
Compositional Monte Carlo Tree Diffusion
for Extendable Planning

Jaesik Yoon∗

KAIST & SAP
jaesik.yoon@kaist.ac.kr

Hyeonseo Cho
KAIST

hyeonseo.cho@kaist.ac.kr

Sungjin Ahn∗

KAIST & NYU
sungjin.ahn@kaist.ac.kr

Abstract

Monte Carlo Tree Diffusion (MCTD) integrates diffusion models with structured
tree search to enable effective trajectory exploration through stepwise reasoning.
However, MCTD remains fundamentally limited by training trajectory lengths.
While periodic replanning allows plan concatenation for longer plan generation,
the planning process remains locally confined, as MCTD searches within indi-
vidual trajectories without access to global context. We propose Compositional
Monte Carlo Tree Diffusion (C-MCTD), a framework that elevates planning from
individual trajectory optimization to reasoning over complete plan compositions. C-
MCTD introduces three complementary components: (1) Online Composer, which
performs globally-aware planning by searching across entire plan compositions;
(2) Distributed Composer, which reduces search complexity through parallel explo-
ration from multiple starting points; and (3) Preplan Composer, which accelerates
inference by leveraging cached plan graphs.

1 Introduction

Diffusion models have emerged as a powerful framework for trajectory planning, particularly excelling
in long-horizon tasks due to their ability to learn plans in a holistic manner [2, 15, 23]. This stands in
contrast to conventional autoregressive approaches [3, 11, 12], which construct trajectories step-by-
step. By generating trajectories as coherent wholes, diffusion planners can effectively address key
challenges in long-term planning, such as sparse rewards and the accumulation of transition errors.
However, these models often struggle to generate complex long-horizon plans rarely encountered in
the training distribution.

To address this limitation, a growing body of work has explored inference-time scaling techniques,
particularly by incorporating them into the diffusion denoising process [25, 27, 32, 33]. Among these
approaches, Monte Carlo Tree Diffusion (MCTD) [32] represents a novel perspective by combining
tree search with denoising. This integration enables MCTD to achieve state-of-the-art performance
across a wide range of planning tasks.

MCTD combines causally scheduled denoising with Monte Carlo Tree Search (MCTS) [7], establish-
ing a structured framework for deliberative planning that has shown strong performance across diverse
planning domains. By decomposing trajectory generation into a subplan-level tree process, which
decomposes a full plan into multiple subplans and systematically searches for the best combination of

∗Correspondence to Jaesik Yoon and Sungjin Ahn <jaesik.yoon@kaist.ac.kr and sungjin.ahn@kaist.ac.kr>.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

mailto:jaesik.yoon@kaist.ac.kr
mailto:sungjin.ahn@kaist.ac.kr

these subplans performing exploration and exploitation to escape local optima. It has demonstrated
notable success in complex, long-horizon planning tasks [28] where conventional diffusion planners
often struggle, representing a substantial advancement in generative planning methods.

Despite its strong performance, MCTD inherently struggles to generate plans that exceed the trajectory
lengths observed during training. While existing periodic replanning strategies appear to address
this length limitation, they suffer from a fundamental myopic decision-making problem that severely
undermines their effectiveness [32]. Specifically, the replanning approaches make planning decisions
based solely on local information within each limited planning horizon. It can lead to dead-end states
or suboptimal paths due to the lack of consideration about the global path structure or long-term
consequences. This fundamental limitation raises a key research question: How can we enable
MCTD to perform globally-aware planning that substantially exceeds training trajectory lengths
while avoiding the myopic pitfalls of traditional replanning approaches?

To address this question, we propose Compositional Monte Carlo Tree Diffusion (C-MCTD), an
inference-time scaling framework designed to compose entire plans, enabling reasoning across plans
rather than within subplans. The core instantiation of this framework, referred to as Online Composer,
extends the tree search of MCTD to the plan composition through three key components. First,
stitching-based tree extension connects individual diffusion-generated plans into a longer, coherent
plan, enabling global reasoning beyond the limitations of isolated plan generation. Second, guidance
sets as meta-actions provide configurable control parameters for the plan generation process. This
mechanism enables the planner to generate targeted and adaptive high-quality plans, balancing
exploration and exploitation according to its given guidance set. Third, fast replanning for simu-
lation quickly approximates remaining trajectory segments using accelerated denoising methods,
significantly reducing computational costs while preserving trajectory coherence during inference.

While Online Composer demonstrates strong performance across diverse environments, its sequential
search procedure becomes inefficient in large state spaces due to the exponential growth in the number
of candidate plan combinations. To address this challenge, we introduce two specialized variants:
Distributed Composer and Preplan Composer. Distributed Composer leverages parallel processing
and plan sharing across multiple search trees to mitigate the combinatorial explosion of the search
space. Preplan Composer, in contrast, preconstructs a plan graph offline, enabling more efficient
inference-time planning by reducing online search overhead and improving overall performance.

Experimental results demonstrate that the proposed C-MCTD methods significantly outperform
standard replanning strategies based on MCTD across a variety of task settings. Notably, Pre-
plan Composer achieves perfect success on the challenging pointmaze-giant task, which requires
generating plans approximately 10× longer than the trajectories seen during training.

The main contributions of this paper are as follows. (1) We propose Compositional Monte Carlo Tree
Diffusion (C-MCTD), a novel inference-time scaling framework that fundamentally addresses the
myopic planning limitations of existing approaches by enabling tree search to compose plans. (2) We
provide comprehensive validation demonstrating that C-MCTD significantly outperforms existing
MCTD-based and alternative long-horizon planning approaches across diverse planning domains.

2 Preliminaries

Terminology. This work involves multiple hierarchical concepts of trajectories that require clear
distinction. A plan refers to a single diffusion-generated trajectory from the base planner. A subplan is
a trajectory segment that corresponds to a node in MCTD’s tree structure. A stitched plan concatenates
multiple individual plans end-to-end to extend beyond the original planning horizon. Finally, a full
plan represents a complete trajectory that successfully connects the start state to the goal state.

2.1 Diffusion models for planning

Diffusion models have been successfully applied to planning by reformulating it as a generative
modeling problem [1, 2, 15, 23, 34], where trajectories are represented as sequential data comprising
state-action pairs. Formally, a trajectory is denoted as x = [s0; a0, s1; a1, . . . , sT ; aT], where T is
the planning horizon and (st, at) represents the state-action pair at time step t. During inference, the
trajectory is iteratively refined from an initial random noise through a sequence of denoising steps,
progressively converging toward a coherent plan.

2

This approach differs fundamentally from traditional planning algorithms like Probabilistic Road
Maps (PRM) [16] and Rapidly-exploring Random Trees (RRT) [20]. Whereas traditional methods
are online algorithms that actively explore the state space by querying an environment simulator or
interacting with the physical world, diffusion planners operate in a fully offline setting. They learn to
generate the trajectories from a static dataset of prior experiences, requiring no online environment
access during the planning phase.

To ensure that generated trajectories align with specified task objectives, both classifier-free [14] and
classifier-guided sampling [8] techniques have been explored in the context of diffusion planning [1,
2, 15]. In this work, we adopt the classifier-guided approach [15], which incorporates a guidance
functionJϕ(x) to steer the generative process toward high-reward trajectories. The modified sampling
distribution is defined as:

p̃θ(x) ∝ pθ(x) exp (Jϕ(x)) . (1)

This guidance mechanism biases the diffusion model toward trajectories with higher expected returns,
while retaining the flexibility of the original generative distribution.

Additionally, we adopt semi-autoregressive generation with causal noise schedule [2], which selec-
tively denoises uncertain tokens (typically future timesteps) while preserving causal dependencies.
This approach maintains temporal consistency and significantly improves long-horizon plan quality
compared to standard diffusion generation.

2.2 Monte Carlo Tree Diffusion

Monte Carlo Tree Diffusion (MCTD) [32] reformulates trajectory planning as a tree search problem,
structured around three key components.

Denoising as tree rollout. Unlike conventional MCTS approaches that perform rollouts at the
individual state level, MCTD operates at the level of subplans—partitioned segments of the full
trajectory. A trajectory is represented as x = [x1, . . . ,xS], where x denotes the complete trajectory
and each xs is a constituent subplan. MCTD leverages a semi-autoregressive generation strategy [2],
resulting in the following factorization: p(x) ≈

∏
s=1 p(xs|x1:s−1). This formulation preserves the

global coherence characteristic of diffusion models while enabling intermediate evaluations akin to
MCTS rollouts, effectively reducing the depth of the search tree.

Guidance levels as meta-actions. To balance exploration and exploitation during subplan-level
expansion, MCTD introduces guidance levels as meta-actions. For example, a subplan may be
assigned a discrete control mode—such as GUIDE or NO_GUIDE—which determines whether it
is sampled from the guided distribution (Equation 1) or the unconditional prior. This mechanism
enables subplan-specific control over guidance, allowing for flexible and adaptive trade-offs between
exploration and exploitation throughout the planning process.

