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Abstract

While paraphrasing is a promising approach
for data augmentation in classification tasks,
its effect on named entity recognition (NER)
is not investigated systematically due to the
difficulty of span-level label preservation. In
this paper, we utilize simple strategies to anno-
tate entity spans in generations and compare
established and novel methods of paraphras-
ing in NLP such as back translation, special-
ized encoder-decoder models such as Pegasus,
and GPT-3 variants for their effectiveness in
improving downstream performance for NER
across different levels of gold annotations and
paraphrasing strength on 5 datasets. We thor-
oughly explore the influence of paraphrasers,
dynamics between paraphrasing strength, and
gold dataset size on the NER performance with
visualizations and statistical testing. We find
that the choice of the paraphraser greatly im-
pacts NER performance, with one of the larger
GPT-3 variants exceedingly capable of generat-
ing high quality paraphrases, yielding statisti-
cally significant improvements in NER perfor-
mance with increasing paraphrasing strength,
while other paraphrasers show more mixed re-
sults. We also find inline auto annotations gen-
erated by larger GPT-3 to be strictly better than
heuristic based annotations. We find diminish-
ing benefits of paraphrasing as gold annotations
increase for most datasets. We further find that
while most paraphrasers promote entity memo-
rization in NER, the proposed GPT-3 configu-
ration performs most favorably among the com-
pared paraphrasers when tested on unseen enti-
ties, with memorization reducing further with
paraphrasing strength. Finally, we explore men-
tion replacement using GPT-3, which provides
additional benefits over base paraphrasing for
specific datasets.

1 Introduction

Named entity recognition (NER) seeks to extract
entity mentions (e.g., Shakespeare, Warwickshire)
from a text (Shakespeare was born and raised in

Warwickshire) for predefined categories of inter-
est (such as people and locations). It is a critical
component underpinning many industrial pipelines
for a variety of downstream natural language pro-
cessing applications such as search, recommenda-
tion, and virtual assistant systems. However, in
real-world applications, there is often a scarcity of
labeled data for training advanced deep neural mod-
els because span-level NER annotations are costly,
and domain expertise may be needed to annotate
data from domains such as finance, biomedical sci-
ences, etc.

Data augmentation is often used as an alterna-
tive to address the data scarcity issue in many NLP
tasks (see an NLP data augmentation survey by
Feng et al. (2021)). However, data augmentation
for NER imposes additional challenges because
NER requires token/span level label preservation.
Therefore, most existing works on NER data aug-
mentation primarily focus on local replacement for
entity mentions (Dai and Adel, 2020; Zhou et al.,
2022; Liu et al., 2022; Wenjing et al., 2021) as well
as context words (Dai and Adel, 2020; Li et al.,
2020). The replacements can be other mentions
with the same labels (Dai and Adel, 2020), syn-
onyms from an external lexical resource such as
wordnet (Dai and Adel, 2020), or tokens gener-
ated by the pretrained language models such as
BERT via masked token task (Zhou et al., 2022;
Liu et al., 2022; Wenjing et al., 2021). However, to
enhance the reliability of masked token prediction,
the language model usually needs to be fine-tuned
on the NER training data and label information is
often inserted close to the [MASK]s (Zhou et al.,
2022; Wenjing et al., 2021), which requires a de-
cent amount of labeled training data. A recent study
by Ding et al. (2020) trained a sequence generator
to synthesize sentences with inline NER annota-
tions that can create novel NER training examples
beyond local modifications but requires sufficient
NER labeled examples for training the generator.



This work primarily focuses on the less-studied
data augmentation method for NER — paraphras-
ing — which has the potential to introduce struc-
tural and lexical replacement and does not assume
many labeled examples. Specifically, we compare
established, and novel paraphrasing methods and
propose simple ways to preserve span-level labels.
Unlike most existing studies that focus on the influ-
ence of the amount of gold data only, we system-
atically investigate the effect of different levels of
paraphrasing on downstream performance, at dif-
ferent levels of gold annotations across 5 datasets.
We investigate the quality of paraphrases from 6
different systems as augmentation data, as well as
stand alone training data for NER. We further ex-
amine the entity memorization via the performance
change on unseen mentions for each entity and
address the issue with mention replacement.

We find paraphrasing to be generally effective
in low data regimes for most paraphrasers. How-
ever, the choice of paraphraser affects the magni-
tude, and direction of the change in performance
across all levels of gold data. We find the use of
LLM:s to generate inline annotations' while para-
phrasing to be superior to simpler heuristics, and
GPT-3 Davinci variant with inline annotations to
be a generally superior choice across datasets for
paraphrasing. In addition, our entity level analysis
shows that entity classes with low support (num-
ber of mentions) or low number proportion bene-
fit more from paraphrasing. We then investigate
whether there is an indications of entity memo-
rization with increasing paraphrasing strength, and
find that GPT-3 Davinci variant with inline anno-
tations is more robust against entity memorization
compared to other paraphrasers. We further reduce
memorization in some datasets by introducing men-
tion replacement based on GPT-3 DaVinci in the
paraphrasing pipeline.

2 Datasets and Paraphrasers

2.1 Datasets

NER datasets are chosen to have coverage across
a variety of domains including news, Wikipedia,
Twitter, biomedical research and search; while also
having a diverse set of entity types (word phrases,
alphanumeric, datetime, alphabetical etc.).

We choose 5 datasets based on the above prin-
ciples: Ontonotes5 (Hovy et al., 2006), Twee-

'Inline annotation: [Shakespeare]PERSON) was born and
raised in [Warwickshire](LOC)

Onto BC5 Twee Wnut
MIT-R -notes -CDR -bank -17
BT 1 0 2 0 5
Pegasus 1 0 13 3 8
Ada-A 10 0 0 11 0
Ada-B 4 0 0 16 2
DaV-A 3 0 4 5 3

DaV-B 26 35 26 10 27

Table 1: Counts the configurations of G & P where a
paraphraser shows highest relative improvement over no
paraphrasing baseline for a given G (Division by zero is
avoided by using absolute improvement). GPT-3 DaV-B
outperforms other paraphrasers across most datasets

bank (Jiang et al., 2022), WNUT 2017 (Derczyn-
ski et al., 2017), MIT Restaurant NER dataset
(MIT-R) (Liu et al., 2013), BioCreative V CDR
(BC5CDR) (Wei et al., 2016). Pre-formatted ver-
sions of all datasets are sourced from the TNER
project (Ushio and Camacho-Collados, 2021) on
Huggingface datasets(Wolf et al., 2020) (See Ap-
pendix A.15). Datasets such as WNUT also have
rare entities by design, allowing us to probe robust-
ness against entity memorization.

