privacy from exploitation by VLP models at
the image compression stage. PSIC is characterized by its
ability to produce bitstreams with two optional decoding
versions: an encrypted version that offers satisfactory per-
ceptual quality yet remains inaccessible to VLP models,
and a full version providing complete semantic information.
These capabilities are achieved through two key components.
First, a CLTG module generates bias information based on
customizable conditions, guiding the decoder toward differ-
ent reconstructed outputs. Second, an UAEO optimization
function leverages the target VLP model’s uncertainty on the
training data to provide an efficient and robust optimization
strategy. Moreover, an adaptive multi-objective optimization
approach is explored to simultaneously enhance encryption
performance and perceptual quality within a unified training
process. Experimental results and ablation studies validate
the effectiveness of our design.
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Impact Statement
As deep learning models increasingly rely on publicly avail-
able visual data, ensuring privacy-preserving mechanisms
becomes crucial for preventing unintended data exploitation.
This paper introduces a privacy-shielding image compres-
sion (PSIC) framework, aiming to protect image data from
unauthorized use by Vision-Language Pretrained (VLP)
models and general machine vision analytics. By intro-
ducing multiple decoding options, it enables individuals and
organizations to maintain control over their visual data while
still benefiting from advanced AI technologies. Ethically,
this approach promotes data ownership and responsible AI
usage, reducing the risk of unauthorized surveillance or
unintended data exploitation. However, similar techniques
could also be leveraged to potentially negative applications,
including hindering lawful model training. We believe that
our work contributes to ongoing discussions about ethical
AI and responsible data usage, highlighting the importance
of developing privacy-preserving techniques that balance
protection with ethical considerations. This, in turn, should
inspire further research toward more robust, fair, and trust-
worthy AI-driven data protection strategies.
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