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Abstract—Bilevel planning, in which a high-level search over
an abstraction is used to guide low-level decision-making, is an
effective approach to solving long-horizon tasks in continuous
state and action spaces. Recent work has shown how to enable
such bilevel planning by learning action and transition model ab-
stractions in the form of symbolic operators and neural samplers.
In this work, we show that existing symbolic operator learning
approaches fall short in many robotics environments where agent
actions tend to cause a large number of irrelevant propositions to
change. This is primarily because they attempt to learn operators
that optimize the prediction error with respect to observed
changes in the propositions. To overcome this issue, we propose
to learn operators that only model changes necessary for abstract
planning to achieve the specified goal. Experimentally, we show
that our approach learns operators that lead to efficient planning
across 10 different hybrid robotics domains, including 4 from the
challenging BEHAVIOR-100 benchmark, with generalization to
novel initial states, goals, and objects.

I. INTRODUCTION

Solving long-horizon robotics problems in domains with
continuous state and action spaces is extremely challenging,
even when the transition function is deterministic and known.
One effective recipe is to learn abstractions for the domain and
then perform hierarchical planning to any new goal. A typical
approach is to first learn state abstractions in the form of
symbolic predicates (classifiers on the low-level state, such as
InGripper), then learn operator descriptions and samplers
in terms of these predicates [37, 11]. The operators describe
a partial transition model in the abstract space, while the
samplers enable the search for realizations of abstract actions
in terms of primitive actions. In this paper, we focus on the
problem of learning operator descriptions from a very small set
of demonstrations given a set of predicates, an accurate low-
level transition model, and a set of parameterized controllers
(such as Pick(x, y, z)) that serve as primitive actions.
By learning such operators, we hope to leverage bilevel
planning to aggressively generalize to a highly variable set of
problem domain sizes, initial states, and goals in challenging
robotics domains.

A natural objective for the problem of finding good abstract
domain models is minimizing prediction error [35, 37]. This
objective would be appropriate if we were using the abstract
model to make predictions, but in fact we are using it as
planning guidance for an accurate low-level model. So instead,
our objective is to find an abstract model that maximally
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improves the performance of the planning algorithm, given
the available data. The difference between these objectives
is stark in many natural domains where each action taken
by the agent can change a large number of propositions.
To make highly accurate predictions about all of these state
changes might require a very fine-grained model with many
complex operators. Such a model would require a lot of data
to learn reliably, be very slow to plan with, and also be
unlikely to generalize to novel tasks with different numbers
and configurations of objects.

For example, consider the “Sorting Books” task (Figure
1) from the recent BEHAVIOR-100 benchmark [38]. Here,
the agent’s goal is to retrieve a number of books strewn
about a living room and place them on a particular shelf. A
Reachable(?object) predicate is given to indicate when
the agent is close enough to a particular object to pick it up.
When the agent moves to pick a particular object, the set of
objects that are reachable varies depending on the specific
configuration of objects. For instance, the figure shows a
transition where the agent moves to put itself in range of
picking up the particular book book7, but happens to also
be in range of picking up 1 other book and 3 other items of
different types. Optimizing prediction error on this transition
would yield a rather complex operator such as the one below:

Op−MoveToBook−Prediction−Error:
Args: ?objA ?objB ?objC ?objD ?objE ?objF ?objG
Preconditions: (and (Reachable ?objA) (Reachable ?objB))
Add Effects: (and (Reachable ?objC) (Reachable ?objD)

(Reachable ?objE) (Reachable ?objF) (Reachable ?objG))
Delete Effects : (and (Reachable ?objA) (Reachable ?objB))

This operator is overfit to this specific situation and thus nei-
ther useful for efficient high-level planning nor generalizable
to new tasks with different object configurations (e.g. the test
situation depicted in the right panel of Figure 1, where the
robot is not in reachable range of any objects).

In this work, we observe that, in order to generate use-
ful high-level plans, operators need only model changes in
predicates that are necessary for high-level search. Through
learning operators to only model these necessary changes, we
enable better generalization and faster planning. For example,
we can learn the operator below, and use it to plan to
reach a target object while ignoring, through delete effects,
the reachability of all other objects (note that this operator
generalizes to the test situation in the right panel of Figure 1).



Ground Atoms
Reachable(game5)
Reachable(book1)

MoveTo(book7)

Ground Atoms
Reachable(book4)
Reachable(book7)
Reachable(game1)
Reachable(game2)
Reachable(video4)

Ground Atoms
(None)

Fig. 1. Example demonstration transition and evaluation task from BEHAVIOR-100. (Left) Visualization and high-level states for an
example transition where the agent moves from being in range of picking a number of objects. (Right) Visualization of an evaluation task
where the agent starts out not in range of picking any objects.

Op−MoveToBook−Planning−Performance:
Args: ?objA
Preconditions: ()
Add Effects: (Reachable ?objA)
Delete Effects : (∀?x. ?objA ̸= ?x ⇒ (Reachable ?x))

Our main contributions are (1) the formulation of a new
objective for learning an abstract model, (2) a procedure
for distinguishing necessary changes within the high-level
states of provided demonstrations, and (3) an algorithm that
leverages (1) and (2) to learn symbolic operators from demon-
strations via a hill-climbing search. We test our method on a
wide range of complex robotic planning problems and find
that our learned operators enable bilevel planning to solve
challenging tasks and generalize substantially from a small
number of examples. This is particularly noteworthy in two
of the more complex environments from the BEHAVIOR-100
set [38], since no other method we know of is able to achieve
non-negligible test performance in these tasks.

II. BACKGROUND

A. Problem Setting

We consider the problem of learning operators for search-
then-sample bilevel planning [35, 11]. In this setting, a state
x ∈ X is characterized by the continuous properties (e.g.
pose, color, material) of a set of objects. Objects may be
typed (e.g., robot, book) and properties can vary between
types. A set of predicates defines discrete properties of objects
(e.g., HandEmpty) or relations between objects (e.g., On).
Predicates induce a state abstraction ABSTRACT : X → S
where ABSTRACT(x) is the set of true ground atoms in
x (e.g., {HandEmpty(robot), On(b1, b2), . . . }). An
action is a hybrid controller u ∈ U , which has discrete
and continuous parameters (e.g., Pick(block, θ) where
θ is a continuous grasp). Transitions are deterministic and a
simulator f : X × U → X predicts the next state given a
current state and action. The state space, predicates, action
space, and simulator comprise an environment.

A task T ∈ T is characterized by a set of objects O, an
initial state x0 ∈ X , and a goal g. The goal is a set of ground
atoms and is achieved in x if g ⊆ ABSTRACT(x). A solution
to a task is a sequence of actions u = (u1, . . . , un) that
achieve the goal (g ⊆ ABSTRACT(xn), and xi = f(xi−1, ui)
for 1 ≤ i ≤ n). Each environment is associated with a task
distribution. Our objective is to maximize the likelihood of

solving tasks from this distribution within a planning time
budget. We consider learning-based approaches that use a set
of training tasks Ttrain ⊂ T . Each training task is given with
one demonstration, i.e., a solution for the task. Collectively,
these demonstrations make a set D that we use during learning.
After training, we test generalization to a set of evaluation
tasks also drawn from T .

B. Planning Operators
In bilevel planning (see Appendix VII-A for more details),

search in the abstract state space S is used to guide planning
in the low-level state space X . The abstract search requires
operators. Importantly, note that unlike in classical planning,
our operators need not yield downward refinable plans.

An operator ω has arguments v, preconditions P , add effects
E+, delete effects E−, and a controller C. The arguments
are placeholders for objects. The preconditions and effects are
each expressions over the arguments (more on this below). The
controller associates some of the arguments with its discrete
parameters and does not have continuous parameters specified
(e.g., Pick(?v,·)). A substitution of arguments to objects
induces a ground operator ω = ⟨P ,E+, E−, C⟩ where the
placeholders are substituted accordingly.

We consider operators that can be expressed in a par-
ticular subset of PDDL [19], which allows us to leverage
efficient AI planning techniques for search. Following previous
work [35, 11], we represent operator preconditions as a set of
atoms (i.e., a logical conjunction). Ground preconditions P
are satisfied in s if P ⊆ s. Add effects are also represented
with a set of atoms and ground add effects E+ are added to s
via set union. In addition to the typical atomic delete effects,
we also permit universally quantified single-predicate delete
effects (e.g., ∀?v. Reachable(?v)). We consider this
more expressive class of delete effects because of our desire
to move away from prediction error and instead focus on goal
reachability: these quantified effects allow us to “ignore more”
of the abstract state. During grounding, these delete effects
are transformed into ground atoms E− by substituting the
quantified variables with each object in the state. Altogether,
given a ground operator ω = ⟨P ,E+, E−, C⟩, if P ⊆ s, then
the successor abstract state s′ is (s \ E−) ∪ E+ where \ is
set difference. We use F (s, ω) = s′ to denote this (partial)
abstract transition function.