Jumpy denoising as fast simulation. To enable efficient simulation, MCTD leverages fast denoising
techniques such as Denoising Diffusion Implicit Models (DDIM) [30] to complete the remaining
noisy subplans using fewer denoising steps. Given a partially generated trajectory x1:s, the remaining
segments x̃s+1:S are rapidly denoised as: x̃s+1:S ∼ p(xs+1:S |x1:s, g), where g denotes the guidance
level. This produces a complete trajectory x̃ that can be used for evaluation, enabling fast and
approximate rollout within the tree.

Four operation steps of MCTD. MCTD adapts the four canonical steps of Monte Carlo Tree Search
(MCTS) to operate within the diffusion framework as follows:

(1) Selection. The tree is traversed from the root using a node selection policy such as UCT [19].
Unlike standard MCTS, each node in MCTD corresponds to an extended subplan rather than a single
state, reducing tree depth and promoting higher-level abstraction. (2) Expansion. When a leaf node
is reached, a meta-action—the guidance level g—is selected. A new subplan xs is then sampled
conditioned on g. (3) Simulation. After expansion, the remaining subplans are rapidly completed
using accelerated denoising techniques such as DDIM [30]. Although approximate, this simulation
step offers significant computational efficiency while retaining sufficient fidelity for reward-based
evaluation using the reward function, r(x). (4) Backpropagation. The resulting statistics, including
visitation counts and trajectory rewards, are propagated upward through the tree to update value
estimates and guide future search.

3

Figure 1: Comparison of stitched planning approaches. (a) Replanning: Sequential plan generation
without exploring alternatives, leading to myopic decisions. (b) Online Composer: Systematic tree
search over plan combinations to avoid local optima. (c) Distributed Composer: Parallel tree growth
from multiple origins with strategic connections (red circles) for efficient exploration. (d) Preplan
Composer: Leverages prebuilt plan graphs for rapid solution composition with minimal online search.

3 Compositional Monte Carlo Tree Diffusion

While MCTD demonstrates strong performance on complex planning tasks, it is inherently limited
in the training trajectory lengths. Existing replanning strategies (Figure 1 (a)) generate new plans
when current plans end, but remain inherently myopic—making decisions based solely on local
information, often leading to dead-end states or suboptimal paths.

To overcome this fundamental limitation, we propose Compositional Monte Carlo Tree Diffusion
(C-MCTD), a framework that constructs a globally coherent plan by composing shorter, high-quality
plan segments within a tree search, effectively reasoning over long-horizon dependencies. We develop
three variants targeting different scalability challenges:

• Online Composer (OC): Systematic tree search for composing plans with coherent reason-
ing across them.

• Distributed Composer (DC): Parallel tree expansion across multiple origins to reduce
search depth.

• Preplan Composer (PC): Graph-based planning using precomputed waypoint connections
for computational efficiency.

3.1 Online Composer

We introduce Online Composer (OC), the foundational variant of C-MCTD that addresses myopic
planning through systematic plan-level tree search. OC integrates three key components: (1) stitching-
based tree expansion that builds a search tree where each node represents an entire, generated plan,
rather than partially denoised plan, (2) guidance sets as meta-actions for flexible inference-time
scaling, and (3) fast replanning for efficient simulation. The approach is illustrated in Figure 1(b),
with architecture details in Figure 2 and the core algorithm in Algorithm 1.

Stitching-based tree expansion. To implement plan-level tree search, OC performs stitching at
each tree expansion by connecting the terminal state of the parent node’s plan to the starting state
of the newly generated plan. This enables each expansion to generate longer plans as the length
of the plans generated from the diffusion planner [2, 15, 32] while systematically searching for
global optima through tree exploration. The resulting trajectory is a stitched sequence of plans
x = [x1, . . . ,xM], generated autoregressively:

pθ(x) ≈
M∏

m=1

pθ(x
m | x1:m−1) , (2)

where each xm is a complete plan from the diffusion planner.

Guidance sets as meta-actions. In MCTD [32], the guidance level—a parameter controlling the
influence of a guidance function on generation—is used as a meta-action for branching the search

4

Figure 2: Architecture of Online Composer

Algorithm 1 Online Composer

1: Initialize tree Ti on sstart
2: while not goal reached do
3: Select node v from T
4: Expand node v via Stitching
5: Simulate with FastReplanning
6: Backpropagate rewards through T
7: end while
8: return goal_reached_plan

tree. Our approach generalizes this concept to the plan level by introducing a guidance set as its
meta-action. This set, comprising multiple guidance levels, enables inference-time planners (e.g.,
Best-of-N or MCTD) to dynamically select the most appropriate level at each step. This mechanism
empowers the planner to generate more effective and diverse local plans by adaptively modulating
the guidance function’s influence during the tree search. We empirically demonstrate the efficacy
of using guidance sets in Appendix B.1. By enabling more sophisticated plan generation at each
compositional step, this approach significantly enhances the quality of the final stitched solutions.

Fast replanning for simulation. To accelerate planning, OC employs fast replanning inspired
by jumpy denoising [30] from MCTD. Once tree expansion reaches the m-th plan, the remaining
trajectory is rapidly completed through a replanning process with the jumpy denoising that skips the
denoising step every C steps:

x̃m+1:M ∼ pθ(x
m+1:M | x1:m,G), (3)

producing a complete trajectory x = (x1:m, x̃m+1:M) for direct evaluation via reward function
r(x). This approach reduces computational overhead while preserving long-horizon coherence. The
effectiveness of this fast replanning is empirically analyzed in Appendix B.2.

Scalability considerations. While OC effectively extends planning beyond training trajectory
lengths, it faces scalability challenges in extremely large spaces due to exponential search growth
inherent in sequential tree search [7, 32]. These limitations are empirically demonstrated in our maze
experiments (Section 5.2). To address these challenges, we introduce Distributed Composer and
Preplan Composer in the following sections.

3.2 Distributed Composer

While Online Composer effectively explores plan combinations, the search space grows exponentially
in long-horizon planning tasks, requiring prohibitively deep tree search. We address this challenge by
introducing Distributed Composer (DC), which parallelizes tree stitching across multiple starting
positions as shown in Figure 1 (c). These starting positions are identified as cluster centroids from
the training dataset, representing strategically significant states that are frequently traversed or serve
as critical waypoints. Building on this framework, DC incorporates three key innovations: (1)
guidance-oriented parallel tree search, (2) strategic tree connection, and (3) efficient path synthesis.
The core algorithm of DC is discussed in Algorithm 2.

Guidance-oriented parallel tree search. A key challenge in parallel plan-level tree search is
efficiently guiding expansion from multiple starting positions. While directly connecting all position
pairs enables plan stitching, this requires quadratic computational overhead for the parallelism
degree. Instead, DC optimizes search efficiency by guiding each tree’s expansion toward task-relevant
objectives. For each tree starting position si ∈ S, the guided trajectory distribution is:

p̃θ(x|si) ∝ pθ(x|si) exp(Jϕ(x)), (4)

where pθ(x|si) is the base diffusion distribution from position si, and Jϕ(x) is a task-specific
guidance function biasing exploration toward planning-relevant regions. This enables each tree to
prioritize expansions likely to contribute to the overall task, with connections established via strategic
tree connection.

5

Algorithm 2 Distributed Composer

1: Initialize trees Ti on origins si ∈ S
2: Initialize connectivity graph G = (S, ∅)
3: while not synthesized plan found do
4: for Ti on si ∈ S in parallel do
5: Execute Four steps in Alg. 1
6: end for
7: Update G via strategic connections
8: Apply shortest-path synthesis
9: end while

10: return synthesized_plan

Algorithm 3 Preplan Composer

1: Offline: Build plan graph G on S
2: for si ∈ S in parallel do
3: Apply Online Composer (Alg. 1) to find

local paths from sstart to si
4: Apply Online Composer (Alg. 1) to find

local paths from si to sgoal
5: end for
6: Update G with new connections
7: Apply shortest-path synthesis on G
8: return synthesized_plan

Strategic tree connection. Distributed Composer grows multiple search trees in parallel, each from
a different starting position. A naive strategy would compare every node across all trees to identify
connection opportunities, but this results in quadratic computational overhead. To avoid this, DC
connects trees only when a plan from one tree reaches the starting position of another, narrowing
the search to key waypoints and enabling efficient composition without exhaustive comparison.
Specifically, for trees Ti and Tj with starting positions si and sj , a connection is attempted when:

Connect(Ti, Tj) =
{

True, if ∃ v ∈ Ti : minp∈v.trajectory dist(p, sj) < ϵ

False, otherwise
(5)

where v.trajectory is the position sequence of node v’s plan, and dist(p, sj) measures distance
between position p and starting position sj . This strategically targets tree starting positions as natural
environment waypoints. When a connection is established, the connectivity graph G = (S, E) is
updated:

E = E ∪ {(si, sj , v.plan)}, (6)
where v.plan provides a feasible path from si to sj and ϵ is a small distance threshold. This approach
significantly reduces computational overhead by parallelizing search across multiple origins, avoiding
exponential single-tree complexity. The distance threshold, ϵ, is a key hyperparameter that can affect
DC’s performance. We empirically analyze this effect in Appendix B.3.

