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Abstract

While paraphrasing is a promising approach001
for data augmentation in classification tasks,002
its effect on named entity recognition (NER)003
is not investigated systematically due to the004
difficulty of span-level label preservation. In005
this paper, we utilize simple strategies to anno-006
tate entity spans in generations and compare007
established and novel methods of paraphras-008
ing in NLP such as back translation, special-009
ized encoder-decoder models such as Pegasus,010
and GPT-3 variants for their effectiveness in011
improving downstream performance for NER012
across different levels of gold annotations and013
paraphrasing strength on 5 datasets. We thor-014
oughly explore the influence of paraphrasers,015
dynamics between paraphrasing strength, and016
gold dataset size on the NER performance with017
visualizations and statistical testing. We find018
that the choice of the paraphraser greatly im-019
pacts NER performance, with one of the larger020
GPT-3 variants exceedingly capable of generat-021
ing high quality paraphrases, yielding statisti-022
cally significant improvements in NER perfor-023
mance with increasing paraphrasing strength,024
while other paraphrasers show more mixed re-025
sults. We also find inline auto annotations gen-026
erated by larger GPT-3 to be strictly better than027
heuristic based annotations. We find diminish-028
ing benefits of paraphrasing as gold annotations029
increase for most datasets. We further find that030
while most paraphrasers promote entity memo-031
rization in NER, the proposed GPT-3 configu-032
ration performs most favorably among the com-033
pared paraphrasers when tested on unseen enti-034
ties, with memorization reducing further with035
paraphrasing strength. Finally, we explore men-036
tion replacement using GPT-3, which provides037
additional benefits over base paraphrasing for038
specific datasets.039

1 Introduction040

Named entity recognition (NER) seeks to extract041

entity mentions (e.g., Shakespeare, Warwickshire)042

from a text (Shakespeare was born and raised in043

Warwickshire) for predefined categories of inter- 044

est (such as people and locations). It is a critical 045

component underpinning many industrial pipelines 046

for a variety of downstream natural language pro- 047

cessing applications such as search, recommenda- 048

tion, and virtual assistant systems. However, in 049

real-world applications, there is often a scarcity of 050

labeled data for training advanced deep neural mod- 051

els because span-level NER annotations are costly, 052

and domain expertise may be needed to annotate 053

data from domains such as finance, biomedical sci- 054

ences, etc. 055

Data augmentation is often used as an alterna- 056

tive to address the data scarcity issue in many NLP 057

tasks (see an NLP data augmentation survey by 058

Feng et al. (2021)). However, data augmentation 059

for NER imposes additional challenges because 060

NER requires token/span level label preservation. 061

Therefore, most existing works on NER data aug- 062

mentation primarily focus on local replacement for 063

entity mentions (Dai and Adel, 2020; Zhou et al., 064

2022; Liu et al., 2022; Wenjing et al., 2021) as well 065

as context words (Dai and Adel, 2020; Li et al., 066

2020). The replacements can be other mentions 067

with the same labels (Dai and Adel, 2020), syn- 068

onyms from an external lexical resource such as 069

wordnet (Dai and Adel, 2020), or tokens gener- 070

ated by the pretrained language models such as 071

BERT via masked token task (Zhou et al., 2022; 072

Liu et al., 2022; Wenjing et al., 2021). However, to 073

enhance the reliability of masked token prediction, 074

the language model usually needs to be fine-tuned 075

on the NER training data and label information is 076

often inserted close to the [MASK]s (Zhou et al., 077

2022; Wenjing et al., 2021), which requires a de- 078

cent amount of labeled training data. A recent study 079

by Ding et al. (2020) trained a sequence generator 080

to synthesize sentences with inline NER annota- 081

tions that can create novel NER training examples 082

beyond local modifications but requires sufficient 083

NER labeled examples for training the generator. 084
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This work primarily focuses on the less-studied085

data augmentation method for NER – paraphras-086

ing – which has the potential to introduce struc-087

tural and lexical replacement and does not assume088

many labeled examples. Specifically, we compare089

established, and novel paraphrasing methods and090

propose simple ways to preserve span-level labels.091

Unlike most existing studies that focus on the influ-092

ence of the amount of gold data only, we system-093

atically investigate the effect of different levels of094

paraphrasing on downstream performance, at dif-095

ferent levels of gold annotations across 5 datasets.096

We investigate the quality of paraphrases from 6097

different systems as augmentation data, as well as098

stand alone training data for NER. We further ex-099

amine the entity memorization via the performance100

change on unseen mentions for each entity and101

address the issue with mention replacement.102

We find paraphrasing to be generally effective103

in low data regimes for most paraphrasers. How-104

ever, the choice of paraphraser affects the magni-105

tude, and direction of the change in performance106

across all levels of gold data. We find the use of107

LLMs to generate inline annotations1 while para-108

phrasing to be superior to simpler heuristics, and109

GPT-3 Davinci variant with inline annotations to110

be a generally superior choice across datasets for111

paraphrasing. In addition, our entity level analysis112

shows that entity classes with low support (num-113

ber of mentions) or low number proportion bene-114

fit more from paraphrasing. We then investigate115

whether there is an indications of entity memo-116

rization with increasing paraphrasing strength, and117

find that GPT-3 Davinci variant with inline anno-118

tations is more robust against entity memorization119

compared to other paraphrasers. We further reduce120

memorization in some datasets by introducing men-121

tion replacement based on GPT-3 DaVinci in the122

paraphrasing pipeline.123

2 Datasets and Paraphrasers124

2.1 Datasets125

NER datasets are chosen to have coverage across126

a variety of domains including news, Wikipedia,127

Twitter, biomedical research and search; while also128

having a diverse set of entity types (word phrases,129

alphanumeric, datetime, alphabetical etc.).130

We choose 5 datasets based on the above prin-131

ciples: Ontonotes5 (Hovy et al., 2006), Twee-132

1Inline annotation: [Shakespeare](PERSON) was born and
raised in [Warwickshire](LOC)

MIT-R
Onto
-notes

BC5
-CDR

Twee
-bank

Wnut
-17

BT 1 0 2 0 5
Pegasus 1 0 13 3 8
Ada-A 10 0 0 11 0
Ada-B 4 0 0 16 2
DaV-A 3 0 4 5 3
DaV-B 26 35 26 10 27