In previous work on operator learning for bilevel plan-
ning [35, 11], operators are connected to the underlying



environment through the following semantics: if F (s, ω) = s′,
then there exists some low-level transition (x, u, x′) where
ABSTRACT(x) = s, ABSTRACT(x′) = s′, and u = C(θ)
for some θ. These semantics embody the “prediction error”
view in that ABSTRACT must predict the entire next state
(ABSTRACT(x′) = s′). Towards implementing the alternative
“necessary changes” view, we will instead only require the
abstract state output by F to be a subset of the atoms in the
next state, that is, ABSTRACT(x′) ⊆ s′. Intuitively, F is now
responsible for generating abstract subgoals to guide low-level
planning, rather than predicting entire successor abstract states.

III. LEARNING OPERATORS FROM DEMONSTRATIONS

The efficiency and effectiveness of bilevel planning is highly
dependent on the planning operators’ ability to provide useful
guidance for low-level planning [37]. The prediction error
objective used in prior work (e.g., [35]) is misaligned with
this objective because it incentivizes learned operators to be
highly specific at the expense of generating refinable high-level
plans. Optimizing prediction error forces operators to predict
the entire abstract state correctly. In many natural domains,
especially those with a large number of objects, executing a
particular controller is likely to result in a number of irrele-
vant changes. Accurately predicting the abstract state in such
domains leads to a large number of learned operators that are
each hyper-specific (they have a large number of preconditions
and effects). Consequently, these operators generate plans that
make hyper-specific predictions for each abstract state that are
unlikely to hold true, especially in evaluation tasks that have
different numbers of objects in different configurations than
the training tasks.

Intuitively, it seems unnecessary and even wasteful to model
all observed changes. Indeed, we only need model the few
changes that are necessary for generating refinable plans. We
now formalize this intuition.

A. Necessary Atoms

Definition III.1. Given an abstract plan (ω1, . . . , ωn) that
achieves goal g, the necessary atoms at step n are αn ≜ g,
and at step 0 ≤ i < n are αi ≜ Pi+1 ∪ (αi+1 \ E+

i+1).
In other words, the necessary atoms are the conditions

required for the remaining abstract plan to be feasible. Each
necessary atom set is minimal in that no atoms can be
removed without violating either the goal or a future operator’s
preconditions. This property creates an appealing basis for
operator learning: if the necessary atoms are correct, then
the remainder of the plan must be feasible (at the abstract
level). Furthermore, in many robotic domains, the necessary
atoms will be a small subset of the full abstract state. We thus
endeavor to learn operators that predict the necessary atoms
instead of the entire next abstract state.

However, there is an unfortunate circularity lurking in the
definition above: to identify necessary atoms, one must already
have operators. In other words, it is not possible to examine
the training demonstrations, immediately determine necessary
atom sets for each step, and then do supervised learning. We

will remedy this by conducting a local search over operator
sets, and use the current candidate operator set to compute
necessary atoms.

B. Hill-Climbing Search over Operator Sets

We perform a hill-climbing search over operator sets,
starting with the empty set. To implement this search, we
must define (1) an objective function to minimize, and (2) a
mechanism for proposing successor candidate operator sets.
Both of these components will use the current candidate
operator set to (partially) compute necessary atoms for the
demonstrations via a type of goal-regression in the form of
preimage backchaining [33, 31, 42] (see Appendix for more
details). We now describe these components in more detail.

1) Hill-Climbing Objective: Our objective consists of two
terms: a coverage term, which penalizes operator sets that
are unable to yield plans that mimic the demonstrations
for training tasks (Definition VII.1 in the Appendix); and a
complexity term, which provides regularization by preferring
simpler operator sets. Formally, we want to minimize:

J(Ω) ≜ coverage(D,Ω) + λcomplexity(Ω) (1)

where λ > 0 is a small constant that trades off the relative
importance of the terms. Intuitively, we compute coverage
by stepping backwards from the goal and counting how many
transitions cannot be matched (or ‘covered’) some existing
operator (i.e, the operator’s precondition is true in the initial
state, the effects hold in the next state, etc.) in the current
candidate set for each demonstration (See Appendix VII-C1
for details). Complete coverage (i.e, coverage = 0) means
that we will be able to reproduce all the demonstration
action sequences on all demonstration tasks using our learned
operators. We implement complexity simply by counting
the number of operators (i.e, complexity(Ω) ≜ |Ω|).

2) Generating Successor Operator Sets: We propose hill-
climbing search over operator sets with two successor gen-
erators (see Appendix VII-C1 and VII-C2 for more details).
The first and main successor generator improve-coverage
uses preimage backchaining to find a necessary atoms set
that is currently uncovered, and then proposes a set of
new operators to cover it. The second successor genera-
tor reduce-complexity simply deletes operators from
the current candidate set, which can help to prevent
the proliferation of unnecessary operators. Note that the
improve-coverage generator is guaranteed to decrease
the coverage cost term of our objective in Equation III-B1,
while reduce-complexity is guaranteed to decrease the
complexity cost term. In our experiments, we set the
constant λ in the objective to be small enough such that
improving the coverage term always improves the overall
objective more than improving the complexity term.

IV. EXPERIMENTS

A. Experimental Setup

We evaluate six methods across ten robotic planning envi-
ronments of varying difficulty. Four of our baselines (LOFT,



Environment Ours LOFT LOFT+Replay CI CI + QE GNN Shoot GNN MF
Painting 98.80 (1.33) 0.00 (0.00) 98.20 (2.89) 99.00 (1.00) 93.40 (4.65) 36.00 (10.73) 0.60 (0.92)
Satellites Simple 93.40 (11.14) 0.00 (0.00) 34 (16.71) 91.60 (8.48) 95.20 (4.12) 40.40 (9.62) 11.00 (4.58)
Cluttered 1D 100.00 (0.00) 17.20 (17.28) 0.00 (0.00) 17.40 (17.46) 92.80 (2.86) 98.60 (2.01) 98.60 (2.01)
Screws 100.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 50.00 (50.00) 95.60 (9.67) 95.80 (9.73)
Satellites 95.20 (2.40) 0.00 (0.00) 0.00 (0.00) 1.60 (1.96) 6.00 (4.98) 4.80 (4.02) 0.00 (0.00)
Cluttered Painting 99.20 (1.33) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 4.60 (3.69) 0.00 (0.00)
Opening Presents 100.00 (0.00) 0.00 (0.00) - 83.00 (34.07) 83.00 (34.07) 28.00 (18.87) 0.00 (0.00)
Locking Windows 100.00 (0.00) 0.00 (0.00) - 90.00 (14.14) 88.00 (14.00) 0.00 (0.00) 0.00 (0.00)
Collecting Cans 77.00 (37.16) 0.00 (0.00) - 0.00 (0.00) 1.00 (3.00) 0.00 (0.00) 0.00 (0.00)
Sorting Books 69.00 (36.73) 0.00 (0.00) - 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

TABLE I
PERCENTAGE SUCCESS RATE ON TEST TASKS FOR ALL DOMAINS. THE PERCENTAGE STANDARD DEVIATION IS SHOWN IN BRACKETS.

LOFT+Replay, CI, CI + QE) are from prior work that learn
operators by optimizing prediction error, while two (GNN
Shoot and GNN MF) learn an end-to-end policy from the
demonstrations. Five environments were created by us, one
was taken from Silver et al. [35], and four are from the
BEHAVIOR-100 benchmark [38]. For the non-BEHAVIOR
environments, we run all methods on 50 training demon-
strations; for BEHAVIOR environments, we use 10, since
collecting training data in these BEHAVIOR is very time and
memory intensive.

All results are averaged over 10 random seeds. For each
seed, we sample a set of evaluation tasks from the task dis-
tribution T . The evaluation tasks have more objects, different
initial states, and goals with more atoms than seen during
training. Our key measure of effective bilevel planning is
success rate within a timeout (10 seconds for non-BEHAVIOR
environments, 500 for 3 BEHAVIOR environments, and 1500
for “Sorting Books”: the most complex environment). For
environment and baseline descriptions, as well as additional
analyses, including the complexity of learned operators, exam-
ples of learned operators, and learning and planning efficiency,
see Appendix VII-I1 and VII-J.