2.2 Paraphrasers and postprocessing

In our experiments, we compare six paraphrasing
systems:(1) Back Translation, (2) Pegasus, (3) Ada
(Prompt A) / Ada-A, (4) Ada (Prompt B) / Ada-B,
(5) Davinci (Prompt A) / DaV-A and (6) Davinci
(Prompt B) / DaV-B. We generate a maximum of
4 unique paraphrases per gold sentence for each
paraphraser and postprocess the paraphrases with
simple re-annotation and filtering.

2.2.1 Back-translation; BT

Back translation has been widely used as a data
augmentation method (Sugiyama and Yoshinaga,
2019; Corbeil and Ghadivel, 2020; Xie et al., 2020)
including in phrase based systems like (Bojar and
Tamchyna, 2011). For our experiments we use pre-
trained English-German and German-English mod-
els available from Huggingface model hub 2 via
(Tiedemann and Thottingal, 2020) and the model
architecture used is BART (Lewis et al., 2019). We
use a temperature parameter of 0.8 with greedy
decoding.

Zhttps://huggingface.co/models



Dataset Recall (%)
WNUT-17 93.2
Tweebank 92.9
Ontonotes 83.8
MIT-R 71.4
BC5CDR 90.3

Table 2: Entity recall across datasets for DaV-B without
any post processing. Recall is calculated via a case
insensitive search, so acts as a lower bound.

2.2.2 PEGASUS Paraphraser

PEGASUS, introduced in (Zhang et al., 2020) for
the purpose of summarization, is a large (568mn
parameters) pre-trained transformer (Vaswani et al.,
2017) based encoder-decoder model, pre-trained
using a custom self-supervised objective. To use
it as a paraphraser the model was fine-tuned on a
paraphrasing task. We use an off-the-shelf version
of PEGASUS fine-tuned for paraphrasing released
on Huggingface model hub 3

2.2.3 GPT-3 variants

GPT-3 (Brown et al., 2020) is an auto-regressive
decoder only transformer pre-trained for language
modeling, showing impressive in-context learning,
and instruction following ability (Radford et al.,
2019; Sanh et al., 2021; Wei et al., 2021; Ouyang
et al., 2022; Campos and Shern, 2022). We use the
OpenAl API # to query the Ada (~350M parame-
ters), and DaVinci (~175B parameters) variants of
GPT-3. We prompt both GPT-3 variants with two
versions of one shot prompts with a temperature of
0.8, max length of 100, and default values for other
parameters:

Prompt A GPT-3 variant is instructed to generate
paraphrases without specific instruction to retain
inline annotation for entities:

" Create a paraphrase for inputs like the following
example:

Input: Japanese band The Altruists is releasing
their hit single this fall.

Paraphrases:

1. The Altruists, a Japanese band is releasing their
hit single this fall

Input: BLANK

Paraphrases:

1"

3https://huggingface.co/tuner007/pegasus_paraphrase
“https://beta.openai.com/

Onto BC5 Twee Wnut
MIT-R -notes -CDR -bank -17
BT 0.66 0.74 076 041 0.30
Pegasus  0.68 0.75 0.78 033 0.23
Ada-A 0.71 0.73 074 036 0.23
Ada-B 0.70 0.72 0.74 034 0.23
DaV-A 0.67 0.75 076 039 0.27
DaV-B 0.73 0.80 082 041 032

Table 3: Test micro-F1 when training using only para-
phrases with P=1 for full dataset. Number in bold is
the maximum for a given dataset. GPT-3 DaV-B outper-
forms all paraphrasers across datasets

Prompt B GPT-3 variant is instructed to generate
paraphrases, while also retaining inline annotation
for entities (highlighted in red):

" Create a paraphrase for inputs like the following
example. Preserve the annotations in the [] and ():

Input: Japanese band [The Altruists J[(ORG) is re-
leasing their hit single this fall.

Paraphrases:

1. [The Altruists [(ORG), a Japanese band is releas-
ing their hit single this fall

Input: BLANK
Paraphrases:
1."

During paraphrasing, "BLANK" is replaced by
an actual gold sentence being paraphrased.

We conduct light prompt tuning based on entity
recall to select Prompt B, (Prompt A is then created
by dropping the annotation retention instructions).
The prompt that retains annotations for most gold
entity mentions (based on case insensitive string
match) in generated paraphrases, is chosen as the
final prompt. Table 2 shows the raw entity recall
for GPT-3 DaV with Prompt B across datasets.

2.2.4 Post-processing & filtering of
paraphrases

We re-annotate outputs of all paraphrasers based
on a case insensitive exact match search for the
entity values present in gold sentence. In the case
of LLMs generating inline annotations, this logic
is used to supplement annotations generated by the
model, relying on the model generated annotations
in cases of conflicts. Further filtering is applied to
the paraphrases from all models to remove para-
phrases for gold sentences shorter than 15 char-
acters, remove paraphrases that are a duplicate of
the gold sentence or of another paraphrase, and



when generation contains an entity not present in
entity space of the dataset. We also retain only the
first generation of multiline generations for para-
phrasers generating a numbered list of paraphrases
(common with prompt driven GPT-3 variants Ap-
pendix A.2)

For each paraphrasing configuration (model +
post-processing), we evaluated the entity recall rate
of the synthetic data as well as the language qual-
ity of 100 examples sampled from each dataset.
We find that DaV-B consistently outperforms other
paraphrasers in both entity recall and paraphrasing
quality metrics (See Appendix A.4).

3 Experiments

3.1 Using gold & paraphrasing data for
training NER

3.1.1 Experimental setup

In real world scenarios, we get annotated gold data
incrementally. In our experiments, we simulate this
by sampling gold data at various G-ratios by build-
ing upon previous samples. For example, while
generating gold sample for G=0.01 (first sample),
we sample 1% of the total dataset, stratified by en-
tities. However, when sampling for G=0.03, we
retain the sample from the first step, and sample
an additional 2% of the remaining dataset. This
process is repeated until G=1. As a result, going
from G=0.25 to G=0.5 does not actually double
the gold dataset used in training. Experiments are
conducted for the following G ratios: 0.01, 0.03,
0.05, 0.07, 0.09, 0.11, 0.25, 0.5, 1.0°. At each
sampling step, we also sample an equivalent per-
centage of gold samples with no entities. Early
experiments suggested increased benefit of para-
phrasing at lower dataset size, so we explore more
G ratios in that space.

For each gold to paraphrase ratio combination,
we first sample gold data by the method described
above. Then we randomly sample paraphrases
for the gold IDs that are already sampled in the
previous steps (including the current step). The
paraphrasing strength is varied as a percentage of
paraphrases sampled for a given number of gold
IDs at the following P ratios: 0.0 (no paraphras-
ing), 0.25, 0.5, 1.0, 2.0, 4.0. For each G/P ratio,
the corresponding dataset is used to fine-tune a
distilbert-base-cased base (66M parameters) model

SWe only go up to G=0.25 for large Ontonotes dataset for
speed

for named entity recognition using the 1-step train-
ing described by (Okimura et al., 2022) using stan-
dard classification loss over hidden states of individ-
ual tokens. The models are trained to convergence
with early stopping (patience=5, metric=eval_F1).