Table 1: Counts the configurations of G & P where a
paraphraser shows highest relative improvement over no
paraphrasing baseline for a given G (Division by zero is
avoided by using absolute improvement). GPT-3 DaV-B
outperforms other paraphrasers across most datasets

bank (Jiang et al., 2022), WNUT 2017 (Derczyn- 133

ski et al., 2017), MIT Restaurant NER dataset 134

(MIT-R) (Liu et al., 2013), BioCreative V CDR 135

(BC5CDR) (Wei et al., 2016). Pre-formatted ver- 136

sions of all datasets are sourced from the TNER 137

project (Ushio and Camacho-Collados, 2021) on 138

Huggingface datasets(Wolf et al., 2020) (See Ap- 139

pendix A.15). Datasets such as WNUT also have 140

rare entities by design, allowing us to probe robust- 141

ness against entity memorization. 142

2.2 Paraphrasers and postprocessing 143

In our experiments, we compare six paraphrasing 144

systems:(1) Back Translation, (2) Pegasus, (3) Ada 145

(Prompt A) / Ada-A, (4) Ada (Prompt B) / Ada-B, 146

(5) Davinci (Prompt A) / DaV-A and (6) Davinci 147

(Prompt B) / DaV-B. We generate a maximum of 148

4 unique paraphrases per gold sentence for each 149

paraphraser and postprocess the paraphrases with 150

simple re-annotation and filtering. 151

2.2.1 Back-translation; BT 152

Back translation has been widely used as a data 153

augmentation method (Sugiyama and Yoshinaga, 154

2019; Corbeil and Ghadivel, 2020; Xie et al., 2020) 155

including in phrase based systems like (Bojar and 156

Tamchyna, 2011). For our experiments we use pre- 157

trained English-German and German-English mod- 158

els available from Huggingface model hub 2 via 159

(Tiedemann and Thottingal, 2020) and the model 160

architecture used is BART (Lewis et al., 2019). We 161

use a temperature parameter of 0.8 with greedy 162

decoding. 163

2https://huggingface.co/models
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Dataset Recall (%)
WNUT-17 93.2
Tweebank 92.9
Ontonotes 83.8
MIT-R 71.4
BC5CDR 90.3

Table 2: Entity recall across datasets for DaV-B without
any post processing. Recall is calculated via a case
insensitive search, so acts as a lower bound.

2.2.2 PEGASUS Paraphraser164

PEGASUS, introduced in (Zhang et al., 2020) for165

the purpose of summarization, is a large (568mn166

parameters) pre-trained transformer (Vaswani et al.,167

2017) based encoder-decoder model, pre-trained168

using a custom self-supervised objective. To use169

it as a paraphraser the model was fine-tuned on a170

paraphrasing task. We use an off-the-shelf version171

of PEGASUS fine-tuned for paraphrasing released172

on Huggingface model hub 3173

2.2.3 GPT-3 variants174

GPT-3 (Brown et al., 2020) is an auto-regressive175

decoder only transformer pre-trained for language176

modeling, showing impressive in-context learning,177

and instruction following ability (Radford et al.,178

2019; Sanh et al., 2021; Wei et al., 2021; Ouyang179

et al., 2022; Campos and Shern, 2022). We use the180

OpenAI API 4 to query the Ada (∼350M parame-181

ters), and DaVinci (∼175B parameters) variants of182

GPT-3. We prompt both GPT-3 variants with two183

versions of one shot prompts with a temperature of184

0.8, max length of 100, and default values for other185

parameters:186

Prompt A GPT-3 variant is instructed to generate187

paraphrases without specific instruction to retain188

inline annotation for entities:189

" Create a paraphrase for inputs like the following190

example:191

Input: Japanese band The Altruists is releasing192

their hit single this fall.193

Paraphrases:194

1. The Altruists, a Japanese band is releasing their195

hit single this fall196

Input: BLANK197

Paraphrases:198

1."199

3https://huggingface.co/tuner007/pegasus_paraphrase
4https://beta.openai.com/

MIT-R
Onto
-notes

BC5
-CDR

Twee
-bank

Wnut
-17

BT 0.66 0.74 0.76 0.41 0.30
Pegasus 0.68 0.75 0.78 0.33 0.23
Ada-A 0.71 0.73 0.74 0.36 0.23
Ada-B 0.70 0.72 0.74 0.34 0.23
DaV-A 0.67 0.75 0.76 0.39 0.27
DaV-B 0.73 0.80 0.82 0.41 0.32

Table 3: Test micro-F1 when training using only para-
phrases with P=1 for full dataset. Number in bold is
the maximum for a given dataset. GPT-3 DaV-B outper-
forms all paraphrasers across datasets

Prompt B GPT-3 variant is instructed to generate 200

paraphrases, while also retaining inline annotation 201

for entities (highlighted in red): 202

" Create a paraphrase for inputs like the following 203

example. Preserve the annotations in the [] and (): 204

Input: Japanese band [The Altruists](ORG) is re- 205

leasing their hit single this fall. 206

Paraphrases: 207

1. [The Altruists](ORG), a Japanese band is releas- 208

ing their hit single this fall 209

Input: BLANK 210

Paraphrases: 211

1." 212

During paraphrasing, "BLANK" is replaced by 213

an actual gold sentence being paraphrased. 214

We conduct light prompt tuning based on entity 215

recall to select Prompt B, (Prompt A is then created 216

by dropping the annotation retention instructions). 217

The prompt that retains annotations for most gold 218

entity mentions (based on case insensitive string 219

match) in generated paraphrases, is chosen as the 220

final prompt. Table 2 shows the raw entity recall 221

for GPT-3 DaV with Prompt B across datasets. 222

2.2.4 Post-processing & filtering of 223

paraphrases 224

We re-annotate outputs of all paraphrasers based 225

on a case insensitive exact match search for the 226

entity values present in gold sentence. In the case 227

of LLMs generating inline annotations, this logic 228

is used to supplement annotations generated by the 229

model, relying on the model generated annotations 230

in cases of conflicts. Further filtering is applied to 231

the paraphrases from all models to remove para- 232

phrases for gold sentences shorter than 15 char- 233

acters, remove paraphrases that are a duplicate of 234

the gold sentence or of another paraphrase, and 235
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when generation contains an entity not present in236