Efficient path synthesis. After parallel tree expansion and connection, DC constructs a connectivity
graph G where nodes are the starting positions S and edges represent feasible plans between them.
DC then applies classical shortest-path algorithms (Dijkstra [9] or A* [13]) to find optimal plan
combinations. Search terminates when the synthesized plan satisfies task constraints (e.g., maximum
episode length), ensuring computational efficiency by avoiding unnecessary exploration once a viable
solution is found.

Computational challenges. While DC reduces individual tree depth through parallelization, it still
incurs substantial inference-time computation, particularly when exploring ultimately task-irrelevant
positions. To address this inefficiency, we introduce Preplan Composer in the next section, which
leverages precomputed knowledge for enhanced planning efficiency.

3.3 Preplan Composer

To address DC’s computational challenges, we propose Preplan Composer (PC), which amortizes
planning costs through offline precomputation. As illustrated in Figure 1 (d), PC pre-builds a
comprehensive plan graph offline, then leverages this graph during inference to guide tree search and
dramatically reduce online computational overhead. The core algorithm is presented in Algorithm 3.

Pre-building the plan graph. Unlike DC’s dynamic graph construction, PC builds a reusable
graph by systematically exploring connections between selected starting positions. PC employs
Online Composer to generate plans between waypoint pairs, guided by position-specific rather than
task-specific guidance:

p̃θ(x|si) ∝ pθ(x|si) exp(−dist(x, sj)), (7)

6

where dist(x, sj) measures the minimum distance between any state in plan x and target position
sj . This task-agnostic process generates a reusable knowledge repository for multiple planning
queries within the same environment. While this requires computationally intensive quadratic search
between waypoints, the preprocessing phase allows substantial resource allocation to thoroughly
sample the environment and establish reliable connections. This amortized computational overhead
enables efficient online planning through the prebuilt graph, with each edge storing trajectory and
cost information. A detailed analysis of this computational overhead is provided in Appendix B.5.

Inference-time search. When presented with a goal-conditioned planning task (sstart, sgoal), PC
efficiently leverages the prebuilt plan graph for solution composition. The algorithm employs Online
Composer to generate only short connecting plans: from sstart to waypoints and from waypoints to
sgoal. Since long-distance connections between waypoints are already planned in the preprocessing
phase, OC focuses solely on these local connections. Using the augmented graph, PC applies shortest-
path algorithms [9, 13] to identify the optimal waypoint sequence forming a complete solution. This
approach dramatically reduces search complexity compared to DC’s extensive online search, as most
potential paths are pre-encoded in the graph.

4 Related work

Diffusion models for planning. Diffusion models [29] excel at long-horizon planning, particularly
for sparse reward settings, by learning to generate plans holistically [1, 2, 15, 23, 34]. Research
advances include hierarchical planning approaches for improved efficiency and long-term reasoning [5,
6, 10], hybrid planners integrating value learning policies [4], and diffusion planning with causal
noise schedule for generating causally consistent plans [2].

Inference-time scaling in diffusion planning. Recent works have explored inference-time scaling
to enhance diffusion planner reasoning capabilities [32, 33]. Yoon et al. [32] integrates semi-
autoregressive denoising [2] with Monte Carlo Tree Search (MCTS) [7], while Zhang et al. [33]
applies MCTS to diffusion models using learnable energy functions for value estimation.

Planning beyond training trajectory length. Several approaches extend planning capabilities
beyond training trajectory lengths [6, 17, 21, 24], primarily by modifying the training data or
objectives. For instance, some methods create longer training sequences by stitching trajectories
from the dataset before training the diffusion planner [6, 21]. Others introduce specialized training
objectives that encourage the model to learn compositional structures from sub-trajectories [24], or
employ dedicated value functions for long-term estimation while generating short-horizon plans [17].

Our work uniquely applies inference-time scaling specifically for trajectory stitching, providing a
training-free approach that extends planning capabilities without specialized training procedures or
data augmentation.

5 Experiments

To demonstrate the effectiveness of C-MCTD in compositional long-horizon planning, we conduct a
comprehensive evaluation on tasks from the Offline Goal-conditioned RL benchmark (OGBench) [28],
following MCTD’s experimental setup [32]. Our evaluation spans point and ant maze navigation
with extended horizons, multi-cube robot arm manipulation, and partially observable visual maze
tasks. All evaluated methods are diffusion planners, which, as discussed in Section 2.1, are trained
on offline trajectory datasets and do not require environment interaction during training or planning.
We report mean success rate (%) and planning time (seconds), averaged over 50 runs (5 tasks × 10
seeds), with complete configuration details in Appendix A.

5.1 Baselines

We compare C-MCTD against diverse baselines spanning stitching methods and diffusion planners.
For stitching approaches, we evaluate Replan (fixed-interval plan regeneration without plan-level
search) and DatasetStitch [6, 21] (training on concatenated trajectories). For diffusion planners,
we include Diffuser [15] (foundational diffusion planning), Diffusion Forcing [2] (causal noise

7

Table 1: Long-horizon maze navigation performance. Success rates (%) for pointmaze and
antmaze environments across medium, large, and giant maze scales. The models are trained from
stitch datasets. Results are presented as mean ± standard deviation across multiple runs.

Success Rate (%) on PointMaze ↑ Success Rate (%) on AntMaze ↑
Method medium large giant medium large giant
Diffuser-Replan 38± 6 40± 0 0± 0 46± 18 12± 10 0± 0
Diffuser-DatasetStitch 32± 22 0± 0 0± 0 12± 10 0± 0 0± 0
Diffusion Forcing (DF) 53± 16 20± 0 0± 0 60± 13 26± 9 0± 0
DF-DatasetStitch 52± 23 26± 13 0± 0 24± 8 6± 9 0± 0
SSD 40± 0 40± 0 0± 0 12± 9 0± 0 0± 0
CompDiffuser 100± 0 100± 0 68± 3 96± 2 86± 2 65± 3
MCTD-Replan 90± 14 20± 0 0± 0 75± 8 30± 10 0± 0
MCTD-DatasetStitch 12± 10 2± 6 0± 0 87± 13 6± 9 0± 0
Online Composer 93± 9 82± 17 0± 0 98± 6 94± 9 12± 16
Distributed Composer 100± 0 100± 0 26± 21 98± 6 93± 9 21± 14
Preplan Composer 100± 0 100± 0 100± 0 94± 9 94± 9 75± 18

Table 2: Run time and plan quality comparison. The run time (sec.) on tree search and the
generated plan quality (the required interaction steps to reach the goal) on the pointmaze environment
with medium, large, and giant mazes when trained from the stitch datasets.

Run Time (sec.) ↓ Plan Length ↓
Method medium large giant medium large giant
Online Composer 83.6± 31.8 91.2± 35.7 269.8± 51.0 595.7± 56.1 743.5± 53.6 1000.0± 0.0

Distributed Composer 26.7± 5.8 39.1± 5.0 530.7± 108.8 493.3± 98.2 608.5± 75.1 974.7± 24.6

Preplan Composer 11.1± 0.2 21.5± 0.4 36.9± 0.3 143.8± 1.1 256.8± 0.9 451.9± 1.9

scheduling for long-horizon control), SSD [17] (stitching diffusion planner via learned value function
guidance), CompDiffuser [24] (stitching diffusion planner with sub-trajectory dependency modeling),
and MCTD [32] (direct comparison for plan-level vs. in-plan search). Complete details are provided
in Appendix A.3.

5.2 Long-horizon maze navigation: scaling beyond trained trajectory length

We evaluate the effectiveness of C-MCTD on long-horizon tasks using PointMaze and AntMaze
environments from OGBench, which require planning trajectories up to 1000 steps despite training
on significantly shorter sequences (100 steps). Following prior work [15, 32], PointMaze uses a
heuristic controller while AntMaze employs a learned value-based policy [31].

Baseline performance degrades with complexity. Table 1 reveals that conventional stitching
methods (Replan, DatasetStitch) exhibit severe performance drops as maze complexity increases,
with most methods achieving 0% success on giant mazes. Notably, CompDiffuser achieves strong
performance on smaller mazes but degrades sharply in giant environments (68% vs. 100% on
medium/large), highlighting the critical need for flexible plan-level search to escape the local optima
in complex long-horizon scenarios.

C-MCTD demonstrates superior scalability. Our methods show strong robustness across all maze
sizes. Preplan Composer achieves perfect 100% success on PointMaze-Giant, significantly
outperforming the best baseline (CompDiffuser at 68%). Online Composer excels on medium and
large mazes but struggles in giant environments due to exponential search space growth. Distributed
Composer outperforms Online Composer on medium and large mazes through parallel tree stitching.
However, it faces challenges in giant mazes, as its synthesized plans often fail to meet the strict
episode length constraint. When we relaxed the maximum episode length from 1000 to 2000 steps,
DC’s success rate improved to 86%. The qualitative result comparison between C-MCTD variants is
shown in Figure 4.

Efficiency analysis reveals computational trade-offs. Table 2 demonstrates that Distributed and
Preplan Composers achieve superior efficiency through parallelism and amortized graph structures

8

Table 3: Robot arm cube manipulation performance. Success rates (%) across increasing complex-
ity manipulation tasks involving single, double, triple, and quadruple cube arrangements in OGBench,
presented as mean ± standard deviation.