We generate the overall, and entity specific micro
F1 for each G/P combination along with standard
deviation across three runs.

3.1.2 Analysis method

We first present visualizations and tables to sum-
marize the general trends of the overall NER F1
performance improvement with respect to different
paraphrasers and the dynamics of paraphrase ratio
and gold ratio.

To support the observations made from the fig-
ures (1, 2) and tables (1, 3) we perform analysis
at the entity level, by conducting statistical tests
on the downstream performance improvement A 71,
where

Api(g,p, ent) = f1(g,p,ent) — f1(g,0, ent)

Specifically, we investigate whether the change
in downstream NER F1 depends on certain charac-
teristics of an entity including entity support (how
many examples one entity class contains) and sur-
face form features (proportion of capitalizations
and numbers in entity types). We build a linear
regression model using the entity characteristics
aforementioned along with the paraphraser, G & P
ratios as the predictors and Ay as the dependent
variable, formalized as follows:

Ag ~ Paraphrase * (Gold + model +
support + capitalize + number)

3.1.3 Results

Effect of Paraphrasers Table 1 shows the counts
across G&P configurations where a paraphraser
has the highest relative improvement and Figure
1 demonstrates the F1 change after adding the
synthetic data. Both suggest, the choice of para-
phraser strongly dictates the augmentation perfor-
mance. GPT-3 DaV-B consistently outperforms,
or matches other paraphrasers and is a safe default
choice for paraphrasing across domains. Across the
Davinci variants, inline annotations with Prompt B
strictly outperform those introduced using heuris-
tics. DaV-B also achieves or matches best perfor-
mance at G=1 (0.25 for Ontonotes) and P=4 across
all datasets (See Appendix A.6). Ada variants show
the most inconsistent results, with Backtranslation
and Pegasus outperforming them as well as DaV-A
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Figure 1: Matrix of scores of how F1 changed relative to the no paraphrasing (P=0) baseline after the addition of
synthetic data across datasets for different G & P ratios. Improvement/worsening in any dataset at a given G/P ratio
gets a score of +1/-1 respectively, and aggregation is then done across datasets. Higher numbers represent better
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Figure 2: Micro F1 for Davinci (Prompt B) on datasets across gold and paraphrase ratios



factor coef t p

P 0.0148  9.004 le-15
G -0.0048 -1.393 0.164
DaV-B 0.0106 3986 le-15
support -0.0031 -5.815 le-15
cap -0.0011  -0.473 0.636
number -0.0154  -5.031 1le-15
P.G -0.0032  -1.937 0.053
P:DaV-B  0.0078 6.121  1le-15
P:support -0.0028 -10.925 1le-15
P:cap 0.0008 0.715 0475
P:number -0.0165 -11.095 1le-15

Table 4: Coefficients of the model with entity level
analysis (See the Appendix A.7 for the coefficients of
the full model) A ¢y ~ Paraphrasex (Gold+model +
support + capitalize + number).

in many cases. Full results are available in Ap-
pendix A.S.

Similarly, the statistical model (Table 4) shows
that both main factor of DaV-B (coef = 0.0106
, p < le-15) and its interaction with paraphrase
ratio (coef = 0.0078, p < le-15) are positive and
significant, indicating that as P increases DaV-B
has significantly more improvement than the ref-
erence model (Ada-A) but other paraphrases do
not show such a pattern as the main factors are all
insignificant and interactions are inconsistent.

Effect of P and G While we run similar exper-
iments on all paraphraser-dataset pairs, we share
the aggregate F1 performance across all G&P con-
figurations of DaV-B on all datasets in Figure 2
(Full results Appendix A.5). We see consistent
benefits of paraphrasing at lower gold ratios, and
diminishing returns in relative performance bump
as we go to higher values. Other paraphrasers show
similar trends at low G ratios with some exceptions
(Ada variants in BCSCDR, and Backtranslation on
MIT-R) (See Figure 1, Appendix A.5), although
we see a lot more mixed results at medium to high
G ratios.

Our statistical model (see Table 4) reveals simi-
lar conclusions: we see the main factor of P (coef =
0.0148, p < 1e-15) is significant and its interaction
with G (coef = -0.0032, p < 0.053 ) are marginally
significant. This indicates that P is generally posi-
tive correlated with performance gain and there is
a weak tendency that the coefficients of P reduces
as G increases. In other words, paraphrasing im-
proves the downstream performance but becomes

less effective when adding more gold data.

Effect of Entity Characteristics In terms of en-
tity support, the model shows a significant negative
main factor (coef = -0.0031, p < le-15) and an in-
teraction with a paraphrase ratio (coef = -0.0028, p
< le-15), which reveals that the effect of entity sup-
port on performance improvement varies based on
P with the relationship: improvement ~ constant
+ (-0.0031 + (-0.0028) * paraphrase)) * support.
The negative coefficient of support indicates entity
classes with less support are more likely to benefit
from an increase of paraphrasing than those with
more support.

As for the surface form characteristics, the model
reveals a negative interaction (coef = -0.0165, p <
le-15) and negative main factor (coef = -0.0154,
p < le-15)) for the number form, suggesting the
proportion of mentions being a number is nega-
tively correlated with performance improvement
and the negative correlation is enhanced as the para-
phrasing ratio grows. By contrast, neither the main
factor for capitalization nor the interaction is sig-
nificant, indicating the effect of surface form of
capitalization does not play an important role .

3.2 Using only paraphrases for training NER
3.2.1 Experimental setup

We further evaluate quality of paraphrases directly
by using only synthetic data to train NER models.
These experiments are done at P=1 for paraphrases
generated from the entire training set (G=1).

3.2.2 Results

Aggregate F1 scores of all paraphrasers are shown
in Table 3. We find GPT-3 DaV-B paraphrases per-
forming best across all datasets. The trends among
paraphrasers track augmentation performance ob-
served in Figure 1 and Appendix A.S5.

3.3 Entity Memorization

Our proposed augmentation and re-annotation
strategies in Section 2.2 promote duplication of en-
tity mentions for paraphrases from all paraphrasers.
This can lead to shortcut learning (Geirhos et al.,
2020) where the model may just memorize men-
tions, as opposed to learning features that general-
ize to unseen mentions (Augenstein et al., 2017).
This effect may be observed as a drop in perfor-
mance in the subsets of our test sets that contain
mentions not seen during model training (i.e. an un-
seen entity test set). We therefore, extend our entity



level analysis to also study memorization per entity
type, with entity-level harder unseen entity (UE)
test sets. While a change in performance on UE
test sets may come from a combination of factors,
we treat a drop to be indicative of memorization.
Similarly an increase in performance in UE test
set performance with increasing paraphrasing, may
indicate a paraphraser that does not promote mem-
orization, but instead improves generalization in
the NER model.