B. Results and Analysis

As seen in Table I, our method solves many more held-out
tasks within the timeout than the baselines. In our simpler en-
vironments (Painting and Satellites Simple; Opening Presents
and Locking Windows for BEHAVIOR), the controllers cause
a small number of changes in the abstract state, and baseline
approaches that optimize prediction error (CI, CI + QE)
perform reasonably well. In all the other environments, the
controllers cause a large number of changes in the abstract
state, and the performance of operator learning baselines
degrades substantially, though GNN baselines perform well on
Cluttered 1D and Screws. Despite the increased complexity,
our approach learns operators that enable bilevel planning to
achieve a substantial test-time success rate under timeout.
The performance in Collecting Cans and Sorting Books is
especially notable; all baselines achieve a negligible success
rate, while our approach achieves a near 70% rate on testing
tasks. Upon investigation, we found that failures are due to
local minima during hill-climbing for certain random seeds.

V. RELATED WORK

Our work continues a long line of research in learning
operators for planning [14, 3, 23, 24, 26, 29, 32, 12, 2];
see Arora et al. [4] for a recent survey. Prior work generally
focuses on learning operators from discrete plan traces in
the context of classical (not bilevel) planning. An important
difference between the the typical classical setting and ours is
that our operators need not guarantee downward-refinability
of the corresponding plans, since low-level geometric details
can have a substantial effect on the feasibility of a high-level
plan. Our focus is on learning a theory that makes the “global”
bilevel planning as efficient as possible.

Other work has considered learning symbolic planning mod-
els in continuous environments [20, 39, 1, 5, 9, 6, 40, 22, 13].
Our efforts are most directly inspired by LOFT [35] and
learning Neuro-Symbolic Relational Transition Models [11],
which optimize prediction error to learn operators for bilevel
planning. Like our method, LOFT performs a search over
operator sets, but commits to modeling all effects seen in the
data and searches only over operator preconditions. We point
out the limitations of optimizing prediction error in complex
environments. We include LOFT and Cluster and Intersect
as baselines representative of these previous methods in our
experiments.

Our work also contributes to a recent line of work on
learning for TAMP. Other efforts in this line include sampler
learning [10, 25, 41, 28], heuristic learning [34, 21, 30], and
abstract plan feasibility estimation [15, 27].

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed an objective for operator learning
that is specifically tailored to bilevel planning, and a search-
based method for optimizing this objective. Experiments con-
firmed that operators learned with our new method lead to
substantially better generalization and planning than those
learned by optimizing prediction error. Important next steps
include integrating this method with predicate invention [37]
and controller learning [36], as well as handling stochasticity
and partial observability. We believe that pursuing these steps
will yield important progress toward solving sparse-feedback,
long-horizon decision-making problems at scale.
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Lozano-Pérez, and Leslie Pack Kaelbling. Learning
neuro-symbolic relational transition models for bilevel
planning. In The IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2022.

[12] Stephen N Cresswell, Thomas L McCluskey, and Mar-
garet M West. Acquiring planning domain models using
LOCM. The Knowledge Engineering Review, 2013.

[13] Aidan Curtis, Tom Silver, Joshua B Tenenbaum, Tomás
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[23] Norbert Krüger, Christopher Geib, Justus Piater, Ronald
Petrick, Mark Steedman, Florentin Wörgötter, Aleš Ude,
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BILEVELPLANNING(O, x0, g, Ψ, Ω, Σ)
// Parameters: nabstract, nsamples.

1 s0 ← ABSTRACT(x0)
// Outer Planning Loop

2 for π̂ in GENABSPLAN(s0, g, Ω, nabstract) do
// Inner Refinement Loop

3 if REFINE(π̂, x0, Ψ, Ω, nsamples) succeeds w/ π
4 return π

Algorithm 1: Pseudocode for bilevel planning algorithm,
adapted from Silver et al. [37]. The inputs are objects O, initial
state x0, goal g, predicates Ψ, operators Ω, and samplers Σ; the
output is a plan π. The outer loop GENABSPLAN generates high-
level plans that guide our inner loop, which samples continuous
parameters from our samplers Σ to concretize each abstract plan
π̂ into a plan π. If the inner loop succeeds, then the found
plan π is returned as the solution; if it fails, then the outer
GENABSTRACTPLAN continues.

VII. APPENDIX

A. Detailed Bilevel Planning Algorithm Descriptions

Given planning operators learned from training tasks Ttrain,
we can solve new evaluation tasks T ∈ T via search-
then-sample bilevel planning (Algorithm 1). We provide a
review of bilevel planning and refer to previous works for
details [16, 11, 35, 36, 37]. Given the task goal g, initial state
x0, and corresponding abstract state s0 = ABSTRACT(x0),
bilevel planning uses efficient AI planning techniques (e.g.,
[17]) to generate candidate abstract plans. An abstract plan is
a sequence of ground operators (ω1, . . . , ωn) where g ⊆ sn
and si = F (si−1, ωi) for 1 ≤ i ≤ n. The corresponding
abstract state sequence (s1, . . . , sn) serves as a sequence of
subgoals for low-level planning. Furthermore, the operator
controller sequence (C1, . . . , Cn) provides a plan sketch,
where all that remains is to “fill in” the continuous parameters.
We do this by sampling continuous parameters θ for each
controller starting from the first and checking if the controller
achieves its corresponding subgoal si. If we cannot sample
such parameters within a constant budget, we backtrack and
resample, eventually even generating a new abstract plan.
Following previous work [11], we use learned neural network
samplers to propose continuous controller parameters. See
Appendix VII-E for more details.

Algorithms 2 and 3 provide pseudocode and additional de-
tails necessary for high-level and low-level search respectively
in bilevel planning (Algorithm 1).

B. Preimage Backchaining

Given an operator set Ω and demonstration (x, u) for
training task T ∈ Ttrain with goal g and objects O, we use
preimage backchaining (Algorithm 4) to compute an abstract
plan suffix (ωk, . . . , ωn) (where 1 ≤ k ≤ n) that is consistent
with the demonstration.

GENABSTRACTPLAN(s0, g, Ω, nabstract)
1 Ω← GROUND(Ω)

// Search over ground operators from s0 to

goal (returns top n plans).

2 π̂ ← SEARCH(s0, g,Ω, nabstract)
3 return π̂

Algorithm 2: This is GENABSTRACTPLAN which finds a high-
level plan by creating operators for all possible groundings then
uses search to find nabstract plans. It returns a list of plans π̂.

REFINE((π̂, x0, Ψ, Σ, nsamples))
1 state← ABSTRACT(x0)

// While current state is not goal, sample

and run current operator on current

state and check ground atoms. If is

passes continue if not backtrack.

2 curridx ← 0
while curridx < len(π̂) do

3 samples[curridx]← samples[curridx] + 1
4 statecurrent,Ω← π̂[curridx]
5 Ω.C.Θ ∼ Ω.Σ
6 π[curridx]← Ω.C
7 curridx ← curridx + 1

if Ω.C.initiable(statecurrent) then
8 statenext ← Simulate(statecurrent,Ω.C)
9 stateexpected, ← π̂[curridx]

if statenext ⊆ stateexpected then
10 can continue on ← True

if curridx == len(skeleton) then
11 return sucess, π

else
12 canContinueOn ← False

else
13 canContinueOn ← False

if not canContinueOn then
14 curridx ← curridx − 1

if samples[curridx] == max samples
then

15 return failure, π
16 return success, π

Algorithm 3: This is REFINE which turns a task plan π̂ into
a sequence of ground skills. It gets the state and operators
from π̂ and adds the controller with newly sampled continuous
parameters to π. After this it checks to see if the added controller
is initiable from the current state in the plan and we simulate
the skill execution to verify it reached the expected state we
predicted next in π̂. If the controller is not initiable or fails
the expected atoms check we backtrack and resample a new
continuous parameter for this controller until either we reach
the max number of samples or we successfully refine our final
controller.

Definition VII.1. An abstract plan suffix (ωk, . . . , ωn) with
necessary atoms (αk−1, . . . , αn) is consistent with a demon-



stration (x, u) for goal g and timesteps 1 ≤ k ≤ n, where
x = (x0, . . . , xn) and u = (u1, . . . , un) if for k ≤ i ≤ n, (1)
the states are consistent: αi ⊆ F (ABSTRACT(xi−1), ωi) ⊆
ABSTRACT(xi); and (2) the actions are consistent: if the
controller for ωi is Ci, then ui = Ci(θ) for some θ.

If the candidate operators Ω are sufficient to generate an
abstract plan that mimics the demonstration provided for
the task, then preimage backchaining (Algorithm 4) should
yield a plan suffix of the same length. Otherwise, preimage
backchaining will stall at some time step k ≥ 1 where no
operator can be used to reach necessary atoms αk. This stalling
is the main signal that we use to define our hill-climbing
objective, and later to propose successor operator sets.

The pseudocode and description for preimage backchaining
is shown in Algorithm 4.