Success Rate (%) ↑
Method single double triple quadruple
Diffuser-Replan 92± 13 12± 13 4± 8 0± 0
Diffusion Forcing 100± 0 18± 11 16± 8 0± 0
MCTD-Replan 100± 0 78± 11 40± 21 24± 8
Online Composer with Plan Cache 100± 0 100± 0 75± 12 82± 11

respectively. Preplan Composer produces notably shorter, higher-quality plans through its pre-built
graph approach, achieving the best computational efficiency while maintaining perfect success rates.

5.3 Multi-object manipulation: compositional planning with plan caching

We evaluate C-MCTD on multi-cube manipulation tasks from OGBench [28], which require precise
action sequencing for stacking cubes into predefined configurations. These tasks demand compo-
sitional reasoning to determine optimal cube movement sequences, making them ideal for testing
plan-level search capabilities. Our approach combines diffusion-based high-level planning with
low-level value-guided control and object-wise guidance as described in prior work [4, 32].

Method adaptation for manipulation tasks. For these specialized tasks, we exclude Distributed and
Preplan Composers since parallel tree stitching from random positions proves inefficient for precise
manipulation sequences. Instead, we implement a plan cache mechanism that stores and retrieves
previously generated plans for identical scenarios, significantly enhancing search efficiency (detailed
analysis in Appendix B.4).

Baseline performance degrades with task complexity. Table 3 shows that while MCTD-Replan
outperforms Diffuser-based approaches due to object-wise guidance capabilities [32], its effective-
ness diminishes substantially as complexity increases—dropping from 100% (single cube) to 24%
(quadruple cube). This performance degradation highlights the limitations of the baseline’s search
strategy in complex sequential manipulation tasks.

Online Composer excels through compositional search. In contrast, our Online Composer with
Plan Cache demonstrates robust performance across all complexity levels. It achieves a 100%
success rate on single and double cube tasks and maintains strong performance on more
difficult scenarios, succeeding in 75% of triple-cube and 82% of quadruple-cube tasks. These
results underscore the effectiveness of our compositional search approach, where the plan cache
enables the efficient reuse of sub-solutions across related manipulation sequences.

5.4 High-dimensional visual navigation: POMDP planning challenges

Table 4: Visual PointMaze results.
Success Rate (%) ↑

Method medium large
Diffuser 8± 13 0± 0
Diffuser-Replan 8± 10 0± 0
Diffusion Forcing 66± 32 8± 12
MCTD 82± 18 0± 0
MCTD-Replan 90± 9 20± 21
Online Composer 100 ± 0 54± 18
Distributed Composer 94 ± 6 26± 9
Preplan Composer 96 ± 8 48± 16

We evaluate C-MCTD on Visual Maze tasks from
prior work [32], which require navigation from start-
ing observations to target goals within 64× 64 RGB
observation spaces—forming challenging Partially
Observable Markov Decision Processes (POMDPs).
Following established protocols [32], we employ
Variational Autoencoders [18] for latent space plan-
ning, inverse dynamics models for action generation,
and positional estimators for POMDP guidance (de-
tails in Appendix A.5.3).

Myopic planning fails in complex visual environ-
ments. Table 4 shows that while MCTD-Replan achieves strong performance on medium mazes
(90%), it suffers substantial degradation on large mazes (20%), demonstrating the limitations of
myopic plan generation in high-dimensional partially observable settings.

Online Composer excels through plan-level reasoning. Online Composer significantly outper-
forms all baselines, achieving perfect success on medium mazes and maintaining strong performance

9

on large mazes (54% vs. 20% for MCTD-Replan). This demonstrates the effectiveness of plan-level
tree search for overcoming myopic limitations in visual navigation tasks.

High-dimensional challenges limit parallel variants. Interestingly, Distributed and Preplan Com-
posers underperform compared to Online Composer—contrasting with maze experiments (Sec-
tion 5.2). Our analysis reveals that clustering meaningful waypoints in high-dimensional latent spaces
proves challenging, hindering efficient plan integration. This limitation highlights an important
direction for future research in visual POMDP planning.

6 Discussion

In this work, we introduced Compositional Monte Carlo Tree Diffusion (C-MCTD), a novel frame-
work that integrates plan-level search into diffusion-based planners. This approach enables compo-
sitional reasoning, allowing for generalization to long-horizon tasks far exceeding the scope of the
training data. While our experiments demonstrate significant performance gains, it is important to
discuss the inherent trade-offs of our method and the broader challenges that remain for diffusion
planning models.

Limitations and trade-offs of C-MCTD variants. The primary challenge of C-MCTD is the
computational cost associated with searching a vast compositional plan space. We introduced
Distributed Composer (DC) and Preplan Composer (PC) to mitigate this cost through parallelism
and amortized graph search, respectively. However, these variants introduce their own trade-offs. PC
requires a pre-computation to build the graph. It is highly efficient and is suited for the environments
where the graph can be reused across many queries. DC’s parallel tree stitching is powerful for spatial
navigation but can be less efficient for tasks requiring precise sequential dependencies, as seen in
our manipulation experiments in Section 5.3. These trade-offs highlight that the optimal C-MCTD
variant is task-dependent, a key insight for future applications.

Future directions for diffusion planning models. Looking forward, a key challenge for C-MCTD
and other diffusion planners is achieving real-time inference speeds suitable for online robotics
applications. Bridging this efficiency gap is a critical avenue for future work. Furthermore, our work
inherits two fundamental limitations of the current generative planning paradigm. First, generalization
to entirely novel environments remains difficult, as planners can produce kinematically invalid plans
when faced with out-of-distribution states. Second, handling stochastic dynamics is an open problem,
as standard diffusion models may generate an ineffective "averaged" plan rather than a robust,
multi-modal policy.

Despite these open challenges, C-MCTD marks a critical step toward creating more general, scalable,
and compositional generative planners, paving the way for solving increasingly complex decision-
making problems.

7 Conclusion

We introduced Compositional Monte Carlo Tree Diffusion (C-MCTD), a novel framework that
scales diffusion-based planners to generate complex, long-horizon plans by composing shorter
trajectories at inference time. C-MCTD integrates three complementary approaches: the Online
Composer for flexible, on-the-fly plan generation; the Distributed Composer for scaling through
parallelism; and the Preplan Composer for maximum efficiency via pre-computed plan graphs. Our
extensive evaluations show that this compositional framework significantly outperforms conventional
replanning strategies. Notably, the Preplan Composer solves tasks requiring trajectories up to 10×
longer than those seen during training. These results demonstrate that compositional scaling at
inference time can dramatically enhance the reasoning capabilities of diffusion planners. Crucially,
this is achieved without any model retraining, offering a practical and effective path toward more
capable agents for challenging sequential decision-making problems.

Acknowledgments and Disclosure of Funding

We would like to extend our gratitude to Doojin Baek for his insightful discussions and assis-
tance throughout this project. This research was supported by Brain Pool Plus Program (No.

10

2021H1D3A2A03103645) through the National Research Foundation of Korea (NRF) funded by the
Ministry of Science and ICT (MSIT) and Institute of Information & communications Technology Plan-
ning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS-2024-00509279,
Global AI Frontier Lab).

References
[1] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit

Agrawal. Is conditional generative modeling all you need for decision making? In International
Conference on Learning Representations, 2023.

[2] Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent
Sitzmann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. In Advances
on Neural Information Processing Systems, 2024.

[3] Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning
with transformer world models. arXiv preprint arXiv:2202.09481, 2022.

[4] Chang Chen, Junyeob Baek, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn.
PlanDQ: Hierarchical plan orchestration via d-conductor and q-performer. In International
Conference on Machine Learning, 2024.

[5] Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hier-
archical planning with diffusion. In International Conference on Learning Representations,
2024.

[6] Chang Chen, Hany Hamed, Doojin Baek, Taegu Kang, Yoshua Bengio, and Sungjin Ahn.
Extendable long-horizon planning via hierarchical multiscale diffusion. arXiv preprint
arXiv:2503.20102, 2025.

[7] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In H. Jaap
van den Herik, Paolo Ciancarini, and H. H. L. M. (Jeroen) Donkers, editors, Computers and
Games, pages 72–83, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-
75538-8.

[8] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In
Advances in Neural Information Processing Systems, 2021.

[9] Edsger W Dijkstra. A note on two problems in connexion with graphs. In Edsger Wybe Dijkstra:
his life, work, and legacy, pages 287–290. 2022.

[10] Zibin Dong, Jianye Hao, Yifu Yuan, Fei Ni, Yitian Wang, Pengyi Li, and Yan Zheng. Diffuserlite:
Towards real-time diffusion planning. In Advances in Neural Information Processing Systems,
2024.

[11] David Ha and Jürgen Schmidhuber. World models. In Advances in Neural Information
Processing Systems, 2018.

[12] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. In International Conference on Learning Representa-
tions, 2020.

[13] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

[14] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[15] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, 2022.

11

[16] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE transactions on Robotics and
Automation, 12(4):566–580, 1996.