3.3.1 Creation of UE test sets

For every entity type in each dataset, we generate
UE test sets for all G/ P ratio combinations. For
any given configuration of G, P, and entity type, an
UE test set would include test set samples that con-
tain mentions of that entity not seen within training
data for that configuration.

3.3.2 Experimental setup

Models trained for each dataset, G / P ratio, and
paraphraser combination in Section 3.1 are evalu-
ated on their respective entity level UE test sets to
generate F1 scores per entity type.

To measure the proclivity of paraphrasers to gen-
erate synthetic data that promotes memorization
we conduct a regression analysis similar to section
3.1.2.

We define memorization as the drop in f1 per-
formance on the UE test sets when paraphrases are
added during training at a given G ratio. More for-
mally, the memorization value for given entity at a
particular G, P combination is

Memorization(g,p,ent) = —AUE ¢1(g, p, ent)
=UE1(g,0,ent) — UEfi(g, p, ent)

3.3.3 Results

Effect of Paraphrasers Based on the statisti-
cal model Table 5, DaV-B shows a consistent
reduction in memorization on average across all
entities(coef=-0.0138) and as P is increased memo-
rization further reduces(coef=-0.0113) suggesting
that DaV-B is less susceptible to inducing mem-
orization characteristics in the downstream NER
model than the Ada-A model as reference. On the
contrary, we see worsening of memorization with
most other paraphrasers (Ada-B, BT) on average
with Ada-A as reference, while Pegasus at high P
does seem to reduce memorization although not to
the same extent as Dav-B Appendix A.8. All other
interactions with memorization do not pass the 5%
significance threshold.

factor coef t p

P -0.01 5769 1le-15
G 0.0012 0323 0.746
DaV-B -0.0138 -4.937 le-15
support 0.0041  7.257 le-15
cap -0.0018 -0.759 0.448
number 0.0162 5.028 le-15
P:G 0.0045 2543 0.011
P:DaV-B  -0.0113 -8.354 le-15
P:support 0.0031 11.456 1le-15
P:cap -0.0044 -3.874 le-15
P:number 0.0142 9.062 1le-15

Table 5: Coefficients of the Linear model for Memoriza-
tion: memorization ~ Paraphrase * ( Gold + model +
support + capitalize + number). Full results Appendix
A8

Effects of P and G Table 5 suggests that para-
phrasing reduces memorization (coef=-0.01) on
average across all entities, however, at higher Gs,
paraphrasing worsens memorization(coef=0.0045).
Level of G by itself does not significantly interact
with memorization (p=0.746>0.05).

Effect of Entity Characteristics Numerical and
high support entities seem to have a significant pos-
itive interaction with memorization (coef=0.01162
and 0.0041 respectively) which increases in effect
as P is increased (coef=0.0142 and 0.0031). This
implies paraphrasing for entities with a high sup-
port generally worsens the performance on unseen
entities, indicating memorization. Also, numeri-
cal entities seem to be easier for the NER model
to memorize. Finally, Capitalized entities at high
P has a negative correlation with memorization
(coef=-0.0044).

3.3.4 Addressing memorization with mention
replacement

We extend our experiments for GPT-3 DaV-B
by also incorporating entity mention replacement
(MR) into the paraphrasing pipeline. In our ap-
proach, we utilize the ability of language models to
be a knowledge base (Petroni et al., 2019), and fol-
low instructions, to source replacement mentions
for various entity mentions and types in our train-
ing set. In particular, for every entity mention in
the gold set, we prompt GPT-3 DaVinci model to
generate entity mentions that are similar to the gold
entity mention, while also providing a phrase level
definition of the entity type being replaced.



Prompt used for mention replacement:

Please list 10 examples of ENTITY_TYPE such as
'ENTITY_VALUE’:

1.

ENTITY_VALUE is replaced with the actual
gold mention, and ENTITY_TYPE is replaced by
anominal phrase description of the entity class (See
Appendix A.1.1 Figure 4). This label conditioned
prompt allows us to generate mention replacements
closer to the gold entity value, that are more likely
to remain consistent with entity label. We use a
temperature of 0.8, and a maximum length of 250,
with other parameters set to default in the gener-
ation. Since our base paraphrases are biased to-
wards entity value retention, we are able to retain
span annotation when replacing the entity value
in any given paraphrase with an equivalent entity
sampled from GPT-3 DaVinci generations. These
paraphrases are used as augmentation data to run
experiments similar to Section 3.1

Results Table 6 compares DaV-B to DaV-B MR
across all datasets based on relative improvement in
overall F1 over no paraphrasing baseline for differ-
ent G values. Here we see mention replacement es-
pecially useful for MIT-R, Tweebank, and WNUT-
17 datasets, while being harmful in Ontonotes.
Mention replacement makes no significant differ-
ence in BC5CDR Appendix A.14.

We also compare the performance of DaV-B vs
Dav-B MR for indications of entity memorization.
To do so, we introduce a "swapped" feature and
conduct statistical analysis similar to Section 3.3.2.
Table 7 shows that mention replacement is a good
solution to reduce memorization (coef=-0.0065)
in general. The interaction between mention re-
placement as paraphrasing increases is insignificant
(p=0.533>0.05) which implies that the coefficient
of MR does not vary much as P increases.

4 Future work

While our work proposes a paraphrasing pipeline
that performs consistently better than established
paraphrasing pipelines in NER, we expect further
benefits to come from more exhaustive tuning of
prompts used to generate paraphrases. Another
potential direction to improve downstream perfor-
mance is to explore better (than random) sampling
strategy for paraphrases (based on entity density,
entity recall, or other metrics).

Onto BC5 Twee Wnut
MIT-R -notes -CDR -bank -17
DaV-B 15 35 28 14 15
DaV-B
MR 30 0 17 31 30

Table 6: Counts the configurations of G & P where a
paraphraser shows highest relative improvement over no
paraphrasing baseline for a given G (Division by zero
is avoided by using absolute improvement). MR refers
to mention replacement. We also conducted Wilcoxon
signed-rank tests to evaluate whether the relative perfor-
mance improvement before or after MR is significantly
different. The tests show a significant improvement
for MIT-R, Tweebank and Wnut17 and no significant
difference for BCSCDR and a significant reduction for
Ontonotes.

factor coef t p

P -0.0054 -5.187 0.000
MR -0.0065 -2.115 0.035
P:MR 0.0009 0.623 0.533

Table 7: Coefficients of the Linear model for Memo-
rization with Mention Replacement: memorization ~
Paraphrase « MR.