PREIMAGEBACKCHAINING((Ω,(x, u),O, g))
1 n← length(x)
2 αn ← g
3 for i← n− 1, n− 2, . . . , 0 do
4 si, si+1 ← ABSTRACT(xi), ABSTRACT(xi+1)
5 ωbest ← FINDBESTCONSISTENTOP(Ω, si,

si+1, αi+1, O)
6 if ωbest = Null then

break
7 ωi+1 ← ωbest
8 αi ← Pi+1 ∪ (αi+1 \ E+

i+1)

9 return (ωi+1, . . . , ωn), (αi, . . . , αn)

Subroutine FINDBESTCONSISTENTOP((Ω, si, si+1,
α, O))

10 Ωcon ← ∅
11 for ω ∈ Ω do
12 for ω ∈ GETALLGROUNDINGS(ω,O) do
13 spred

i+1 ← ((si \ E−) ∪ E+)

14 if P ⊆ si AND α ⊆ spred
i+1 AND spred

i+1 ⊆ si+1

AND ∃θ : C(θ) = ui then
15 Ωcon ← Ωcon ∪ ω
16 if Ωcon ̸= ∅ then

return FINDBESTCOVER(Ωcon, (si, si+1))
return Null

Algorithm 4: Pseudocode for our preimage backchaining al-
gorithm. The inputs are a set of operators Ω, a training demon-
stration (x, u), objects used in the corresponding task O, and the
task goal g. The output is an abstract plan suffix (ωi+1, . . . , ωn)

and corresponding sequence of necessary atoms (αi, . . . , αn).
Intuitively, we pass backward through each transition in a tra-
jectory while attempting to choose an operator in Ω to “cover”
the transition and then updating the transition’s necessary atoms
using Definition III.1. If multiple such operators exist, we use a
heuristic (FINDBESTCOVER) that attempts to select the one that
best matches the transition (see Appendix VII-D for details).

C. Detailed Description of Successor Generators

IMPROVECOVERAGE(Ω, D, Ttrain)
1 covinit,Dα, τunc, αunc ←

COMPUTECOVERAGE(Ω,D, Ttrain)
2 if covinit = |D| then

return Ω
3 covcurr ← covinit
4 Ω′ ← Ω
5 while covcurr ≥ covinit do
6 ωnew ← INDUCEOPTOCOVER(τunc, αunc)
7 Ω′ ← REMOVEPRECANDDELEFFS(Ω′) ∪ ωnew
8 (Dω1

. . .Dωm
), (δτ1 , . . . , δτj )←

PARTITIONDATA(Ω′,D, Ttrain)
9 Ω′ ← INDUCEPRECANDDELEFFS(Ω′,

(Dω1 . . .Dωm),
(δτ1 , . . . , δτj ))

10 Ω′ ← Ω′ ∪ ENSURENECATOMSSAT(ωnew,Dα)
11 (Dω1

. . .Dωl
), (δτ1 , . . . , δτj )←

PARTITIONDATA(Ω′,D, Ttrain)
12 Ω′ ← INDUCEPRECANDDELEFFS(Ω′,

(Dω1 . . .Dωl
),

(δτ1 , . . . , δτj ))
13 covcurr,Dα, τunc, αunc ←

COMPUTECOVERAGE(Ω′,D, Ttrain)
14 Ω′ ← PRUNENULLDATAOPERATORS(Ω′)
15 return Ω′

Algorithm 5: Pseudocode for our improve-coverage suc-
cessor generator. The inputs are a set of operators Ω, the set
of all training demonstrations D, and the corresponding set of
trainign tasks Ttrain. The output is a set of operators Ω′ such that
coverage(Ω′) ≤ coverage(Ω).

1) improve-coverage: Before we discuss the
improve-coverage generator, we note that the
coverage term in our hill-climbing objective (Equation
III-B1 is computed by using preimage backchaining to
find abstract plan suffixes for each demonstration in the
training set and record the cumulative number of “uncovered”
transitions, that is, n− k for a demonstration of length n and
suffix length k.

The pseudocode for the improve-coverage successor
generator is shown in Algorithm 5. Given the current candidate
operator set Ω, training demonstrations D and corresponding
tasks Ttrain, we first attempt to compute the current coverage
of Ω on D. We do this by calling the COMPUTECOVERAGE
method. This method simply calls Algorithm 4 on every
demonstration (x, u) in D (the set of objects O and goal
g required by Algorithm 4 are obtained from the training
tasks). The COMPUTECOVERAGE method then returns the
number of covered transitions1 (covinit), a dataset of necessary
atoms sequences for each demonstration Algorithm 4 is able
to cover (Dα), the first uncovered transition encountered
(τunc = (sk, uk+1, sk+1)), and the corresponding necessary

1The total number of transitions in abstract plan suffixes that Algorithm 4
is able to find when run on each demonstration in D.



atoms for the transition (αunc). If the number of covered
transitions is the same as the size of the training dataset, then
all transitions must be covered and the coverage term in our
objective (Equation III-B1) must be 0. We thus just return the
current operator set Ω with no modifications. Otherwise, we
compute a new set of operators Ω′ with a lower coverage
value.

To generate Ω′, we first create a new operator with precon-
ditions, add effects and arguments set to cover the transition
τunc and corresponding necessary atoms αunc. The operator’s
ground controller C(θ) = uk+1 is determined directly from
the transition’s action uk+1. The operator’s ground add effects
are set to be E+ = (sk+1 \ sk)∩αunc. The controller and add
effects are lifted by creating a variable vi for every distinct
object that appears in C ∪ E+. The operator’s arguments v
are set to these variables.

Next, we must induce the preconditions and delete effects
of this new operator ωnew. To this end, we add ωnew to our
current candidate set, and partition all data in our training set
D into operator specific datasets Dω for each operator ω in our
current candidate set. Since operator preconditions and delete
effects depend on the partitioning, we first remove these from
all operators that are not ωnew (REMOVEPRECANDDELEFFS).
We perform this partitioning by running the FINDBESTCON-
SISTENTOP method from Algorithm 4 on this new operator
set for every transition in the dataset, though we do not
check the condition spredi+1 ⊆ si+1, since the operators do
not yet have delete effects specified. While performing this
step, we save a mapping δτi from the operator’s arguments
to the specific objects used to ground it for every transition
in the dataset (this will be used for lifting the preconditions
and delete effects of each operator below). We assign each
transition to the dataset associated with the operator returned
by FINDBESTCONSISTENTOP. We return the operator specific
datasets (Dω1

. . .Dωl
), as well as the saved object mappings

for each transition (δτ1 , . . . , δτj ).
We now induce preconditions and delete effects using

(Dω1 . . .Dωl
) and (δτ1 , . . . , δτj ). Before we do this, we

delete any operator whose corresponding dataset is empty.
Similar to Chitnis et al. [11], we set the preconditions to:
P ←

⋂
τ=(si,·,·)∈Dω

δτ (si). We also set the atomic delete
effects to E−

◦ ←
⋃

τ=(si,·,si+1)∈Dω
δτ (si+1)\δτ (si). For every

transition (si, ui+1, si+1), let spredi+1 = (si \ E−
◦ ) ∪ E+. Then,

we set smispred =
⋃

τ=(·,·,si+1)∈Dω
spredi+1 \ si+1. We induce a

quantified delete effect for every predicate corresponding to
atoms in smispred. We then set each operator’s delete effects to
be the union of E−

◦ and the quantified delete effects.
Now that all operators have preconditions and delete effects

specified, we must ensure that the newly-added operator
(ωnew) is able to satisfy the necessary atoms for each of
its transitions in Dωnew . Recall that we set the operator’s
add effects to be the necessary atoms that changed in the
first uncovered transition τunc. Given the way partitioning is
done (specifically the conditions in the FINDBESTCONSIS-
TENTOP method in Algorithm 4), we know that these add

effects must satisfy αi+1 ⊆ si+1 ∪ E+ for all transitions
(si, ui+1, si+1) ∈ Dωnew with corresponding necessary atoms
αi+1 for state si+1. However, the delete effects may cause the
necessary atoms to become violated for certain transitions:
i.e, αi+1 ⊈ (si+1 \ E−) ∪ E+. For every such transition, we
let αmiss

i+1 = αi+1 \ ((si+1 \ E−) ∪ E+). We then create a
new operator ωmiss

i by copying all components of ωnew, and
adding lifted atoms from αmiss

i+1 to both the preconditions and
add effects. We modify the operator’s arguments to contain
new variables accordingly. This now ensures that the necessary
atoms are not violated for any transition in Dωnew . We add these
new operators to the current candidate operator set.

After having added new operators to our candidate set in
the above step, we must re-partition data and consequently
re-induce preconditions and delete effects to match this new
partitioning (lines 11-12 of Algorithm 5). We now have a
new operator set that is guaranteed to cover the transition
τunc that was initially uncovered. We check whether this new
set achieves a lower value for the coverage term of our
objective, and iterate the above steps until it does.