entity space of the dataset. We also retain only the237

first generation of multiline generations for para-238

phrasers generating a numbered list of paraphrases239

(common with prompt driven GPT-3 variants Ap-240

pendix A.2)241

For each paraphrasing configuration (model +242

post-processing), we evaluated the entity recall rate243

of the synthetic data as well as the language qual-244

ity of 100 examples sampled from each dataset.245

We find that DaV-B consistently outperforms other246

paraphrasers in both entity recall and paraphrasing247

quality metrics (See Appendix A.4).248

3 Experiments249

3.1 Using gold & paraphrasing data for250

training NER251

3.1.1 Experimental setup252

In real world scenarios, we get annotated gold data253

incrementally. In our experiments, we simulate this254

by sampling gold data at various G-ratios by build-255

ing upon previous samples. For example, while256

generating gold sample for G=0.01 (first sample),257

we sample 1% of the total dataset, stratified by en-258

tities. However, when sampling for G=0.03, we259

retain the sample from the first step, and sample260

an additional 2% of the remaining dataset. This261

process is repeated until G=1. As a result, going262

from G=0.25 to G=0.5 does not actually double263

the gold dataset used in training. Experiments are264

conducted for the following G ratios: 0.01, 0.03,265

0.05, 0.07, 0.09, 0.11, 0.25, 0.5, 1.05. At each266

sampling step, we also sample an equivalent per-267

centage of gold samples with no entities. Early268

experiments suggested increased benefit of para-269

phrasing at lower dataset size, so we explore more270

G ratios in that space.271

For each gold to paraphrase ratio combination,272

we first sample gold data by the method described273

above. Then we randomly sample paraphrases274

for the gold IDs that are already sampled in the275

previous steps (including the current step). The276

paraphrasing strength is varied as a percentage of277

paraphrases sampled for a given number of gold278

IDs at the following P ratios: 0.0 (no paraphras-279

ing), 0.25, 0.5, 1.0, 2.0, 4.0. For each G/P ratio,280

the corresponding dataset is used to fine-tune a281

distilbert-base-cased base (66M parameters) model282

5We only go up to G=0.25 for large Ontonotes dataset for
speed

for named entity recognition using the 1-step train- 283

ing described by (Okimura et al., 2022) using stan- 284

dard classification loss over hidden states of individ- 285

ual tokens. The models are trained to convergence 286

with early stopping (patience=5, metric=eval_F1). 287

We generate the overall, and entity specific micro 288

F1 for each G/P combination along with standard 289

deviation across three runs. 290

3.1.2 Analysis method 291

We first present visualizations and tables to sum- 292

marize the general trends of the overall NER F1 293

performance improvement with respect to different 294

paraphrasers and the dynamics of paraphrase ratio 295

and gold ratio. 296

To support the observations made from the fig- 297

ures (1, 2) and tables (1, 3) we perform analysis 298

at the entity level, by conducting statistical tests 299

on the downstream performance improvement ∆f1, 300

where 301

∆f1(g, p, ent) = f1(g, p, ent)− f1(g, 0, ent) 302

Specifically, we investigate whether the change 303

in downstream NER F1 depends on certain charac- 304

teristics of an entity including entity support (how 305

many examples one entity class contains) and sur- 306

face form features (proportion of capitalizations 307

and numbers in entity types). We build a linear 308

regression model using the entity characteristics 309

aforementioned along with the paraphraser, G & P 310

ratios as the predictors and ∆f1 as the dependent 311

variable, formalized as follows: 312

∆f1 ∼ Paraphrase ∗ (Gold + model + 313

support+ capitalize+ number) 314

3.1.3 Results 315

Effect of Paraphrasers Table 1 shows the counts 316

across G&P configurations where a paraphraser 317

has the highest relative improvement and Figure 318

1 demonstrates the F1 change after adding the 319

synthetic data. Both suggest, the choice of para- 320

phraser strongly dictates the augmentation perfor- 321

mance. GPT-3 DaV-B consistently outperforms, 322

or matches other paraphrasers and is a safe default 323

choice for paraphrasing across domains. Across the 324

Davinci variants, inline annotations with Prompt B 325

strictly outperform those introduced using heuris- 326

tics. DaV-B also achieves or matches best perfor- 327

mance at G=1 (0.25 for Ontonotes) and P=4 across 328

all datasets (See Appendix A.6). Ada variants show 329

the most inconsistent results, with Backtranslation 330

and Pegasus outperforming them as well as DaV-A 331
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Figure 1: Matrix of scores of how F1 changed relative to the no paraphrasing (P=0) baseline after the addition of
synthetic data across datasets for different G & P ratios. Improvement/worsening in any dataset at a given G/P ratio
gets a score of +1/-1 respectively, and aggregation is then done across datasets. Higher numbers represent better
performance across datasets. Score ∈ [−5, 5]
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Figure 2: Micro F1 for Davinci (Prompt B) on datasets across gold and paraphrase ratios
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factor coef t p
P 0.0148 9.004 1e-15
G -0.0048 -1.393 0.164
DaV-B 0.0106 3.986 1e-15
support -0.0031 -5.815 1e-15
cap -0.0011 -0.473 0.636
number -0.0154 -5.031 1e-15
P:G -0.0032 -1.937 0.053
P:DaV-B 0.0078 6.121 1e-15
P:support -0.0028 -10.925 1e-15
P:cap 0.0008 0.715 0.475
P:number -0.0165 -11.095 1e-15

Table 4: Coefficients of the model with entity level
analysis (See the Appendix A.7 for the coefficients of
the full model) ∆f1 ∼ Paraphrase∗ (Gold+model+
support+ capitalize+ number).