[17] Sungyoon Kim, Yunseon Choi, Daiki E Matsunaga, and Kee-Eung Kim. Stitching sub-
trajectories with conditional diffusion model for goal-conditioned offline rl. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2024.

[18] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International
conference on Learning Representations, 2014.

[19] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European
conference on machine learning, 2006.

[20] Steven LaValle. Rapidly-exploring random trees: A new tool for path planning. Research
Report 9811, 1998.

[21] Guanghe Li, Yixiang Shan, Zhengbang Zhu, Ting Long, and Weinan Zhang. DiffStitch: Boost-
ing offline reinforcement learning with diffusion-based trajectory stitching. In International
Conference on Machine Learning, 2024.

[22] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
1982.

[23] Haofei Lu, Dongqi Han, Yifei Shen, and Dongsheng Li. What makes a good diffusion planner
for decision making? In International Conference on Learning Representations, 2025.

[24] Yunhao Luo, Utkarsh A Mishra, Yilun Du, and Danfei Xu. Generative trajectory stitching
through diffusion composition. arXiv preprint arXiv:2503.05153, 2025.

[25] Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan
Yang, Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion
models beyond scaling denoising steps. arXiv preprint arXiv:2501.09732, 2025.

[26] James MacQueen. Some methods for classification and analysis of multivariate observations.
In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Statistics, 1967.

[27] Yuta Oshima, Masahiro Suzuki, Yutaka Matsuo, and Hiroki Furuta. Inference-time text-to-video
alignment with diffusion latent beam search. CoRR, 2025.

[28] Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. In International Conference on Learning Representations (ICLR),
2025.

[29] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, 2015.

[30] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2021.

[31] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning. In International Conference on Learning
Representations, 2023.

[32] Jaesik Yoon, Hyeonseo Cho, Doojin Baek, Yoshua Bengio, and Sungjin Ahn. Monte carlo tree
diffusion for system 2 planning. In International Conference on Machine Learning, 2025.

[33] Tao Zhang, Jia-Shu Pan, Ruiqi Feng, and Tailin Wu. Test-time scalable mcts-enhanced diffusion
model. arXiv preprint arXiv:2502.01989, 2025.

[34] Guangyao Zhou, Sivaramakrishnan Swaminathan, Rajkumar Vasudeva Raju, J Swaroop Guntu-
palli, Wolfgang Lehrach, Joseph Ortiz, Antoine Dedieu, Miguel Lázaro-Gredilla, and Kevin
Murphy. Diffusion model predictive control. arXiv preprint arXiv:2410.05364, 2024.

12

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We proposed that our proposed method shows the effectiveness to extend the
reasoning abilities beyond a single plan length in abstract and introduction, which are the
main contribution of this paper and well fitted in this paper contents.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

13

Justification: The limitation is discussed in the main paper as a separate section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details of the implementation in the appendix including the hyperparame-
ters and benchmark settings are discussed in our appendix.

Guidelines:

14

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The source code will be prepared to be as a release version after the reviewing
process.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details about training and test are discussed in the main paper and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The performance (success rate) and running time are reported with the standard
deviation over the multiple testing.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, the computer resources utilized in the training and test are discussed in
the paper.

Guidelines:

16

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We checked the NeurIPS code of Ethics and followed them.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This paper presents foundational research in the inference-time scaling on
diffusion model over the single generation range, which is primarily focused on theoretical
improvements rather than specific applications with direct societal implications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

17

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

18

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

start goal

(a) (b) (c)

Figure 3: Illustrations of the environments. Our method is evaluated on three distinct tasks:
(a) A long-horizon maze where the agent must navigate from a start to a goal state. (b) A robotic
manipulation task requiring precise control of a robotic arm. (c) A visual maze task where observations
are provided as first-person view images.

A Experiment details

A.1 Computation resources

All experiments were conducted on high-performance hardware consisting of 8 NVIDIA RTX
4090 GPUs, 512GB system memory, and a 96-thread CPU. Training each model required about 6
hours, while inference for comprehensive experimental evaluation took up to 1 hour in the most
computationally intensive cases.

A.2 Environment details

To evaluate our C-MCTD, we adopt the benchmarks from Yoon et al. [32]. While the robotic
manipulation and visual maze tasks replicate the environmental settings of the prior work, we
introduce a more demanding evaluation for the long-horizon maze environments. Specifically, we
employ the stitch datasets from Park et al. [28] rather than the navigate datasets. This choice creates a
challenging scenario that requires generating plans significantly longer than the trajectories observed
during training. For instance, training trajectories are limited to 200 steps, whereas successfully
reaching goals in the test environments requires plans of up to 1000 steps. This setting allows us to
rigorously assess the extendable planning capabilities of our approach. An overview of each task is
provided in Figure 3.

A.3 Baselines

To evaluate C-MCTD, we compare its performance against diverse baselines. These baselines
combine different stitching methods with various diffusion planners to extend their effective planning
horizons. We describe the core components below.

A.3.1 Stitching methods

Replan. This baseline addresses the fixed-horizon limitation of standard diffusion planners, which
are constrained by the trajectory lengths in the training data. The Replan method operates by
iteratively generating a new plan from the final state of the previous one. While this enables
extendable planning, the myopic nature of each planning step often results in suboptimal long-horizon
solutions.

DataStitch. [6, 21] An alternative approach, which we term DataStitch, extends the planning
horizon by first elongating the trajectories within the training dataset itself. Because trajectories in
the original dataset are not necessarily connectable, this method involves training auxiliary diffusion
planners and inverse dynamics models to generate synthetic continuations, effectively stitching
existing data points together. For instance, Chen et al. [6] iteratively applied this process to extend
trajectories up to sevenfold. Following this methodology, we create an extended version of the
stitch dataset by lengthening trajectories to five times their original length and subsequently train our
models on this augmented data.

20

A.3.2 Diffusion planners

Diffuser. [15] As a primary baseline, we include Diffuser, which pioneered training diffusion
models on sequences of concatenated state-action pairs. We evaluate Diffuser with both the Replan
and DataStitch extension methods by training it on the corresponding augmented datasets.

Diffusion Forcing. [2] This Diffuser variant tokenizes data and applies varied noise levels to enable
causal denoising that prioritizes near-future states. We employ the Transformer-based implementation
proposed by Chen et al. [2]. As the method is inherently designed for replanning, we evaluate it with
the DataStitch extension but do not create a separate “Replan” variant.

Sub-trajectory Stitching with Diffusion (SSD). [17] Kim et al. [17] introduced a diffusion planner
that achieves extendability via a learned value function, which guides the model to concatenate short
trajectories into a longer, task-relevant plan. While effective, we empirically found that learning a
reliable value function is challenging with suboptimal data, whereas inference-time scaling offers
a more robust alternative. Because SSD is natively designed for extendable planning, we do not
evaluate it using our Replan or DataStitch extensions.

Compositional Diffuser (CompDiffuser). [24] Luo et al. [24] proposed an alternative approach
to extendable planning where a diffusion model is trained to generate sub-trajectories conditioned
on nearby context. This framework allows the model to compose multiple sub-trajectories, gener-
ating plans that are longer than any seen during training. Similar to SSD, CompDiffuser’s native
extendability makes evaluation with our proposed extensions unnecessary.

Monte Carlo Tree Diffusion (MCTD). [32] Yoon et al. [32] introduced a framework that imple-
ments inference-time scaling by branching the denoising process into a Monte Carlo Tree Search,
rather than merely increasing sequential denoising steps. Guided by a reward function, this approach
explores alternative paths to find optimal solutions, demonstrating superior performance across
diverse planning tasks. We evaluate MCTD with both the Replan and DataStitch extension methods.

A.4 Model hyperparameters

Our hyperparameter configuration is largely adopted from Yoon et al. [32]. For full reproducibility,
we provide the detailed configurations for the baseline models in Tables 5–8. Hyperparameters
introduced by our proposed C-MCTD are detailed in Section A.5 alongside their corresponding
experimental setups. For the SSD baseline, we utilized the default configurations from its official
public implementation2.

A.5 Evaluation details

This section outlines the configurations for each benchmark.

A.5.1 Long-horizon maze environments

Datasets and environment configuration. To evaluate extendable planning, all models were
trained on the challenging stitch datasets. An exception was made for the value-learning policy [31],
which failed to converge on this data; as this baseline is not our focus, we trained it on the original
navigate dataset. For all maze environments, we set the training trajectory length and the single-pass
planning horizon to 100, sampling sub-sequences from the full 200-step trajectories to enhance data
diversity. Following prior work [32], we remove random noise from the start and goal positions
to isolate the planner’s performance from environmental stochasticity. Furthermore, we employ
a heuristic controller for PointMaze environments [15] and a value-based policy for AntMaze
environments [4, 31], for which we set the subgoal interval to 10.

Guidance mechanism. To steer the diffusion process, we apply a guidance function that minimizes
the L2 distance between each planned state xi and the goal g [2, 32]. This function, defined as∑

i ||xi − g||2, is used across all models. The strength of this guidance is controlled by a scale
hyperparameter, which we configure for each baseline as follows:

2https://github.com/rlatjddbs/SSD

21

https://github.com/rlatjddbs/SSD

Table 5: Hyperparameters for the Diffuser baseline. These settings are adopted from the original
MCTD paper [32] to ensure a fair comparison. Task-specific parameters, such as the planning horizon,
are detailed in their respective sections.