5 Conclusion

We study the effect of six paraphrasing systems on
downstream NER performance across 5 datasets.
We find that the choice of paraphraser system
(model + prompt) strongly affects NER perfor-
mance. GPT-3 DaV-B performs the best at gen-
erating paraphrases capable of improving NER per-
formance while other paraphrasers show mixed
results. We further find that generating inline an-
notations using GPT-3 Davinci works superior to
strictly heuristic based annotations. While we find
paraphrasing to be more effective at lower amount
of training data, it helps at higher levels depending
on dataset, and paraphraser. Additionally, we find
GPT-3 DaV-B to be most immune against entity
mention memorization, with the memorization re-
ducing further with GPT-3 based mention replace-
ment on certain datasets. Our findings speak to the
exceptional effectiveness of GPT-3 DaVinci based
systems in generating paraphrases promoting gen-
eralization in NER applications, thereby making it
the de facto choice for paraphrasing in NER.



References

Isabelle Augenstein, Leon Derczynski, and Kalina
Bontcheva. 2017. Generalisation in named entity
recognition: A quantitative analysis. Computer
Speech & Language, 44:61-83.

Ondfej Bojar and AleS Tamchyna. 2011. Improving
translation model by monolingual data. In Proceed-
ings of the Sixth Workshop on Statistical Machine
Translation, pages 330-336, Edinburgh, Scotland.
Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Jon Ander Campos and Jun Shern. 2022. Training lan-
guage models with language feedback. In ACL Work-
shop on Learning with Natural Language Supervi-
sion. 2022.

Jean-Philippe Corbeil and Hadi Abdi Ghadivel. 2020.
Bet: A backtranslation approach for easy data aug-
mentation in transformer-based paraphrase identifica-
tion context. arXiv preprint arXiv:2009.12452.

Xiang Dai and Heike Adel. 2020. An analysis of simple
data augmentation for named entity recognition. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 3861-3867,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Leon Derczynski, Eric Nichols, Marieke van Erp, and
Nut Limsopatham. 2017. Results of the WNUT2017
shared task on novel and emerging entity recogni-
tion. In Proceedings of the 3rd Workshop on Noisy
User-generated Text, pages 140—147, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Bosheng Ding, Linlin Liu, Lidong Bing, Canasai Kru-
engkrai, Thien Hai Nguyen, Shafiq Joty, Luo Si, and
Chunyan Miao. 2020. DAGA: Data augmentation
with a generation approach for low-resource tagging
tasks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6045-6057, Online. Association for
Computational Linguistics.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard Hovy. 2021. A survey of data augmentation
approaches for NLP. In Findings of the Association
Jfor Computational Linguistics: ACL-IJCNLP 2021,
pages 968-988, Online. Association for Computa-
tional Linguistics.

Robert Geirhos, Jorn-Henrik Jacobsen, Claudio
Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. 2020.
Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665-673.

Charles R Harris, K Jarrod Millman, Stéfan J Van
Der Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, et al. 2020. Array programming
with numpy. Nature, 585(7825):357-362.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
The 90% solution. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Com-
panion Volume: Short Papers, pages 57-60, New
York City, USA. Association for Computational Lin-
guistics.

Hang Jiang, Yining Hua, Doug Beeferman, and Deb
Roy. 2022. Annotating the tweebank corpus on
named entity recognition and building NLP models
for social media analysis. CoRR, abs/2201.07281.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Kun Li, Chengbo Chen, Xiaojun Quan, Qing Ling,
and Yan Song. 2020. Conditional augmentation
for aspect term extraction via masked sequence-to-
sequence generation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 70567066, Online. Association
for Computational Linguistics.

Jian Liu, Yufeng Chen, and Jinan Xu. 2022. Low-
resource ner by data augmentation with prompt-
ing. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI-22,
pages 4252-4258. International Joint Conferences on
Artificial Intelligence Organization. Main Track.

Jingjing Liu, Panupong Pasupat, Yining Wang, Scott
Cyphers, and Jim Glass. 2013. Query understanding
enhanced by hierarchical parsing structures. In 2013
IEEE Workshop on Automatic Speech Recognition
and Understanding, pages 72-77. IEEE.

Wes McKinney et al. 2011. pandas: a founda-
tional python library for data analysis and statistics.
Python for high performance and scientific comput-
ing, 14(9):1-9.

Tong Niu, Semih Yavuz, Yingbo Zhou, Nitish Shirish
Keskar, Huan Wang, and Caiming Xiong. 2020. Un-
supervised paraphrasing with pretrained language
models. arXiv preprint arXiv:2010.12885.

Itsuki Okimura, Machel Reid, Makoto Kawano, and Yu-
taka Matsuo. 2022. On the impact of data augmenta-
tion on downstream performance in natural language
processing. In Proceedings of the Third Workshop on
Insights from Negative Results in NLP, pages 8§8-93.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.


https://aclanthology.org/W11-2138
https://aclanthology.org/W11-2138
https://aclanthology.org/W11-2138
https://doi.org/10.18653/v1/2020.coling-main.343
https://doi.org/10.18653/v1/2020.coling-main.343
https://doi.org/10.18653/v1/2020.coling-main.343
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/2021.findings-acl.84
https://aclanthology.org/N06-2015
https://aclanthology.org/N06-2015
https://aclanthology.org/N06-2015
http://arxiv.org/abs/2201.07281
http://arxiv.org/abs/2201.07281
http://arxiv.org/abs/2201.07281
http://arxiv.org/abs/2201.07281
http://arxiv.org/abs/2201.07281
https://doi.org/10.18653/v1/2020.acl-main.631
https://doi.org/10.18653/v1/2020.acl-main.631
https://doi.org/10.18653/v1/2020.acl-main.631
https://doi.org/10.18653/v1/2020.acl-main.631
https://doi.org/10.18653/v1/2020.acl-main.631
https://doi.org/10.24963/ijcai.2022/590
https://doi.org/10.24963/ijcai.2022/590
https://doi.org/10.24963/ijcai.2022/590
https://doi.org/10.24963/ijcai.2022/590
https://doi.org/10.24963/ijcai.2022/590

2022. Training language models to follow in-
structions with human feedback. arXiv preprint
arXiv:2203.02155.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, 12:2825-2830.

Fabio Petroni, Tim Rocktidschel, Patrick Lewis, An-
ton Bakhtin, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2019. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Amane Sugiyama and Naoki Yoshinaga. 2019. Data
augmentation using back-translation for context-
aware neural machine translation. In Proceedings of
the Fourth Workshop on Discourse in Machine Trans-
lation (DiscoMT 2019), pages 35-44, Hong Kong,
China. Association for Computational Linguistics.

Jorg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT — Building open translation services for the
World. In Proceedings of the 22nd Annual Confer-
enec of the European Association for Machine Trans-
lation (EAMT), Lisbon, Portugal.

Asahi Ushio and Jose Camacho-Collados. 2021. T-
NER: An all-round python library for transformer-
based named entity recognition. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 53—62, Online. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, et al. 2020. Scipy 1.0: fundamental

10

algorithms for scientific computing in python. Na-
ture methods, 17(3):261-272.