in many cases. Full results are available in Ap-332

pendix A.5.333

Similarly, the statistical model (Table 4) shows334

that both main factor of DaV-B (coef = 0.0106335

, p < 1e-15 ) and its interaction with paraphrase336

ratio (coef = 0.0078, p < 1e-15) are positive and337

significant, indicating that as P increases DaV-B338

has significantly more improvement than the ref-339

erence model (Ada-A) but other paraphrases do340

not show such a pattern as the main factors are all341

insignificant and interactions are inconsistent.342

Effect of P and G While we run similar exper-343

iments on all paraphraser-dataset pairs, we share344

the aggregate F1 performance across all G&P con-345

figurations of DaV-B on all datasets in Figure 2346

(Full results Appendix A.5). We see consistent347

benefits of paraphrasing at lower gold ratios, and348

diminishing returns in relative performance bump349

as we go to higher values. Other paraphrasers show350

similar trends at low G ratios with some exceptions351

(Ada variants in BC5CDR, and Backtranslation on352

MIT-R) (See Figure 1, Appendix A.5), although353

we see a lot more mixed results at medium to high354

G ratios.355

Our statistical model (see Table 4) reveals simi-356

lar conclusions: we see the main factor of P (coef =357

0.0148, p < 1e-15) is significant and its interaction358

with G (coef = -0.0032, p < 0.053 ) are marginally359

significant. This indicates that P is generally posi-360

tive correlated with performance gain and there is361

a weak tendency that the coefficients of P reduces362

as G increases. In other words, paraphrasing im-363

proves the downstream performance but becomes364

less effective when adding more gold data. 365

Effect of Entity Characteristics In terms of en- 366

tity support, the model shows a significant negative 367

main factor (coef = -0.0031, p < 1e-15) and an in- 368

teraction with a paraphrase ratio (coef = -0.0028, p 369

< 1e-15), which reveals that the effect of entity sup- 370

port on performance improvement varies based on 371

P with the relationship: improvement ∼ constant 372

+ ( -0.0031 + (-0.0028) ∗ paraphrase)) ∗ support. 373

The negative coefficient of support indicates entity 374

classes with less support are more likely to benefit 375

from an increase of paraphrasing than those with 376

more support. 377

As for the surface form characteristics, the model 378

reveals a negative interaction (coef = -0.0165, p < 379

1e-15) and negative main factor (coef = -0.0154, 380

p < 1e-15 ) for the number form, suggesting the 381

proportion of mentions being a number is nega- 382

tively correlated with performance improvement 383

and the negative correlation is enhanced as the para- 384

phrasing ratio grows. By contrast, neither the main 385

factor for capitalization nor the interaction is sig- 386

nificant, indicating the effect of surface form of 387

capitalization does not play an important role . 388

3.2 Using only paraphrases for training NER 389

3.2.1 Experimental setup 390

We further evaluate quality of paraphrases directly 391

by using only synthetic data to train NER models. 392

These experiments are done at P=1 for paraphrases 393

generated from the entire training set (G=1). 394

3.2.2 Results 395

Aggregate F1 scores of all paraphrasers are shown 396

in Table 3. We find GPT-3 DaV-B paraphrases per- 397

forming best across all datasets. The trends among 398

paraphrasers track augmentation performance ob- 399

served in Figure 1 and Appendix A.5. 400

3.3 Entity Memorization 401

Our proposed augmentation and re-annotation 402

strategies in Section 2.2 promote duplication of en- 403

tity mentions for paraphrases from all paraphrasers. 404

This can lead to shortcut learning (Geirhos et al., 405

2020) where the model may just memorize men- 406

tions, as opposed to learning features that general- 407

ize to unseen mentions (Augenstein et al., 2017). 408

This effect may be observed as a drop in perfor- 409

mance in the subsets of our test sets that contain 410

mentions not seen during model training (i.e. an un- 411

seen entity test set). We therefore, extend our entity 412
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level analysis to also study memorization per entity413

type, with entity-level harder unseen entity (UE)414

test sets. While a change in performance on UE415

test sets may come from a combination of factors,416

we treat a drop to be indicative of memorization.417

Similarly an increase in performance in UE test418

set performance with increasing paraphrasing, may419

indicate a paraphraser that does not promote mem-420

orization, but instead improves generalization in421

the NER model.422

3.3.1 Creation of UE test sets423

For every entity type in each dataset, we generate424

UE test sets for all G / P ratio combinations. For425

any given configuration of G, P, and entity type, an426

UE test set would include test set samples that con-427

tain mentions of that entity not seen within training428

data for that configuration.429

3.3.2 Experimental setup430

Models trained for each dataset, G / P ratio, and431

paraphraser combination in Section 3.1 are evalu-432

ated on their respective entity level UE test sets to433

generate F1 scores per entity type.434

To measure the proclivity of paraphrasers to gen-435

erate synthetic data that promotes memorization436

we conduct a regression analysis similar to section437

3.1.2.438

We define memorization as the drop in f1 per-439

formance on the UE test sets when paraphrases are440

added during training at a given G ratio. More for-441

mally, the memorization value for given entity at a442

particular G, P combination is443

Memorization(g, p, ent) = −∆UEf1(g, p, ent)444

= UEf1(g, 0, ent)− UEf1(g, p, ent)445

3.3.3 Results446

Effect of Paraphrasers Based on the statisti-447

cal model Table 5, DaV-B shows a consistent448

reduction in memorization on average across all449

entities(coef=-0.0138) and as P is increased memo-450

rization further reduces(coef=-0.0113) suggesting451

that DaV-B is less susceptible to inducing mem-452

orization characteristics in the downstream NER453

model than the Ada-A model as reference. On the454

contrary, we see worsening of memorization with455

most other paraphrasers (Ada-B, BT) on average456

with Ada-A as reference, while Pegasus at high P457

does seem to reduce memorization although not to458

the same extent as Dav-B Appendix A.8. All other459

interactions with memorization do not pass the 5%460

significance threshold.461

factor coef t p
P -0.01 -5.769 1e-15
G 0.0012 0.323 0.746
DaV-B -0.0138 -4.937 1e-15
support 0.0041 7.257 1e-15
cap -0.0018 -0.759 0.448
number 0.0162 5.028 1e-15
P:G 0.0045 2.543 0.011
P:DaV-B -0.0113 -8.354 1e-15
P:support 0.0031 11.456 1e-15
P:cap -0.0044 -3.874 1e-15
P:number 0.0142 9.062 1e-15

Table 5: Coefficients of the Linear model for Memoriza-
tion: memorization ∼ Paraphrase ∗ ( Gold + model +
support + capitalize + number). Full results Appendix
A.8