Finally, after the while loop terminates, we remove all oper-
ators from Ω′ that have associated datasets that are empty. This
corresponds exactly to removing operators that are not used
in any abstract plan suffix computed by COMPUTECOVERAGE
and are thus unnecessary for planning.

a) Proof of termination: To see that the main loop of
Algorithm 5 is guaranteed to terminate, consider that the
operator set Ω′ strictly grows larger at every loop iteration
(no operators are deleted). Since the predicates are fixed, there
is a finite number of possible operators. Thus, at some finite
iteration, Ω′ will contain every possible operator. At this point,
it must contain an operator that covers every transition and the
loop must terminate.

b) Anytime Removal of Operators with Null Data: In
the IMPROVECOVERAGE procedure as illustrated in Algorithm
5, we only prune out operators that do not have any data
associated with them after the main while loop has terminated.
However, we note here that we can remove such operators
from the current operator set (Ω′) at any time during the
algorithm’s loop.

This property arises because the amount of data associated
with a particular operator will only decrease over time. To
see this, note that (1) the number of operators in Ω′ only
increases over time, and (2) data is assigned to the ‘best
covering’ operator as judged by our heuristic in Equation
2. Given a particular operator ω at some iteration i of the
loop, suppose there are d transitions from D associated with
it (i.e, |Dω| = d). During future (i.e > i) loop iterations, new
operators will be added to Ω′. For any of the d transitions
in Dω , these new operators can either be a worse match (in
which case, the transition will remain in Dω), or a better match
(in which case, the transition will become associated with the
new operator). Thus, for any operator ω, once there is no
longer any data associated with it, there will never be any
data associated with it, and it will simply be pruned after the
while loop terminates.



As a result, we can prune operators from our current set
whenever there is no data associated with them. We do this
in our implementation, since it improves our algorithm’s wall-
clock runtime.

REDUCECOMPLEXITY(Ω, D, Ttrain)
1 Ω′ ← DELETEOPERATOR(Ω)
2 (Dω1

. . .Dωm
), (δτ1 , . . . , δτj )←

PARTITIONDATA(Ω′,D, Ttrain)
3 Ω′ ←

INDUCEPRECANDDELEFFS(Ω′, (Dω1
. . .Dωm

),
(δτ1 , . . . , δτj ))

4 return Ω′

Algorithm 6: Pseudocode for our reduce-complexity

successor generator. The inputs are a set of operators Ω, the set
of all training demonstrations D, and the corresponding set of
trainign tasks Ttrain. The output is a set of operators Ω′ such that
complexity(Ω′) ≤ complexity(Ω).

2) reduce-complexity: The pseudocode for our
reduce-complexity generator is shown in Algorithm 6.
As can be seen, the generator is rather simple: we simply
delete an operator from the current set (DELETEOPERATOR)
and return the remaining operators. Since we’ve changed the
operator set, we must recompute the partitioning and re-induce
preconditions and delete effects accordingly.

This generator clearly reduces the complexity term from
our objective (Equation III-B1), since |Ω′| < |Ω|.

D. Data Partitioning Heuristic

A key component of our algorithm is the FINDBESTCOVER
method from Algorithm 4, which uses a heuristic to associate
a transition with an operator when multiple operators satisfy
the conditions necessary to ‘cover’ it. Intuitively, we wish
to assign a transition to the operator whose prediction best
matches the observed effects in the transition. We can do this
by simply measuring the discrepancy between the operator’s
add and delete effects, and the observed add and delete effects
in the transition. We make two minor changes to this simple
measure that are appropriate to our setting. First, we only
use the atomic delete effects as part of our measure. We
exclude the quantified delete effects because these exist in
order to enable our operators to decline to predict particular
changes in state. Second, we favor operators that correctly
predict which atoms will not change. Recall that the EN-
SURENECATOMSSAT method in Algorithm 5 induces such
operators by placing the same atoms in the add effects and
preconditions.

Given some transition (si, ui+1, si+1), and some ground
operator ω with atomic delete effects E−

◦ , our heuristic for
data partitioning is represented by the score function shown
in equation 2.

K = E+ ∩ P

C = E+ \ K
score = |C \ (si+1 \ si)|+
|(si+1 \ si) \ C|+
|(E−

◦ \ (si \ si+1))|+
|(si \ si+1) \ E−

◦ | − C

(2)

Once all eligible operators have been scored, we simply pick
the lowest-scoring operator to associate with this transition.
If multiple operators achieve the same score, we break ties
arbitrarily.

E. Learning Samplers

In addition to operators, we must also learn samplers to
propose continuous parameters for controllers during plan
refinement. We directly adapt existing approaches [11, 37] to
accomplish this and learn one sampler per operator of the
following form: σ(x, o1, . . . , ok) = sσ(x[o1] ⊕ · · · ⊕ x[ok]),
where x[o] denotes the feature vector for o in x, the ⊕
denotes concatenation, and sσ is the model to be learned.
Specifically, we treat the problem as one of supervised learning
on each of the datasets associated with each operator: Dω .
Recall that for every transition (xi, ui+1, xi+1) in Dω , we
save a mapping δ : v → Oτ from the operator’s arguments
v to objects to ground the operator with. Recall also that
every action is a hybrid controller with discrete parameters
and continuous parameters θ. To create a datapoint that can
be used for supervised learning for the associated sampler,
we can reuse this substitution to create an input vector
x[δτ (v1)] ⊕ · · · ⊕ x[δ(vk)], where (v1, . . . , vk) = v. The
corresponding output for supervised learning is the continuous
parameter vector θ in the action ui+1.

Following previous work by Silver et al. [37] and Chitnis
et al. [11], we learn two neural networks to parameterize each
sampler. The first neural network takes in x[o1]⊕ · · · ⊕ x[ok]
and regresses to the mean and covariance matrix of a Gaussian
distribution over θ. We assume that the desired distribution has
nonzero measure, but the covariances can be arbitrarily small
in practice. To improve the representational capacity of this
network, we learn a second neural network that takes in x[o1]⊕
· · · ⊕ x[ok] and θ, and returns true or false. This classifier
is then used to rejection sample from the first network. To
create negative examples, we use all transitions such that the
controller used in the transition matches the current controller,
but the transition is not in the operator’s dataset Dω .

F. Method Limitations

Our method assumes that the provided predicates Ψ com-
prise a good state abstraction given the task distribution for
operator learning. With completely random or meaningless
predicates, our approach is likely to learn very complex
operators such that planning with these is unlikely to out-
perform non-symbolic behavior-cloning baselines. Fortunately,



prior work [37] suggests such ‘good’ predicates can them-
selves be learned from data. There is no guarantee that
our overall hill-climbing procedure will converge quickly;
the improve-coverage successor generator is especially
computationally expensive to run. In practice, we find its
learning time to be comparable or faster than baseline methods
in our domains (VII-G below), though this may not hold in
more complex domains where a very large (e.g. greater than
100) number of operators need to be learned. Additionally, our
improve-coverage successor generator is rather compli-
cated, and there is perhaps a simpler way to achieve the same
desiderata (i.e, generating a new operator set that is guaranteed
to decrease the coverage term of our objective).

G. Additional Experiment Details

Here we provide detailed descriptions of each of experiment
environments. See the accompanying code for implementa-
tions.

1) Screws Environment: An environment where the agent
controls a crane to pick up screws and place them in a
receptacle.

• Types:
– The screw type has features x, y, held.
– The receptacle type has features x, y.
– The gripper type has features x, y.

• Predicates: Pickable(?x0:gripper,
?x1:receptacle),
AboveReceptacle(?x0:gripper,
?x1:receptacle),
HoldingScrew(?x0:gripper, ?x1:screw),
ScrewInReceptacle(?x0:screw,
?x1:receptacle).

• Actions:
– MoveToScrew(?x0: gripper, ?x1:
screw): moves the gripper to be Near the
screw ?x1.

– MoveToReceptacle(?x0: gripper,
?x1: receptacle): moves the gripper to
be AboveReceptacle(?x0:gripper, ?x1:receptacle)

– MagnetizeGripper(?x0: gripper): Mag-
netizes the gripper at the current location, which
causes all screws that the gripper is Near to be held
by the gripper.

– DemagnetizeGripper(?x0: gripper): De-
magnetizes the gripper at the current location, which
causes all screws that are being held by the gripper
to fall.

• Goal: The agent must make
ScrewInReceptacle(?x0:screw,
?x1:receptacle) true for a particular screw
that varies per task.

2) Cluttered 1D Environment: A simple environment where
the robot must move and collect objects cluttered along a 1D
line. An object can only be collected if it is reachable.

• Types:

– The robot type has features x.
– The dot type has features x, grasped.