Chih-Hsuan Wei, Yifan Peng, Robert Leaman, Allan Pe-
ter Davis, Carolyn J Mattingly, Jiao Li, Thomas C
Wiegers, and Zhiyong Lu. 2016. Assessing the state
of the art in biomedical relation extraction: overview
of the biocreative v chemical-disease relation (cdr)
task. Database, 2016.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Zhu Wenjing, Liu Jian, Xu Jinan, Chen Yufeng, and
Zhang Yujie. 2021. Improving low-resource named
entity recognition via label-aware data augmentation
and curriculum denoising. In Proceedings of the 20th
Chinese National Conference on Computational Lin-
guistics, pages 1131-1142, Huhhot, China. Chinese
Information Processing Society of China.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong,
and Quoc Le. 2020. Unsupervised data augmenta-
tion for consistency training. Advances in Neural
Information Processing Systems, 33:6256-6268.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages

11328-11339. PMLR.

Ran Zhou, Xin Li, Ruidan He, Lidong Bing, Erik Cam-
bria, Luo Si, and Chunyan Miao. 2022. MELM: Data
augmentation with masked entity language model-
ing for low-resource NER. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2251-2262, Dublin, Ireland. Association for Compu-
tational Linguistics.


https://doi.org/10.18653/v1/D19-6504
https://doi.org/10.18653/v1/D19-6504
https://doi.org/10.18653/v1/D19-6504
https://doi.org/10.18653/v1/D19-6504
https://doi.org/10.18653/v1/D19-6504
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://aclanthology.org/2021.ccl-1.101
https://aclanthology.org/2021.ccl-1.101
https://aclanthology.org/2021.ccl-1.101
https://aclanthology.org/2021.ccl-1.101
https://aclanthology.org/2021.ccl-1.101
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2022.acl-long.160
https://doi.org/10.18653/v1/2022.acl-long.160
https://doi.org/10.18653/v1/2022.acl-long.160
https://doi.org/10.18653/v1/2022.acl-long.160
https://doi.org/10.18653/v1/2022.acl-long.160

A Appendix

11



The appendix includes prompt design and multiline generation, human annotation guideline, paraphrase
generation quality analysis, analysis of the interaction between gold and paraphrase ratio for each dataset,
downstream f1 score for each dataset, risks and limitations as well as software acknowledgements.

A.1 Prompt design

A.1.1 Entity mention replacement prompts

The following prompt is used in the entity mention replacement pipeline to generate entity values similar
to gold mentions: ENTITY_TYPE is replaced by a phrase that explains the entity in a few words using

Please list 10 examples of {ENTITY_TYPE} such as {ENTITY_VALUE}":
1.

Figure 3: GPT-3 DaVinci is instructed to generate mention replacements for ENTITY_VALUE of the type
ENTITY_TYPE

the following table: Here is an example for the prompt used for entity mention replacement along with

Dataset Entity type Replacement

tner_bc5cdr CHEMICAL chemical

tner_bc5cdr DISEASE disease

tner_mit_restaurant PRICE price

tner_mit_restaurant CUISINE cuisine

tner_mit_restaurant LOCATION location

tner_mit_restaurant RESTAURANT_NAME restaurant name

tner_mit_restaurant AMENITY amenity

tner_mit_restaurant RATING rating

tner_mit_restaurant HOURS hours

tner_mit_restaurant DISH dish

tner_ontonotes5 CARDINAL cardinal value

tner_ontonotes5 DATE date

tner_ontonotes5 PERSON person

tner_ontonotes5 NORP nationalities or religious or political groups
tner_ontonotes5 GPE countries or cities or states

tner_ontonotes5 LAW named documents made into laws
tner_ontonotes5 ORG companies or agencies or institutions
tner_ontonotes5 PERCENT percentage

tner_ontonotes5 ORDINAL ordinal value

tner_ontonotes5 MONEY money

tner_ontonotes5 WORK_OF_ART work of art (titles of books, songs, etc)
tner_ontonotes5 FAC facilities (buildings, airports, highways, bridges, etc)
tner_ontonotes5 TIME time smaller than a day

tner_ontonotes5 LOC location (mountains, ranges, bodies of water)
tner_ontonotes5 QUANTITY quantity measurement for weight or distance
tner_ontonotes5 PRODUCT product (vehicles, weapons, foods, etc)
tner_ontonotes5 EVENT event (named hurricanes, battles, wars, sports events, etc)
tner_ontonotes5 LANGUAGE language

tner_tweebank_ner ORG organization

tner_tweebank_ner PER person

tner_tweebank_ner LOC locations

tner_tweebank_ner MISC named entities that are not locations, persons, organizations
tner_wnut2017 LOCATION geopolitical locations and facilities

tner_wnut2017 GROUP group name

tner_wnut2017 CORPORATION corporation

tner_wnut2017 PERSON person

tner_wnut2017 CREATIVE_WORK creative work (song, movie, book and so on)
tner_wnut2017 PRODUCT product name (tangible goods, or well-defined services)

Figure 4: ENTITY_TYPE is replaced by replacement phrases for each entity type

generation from GPT-3 DaVinci:
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Please list 10 examples of nationalities or religious or political groups such as 'American':
1. American

2. British

3. Canadian

~

. French

o

.German

o

. Italian
7.Japanese
8. Russian
9. Spanish
10. Swiss

Figure 5: Mention replacement prompt and output from GPT-3 DaVinci

A.2 Multiline generation
LLM paraphrasers can be triggered to generate multi-line outputs. This behavior is more common in Ada
variants over DaVinci, showing the DaVinci is better at following prompt instructions.

Create a paraphrase for inputs like the following example:

Input: Japanese band The Altruists is releasing their hit single this fall.

Paraphrases:

1. The Altruists, a Japanese band is releasing their hit single this fall.

Input: #Volunteers are key members of #CHEQ's One Team - helping kids and families be their healthiest #NVW2016 URL1387

Paraphrases:

1. The #Volunteers are key members of #CHEQ's One Team - helping kids and families be their healthiest for #NVW2016.

2. The #Volunteers are key members of #CHEQ's One Team - helping kids and families be their healthiest for #NVW2016.

3. The #Volunteers are key members of #CHEQ's One Team - helping kids and families be their healthiest for #NVWZOI()A\

Figure 6: GPT-3 variants sometimes generate multiple numbered paraphrases. We choose to retain only the first
paraphrase in these cases

A.3 Human evaluation guidelines

See Figure 7 for annotation guideline.

A.4 Paraphrase generation quality Analysis

Besides assessing usefulness for NER with actual training, we investigate paraphrase generation quality
directly from two perspectives — entity preservation and paraphrase quality to see to what extent these
metrics correlate with NER performance.

As entities are central to NER, we hypothesize entity preservation to be important for performance. We
count the number of gold entities that appear in paraphrases with correct annotations via a case insensitive
string match (entity recall). This calculation sets a lower bound of the entity preservation accuracy.