Effects of P and G Table 5 suggests that para- 462

phrasing reduces memorization (coef=-0.01) on 463

average across all entities, however, at higher Gs, 464

paraphrasing worsens memorization(coef=0.0045). 465

Level of G by itself does not significantly interact 466

with memorization (p=0.746>0.05). 467

Effect of Entity Characteristics Numerical and 468

high support entities seem to have a significant pos- 469

itive interaction with memorization (coef=0.01162 470

and 0.0041 respectively) which increases in effect 471

as P is increased (coef=0.0142 and 0.0031). This 472

implies paraphrasing for entities with a high sup- 473

port generally worsens the performance on unseen 474

entities, indicating memorization. Also, numeri- 475

cal entities seem to be easier for the NER model 476

to memorize. Finally, Capitalized entities at high 477

P has a negative correlation with memorization 478

(coef=-0.0044). 479

3.3.4 Addressing memorization with mention 480

replacement 481

We extend our experiments for GPT-3 DaV-B 482

by also incorporating entity mention replacement 483

(MR) into the paraphrasing pipeline. In our ap- 484

proach, we utilize the ability of language models to 485

be a knowledge base (Petroni et al., 2019), and fol- 486

low instructions, to source replacement mentions 487

for various entity mentions and types in our train- 488

ing set. In particular, for every entity mention in 489

the gold set, we prompt GPT-3 DaVinci model to 490

generate entity mentions that are similar to the gold 491

entity mention, while also providing a phrase level 492

definition of the entity type being replaced. 493
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Prompt used for mention replacement:494

"495

Please list 10 examples of ENTITY_TYPE such as496

’ENTITY_VALUE’:497

1.498

"499

ENTITY_VALUE is replaced with the actual500

gold mention, and ENTITY_TYPE is replaced by501

a nominal phrase description of the entity class (See502

Appendix A.1.1 Figure 4). This label conditioned503

prompt allows us to generate mention replacements504

closer to the gold entity value, that are more likely505

to remain consistent with entity label. We use a506

temperature of 0.8, and a maximum length of 250,507

with other parameters set to default in the gener-508

ation. Since our base paraphrases are biased to-509

wards entity value retention, we are able to retain510

span annotation when replacing the entity value511

in any given paraphrase with an equivalent entity512

sampled from GPT-3 DaVinci generations. These513

paraphrases are used as augmentation data to run514

experiments similar to Section 3.1515

Results Table 6 compares DaV-B to DaV-B MR516

across all datasets based on relative improvement in517

overall F1 over no paraphrasing baseline for differ-518

ent G values. Here we see mention replacement es-519

pecially useful for MIT-R, Tweebank, and WNUT-520

17 datasets, while being harmful in Ontonotes.521

Mention replacement makes no significant differ-522

ence in BC5CDR Appendix A.14.523

We also compare the performance of DaV-B vs524

Dav-B MR for indications of entity memorization.525

To do so, we introduce a "swapped" feature and526

conduct statistical analysis similar to Section 3.3.2.527

Table 7 shows that mention replacement is a good528

solution to reduce memorization (coef=-0.0065)529

in general. The interaction between mention re-530

placement as paraphrasing increases is insignificant531

(p=0.533>0.05) which implies that the coefficient532

of MR does not vary much as P increases.533

4 Future work534

While our work proposes a paraphrasing pipeline535

that performs consistently better than established536

paraphrasing pipelines in NER, we expect further537

benefits to come from more exhaustive tuning of538

prompts used to generate paraphrases. Another539

potential direction to improve downstream perfor-540

mance is to explore better (than random) sampling541

strategy for paraphrases (based on entity density,542

entity recall, or other metrics).543

MIT-R
Onto
-notes

BC5
-CDR

Twee
-bank

Wnut
-17

DaV-B 15 35 28 14 15
DaV-B
+MR

30 0 17 31 30

Table 6: Counts the configurations of G & P where a
paraphraser shows highest relative improvement over no
paraphrasing baseline for a given G (Division by zero
is avoided by using absolute improvement). MR refers
to mention replacement. We also conducted Wilcoxon
signed-rank tests to evaluate whether the relative perfor-
mance improvement before or after MR is significantly
different. The tests show a significant improvement
for MIT-R, Tweebank and Wnut17 and no significant
difference for BC5CDR and a significant reduction for
Ontonotes.

factor coef t p
P -0.0054 -5.187 0.000
MR -0.0065 -2.115 0.035
P:MR 0.0009 0.623 0.533

Table 7: Coefficients of the Linear model for Memo-
rization with Mention Replacement: memorization ∼
Paraphrase ∗ MR.

5 Conclusion 544

We study the effect of six paraphrasing systems on 545

downstream NER performance across 5 datasets. 546

We find that the choice of paraphraser system 547

(model + prompt) strongly affects NER perfor- 548

mance. GPT-3 DaV-B performs the best at gen- 549

erating paraphrases capable of improving NER per- 550

formance while other paraphrasers show mixed 551

results. We further find that generating inline an- 552

notations using GPT-3 Davinci works superior to 553

strictly heuristic based annotations. While we find 554

paraphrasing to be more effective at lower amount 555

of training data, it helps at higher levels depending 556

on dataset, and paraphraser. Additionally, we find 557

GPT-3 DaV-B to be most immune against entity 558

mention memorization, with the memorization re- 559

ducing further with GPT-3 based mention replace- 560

ment on certain datasets. Our findings speak to the 561

exceptional effectiveness of GPT-3 DaVinci based 562

systems in generating paraphrases promoting gen- 563

eralization in NER applications, thereby making it 564

the de facto choice for paraphrasing in NER. 565
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Ondřej Bojar and Aleš Tamchyna. 2011. Improving571
translation model by monolingual data. In Proceed-572
ings of the Sixth Workshop on Statistical Machine573
Translation, pages 330–336, Edinburgh, Scotland.574
Association for Computational Linguistics.575

Tom Brown, Benjamin Mann, Nick Ryder, Melanie576
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind577
Neelakantan, Pranav Shyam, Girish Sastry, Amanda578
Askell, et al. 2020. Language models are few-shot579
learners. Advances in neural information processing580
systems, 33:1877–1901.581

Jon Ander Campos and Jun Shern. 2022. Training lan-582
guage models with language feedback. In ACL Work-583
shop on Learning with Natural Language Supervi-584
sion. 2022.585

Jean-Philippe Corbeil and Hadi Abdi Ghadivel. 2020.586
Bet: A backtranslation approach for easy data aug-587
mentation in transformer-based paraphrase identifica-588
tion context. arXiv preprint arXiv:2009.12452.589