• Predicates: NextTo(?x0:robot,
?x1:dot), NextToNothing(?x0:robot),
Grasped(?x0:robot, ?x1:dot).

• Actions:
– MoveGrasp(?x0: robot, ?x1: dot,
[move_or_grasp, x]): A single controller
that performs both moving and grasping. If
move_or_grasp < 0.5, then the controller moves
the robot to a continuous position y. Else, the
controller grasps the dot ?x1 if it is within range.

• Goal: The agent must make Grasped(?x0:robot,
?x1:dot) true for a particular set of dots that varies
per task.

3) Satellites Environment: A 2D environment inspired by
the Satellites planning problem from Bacchus [7]. Note that
we use two different variants of this environment. In “Satellites
Simple”, there is only ever one object in the domain, and a
reading must be taken from that object. In the full ‘Satellites”
environment, there are multiple objects strewn throughout the
domain, and readings must be taken from each of these.

• Types:
– The satellite type has features x, y, theta,
instrument, calibration_obj_id,
is_calibrated, read_obj_id,
shoots_chem_x, shoots_chem_y.

– The object type has features id, x, y,
has_chem_x, has_chem_y.

• Predicates: Sees(?x0:satellite,
?x1:object),
CalibrationTarget(?x0:satellite,
?x1:object),
IsCalibrated(?x0:satellite),
HasCamera(?x0:satellite),
HasInfrared(?x0:satellite),
HasGeiger(?x0:satellite),
ShootsChemX(?x0:satellite),
ShootsChemY(?x0:satellite),
HasChemX(?x0:satellite),
HasChemY(?x0:satellite),
CameraReadingTaken(?x0:satellite,
?x1:object),
InfraredReadingTaken(?x0:satellite,
?x1:object),
GeigerReadingTaken(?x0:satellite,
?x1:object).

• Actions:
– MoveTo(?x0:satellite, ?x1:object,
[x, y]): Moves the satellite ?x0 to be at x, y.

– Calibrate(?x0:satellite,
?x1:object): Tries to calibrate the satellite
?x0 against object ?x1. This will only succeed
(i.e, make IsCalibrated(?x0:satellite)
true) if ?x1 is the calibration target of ?x0.



Fig. 2. Environments. Visualizations for Screws, Satellites, Painting, Collecting Cans, and Sorting Books.

– ShootChemX(?x0:satellite, ?x1:
object): Tries to shoot a pellet of chemical
X from satellite ?x0. This will only succeed if ?x0
both has chemical X and is capable of shooting it.

– ShootChemY(?x0:satellite,
?x1:object): Tries to shoot a pellet of chemical
Y from satellite ?x0. This will only succeed if ?x0
both has chemical Y and is capable of shooting it.

– UseInstrument(?x0:satellite,
?x1:object): Tries to use the instrument
possessed by ?x0 on object ?x1 (note that we
assume ?x0 only possesses a single instrument).

• Goal: The agent must take particu-
lar readings (i.e some combination of
CameraReadingTaken(?x0:satellite,
?x1:object),
InfraredReadingTaken(?x0:satellite,
?x1:object),
GeigerReadingTaken(?x0:satellite,
?x1:object)) from a specific set of objects that
varies per task.

4) Painting Environment: A challenging robotics environ-
ment used by Silver et al. [35, 37]. A robot in 3D must pick,
wash, dry, paint, and then place various objects.

• Types:
– The object type has features x, y, z,
dirtiness, wetness, color, grasp, held.

– The box type has features x, y, color.
– The lid type has features open.
– The shelf type has features x, y, color.
– The robot type has features x, y, fingers.

• Predicates: InBox(?x0:obj),
InShelf(?x0:obj), IsBoxColor(?x0:obj,
?x1:box), IsShelfColor(?x0:obj,
?x1:shelf), GripperOpen(?x0:robot),
OnTable(?x0:obj), NotOnTable(?x0:obj),
HoldingTop(?x0:obj),
HoldingSide(?x0:obj), Holding(?x0:obj),
IsWet(?x0:obj), IsDry(?x0:obj),
IsDirty(?x0:obj), IsClean(?x0:obj).

• Actions:
– Pick(?x0:robot, ?x1:obj, [grasp]):

picks up a particular object, if grasp > 0.5 it
performs a top grasp otherwise a side grasp.

– Wash(?x0:robot): washes the object in hand,
which is needed to clean the object.

– Dry(?x0:robot): drys the object in hand, which
is needed after you wash the object.

– Paint(?x0:robot, [color]): paints the ob-
ject in hand a particular color specified by the
continuous parameter.

– Place(?x0:robot, [x, y, z]): places the
object in hand at a particular x, y, z location specified
by the continuous parameters.

– OpenLid(?x0:robot, ?x1:lid): opens a
specific lid, which is need to place objects inside
the box.

• Goal: A robot in 3D must pick, wash, dry, paint,
and then place various objects in order to get
InBox(?x0:obj) and IsBoxColor(?x0:obj,
?x1:box), or InShelf(?x0:obj) and
IsShelfColor(?x0:obj, ?x1:shelf) true
for particular goal objects.

5) Cluttered Painting Environment: Same as in Painting,
except that the robot can be next to many objects at a time.

• Types:
– The object type has features x, y, z,
dirtiness, wetness, color, grasp, held.

– The box type has features x, y, color.
– The lid type has features open.
– The shelf type has features x, y, color.
– The robot type has features x, y, fingers.

• Predicates: InBox(?x0:obj),
InShelf(?x0:obj), IsBoxColor(?x0:obj,
?x1:box), IsShelfColor(?x0:obj,
?x1:shelf), GripperOpen(?x0:robot),
OnTable(?x0:obj), NotOnTable(?x0:obj),
HoldingTop(?x0:obj),
HoldingSide(?x0:obj), Holding(?x0:obj),
IsWet(?x0:obj), IsDry(?x0:obj),
IsDirty(?x0:obj), IsClean(?x0:obj),
along with RepeatedNextTo Predicates:
NextTo(?x0:robot, ?x1:obj),
NextToBox(?x0:robot, ?x1:box),
NextToShelf(?x0:robot, ?x1:shelf),
NextToTable(?x0:robot, ?x1:table).

• Actions:
– Pick(?x0:robot, ?x1:obj, [grasp]):

picks up a particular object, if grasp ¿ 0.5 it
performs a top grasp otherwise a side grasp.

– Wash(?x0:robot): washes the object in hand,
which is needed to clean the object.



– Dry(?x0:robot): drys the object in hand, which
is needed after you wash the object.

– Paint(?x0:robot, [color]): paints the ob-
ject in hand a particular color specified by the
continuous parameter.

– Place(?x0:robot, [x, y, z]): places the
object in hand at a particular x, y, z location specified
by the continuous parameters.

– OpenLid(?x0:robot, ?x1:lid): opens a
specific lid, which is need to place objects inside
the box.

– MoveToObj(?x0:robot, ?x1:obj, [x]):
moves to a particular object with certain
displacement x.

– MoveToBox(?x0:robot, ?x1:box, [x]):
moves to a particular box with certain displacement
x.

– MoveToShelf(?x0:robot, ?x1:shelf,
[x]): moves to a particular shelf with certain
displacement x.

• Goal: A robot in 3D must pick, wash, dry, paint,
and then place various objects in order to get
InBox(?x0:obj) and IsBoxColor(?x0:obj,
?x1:box), or InShelf(?x0:obj) and
IsShelfColor(?x0:obj, ?x1:shelf) true
for particular goal objects. In contrast to the previous
painting environment, we also need to navigate to the
right objects (i.e. all objects are not always reachable
from any states). This version of the environment
requires operators with ignore effects.

6) BEHAVIOR Environment Details: A set of complex,
long-horizon household robotic tasks simulated with realistic
3D models of objects and homes [38]. In Opening Presents,
the robot must open a number of boxes. In Locking Windows,
the robot must close a number of open windows. In Collecting
Cans, the robot must pick up a number of empty soda cans
strewn amongst the house and throw them into a trash can. In
Sorting Books, the robot must find books in a living room and
place them each onto a cluttered shelf.

• Types:
– Many object types that range from relevant types

like hardbacks and notebooks to many irrele-
vant types like toys and jars. All object types
have features from location and orientation
to graspable and open. For a complete list of
object types and features see [38].

• Predicates: Inside(?x0:obj,
?x1:obj), OnTop(?x0:obj,
?x1:obj), Reachable-Nothing(),
HandEmpty(), Holding(?x0:obj),
Reachable(), Openable(?x0:obj),
Not-Openable(?x0:obj), Open(?x0:obj),
Closed(?x0:obj).

• Actions:
– NavigateTo(?x0:obj): navigates to make a

particular object reachable.
– Grasp(?x0:obj, [x, y, z]): picks up a

particular object with the hand starting at a particular
relative x, y, z location specified by the continuous
parameters.