Good paraphrases are also expected to introduce form variety while preserving the meaning faithfully,
potentially helping downstream performance. We asked three human annotators to annotate paraphrases
generated by the six systems for 50 training examples sampled for each dataset. Specifically, human
annotators were instructed to ignore the entity accuracy and to score paraphrases from 1-5 based on the
paraphrasing quality. Our guidelines are similar to (Niu et al., 2020) (Appendix A.3). The annotator are
from the internal data annotator team hired by the company and the annotation task is assigned as the
annotation work.

According to Figure 8(a), among all the paraphrase systems Davinci (Prompt B) has the highest entity
recall rate, followed by Davinci (Prompt A) and backtranslation. While, Ada and Pegasus are more likely
to lose gold entities. This suggests a large-sized GPT-3 model with an appropriate prompt can generate
examples with high-quality inline entity annotations but a small-sized GPT-3 consistently underperforms
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In this document, we refer to the original sentence as "Gold" and the rephrased sentences as "Paraphrase”

We will present a set of 100 gold / paraphrase pairs from each dataset and ask annotators to annotate some metrics:
Example

One labeling example may look like:

Gold: / am looking to invest in [Apple inc)(ORG) and [TSLAJ(ORG)

Paraphrase: | am looking to buy [Apple](ORG) stock and [AMZN](ORG) stock.

Entity specific metrics:

* How many entities (irrespective of type) in gold, are absent from paraphrase? (Fn) — 1 — TSLA*

o How many entities in gold are present in paraphrase and also annotated with correct type? (Tp) — 1 (Apple)*
* How many entities in paraphrase are absent in gold, but correct? — eg. 1 — AMZN**

* How many entities in paraphrase have wrongly annotated span?

* How many entities in paraphrase have wrongly annotated type?

For empty paraphrases, please consider them legitimate paraphrases, and annotate as appropriate. eg. all gold entities would be missing from an empty paraphrase.
*Notice we do not care for using an equivalent name/phrase for gold entity. eg. "nearby" is the same as "close by"; "Apple inc" is the same as "AAPL" etc.

**Hallucination

Quality metrics:

o Score paraphrases on a scale of 1-5. 1 being worst, 5 being the best.

Instructions (Please read carefully o ensure thatyour work gets approved as quickly as possibe) (Cick to expand)

Welcome!

For
ranging fom Uy Goo to Very Poor
Horo are somo general guideines:

2

3. Copying s NOT paraphasing. ‘\

or the everse,

. Figure 4: Interface of our MTurk studies for head-to-head comparisions with other models.
o There can be ties / same score for multiple paraphrases
* Ignore annotation — Only look at the actual sentence.
® eg. in this— "/ am looking to buy [ApplI(ORG)e stock and [AMZN](ORG) stock."; only consider the text — "/ am looking to buy Apple stock and AMZN stock"

Figure 7: Annotation guideline

3.5

I Back-Translation Ada-promptA DaVinci-promptA s DaVinci_promptB B ADA_promptB I BackTranslation
B Pegasus mmm  Ada-promptB s DaVinci-promptB DaVinci_promptA ADA_promptA ~ EEE Pegasus

3.0

Entity-Recall

tweebank bc5cdr mit_restaurant ontonotes . on bc5cdr mit twee wnut
Dataset Dataset
(a) Entity recall evaluation (b) Human evaluation of paraphrasing quality

Figure 8: Paraphrase Evaluation

even a simple Back-translation system. Figure 8(b) shows Davinci systems always have the best human
evaluation scores across datasets followed by Pegasus and Back-translation, while Ada systems are

consistently the worst (missing value of Pegasus for mit restaurant is due to technical issue).

In summary, we find that paraphrases generated by the Davinci (Prompt B) system often preserve entities
and are of a good paraphrasing quality whereas Ada systems consistently underperform other systems in
both metrics across datasets. These results are partially consistent with the downstream evaluations in that
the augmentation data generated by Davinci (Prompt B) have reliably better downstream performance
compared to other systems. However, broader trends in paraphrasing quality do not track with downstream

NER performance.
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A.5 Detailed results across different gold data sizes for all datasets
A.5.1 BC5CDR

Bescdr results
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A.5.2 Ontonotes

Ontonotes results
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A.5.4 Tweebank
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A.5.5 WNUT-17
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A.6 Heatmap of micro-fl scores across all datasets & paraphrasers
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A.6.2 Ontonotes
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A.6.3 MIT-R

MIT Restaurant - Backtranslation
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A.6.4 Tweebank
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A.6.5 WNUT-17

WNUT17 - Backtranslation
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A.7 Entity Level Analysis

OLS Regression Results

Dep. Variable: change R-squared: 0.188
Model: 0LS Adj. R-squared: 0.187
Method: Least Squares F-statistic: 111.9
Date: Sat, @8 Oct 2022 Prob (F-statistic): 0.00
Time: 15:20:34 Log-Likelihood: 14727.
No. Observations: 9180  AIC: -2.941e+04
Df Residuals: 9160 BIC: -2.927e+04
Df Model: 19
Covariance Type: nonrobust

coef std err t P>|t]| [0.025 0.975]
Intercept 0.0187 0.003 5.505 0.000 0.012 0.025
model[T.ada_promptB] -0.0013 0.003 -0.499 0.618 -0.007 0.004
model[T.bt] -0.0048 0.003 -1.786 0.074 -0.010 0.000
model[T.davinci_promptA] -0.0010 0.003 -0.390 0.696 —-0.006 0.004
model[T.davinci_promptB] 0.0106 0.003 3.986 0.000 0.005 0.016
model[T.pegasus] 0.0033 0.003 1.247 0.212 -0.002 0.009
p 0.0148 0.002 9.004 0.000 0.012 0.018
p:model[T.ada_promptB] —-0.0004 0.001 -0.298 0.766 -0.003 0.002
p:model[T.bt] 1.799e-05 0.001 0.014 0.989 -0.003 0.003
p:model[T.davinci_promptA] -0.0012 0.001 -0.943 0.346 -0.004 0.001
p:model[T.davinci_promptB] 0.0078 0.001 6.028 0.000 0.005 0.010
p:model[T.pegasus] 0.0044 0.001 3.444 0.001 0.002 0.007
g -0.0048 0.003 -1.393 0.164 -0.012 0.002
log_support_median_base -0.0031 0.001 -5.815 0.000 -0.004 -0.002
new_capitalization_median -0.0011 9.002 -0.473 0.636 -0.005 0.003
new_number_median -0.0154 0.003 -5.031 0.000 -0.021 -0.009
p:g -0.0032 0.002 -1.937 0.053 -0.007 3.86e-05
p: log_support_median_base -0.0028 0.000 -10.925 0.000 -0.003 -0.002
p:new_capitalization_median 0.0008 9.001 0.715 0.475 -0.001 0.003
p:new_number_median -0.0165 0.001 -11.095 0.000 -0.019 -0.014
Omnibus: 4991.319 Durbin-Watson: 1.836
Prob(Omnibus): 0.000 Jarque-Bera (JB): 492136.167
Skew: 1.690 Prob(JB): 0.00
Kurtosis: 38.71@0 Cond. No. 116.