Hyperparameter Value
Training & Optimizer Settings

Learning Rate 2× 10−4

Batch Size 32
Max Training Steps 20,000
EMA Decay 0.995
Floating-Point Precision 32-bit (FP32)

Diffusion & Guidance Settings

Beta Schedule Cosine
Objective x0-prediction
Guidance Scale 0.1
Open-loop Horizon 50 (for Diffuser-Replan)

Model Architecture (U-Net)

Depth 4
Kernel Size 5
Channel Sequence 32, 128, 256

• Diffusion Forcing: Following Chen et al. [2], we set the guidance scale to 3 for medium
maps and 2 for large and giant maps.

• MCTD: The guidance sets are adopted from Yoon et al. [32]: {0, 0.1, 0.5, 1, 2} for Point-
Maze (Medium & Large), {0.5, 1, 2, 3, 4} for PointMaze (Giant), and {0, 1, 2, 3, 4, 5} for
all AntMaze tasks.

Our proposed C-MCTD variants inherit these settings; during a node expansion, each of the two child
nodes is assigned the corresponding guidance set for the environment.

Reward function for tree search-based planners. Both MCTD and C-MCTD require a reward
function to evaluate simulated trajectories. We adopt the function from Yoon et al. [32], which
incorporates two components. First, it penalizes physically implausible plans by assigning a reward
of 0 to any trajectory with unrealistic position changes between consecutive states. Second, for valid
trajectories that first reach the goal at timestep t, the reward is calculated as r = (H − t)/H , where
H is the maximum horizon length. This encourages finding shorter, more efficient paths.

C-MCTD configurations.

• Node expansion planner: For node expansion in the maze environments, C-MCTD utilizes
a best-of-N search-based planner [34] built upon Diffusion Forcing [2]. In this approach,
N candidate trajectories are generated, and the one yielding the highest reward (as defined
above) is selected. We set N = 50 for all maze experiments.

• DC and PC variants: Our Distributed Composer (DC) and Preplan Composer (PC) variants
identify representative waypoints via k-means clustering [22, 26] on the training data, with
10, 30, and 70 cluster centers for medium, large, and giant maps, respectively. For DC,
the search is capped at 100 iterations. For PC, we limit the search to 20 iterations and 2
plan concatenations (a tree depth of 2) for medium and large maps; these are reduced to
10 iterations and 1 concatenation for the giant map. These settings render our methods
substantially more efficient than the Online Composer baseline, which requires up to 500
search iterations and 10 concatenations.

22

Table 6: Hyperparameters for the Diffusion Forcing baseline. Settings are based on the implementa-
tion in Yoon et al. [32] and adapted for our tasks. Parameters that vary across environments, such as
the guidance scale, are specified in Section A.5.

Hyperparameter Value
Training & Optimizer Settings

Learning Rate 5× 10−4

Weight Decay 1× 10−4

Warmup Steps 10,000
Batch Size 1024
Max Training Steps 200,005
Training Precision 16-bit (Mixed)
Inference Precision 32-bit (FP32)

Diffusion & Sampling Settings

Beta Schedule Linear
Objective x0-prediction
Scheduling Matrix Pyramid
Stabilization Level 10
DDIM Sampling η 0.0
Frame Stack 10
Open-loop Horizon 50
Causal Mask Not Used

Model Architecture (Transformer)

Embedding Dimension 128
Number of Layers 12
Number of Attention Heads 4
FFN Dimension 512

A.5.2 Robot arm manipulation environment

Environment and baseline configuration. We conduct these experiments using the play datasets.
The planning horizon is set to 200 for single-cube tasks, corresponding to the maximum episode
length, and extended to 500 for more complex multi-cube tasks. Similar to the AntMaze experiments,
we employ a value-based policy [31] as a low-level controller, with a subgoal interval of 10.

Guidance mechanism. The goal-reaching guidance function is identical to that used in the maze
environments (Section A.5.1). For the Diffusion Forcing baseline, the guidance scale is set to 2.
For tree-search planners (MCTD and C-MCTD), we adopt the object-wise guidance strategy from
Yoon et al. [32]. This approach guides the planner to manipulate a single cube at a time, preventing
physically infeasible plans that attempt to move multiple objects concurrently. The guidance set for
this strategy is {1, 2, 4}, which our C-MCTD variants inherit for two child nodes during expansion.

Reward function. We adopt the reward function from Yoon et al. [32], which is designed to filter
out physically unrealistic trajectories. A plan receives a reward of 0 if it violates any of the following
conditions: (1) moving multiple objects simultaneously; (2) leaving an object in an unstable, mid-air
position; (3) causing inter-object collisions; or (4) attempting to grasp an object obstructed by another.
Otherwise, a positive reward is assigned based on task success.

Macro-actions for planning efficiency. Following Yoon et al. [32], we incorporate a set of pre-
defined macro-actions (scripted primitives) to improve the efficiency and robustness of object-wise
planning. These routines handle common operations, such as automatically releasing an object at
its target or pre-positioning the arm before manipulating the next object. This scripting approach
prevents common planning failures, like generating trajectories beyond the arm’s kinematic reach or
attempting to grasp with an occupied gripper.

23

Table 7: Hyperparameters for the Monte Carlo Tree Diffusion (MCTD) baseline. These settings are
based on the original implementation [32]. Task-dependent parameters, such as the planning horizon
and guidance set, are specified in Section A.5.

Hyperparameter Value
Training & Optimizer Settings

Learning Rate 5× 10−4

Weight Decay 1× 10−4

Warmup Steps 10,000
Batch Size 1024
Max Training Steps 200,005
Training Precision 16-bit (Mixed)
Inference Precision 32-bit (FP32)

Diffusion & Sampling Settings

Beta Schedule Linear
Objective x0-prediction
DDIM Sampling η 0.0
Frame Stack 10
Open-loop Horizon (MCTD-Replan) 50
Causal Mask Not Used
Scheduling Matrix Pyramid
Stabilization Level 10

MCTD Search Settings

Max Search Iterations 500
Partial Denoising Steps 20
Jumpy Denoising Interval 10

Model Architecture (Transformer)

Embedding Dimension 128
Number of Layers 12
Number of Attention Heads 4
FFN Dimension 512

C-MCTD configurations. For the robot manipulation tasks, our C-MCTD employs two specific
strategies:

• Node expansion planner: Unlike in the maze environments, node expansion utilizes the
full MCTD planner instead of the simpler best-of-N search. This choice is necessitated by
the significantly longer planning horizons in this domain (200–500 steps), which demand a
more powerful and systematic search capability.

• Plan caching: To improve computational efficiency, we introduce a plan caching strategy.
Successfully generated plans are stored with their metadata (target object, start, and goal
states). A cached plan is reused for a new task if its target object is identical and its start/goal
states fall within an L2 distance of ϵ from the cached ones.

A.5.3 Visual maze environment

Environment and data configuration. We follow the experimental setup from Yoon et al. [32]
for the visual maze tasks. Using the data generation scripts from Park et al. [28], we create datasets
of 1000-step trajectories for both medium and large maps. To ensure diverse training samples, our
diffusion models are trained on sub-trajectories with a planning horizon of 500, sampled from these
full-length trajectories.

24

Table 8: Hyperparameters for the value-learning policy baseline. These settings are configured for
training the policy on the navigate dataset.

Hyperparameter Value
Training & Optimizer Settings

Learning Rate 3× 10−4

Training Epochs 2,000
Gradient Clipping Norm 7.0

Algorithm-Specific Settings

Learning η 1.0
Max Q Backup False
Reward Tune cql_antmaze
Top-k 1
Target Update Steps 10
Data Sampling Randomness (p) 0.2

Vision-based modeling pipeline. To handle the high-dimensional visual inputs and partial observ-
ability, we adopt the modeling pipeline from Yoon et al. [32], which consists of three pre-trained
components that operate on 64× 64× 3 RGB observations:

• Variational Autoencoder (VAE): A VAE [18] is first pre-trained to encode each image
observation into a compact 8-dimensional latent representation, zt. This latent space serves
as the basis for all subsequent planning and control models.

• Inverse dynamics model: An MLP-based inverse dynamics model, finv, is trained to predict
the action ât required to transition between latent states. To infer velocity from static images,
the model is conditioned on three consecutive latent states: ât = finv(zt−1, zt, zt+1). This
learned model acts as a low-level controller.

• Position estimator: A separate MLP is trained to predict the agent’s approximate (x, y)
coordinates from a given latent state zt. This provides a weak positional signal for planning
guidance without compromising the task’s partial observability.

Guidance Mechanism. Guidance is performed in the state space using the positional signal from
the pre-trained position estimator. This allows us to apply the same L2 distance-based guidance
function as described in Appendix A.5.1. Following Yoon et al. [32], we use a guidance set of
{0, 0.1, 0.5, 1, 2} for all baselines. Our C-MCTD variants inherit this configuration, assigning this
guidance set to each child node during an expansion.