– PlaceOnTop(?x0:obj): places the object in
hand ontop of another object as long as the agent
is holding an object and is in range of the object to
be placed onto.

– PlaceInside(?x0:obj): places the object in
hand inside another object as long as the agent is
holding an object and is in range of the object to be
placed into.

– Open(?x0:obj)): opens a specific object (win-
dows, doors, boxes, etc.) if it is ‘openable’.

– Close(?x0:obj)): closes a specific object (win-
dows, doors, boxes, etc.) if it is currently in an ‘open’
state.

• Goal: In Opening Presents, the robot must
Open(?x0:package) a number of boxes of type
package around the room. In Locking Windows,
the robot must navigate around the house to
Close(?x0:window) a number of windows. In
Collecting Cans, the robot must pick up a number of
empty soda cans of type pop strewn amongst the house
and throw them into a trash can of type bucket. This
will satisfy the goal of getting Inside(?x0:pop,
?x1:bucket) for every soda can around the house.
In Sorting Books, the robot must find books of type
hardback and notebook in a living room and
place them each onto a cluttered shelf (i.e. satisfy the
goal of OnTop(?x0:hardback, ?x1:shelf)
and OnTop(?x0:notebook, ?x1:shelf) for a
number of books).

H. Additional Approach Details

Here we provide detailed descriptions of each approach
evaluated in experiments. For the approaches that learn op-
erators, we use A∗ search with the lmcut heuristic [18] as
the high-level planner for bilevel planning in non-BEHAVIOR
environments, and use Fast Downward [17] in a configuration
with minor differences from lama-first as the high-level
planner in BEHAVIOR environments, since A∗ search was
unable to find abstract plans given the large state and action
spaces of these tasks. All approaches also iteratively resample
until the simulator f verifies that the transition has been
achieved, except for GNN Model-Free, which is completely
model-free. See Section IV-A for high-level descriptions and
the accompanying code for implementations.

1) Ours:

• Operator Learning: We learn operators via the hill-
climbing search described in Section III-B. For our ob-
jective (Equation III-B1), we set the λ term to be 1/|D|,
where |D| represents the number of transitions in the
training demonstrations.



• Sampler Learning: As described in Section VII-E, each
sampler consists of two neural networks: a generator
and a discriminator. The generator outputs the mean and
diagonal covariance of a Gaussian, using an exponential
linear unit (ELU) to assure PSD covariance. The genera-
tor is a fully-connected neural network with two hidden
layers of size 32, trained with Adam for 50,000 epochs
with a learning rate of 1e−3 using Gaussian negative log
likelihood loss. The discriminator is a binary classifier of
samples output by the generator. Negative examples for
the discriminator are collected from other skill datasets.
The classifier is a fully-connected neural network with
two hidden layers of size 32, trained with Adam for
10,000 epochs with a learning rate of 1e−3 using binary
cross entropy loss. During planning, the generator is
rejection sampled using the discriminator for up to 100
tries, after which the last sample is returned.

• Planning: The number of abstract plans for high-level
planning was set to Nabstract = 8 for our non-BEHAVIOR
domains, and Nabstract = 1 for our BEHAVIOR domains.
The samples per step for refinement was set to Nsamples =
10 for all environments.

2) Cluster and Intersect:: This is the operator learning
approach used by Silver et al. [37].

• Operator Learning: This approach learns STRIPS op-
erators by attempting to induce a different operator for
every set of unique lifted effects (See Silver et al. [37]
for more information).

• Sampler Learning and Planning: Same as Ours (See
Section VII-H1 for more details).

3) LOFT:: This is the operator learning approach used by
Silver et al. [35]. We include a version (‘LOFT+Replay’)
that is allowed to mine additional negative data from the
environment to match the implementation of the original
authors. We also include a version (‘LOFT’) that is restricted
to learning purely from the demonstration data.

• Operator Learning: This approach learns operators sim-
ilar to the Cluster and Intersect baseline, except that it
uses search to see if it can modify the operators after
performing Cluster and Intersect (See Silver et al. [35]
for more information).

• Sampler Learning and Planning: Same as Ours (See
Section VII-H1 for more details).

4) CI + QE:: A baseline variant of Cluster and Intersect
that is capable of learning operators that have quantified delete
effects in addition to atomic delete effects.

• Operator Learning: This approach first runs Cluster
and Intersect, then attempts to induce ignore effects by
performing a hill-climbing search over possible choices
of ignore effects using prediction error as the metric to
be optimized.

• Sampler Learning and Planning: Same as Ours (See
Section VII-H1 for more details).

5) GNN Shooting:: This approach trains a graph neural
network (GNN) [8] policy. This GNN takes in the current

state x, abstract state s = ABSTRACT(x,ΨG), and goal g. It
outputs an action via a one-hot vector over C corresponding to
which controller to execute, one-hot vectors over all objects
at each discrete argument position, and a vector of continuous
arguments. We train the GNN using behavior cloning on
the dataset D. At evaluation time, we sample trajectories by
treating the GNN’s output continuous arguments as the mean
of a Gaussian with fixed variance. We use the known transition
model f to check if the goal is achieved, and repeat until the
planning timeout is reached.

• Planning: Repeat until the goal is reached: query the
model on the current state, abstract state, and goal to
get a ground skill. Invoke the ground skill’s sampler up
to 100 times to find a subgoal that leads to the abstract
successor state predicted by the skill’s operator. If suc-
cessful, simulate the state forward; otherwise, terminate
with failure.

• Learning: This approach essentially learns a TAMP
planner in the form of a GNN. Following the baselines
presented in prior work [11], the GNN is a standard
encode-process-decode architecture with 3 message pass-
ing steps. Node and edge modules are fully-connected
neural networks with two hidden layers of size 16. We
follow the method of Chitnis et al. [11] for encoding
object-centric states, abstract states, and goals into graph
inputs. To get graph outputs, we use node features to
identify the object arguments for the skill and a global
node with a one-hot vector to identify the skill identity.
The models are trained with Adam for 1000 epochs with
a learning rate of 1e−3 and batch size 128 using MSE
loss.

6) GNN Model-Free:: A baseline that uses the same trained
GNN as above, but at evaluation time, directly executes the
policy instead of checking execution using f . This has the
advantage of being more efficient to evaluate than GNN
Shooting, but is less effective.

I. Additional Experimental Results and Analyses

Fig. 3. Data-efficiency of main approach.

1) Data efficiency of our learning approach: Figure 3
shows our method’s testing success rate as a function of the
size of its training set for our non-BEHAVIOR environments.
Our approach’s performance improves with more data, though
as the dataset size increases, the impact of additional data on
performance reduces.



Table III shows the number of operators learned for all
operator learning methods in all domains. Our approach learns
the lowest number of operator sets across all environments
and massively out performs other approaches on this metric
in Collecting Cans, and Sorting Books. These results further
highlight our ability to learn operator sets that efficient for
high-level planning, but also simpler and therefore, more likely
to generalize to new environments.

2) Comparisons against baselines: We have already estab-
lished that our approach learns operators that lead to more
effective bilevel planning than baselines. In this section, we are
interested in comparing our approach with baselines on three
additional metrics: (1) the efficiency of high-level planning
using learned operators, (2) the efficiency of the learning
algorithm itself, (3) the simplicity of operator sets we learn.

Figure 4 shows the nodes created during high-level planning
for each of our various environments and operator learning
methods. We can see that operators learned by our approach
generally lead to comparable or fewer node creations dur-
ing planning when compared to baselines. In many of the
environments where baseline methods are able to achieve a
number of points with fewer node creations — Cluttered 1D,
Opening Presents, and Locking Windows — our method has
a significantly higher success rate.

Table II shows the learning times for all methods in all
domains2. Our approach achieves the lowest learning time in
7/10 domains. Upon inspection of our method’s performance
on the ‘Locking Windows‘ and ‘Collecting Cans‘ domains, we
discovered that the high average learning times are because
of a few outlier seeds encountering local minima learning,
yielding large and complex operator sets (this is the reason
for the extremely high standard deviation).

J. Learned Operator Examples

Finally, we provide operator examples to demonstrate our
approaches ability to overcome overfiting to specific situations.
Figure 5 shows a comparison of the operators learned with
Open in Opening Packages environment and NavigateTo in
Collecting Cans environment across our approach and ‘CI +
QE’ (the most competitive baseline in these environments).
As shown, by optimizing prediction error ‘CI + QE’ learns a
number of operators to describe the same amount of transitions
that is covered by the single operator our approach learns.
Upon inspection, ‘CI + QE‘ learns overly specific operators
when trying to cluster effects that try to predict the entire state
to the point where ‘Quantified Delete Effects’ are not fully
utilized. For the full set of operators learned by our algorithm
on the ‘Sorting Books’ task, see Figure 6.