Xiang Dai and Heike Adel. 2020. An analysis of simple590
data augmentation for named entity recognition. In591
Proceedings of the 28th International Conference592
on Computational Linguistics, pages 3861–3867,593
Barcelona, Spain (Online). International Committee594
on Computational Linguistics.595

Leon Derczynski, Eric Nichols, Marieke van Erp, and596
Nut Limsopatham. 2017. Results of the WNUT2017597
shared task on novel and emerging entity recogni-598
tion. In Proceedings of the 3rd Workshop on Noisy599
User-generated Text, pages 140–147, Copenhagen,600
Denmark. Association for Computational Linguis-601
tics.602

Bosheng Ding, Linlin Liu, Lidong Bing, Canasai Kru-603
engkrai, Thien Hai Nguyen, Shafiq Joty, Luo Si, and604
Chunyan Miao. 2020. DAGA: Data augmentation605
with a generation approach for low-resource tagging606
tasks. In Proceedings of the 2020 Conference on607
Empirical Methods in Natural Language Processing608
(EMNLP), pages 6045–6057, Online. Association for609
Computational Linguistics.610

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chan-611
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-612
uard Hovy. 2021. A survey of data augmentation613
approaches for NLP. In Findings of the Association614
for Computational Linguistics: ACL-IJCNLP 2021,615
pages 968–988, Online. Association for Computa-616
tional Linguistics.617

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio618
Michaelis, Richard Zemel, Wieland Brendel,619
Matthias Bethge, and Felix A Wichmann. 2020.620
Shortcut learning in deep neural networks. Nature621
Machine Intelligence, 2(11):665–673.622

Charles R Harris, K Jarrod Millman, Stéfan J Van 623
Der Walt, Ralf Gommers, Pauli Virtanen, David Cour- 624
napeau, Eric Wieser, Julian Taylor, Sebastian Berg, 625
Nathaniel J Smith, et al. 2020. Array programming 626
with numpy. Nature, 585(7825):357–362. 627

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance 628
Ramshaw, and Ralph Weischedel. 2006. OntoNotes: 629
The 90% solution. In Proceedings of the Human Lan- 630
guage Technology Conference of the NAACL, Com- 631
panion Volume: Short Papers, pages 57–60, New 632
York City, USA. Association for Computational Lin- 633
guistics. 634

Hang Jiang, Yining Hua, Doug Beeferman, and Deb 635
Roy. 2022. Annotating the tweebank corpus on 636
named entity recognition and building NLP models 637
for social media analysis. CoRR, abs/2201.07281. 638

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 639
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 640
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De- 641
noising sequence-to-sequence pre-training for natural 642
language generation, translation, and comprehension. 643
arXiv preprint arXiv:1910.13461. 644

Kun Li, Chengbo Chen, Xiaojun Quan, Qing Ling, 645
and Yan Song. 2020. Conditional augmentation 646
for aspect term extraction via masked sequence-to- 647
sequence generation. In Proceedings of the 58th An- 648
nual Meeting of the Association for Computational 649
Linguistics, pages 7056–7066, Online. Association 650
for Computational Linguistics. 651

Jian Liu, Yufeng Chen, and Jinan Xu. 2022. Low- 652
resource ner by data augmentation with prompt- 653
ing. In Proceedings of the Thirty-First International 654
Joint Conference on Artificial Intelligence, IJCAI-22, 655
pages 4252–4258. International Joint Conferences on 656
Artificial Intelligence Organization. Main Track. 657

Jingjing Liu, Panupong Pasupat, Yining Wang, Scott 658
Cyphers, and Jim Glass. 2013. Query understanding 659
enhanced by hierarchical parsing structures. In 2013 660
IEEE Workshop on Automatic Speech Recognition 661
and Understanding, pages 72–77. IEEE. 662

Wes McKinney et al. 2011. pandas: a founda- 663
tional python library for data analysis and statistics. 664
Python for high performance and scientific comput- 665
ing, 14(9):1–9. 666

Tong Niu, Semih Yavuz, Yingbo Zhou, Nitish Shirish 667
Keskar, Huan Wang, and Caiming Xiong. 2020. Un- 668
supervised paraphrasing with pretrained language 669
models. arXiv preprint arXiv:2010.12885. 670

Itsuki Okimura, Machel Reid, Makoto Kawano, and Yu- 671
taka Matsuo. 2022. On the impact of data augmenta- 672
tion on downstream performance in natural language 673
processing. In Proceedings of the Third Workshop on 674
Insights from Negative Results in NLP, pages 88–93. 675

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car- 676
roll L Wainwright, Pamela Mishkin, Chong Zhang, 677
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 678

9

https://aclanthology.org/W11-2138
https://aclanthology.org/W11-2138
https://aclanthology.org/W11-2138
https://doi.org/10.18653/v1/2020.coling-main.343
https://doi.org/10.18653/v1/2020.coling-main.343
https://doi.org/10.18653/v1/2020.coling-main.343
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/2021.findings-acl.84
https://aclanthology.org/N06-2015
https://aclanthology.org/N06-2015
https://aclanthology.org/N06-2015
http://arxiv.org/abs/2201.07281
http://arxiv.org/abs/2201.07281
http://arxiv.org/abs/2201.07281
http://arxiv.org/abs/2201.07281
http://arxiv.org/abs/2201.07281
https://doi.org/10.18653/v1/2020.acl-main.631
https://doi.org/10.18653/v1/2020.acl-main.631
https://doi.org/10.18653/v1/2020.acl-main.631
https://doi.org/10.18653/v1/2020.acl-main.631
https://doi.org/10.18653/v1/2020.acl-main.631
https://doi.org/10.24963/ijcai.2022/590
https://doi.org/10.24963/ijcai.2022/590
https://doi.org/10.24963/ijcai.2022/590
https://doi.org/10.24963/ijcai.2022/590
https://doi.org/10.24963/ijcai.2022/590


2022. Training language models to follow in-679
structions with human feedback. arXiv preprint680
arXiv:2203.02155.681

Adam Paszke, Sam Gross, Francisco Massa, Adam682
Lerer, James Bradbury, Gregory Chanan, Trevor683
Killeen, Zeming Lin, Natalia Gimelshein, Luca684
Antiga, et al. 2019. Pytorch: An imperative style,685
high-performance deep learning library. Advances in686
neural information processing systems, 32.687