C-MCTD Configurations. For our Distributed Composer (DC) and Preplan Composer (PC)
variants, we generate representative waypoints by applying k-means clustering to the coordinates
predicted by the position estimator. We define 3 and 5 cluster centers for the medium and large maps,
respectively.

25

Table 9: The guidance sets meta-action ablation study on PointMaze environments. Success
rate (%) comparison with the variant of Online Composer with fixed guidance level as a meta-action
rather than guidance set, presented as mean ± standard deviation.

Success Rate (%) ↑
Environment Default Fixed: 0.1 Fixed: 0.5 Fixed: 1 Fixed: 2
PointMaze Medium 93± 9 80± 0 90± 10 98± 6 83± 8

PointMaze Large 82± 17 77± 14 52± 13 27± 10 20± 0

Table 10: The Fast replanning ablation study on PointMaze environments. Success rate (%)
comparison with the variant of Online Composer without fast replanning, presented as mean ±
standard deviation. The numbers in parentheses indicate the maximum search iterations allowed.

Success Rate (%) ↑
Enivornment W/ FR (200) W/o FR (200) W/ FR (100) W/o FR (100) W/ FR (50) W/o FR (50)
PointMaze Medium 96± 8 82± 6 94± 9 76± 12 92± 10 63± 15

PointMaze Large 84± 15 54± 13 82± 14 49± 10 82± 19 32± 11

B Additional experimental results

B.1 Ablation Study on Guidance Sets as Meta-actions

Our framework enables C-MCTD to provide the planner with a guidance set as a meta-action (e.g.,
{0, 0.1, 0.5, 1, 2}), rather than a single value. To experimentally isolate the benefit of this design, we
compare our default approach against variants that use a single, fixed guidance level.

The results in Table 9 reveal that the optimal guidance level is task-dependent. In PointMaze-Medium,
which requires moderately complex planning, higher guidance levels (e.g., 0.5 and 1.0) yield strong
performance. Conversely, the more challenging PointMaze-Large environment necessitates a low
guidance level (0.1) to achieve a competitive result.

Notably, our default method, which provides the planner with a set of guidance options, achieves
robustly high performance across both environments. This demonstrates that the guidance set is a
vital mechanism that empowers the planner to adaptively select the most suitable guidance strength
for a given task. This adaptability is key to ensuring effective and versatile performance across
varying levels of environmental complexity.

B.2 Ablation Study on Fast Replanning

Fast Replanning is a core component of C-MCTD. To validate its contribution, we conducted an
ablation study comparing the performance of the Online Composer with and without this mechanism
across various search budgets. The experiments were performed in the maze environments. We omit
results from PointMaze Giant as the performance difference was negligible.

As presented in Table 10, the results demonstrate the critical role of Fast Replanning. In all configura-
tions, the version with Fast Replanning consistently outperforms its counterpart. This performance
gap becomes more pronounced as the search budget decreases. For instance, in the PointMaze Large
environment with a search budget of 50 iterations, our method with Fast Replanning maintains a high
success rate of 82%, whereas the variant without it experiences a substantial performance degradation,
dropping to 32%.

This analysis confirms that Fast Replanning is not merely an incremental optimization but a crucial
element for the robustness and sample efficiency of our tree search algorithm. It enables effective
value propagation throughout the search tree, particularly under limited computational budgets.

B.3 Ablation Study on Stitching Threshold

We investigate the sensitivity of C-MCTD to the stitching threshold hyperparameter, ϵ. In our main
experiments, we set ϵ = 1.0, adopting the value from the goal-achievement threshold in the original

26

Table 11: The stitching threshold ablation study on PointMaze environments. Success rate (%)
comparison with the variant of Distributed Composer with diverse stitching threshold hyperparameter
values, presented as mean ± standard deviation.

Success Rate (%) ↑
Environment 5.0 2.0 1.0 0.5 0.1
PointMaze Medium 100± 0 100± 0 100± 0 100± 0 94± 9

PointMaze Large 65± 16 100± 0 100± 0 100± 0 73± 13

PointMaze Giant 40± 24 26± 13 26± 21 10± 10 0± 0

Table 12: The plan cache ablation study on robot arm cube manipulation tasks. Run time
(sec.) comparison between the versions with and without plan cache, presented as mean ± standard
deviation.

Run Time (sec.) ↓
Method single double triple quadruple
OnlineComposer 19.4± 0.3 50.5± 1.4 308.4± 33.5 1432.8± 300.1

OnlineComposer with Plan Cache 19.4± 0.2 45.5± 0.7 166.9± 27.1 242.8± 16.1

MCTD framework [32]. To analyze the robustness of our method to this choice, we conducted an
extensive ablation study with our Distributed Composer.

Our analysis, presented in Table 11, reveals that the optimal stitching threshold ϵ is highly dependent
on task complexity. In the PointMaze Medium environment, which represents a simpler planning
problem, our method exhibits strong robustness. Optimal performance is maintained across a broad
range of ϵ values (0.5 to 5.0), with only a minor degradation observed at the highly restrictive threshold
of ϵ = 0.1. For the more challenging PointMaze Large environment, a clear trade-off emerges. An
overly permissive threshold (e.g., ϵ = 5.0) results in spurious stitching, such as incorrectly connecting
trajectories across physical barriers, thereby degrading performance. Conversely, an overly restrictive
threshold (e.g., ϵ = 0.1) prevents valid connections, impairing the construction of long-horizon
solutions. This highlights the existence of an optimal range for ϵ in moderately complex tasks.
Intriguingly, in the most complex PointMaze Giant environment, a more lenient threshold (ϵ = 5.0)
yields the best performance. The vast scale of this environment makes connecting distant states
inherently difficult. A larger ϵ increases the likelihood of successful stitching, facilitating the
formation of long-range plans. In this scenario, maximizing connectivity, even at the cost of some
precision, is more effective than enforcing high-precision stitching that results in sparse or failed
connections.

B.4 Ablation Study on Plan Caching

To quantify the computational efficiency gained by our plan caching method, we conducted an
ablation study on robotic manipulation tasks of increasing complexity. The results, summarized in
Table 12, measure the wall-clock time required to solve tasks involving one to four cubes.

For tasks with one or two cubes, the runtime difference is minimal, as the planning overhead is low.
However, as the task complexity increases, the benefits of plan caching become exponential. This
is due to the combinatorial explosion of the planning space in multi-object manipulation. For the
four-cube task, our method with plan caching achieves an approximately 6× runtime reduction in
runtime compared to the baseline without caching (242.8s vs. 1432.8s). These results confirm that
plan caching is an effective strategy for mitigating the computational burden in complex tasks with
large, structured planning spaces.

B.5 Analysis of Preplan Composer’s Graph Construction Overhead

The Preplan Composer (PC) variant relies on a one-time, offline graph construction process. In this
section, we quantify this computational overhead and contextualize it by comparing the cost to the
online planning times of our other methods. We emphasize that this is a pre-inference step performed
only once per environment. All timings were measured on the PointMaze environments using 8
NVIDIA GeForce RTX 4090 GPUs.

27

Table 13: The comprehensive planning runtime comparison on PointMaze environments. Plan-
ning run time (sec.) and success rate (%) comparison across the methods except CompDiffuser.

Run Time (sec.) ↓ Success Rate (%) ↑
Method Medium Large Giant Medium Large Giant
Diffuser-Replan 80.2 144.7 166.8 38 40 0
Diffuser-DatasetStitch 8.4 8.3 9.4 32 0 0
Diffusion Forcing 18.8 26.1 30.1 53 20 0
Diffusion Forcing-DatasetStitch 10.9 11.5 10.9 52 26 0
SSD 32.8 33.8 42.7 40 40 0
MCTD-Replan 166.5 503.7 630.1 90 20 0
MCTD-DatasetStitch 50.2 77.2 53.8 12 2 0
Online Composer 83.6 91.2 269.8 93 82 0
Distributed Composer 26.7 39.1 530.7 100 100 26
Preplan Composer 11.1 21.5 36.9 100 100 100

(a) MCTD-Replan (b) Online Composer (c) Distributed Composer (d) Preplan Composer

Figure 4: Qualitative comparison of stitched planning approaches. (a) MCTD-Replan: Sequen-
tial replanning (trajectories shown from light to dark red) enables plan concatenation but results in
myopic, short-sighted paths. (b) Online Composer: Plan-level search explores beyond the training
data horizon. Gray lines denote discarded candidate plans during the search. (c) Distributed Com-
poser: Search efficiency is improved by initiating searches from multiple starting positions (blue
dots). Gray lines are unselected plans originating from the starting positions. (d) Preplan Composer:
A pre-built graph is leveraged to generate higher-quality plans with more optimized efficiency. Gray
lines represent pre-computed but unused plans.

We measured the graph construction times for the medium, large, and giant PointMaze maps, which
contain 10, 30, and 70 waypoint nodes, respectively. The corresponding construction times were
46.16, 83.18, and 72.69 seconds. Notably, building the graph for the giant environment is faster than
for the large one. This counter-intuitive result occurs because the higher density of nodes (70 vs.
30) allows for a shorter maximum search length between any pair of nodes, reducing the per-edge
planning complexity.