Figure 9: Linear regression model for Entity Level Analysis
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A.8 Memorization Analysis

A.8.1 Entity Level Memorization

OLS Regression Results

Dep. Variable: memorization_delta R-squared: 0.232
Model: OLS Adj. R-squared: 0.230
Method: Least Squares F-statistic: 145.6
Date: Mon, 10 Oct 2022 Prob (F-statistic): 0.00
Time: 09:10:34  Log-Likelihood: 14262
No. Observations: 9180  AIC: —-2.848e+04
Df Residuals: 9160 BIC: -2.834e+04
Df Model: 19
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]
Intercept -0.0155 0.004 -4.350 0.000 -0.023 —-0.009
model[T.ada_promptB] 0.0035 0.003 1.254 0.210 -0.002 0.009
model[T.bt] 0.0071 0.003 2.522 0.012 0.002 0.013
model[T.davinci_promptA] -0.0012 0.003 -0.422 0.673 -0.007 0.004
model[T.davinci_promptB] -0.0138 0.003 -4.937 0.000 -0.019 -0.008
model[T.pegasus] -0.0040 0.003 -1.422 0.155 -0.009 0.002
p -0.0100 0.002 -5.769 0.000 -0.013 -0.007
p:model[T.ada_promptB] 0.0004 0.001 0.307 0.759 -0.002 0.003
p:model[T.bt] -9.022e-05 0.001 -0.066 0.947 -0.003 0.003
p:model[T.davinci_promptA] -0.0010 0.001 -0.702 0.483 -0.004 0.002
p:model[T.davinci_promptB] -0.0113 0.001 -8.354 0.000 -0.014 -0.009
p:model[T.pegasus] —-0.0060 0.001 -4.432 0.000 -0.009 -0.003
new_capitalization_median -0.0018 0.002 -0.759 0.448 -0.006 0.003
new_number_median 0.0162 0.003 5.028 0.000 0.010 0.023
log_base_median_support 0.0041 0.001 7.257 0.000 0.003 0.005
g 0.0012 0.004 0.323 0.746 —-0.006 0.008
p:new_capitalization_median -0.0044 0.001 -3.874 0.000 -0.007 -0.002
p:new_number_median 0.0142 0.002 9.062 0.000 0.011 0.017
p:log_base_median_support 0.0031 0.000 11.456 0.000 0.003 0.004
p:g 0.0045 0.002 2.543 0.011 0.001 0.008
Omnibus: 1751.645 Durbin-Watson: 1.821
Prob(Omnibus): 0.000 Jarque-Bera (JB): 38026.707
Skew: 0.322  Prob(JB): 0.00
Kurtosis: 12.950 Cond. No. 116.

Figure 10: Linear regression model for Memorization Analysis

A.8.2 Memorization Mention Replacement

OLS Regression Results

Dep. Variable: memorization_delta R-squared: 0.017
Model: OLS Adj. R-squared: 0.016
Method: Least Squares F-statistic: 17.20
Date: Sun, 09 Oct 2022 Prob (F-statistic): 4,55e-11
Time: 22:16:58 Log-Likelihood: 4366.5
No. Observations: 2937  AIC: -8725.
Df Residuals: 2933 BIC: -8701.
Df Model: 3
Covariance Type: nonrobust

coef std err t P>|t]| [0.025 0.975]
Intercept -0.0084 0.002 -3.865 0.000 -0.013 -0.004
p -0.0054 0.001 -5.187 0.000 -0.007 -0.003
swapped -0.0065 0.003 -2.115 0.035 -0.012 -0.000
p:swapped 0.0009 0.001 0.623 0.533 -0.002 0.004
Omnibus: 651.024  Durbin-Watson: 1.083
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 2144.468
Skew: -1.100  Prob(JB): 0.00
Kurtosis: 6.562  Cond. No. 9.36

Figure 11: Statistical analysis of Memorization with Mention Replacement
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A.9 Wnutl7 Unseen Entity Set F1
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Figure 12: NER performance for all paraphrases on the Unseen Entity Set of Wnut17

27

21095 T 01N



843

8

Gold ratio

Gold ratio

e
2

e
2

e
2

Ontonotes_pegasus

Ontonotes_Ada

0372008

05 10
Paraphrase ratio

Ontonotes_Davinci

0372008 0571008

0571008

Figure 13: NER performance for all paraphrases on the Unseen Entity Set of Ontonotes
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A.11 MIT Restaurants Unseen Entity Set F1
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Figure 14: NER performance for all paraphrases on the Unseen Entity Set of MIT Restaurants
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A.12 Bc5cdr Unseen Entity Set F1
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Figure 15: NER performance for all paraphrases on the Unseen Entity Set of BcScdr
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A.13 Tweebank Unseen Entity Set F1
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Figure 16: NER performance for all paraphrases on the Unseen Entity Set of Tweebank
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A.14 DaV-B with Mention Replacement Unseen Entity Set F1
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Figure 17: NER performance for DaV-B on the Unseen Entity Set of all Datasets
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A.15 Dataset Statistics

. Dev  Test
Train

BC5CDR 5228 5330 5865
Ontonotes 59924 8528 8262
MIT-R 6900 760 1521
Tweebank 1639 710 1201
WNUT-17 2394 1009 1287

Table 8: Dataset statistics

A.16 Computational budget

Most of our experiments were run on the following GPU machines on AWS: p3.16xlarge, g5.48xlarge,
g5.12xlarge and g5.24xlarge. The main fine tunning experiments across G/P ratios took 1-4 days per
dataset, depending on the size of the dataset, and the machine used for fine tuning.

Paraphrase generation using GPT-3 DaVinci model took less than a day for most datasets. Ontonotes
took roughly a day. Similar time was spent when generating mention replacements.

A.17 Limitations and risks

This work utilizes generative models trained on large volumes of data, to generate supplemental training
data for named entity recognition systems. We do not address any biases, or filter generations of the
underlying paraphrasers when using their generated data. This can bias the fine tuned models towards
underlying biases of the generative system.

While we do not test or correct the paraphrasing systems for biases, we do not find any evidence for
the models deviating unfairly from the underlying training data in any of our human evaluations of the
paraphrases.

We recommend human review, and automatic filtering of the generations when applying techniques
based on generative models to critical applications, to ensure the black box paraphrasing does not introduce,
or exacerbate the biases in existing training datasets.
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This work would be much harder without the use of several software packages including, but not limited
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ecosystem (Huggingface datasets), Scipy (Virtanen et al., 2020), Pandas (McKinney et al., 2011), Numpy
(Harris et al., 2020), Scikit-learn (Pedregosa et al., 2011), and OpenAl models and Python library.
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