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-688
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,689
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-690
cent Dubourg, et al. 2011. Scikit-learn: Machine691
learning in python. the Journal of machine Learning692
research, 12:2825–2830.693

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, An-694
ton Bakhtin, Yuxiang Wu, Alexander H Miller, and695
Sebastian Riedel. 2019. Language models as knowl-696
edge bases? arXiv preprint arXiv:1909.01066.697

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,698
Dario Amodei, Ilya Sutskever, et al. 2019. Language699
models are unsupervised multitask learners. OpenAI700
blog, 1(8):9.701

Victor Sanh, Albert Webson, Colin Raffel, Stephen H702
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine703
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun704
Raja, et al. 2021. Multitask prompted training en-705
ables zero-shot task generalization. arXiv preprint706
arXiv:2110.08207.707

Amane Sugiyama and Naoki Yoshinaga. 2019. Data708
augmentation using back-translation for context-709
aware neural machine translation. In Proceedings of710
the Fourth Workshop on Discourse in Machine Trans-711
lation (DiscoMT 2019), pages 35–44, Hong Kong,712
China. Association for Computational Linguistics.713

Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS-714
MT — Building open translation services for the715
World. In Proceedings of the 22nd Annual Confer-716
enec of the European Association for Machine Trans-717
lation (EAMT), Lisbon, Portugal.718

Asahi Ushio and Jose Camacho-Collados. 2021. T-719
NER: An all-round python library for transformer-720
based named entity recognition. In Proceedings of721
the 16th Conference of the European Chapter of the722
Association for Computational Linguistics: System723
Demonstrations, pages 53–62, Online. Association724
for Computational Linguistics.725

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob726
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz727
Kaiser, and Illia Polosukhin. 2017. Attention is all728
you need. Advances in neural information processing729
systems, 30.730

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt731
Haberland, Tyler Reddy, David Cournapeau, Ev-732
geni Burovski, Pearu Peterson, Warren Weckesser,733
Jonathan Bright, et al. 2020. Scipy 1.0: fundamental734

algorithms for scientific computing in python. Na- 735
ture methods, 17(3):261–272. 736

Chih-Hsuan Wei, Yifan Peng, Robert Leaman, Allan Pe- 737
ter Davis, Carolyn J Mattingly, Jiao Li, Thomas C 738
Wiegers, and Zhiyong Lu. 2016. Assessing the state 739
of the art in biomedical relation extraction: overview 740
of the biocreative v chemical-disease relation (cdr) 741
task. Database, 2016. 742

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin 743
Guu, Adams Wei Yu, Brian Lester, Nan Du, An- 744
drew M Dai, and Quoc V Le. 2021. Finetuned lan- 745
guage models are zero-shot learners. arXiv preprint 746
arXiv:2109.01652. 747

Zhu Wenjing, Liu Jian, Xu Jinan, Chen Yufeng, and 748
Zhang Yujie. 2021. Improving low-resource named 749
entity recognition via label-aware data augmentation 750
and curriculum denoising. In Proceedings of the 20th 751
Chinese National Conference on Computational Lin- 752
guistics, pages 1131–1142, Huhhot, China. Chinese 753
Information Processing Society of China. 754

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 755
Chaumond, Clement Delangue, Anthony Moi, Pier- 756
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- 757
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 758
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 759
Teven Le Scao, Sylvain Gugger, Mariama Drame, 760
Quentin Lhoest, and Alexander Rush. 2020. Trans- 761
formers: State-of-the-art natural language processing. 762
In Proceedings of the 2020 Conference on Empirical 763
Methods in Natural Language Processing: System 764
Demonstrations, pages 38–45, Online. Association 765
for Computational Linguistics. 766

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, 767
and Quoc Le. 2020. Unsupervised data augmenta- 768
tion for consistency training. Advances in Neural 769
Information Processing Systems, 33:6256–6268. 770

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe- 771
ter Liu. 2020. Pegasus: Pre-training with extracted 772
gap-sentences for abstractive summarization. In In- 773
ternational Conference on Machine Learning, pages 774
11328–11339. PMLR. 775

Ran Zhou, Xin Li, Ruidan He, Lidong Bing, Erik Cam- 776
bria, Luo Si, and Chunyan Miao. 2022. MELM: Data 777
augmentation with masked entity language model- 778
ing for low-resource NER. In Proceedings of the 779
60th Annual Meeting of the Association for Compu- 780
tational Linguistics (Volume 1: Long Papers), pages 781
2251–2262, Dublin, Ireland. Association for Compu- 782
tational Linguistics. 783

10

https://doi.org/10.18653/v1/D19-6504
https://doi.org/10.18653/v1/D19-6504
https://doi.org/10.18653/v1/D19-6504
https://doi.org/10.18653/v1/D19-6504
https://doi.org/10.18653/v1/D19-6504
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://aclanthology.org/2021.ccl-1.101
https://aclanthology.org/2021.ccl-1.101
https://aclanthology.org/2021.ccl-1.101
https://aclanthology.org/2021.ccl-1.101
https://aclanthology.org/2021.ccl-1.101
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2022.acl-long.160
https://doi.org/10.18653/v1/2022.acl-long.160
https://doi.org/10.18653/v1/2022.acl-long.160
https://doi.org/10.18653/v1/2022.acl-long.160
https://doi.org/10.18653/v1/2022.acl-long.160


A Appendix784

11



The appendix includes prompt design and multiline generation, human annotation guideline, paraphrase785

generation quality analysis, analysis of the interaction between gold and paraphrase ratio for each dataset,786

downstream f1 score for each dataset, risks and limitations as well as software acknowledgements.787

A.1 Prompt design788

A.1.1 Entity mention replacement prompts789

The following prompt is used in the entity mention replacement pipeline to generate entity values similar790

to gold mentions: ENTITY_TYPE is replaced by a phrase that explains the entity in a few words using

Figure 3: GPT-3 DaVinci is instructed to generate mention replacements for ENTITY_VALUE of the type
ENTITY_TYPE

791
the following table: Here is an example for the prompt used for entity mention replacement along with

Figure 4: ENTITY_TYPE is replaced by replacement phrases for each entity type

792
generation from GPT-3 DaVinci:793

12



Figure 5: Mention replacement prompt and output from GPT-3 DaVinci

A.2 Multiline generation 794

LLM paraphrasers can be triggered to generate multi-line outputs. This behavior is more common in Ada 795

variants over DaVinci, showing the DaVinci is better at following prompt instructions.