This one-time cost represents a highly practical initial investment. To put this into perspective, the
entire graph construction for the Large environment (83.18s) takes less time than a single planning
query with our Online Composer (91.2s, see Table 2). Once this graph is built, it is reused for
all subsequent planning tasks, including those with unseen start-goal pairs. Therefore, the initial
computational cost is effectively amortized across numerous runs, leading to the significant inference-
time efficiency gains of Preplan Composer. This strategic trade-off—a modest offline computation
for a substantial and repeated online speedup—is a key advantage of the proposed method.

B.6 Comprehensive planning runtime comparison

This section provides a comprehensive comparison of the planning runtime for our proposed meth-
ods against all baselines, with detailed results presented in Table 13. We note that runtime for
CompDiffuser was not reported in the original paper and is therefore excluded from this analysis.

The results underscore that our C-MCTD framework achieves a state-of-the-art trade-off between
task success and computational efficiency. In the Medium environment, all C-MCTD variants achieve
success rates exceeding 90%. In comparison to the strongest baseline, MCTD-Replan (90% success),
our methods are 2-15× faster. This advantage becomes more pronounced in the Large environment,

28

where our Distributed and Preplan Composers achieve a 100% success rate, a stark contrast to the
sub-50% rates of all baselines. Notably, this superior performance is achieved with planning times
that are comparable to or faster than most baselines, with the exception of the DatasetStitch variants.
In the most challenging Giant environment, the Preplan Composer is the only method to achieve
a 100% success rate (versus 0% for all other baselines), while also recording a highly competitive
runtime among non-DatasetStitch approaches.

C Algorithms

Algorithm 4 Online Composer

Require: sstart: start state, sgoal: goal state, D: diffusion planner, H: plan horizon, L: full-plan
horizon, B: expansion budget, G: a set of guidance sets

Ensure: A full trajectory τfull from sstart to sgoal or failure
1: procedure ONLINE COMPOSER(sstart, sgoal, D, H , L, B, G)
2: vroot ← Node(sstart, null) ▷ Create root node with start state
3: T ← (V = {vroot}, E = ∅) ▷ Initialize tree with root node
4: expandedNodes← 0
5: while expandedNodes < B and no node close to sgoal do
6: v ← SelectNodeToExpand(T) ▷ Based on UCT value
7: Gs ← SelectGuidanceSet(v,G) ▷ Select guidance set
8: τ ← D(v.plan, sgoal, H,Gs) ▷ Generate guided plan
9: τchild ← Concatenate(v.plan, τ)

10: reward← FastReplanningSimulation(τchild, sgoal, D,H,L)
11: vchild ← Node(τchild, reward)
12: T .V ← T .V ∪ {vchild} ▷ Add child node to tree
13: T .E ← T .E ∪ {(v, vchild)} ▷ Add edge to tree
14: Backpropagate(v, reward) ▷ Update ancestors’ values
15: expandedNodes← expandedNodes + 1
16: end while
17: if node vgoal exists with dist(vgoal.plan, sgoal) ≤ ε then
18: return vgoal.plan
19: else
20: return failure
21: end if
22: end procedure
23: procedure FASTREPLANNINGSIMULATION(τcurrent, sgoal, D, H , L)
24: τremaining ← ∅ ▷ Initialize empty trajectory
25: scurrent ← τcurrent[−1]
26: while length(τremaining) < L do
27: τfast ← D.FastDenoise(scurrent, sgoal, H) ▷ Fast denoising
28: τremaining ← Concatenate(τremaining, τfast) ▷ Append trajectory
29: scurrent ← τfast[H] ▷ Update current state
30: if no progress or iteration limit reached then
31: break
32: end if
33: end while
34: return EvaluateReward(τremaining) ▷ Return estimated reward
35: end procedure

29

Algorithm 5 Distributed Composer (DC)

Require: sstart: start state, sgoal: goal state, D: diffusion planner, H: plan horizon, L: full-plan
horizon, B: expansion budget, N : number of origin positions

Ensure: A full trajectory τfull from sstart to sgoal or failure
1: procedure DISTRIBUTED COMPOSER(sstart, sgoal, D,H,L,B,N)
2: S ← {sstart} ∪ SamplePositions(N − 1) ▷ N origin positions
3: G← (S, ∅) ▷ Initialize connectivity graph
4: expandedTrees← 0
5: while expandedTrees < B do
6: si ← SelectOriginPosition(S, G) ▷ Tree expansion can be implemented in parallel
7: p̃θ(x|si) ∝ pθ(x|si) exp(Jϕ(x)) ▷ Define guided distribution
8: Ti ← GrowTree(si, p̃θ, D,H,L) ▷ Grow tree using Online Composer
9: for each sj ∈ S \ {si} do

10: for each node v ∈ Ti do
11: if minp∈v.plan dist(p, sj) < ϵ then
12: G.E ← G.E ∪ {(si, sj , v.plan)} ▷ Add connection to graph
13: break
14: end if
15: end for
16: end for
17: expandedTrees← expandedTrees + 1
18: if path exists from sstart to sgoal in G then
19: path← ShortestPath(G, sstart, sgoal) ▷ Dijkstra’s or A*
20: τfull ← StitchPath(path) ▷ Stitch plans along path
21: if length(τfull) ≤ L then
22: return τfull
23: end if
24: end if
25: end while
26: return failure
27: end procedure
28: procedure GROWTREE(si, p̃θ, D,H,L)
29: vroot ← Node(si, ∅) ▷ Create root node
30: T ← (V = {vroot}, E = ∅) ▷ Initialize tree
31: for k = 1 to K do ▷ K: tree expansion iterations
32: v ← SelectNodeToExpand(T)
33: τ ← D(v.plan, p̃θ, H) ▷ Sample from guided distribution
34: τchild ← Concatenate(v.plan, τ)
35: reward← FastReplanningSimulation(τchild, sgoal, D,H,L)
36: vchild ← Node(τchild, reward)
37: T .V ← T .V ∪ {vchild}
38: T .E ← T .E ∪ {(v, vchild)}
39: end for
40: return T
41: end procedure

30

Algorithm 6 Preplan Composer (PC) - Building Plan Graph

Require: E : environment, D: diffusion planner, H: plan horizon, N : number of waypoints
Ensure: Plan graph G encoding environment connectivity

1: procedure BUILDPLANGRAPH(E , D,H,N) ▷ Pre-building phase
2: S ← SelectWaypoints(E , N) ▷ Identify N strategic waypoints
3: G← (S, ∅) ▷ Initialize plan graph
4: for each pair (si, sj) ∈ S × S where i ̸= j do
5: p̃θ(x|si) ∝ pθ(x|si) exp(−dist(x, sj)) ▷ Position-based guidance
6: τij ← OC(si, sj , D,H, p̃θ) ▷ Generate plan
7: if τij ̸= ∅ then ▷ If connection successful
8: G.E ← G.E ∪ {(si, sj , τij)} ▷ Add to plan graph
9: end if

10: end for
11: return G ▷ Return completed plan graph
12: end procedure

Algorithm 7 Preplan Composer - Inference

Require: sstart: start state, sgoal: goal state, G: prebuilt plan graph, D: diffusion planner, H: plan
horizon, L′: local path horizon, L: full-plan horizon

Ensure: A full trajectory τfull from sstart to sgoal or failure
1: procedure PC-INFERENCE(sstart, sgoal, G,D,H,L′, L)
2: for each si ∈ G do
3: τs→i ← OC(sstart, si, D,H,L′)
4: if τs→i ̸= ∅ then
5: G.E ← G.E ∪ {(sstart, si, τs→i)} ▷ Add to plan graph
6: end if
7: end for
8: for each si ∈ G do
9: τi→g ← OC(si, sgoal, D,H,L′)

10: if τi→g ̸= ∅ then
11: G.E ← G.E ∪ {(si, sgoal, τi→g)} ▷ Add to plan graph
12: end if
13: end for
14: path← ShortestPath(G, sstart, sgoal)
15: if path ̸= ∅ then
16: τfull ← StitchPath(path) ▷ Compose final solution
17: if length(τfull) ≤ L then
18: return τfull
19: end if
20: end if
21: return failure
22: end procedure

31

	Introduction
	Preliminaries
	Diffusion models for planning
	Monte Carlo Tree Diffusion

	Compositional Monte Carlo Tree Diffusion
	Online Composer
	Distributed Composer
	Preplan Composer

	Related work
	Experiments
	Baselines
	Long-horizon maze navigation: scaling beyond trained trajectory length
	Multi-object manipulation: compositional planning with plan caching
	High-dimensional visual navigation: POMDP planning challenges

	Discussion
	Conclusion
	Experiment details
	Computation resources
	Environment details
	Baselines
	Stitching methods
	Diffusion planners

	Model hyperparameters
	Evaluation details
	Long-horizon maze environments
	Robot arm manipulation environment
	Visual maze environment

	Additional experimental results
	Ablation Study on Guidance Sets as Meta-actions
	Ablation Study on Fast Replanning
	Ablation Study on Stitching Threshold
	Ablation Study on Plan Caching
	Analysis of Preplan Composer's Graph Construction Overhead
	Comprehensive planning runtime comparison

	Algorithms