Figure 6: GPT-3 variants sometimes generate multiple numbered paraphrases. We choose to retain only the first
paraphrase in these cases

796

A.3 Human evaluation guidelines 797

See Figure 7 for annotation guideline. 798

A.4 Paraphrase generation quality Analysis 799

Besides assessing usefulness for NER with actual training, we investigate paraphrase generation quality 800

directly from two perspectives – entity preservation and paraphrase quality to see to what extent these 801

metrics correlate with NER performance. 802

As entities are central to NER, we hypothesize entity preservation to be important for performance. We 803

count the number of gold entities that appear in paraphrases with correct annotations via a case insensitive 804

string match (entity recall). This calculation sets a lower bound of the entity preservation accuracy. 805

Good paraphrases are also expected to introduce form variety while preserving the meaning faithfully, 806

potentially helping downstream performance. We asked three human annotators to annotate paraphrases 807

generated by the six systems for 50 training examples sampled for each dataset. Specifically, human 808

annotators were instructed to ignore the entity accuracy and to score paraphrases from 1-5 based on the 809

paraphrasing quality. Our guidelines are similar to (Niu et al., 2020) (Appendix A.3). The annotator are 810

from the internal data annotator team hired by the company and the annotation task is assigned as the 811

annotation work. 812

According to Figure 8(a), among all the paraphrase systems Davinci (Prompt B) has the highest entity 813

recall rate, followed by Davinci (Prompt A) and backtranslation. While, Ada and Pegasus are more likely 814

to lose gold entities. This suggests a large-sized GPT-3 model with an appropriate prompt can generate 815

examples with high-quality inline entity annotations but a small-sized GPT-3 consistently underperforms 816
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Figure 7: Annotation guideline
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Figure 8: Paraphrase Evaluation

even a simple Back-translation system. Figure 8(b) shows Davinci systems always have the best human817

evaluation scores across datasets followed by Pegasus and Back-translation, while Ada systems are818

consistently the worst (missing value of Pegasus for mit restaurant is due to technical issue).819

In summary, we find that paraphrases generated by the Davinci (Prompt B) system often preserve entities820

and are of a good paraphrasing quality whereas Ada systems consistently underperform other systems in821

both metrics across datasets. These results are partially consistent with the downstream evaluations in that822

the augmentation data generated by Davinci (Prompt B) have reliably better downstream performance823

compared to other systems. However, broader trends in paraphrasing quality do not track with downstream824

NER performance.825
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A.5 Detailed results across different gold data sizes for all datasets 826

A.5.1 BC5CDR 827

15



A.5.2 Ontonotes828
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A.5.3 MIT-R 829
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A.5.4 Tweebank830
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A.5.5 WNUT-17 831
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A.6 Heatmap of micro-f1 scores across all datasets & paraphrasers832

A.6.1 BC5CDR833
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A.6.2 Ontonotes 834
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A.6.3 MIT-R835
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A.6.4 Tweebank 836
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A.6.5 WNUT-17837
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A.7 Entity Level Analysis 838

Figure 9: Linear regression model for Entity Level Analysis
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A.8 Memorization Analysis839

A.8.1 Entity Level Memorization840

Figure 10: Linear regression model for Memorization Analysis

A.8.2 Memorization Mention Replacement841

Figure 11: Statistical analysis of Memorization with Mention Replacement

26



A.9 Wnut17 Unseen Entity Set F1 842

Figure 12: NER performance for all paraphrases on the Unseen Entity Set of Wnut17
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A.10 Ontonotes Unseen Entity Set F1843

Figure 13: NER performance for all paraphrases on the Unseen Entity Set of Ontonotes
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A.11 MIT Restaurants Unseen Entity Set F1 844

Figure 14: NER performance for all paraphrases on the Unseen Entity Set of MIT Restaurants
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A.12 Bc5cdr Unseen Entity Set F1845

Figure 15: NER performance for all paraphrases on the Unseen Entity Set of Bc5cdr
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A.13 Tweebank Unseen Entity Set F1 846

Figure 16: NER performance for all paraphrases on the Unseen Entity Set of Tweebank
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A.14 DaV-B with Mention Replacement Unseen Entity Set F1847

Figure 17: NER performance for DaV-B on the Unseen Entity Set of all Datasets
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A.15 Dataset Statistics 848

Train
Dev Test

BC5CDR 5228 5330 5865
Ontonotes 59924 8528 8262
MIT-R 6900 760 1521
Tweebank 1639 710 1201
WNUT-17 2394 1009 1287

Table 8: Dataset statistics

A.16 Computational budget 849

Most of our experiments were run on the following GPU machines on AWS: p3.16xlarge, g5.48xlarge, 850

g5.12xlarge and g5.24xlarge. The main fine tunning experiments across G/P ratios took 1-4 days per 851

dataset, depending on the size of the dataset, and the machine used for fine tuning. 852

Paraphrase generation using GPT-3 DaVinci model took less than a day for most datasets. Ontonotes 853

took roughly a day. Similar time was spent when generating mention replacements. 854

A.17 Limitations and risks 855

This work utilizes generative models trained on large volumes of data, to generate supplemental training 856

data for named entity recognition systems. We do not address any biases, or filter generations of the 857

underlying paraphrasers when using their generated data. This can bias the fine tuned models towards 858

underlying biases of the generative system. 859

While we do not test or correct the paraphrasing systems for biases, we do not find any evidence for 860

the models deviating unfairly from the underlying training data in any of our human evaluations of the 861

paraphrases. 862

We recommend human review, and automatic filtering of the generations when applying techniques 863

based on generative models to critical applications, to ensure the black box paraphrasing does not introduce, 864

or exacerbate the biases in existing training datasets. 865
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This work would be much harder without the use of several software packages including, but not limited 867

to Pytorch (Paszke et al., 2019), Huggingface transformers (Wolf et al., 2020) and associated software 868

ecosystem (Huggingface datasets), Scipy (Virtanen et al., 2020), Pandas (McKinney et al., 2011), Numpy 869

(Harris et al., 2020), Scikit-learn (Pedregosa et al., 2011), and OpenAI models and Python library. 870
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