2Note that there is no entry for ‘CI + QE’ for sorting books because learning
exceeded the memory limit of our hardware (192 GB)



Fig. 4. Nodes Created by Operator Learning Approaches. We show scatter plots of the nodes created (x-axis) for each operator learning
approach (y-axis). We also include a violin graph to visualize the density of points throughout the graph. If bilevel planning failed, we set
the nodes created to 106 for non-BEHAVIOR domains and 103 for BEHAVIOR domains. Our approach achieves a low number of nodes
created across when compared to baselines in most domains.

Environment Ours LOFT LOFT+replay CI CI + QE GNN
Painting 69.35 (3.58) 92.26 (11.41) 135.73 (6.45) 70.95 (5.07) 67.08 (5.86) 2220.19 (181.29)
Satellites Simple 19.38 (7.83) 52.73 (18.35) 438.44 (51.62) 23.29 (5.38) 15.96 (4.70) 1625.69 (218.88)
Clutter 1D 17.98 (1.06) 68.04 (17.68) 366.89 (146.09) 62.68 (14.89) 28.58 (3.68) 1164.92 (84.74)
Screws 1.31 (0.04) 143.60 (49.10) 5712.80 (736.84) 0.32 (0.02) 708.98 (1023.02) 1369.59 (68.44)
Satellites 16.12 (0.55) 353.67 (52.78) 902.99 (148.22) 107.04 (11.94) 87.24 (10.49) 3043.62 (285.27)
Cluttered Painting 131.68 (5.05) 1699.52 (216.71) 7364.03 (532.67) 470.32 (40.38) 2788.74 (1330.38) 4615.70 (334.11)
Opening Presents 28.91 (11.26) 106.57 (27.72) - 100.62 (23.66) 92.63 (17.01) 185.53 (6.63)
Locking Windows 16.77 (1.55) 62.55 (10.12) - 61.71 (8.95) 45.51 (5.74) 319.09 (7.61)
Collecting Cans 3728.73 (9544.75) 1520.93 (354.20) - 576.89 (100.57) 781.38 (350.46) 2121.86 (120.51)
Sorting Books 4981.79 (14460.37) 6423.03 (602.44) - 1528.18 (111.18) - 5359.99 (170.46)

TABLE II
LEARNING TIMES IN SECONDS ON TRAINING DATA FOR ALL DOMAINS. NOTE THAT BEHAVIOR DOMAINS (BOTTOM 4) USE TRAINING

SET SIZES OF 10 TASKS, WHILE ALL OTHER DOMAINS USE TRAINING AND TESTING SET SIZES OF 50 TASKS. THE STANDARD
DEVIATION IS SHOWN IN PARENTHESES.



Environment Ours LOFT LOFT+replay CI CI + QE
Painting 10.00 (0.00) 13.60 (0.80) 19.20 (0.39) 11.00 (0.00) 10.20 (0.40)
Satellites Simple 7.40 (0.79) 10.90 (1.44) 33.80 (3.70) 10.40 (1.20) 9.30 (0.9)
Clutter 1D 2.00 (0.00) 7.10 (1.64) 16.10 (2.11) 7.10 (1.64) 3.00 (0.44)
Screws 4.0 (0.00) 14.80 (1.98) 91.14 (5.11) 14.80 (1.98) 4.80 (0.97)
Satellites 7.00 (0.00) 19.80 (2.60) 59.60 (4.45) 16.30 (1.10) 13.9 (0.83)
Cluttered Painting 13.00 (0.00) 28.00 (0.00) 157.8 (6.49) 25.20 (2.31) 20.70 (1.61)
Opening Presents 2.30 (0.90) 10.80 (2.99) - 10.80 (2.99) 9.80 (1.83)
Locking Windows 2.00 (0.00) 6.10 (0.70) - 6.10 (0.70) 4.70 (0.64)
Collecting Cans 6.10 (5.37) 57.40 (9.43) - 52.90 (8.41) 13.40 (2.33)
Sorting Books 14.70 (7.57) 76.70 (5.62) - 75.80 (5.79) -

TABLE III
AVERAGE NUMBER OF OPERATORS LEARNED FOR ALL DOMAINS. NOTE THAT BEHAVIOR DOMAINS (BOTTOM 4) USE TRAINING SET
SIZES OF 10 TASKS, WHILE ALL OTHER DOMAINS USE TRAINING AND TESTING SET SIZES OF 50 TASKS. THE STANDARD DEVIATION IS

SHOWN IN PARENTHESES.



NavigateTo-pop0:
    Arguments: [?x0:pop]
    Preconditions: [

handempty(),
not-openable-pop(?x0:pop)]

    Add Effects: [reachable-pop(?x0:pop)]
    Delete Effects: []
    Quantified Delete Effects: [

ontop-pop-pop,
reachable-bed,
reachable-bucket,
reachable-pop]

    Controller: NavigateTo-pop(?x0:pop)}

NavigateTo-pop0:
    Arguments: [?x0:bed, ?x1:pop]
    Preconditions: [

handempty(),
not-openable-bed(?x0:bed),
not-openable-pop(?x1:pop),
ontop-pop-bed(?x1:pop, ?x0:bed),
reachable-bed(?x0:bed)]

    Add Effects: [reachable-pop(?x1:pop)]
    Delete Effects: [reachable-bed(?x0:bed)]
    Quantified Delete Effects: []
    Controller: NavigateTo-pop(?x1:pop),

NavigateTo-pop1:
    Arguments: [?x0:pop]
    Preconditions: [

handempty(),
not-openable-pop(?x0:pop),
reachable-pop(?x0:pop)]

    Add Effects: []
    Delete Effects: []
    Quantified Delete Effects: []
    Controller: NavigateTo-pop(?x0:pop),

NavigateTo-pop2:
    Arguments: [?x0:pop]
    Preconditions: [

handempty(),
not-openable-pop(?x0:pop)]

    Add Effects: [reachable-pop(?x0:pop)]
    Delete Effects: []
    Quantified Delete Effects: []
    Controller: NavigateTo-pop(?x0:pop),

Open-package0:
    Arguments: [?x0:package]
    Preconditions: [

closed-package(?x0:package),
handempty(),
openable-package(?x0:package),
reachable-package(?x0:package)]

    Add Effects: [open-package(?x0:package)]
    Delete Effects: [closed-package(?x0:package)]
    Quantified Delete Effects: []
    Controller: Open-package(?x0:package),

Open-package1:
    Arguments: [?x0:room_floor, ?x1:package]
    Preconditions: [

closed-package(?x1:package),
handempty(),
not-openable-room_floor(?x0:room_floor),
ontop-package-room_floor(?x1:package, ?x0:room_floor),
openable-package(?x1:package),
reachable-package(?x1:package),
reachable-room_floor(?x0:room_floor)]

    Add Effects: [open-package(?x1:package)]
    Delete Effects: [closed-package(?x1:package),

ontop-package-room_floor(?x1:package, ?x0:room_floor)]
    Quantified Delete Effects: []
    Controller: Open-package(?x1:package)}

Open-package0:
    Arguments: [?x0:package]
    Preconditions: [

closed-package(?x0:package),
handempty(),
openable-package(?x0:package),
reachable-package(?x0:package)]

    Add Effects: [open-package(?x0:package)]
    Delete Effects: [closed-package(?x0:package)]
    Quantified Delete Effects:

[ontop-package-room_floor]
    Controller: Open-package(?x0:package),

Fig. 5. Operator Comparison. Operators learned after our approach (left) and ‘CI+QE‘ (right), for Open in Opening Packages environment
(top) and NavigateTo in Collecting Cans Cans environment. Our approach learns fewer operators that are generally simpler, and thus more
conducive to effective bilevel planning and generalization.



Grasp-notebook0:
    Arguments: [?x0:notebook]
    Preconditions: [handempty(), not-openable-notebook(?x0:notebook), reachable-notebook(?x0:notebook)]
    Add Effects: [holding-notebook(?x0:notebook)]
    Delete Effects: [handempty(), reachable-notebook(?x0:notebook)]
    Quantified Delete Effects: [ontop-notebook-coffee_table, ontop-notebook-room_floor]
    Controller: Grasp-notebook(?x0:notebook)
 
NavigateTo-notebook0:
    Arguments: [?x0:notebook]
    Preconditions: [handempty(), not-openable-notebook(?x0:notebook)]
    Add Effects: [reachable-notebook(?x0:notebook)]
    Delete Effects: []
    Quantified Delete Effects: [reachable-board_game, reachable-coffee_table, reachable-hardback, reachable-notebook, reachable-shelf, reachable-video_game]
    Controller: NavigateTo-notebook(?x0:notebook)

PlaceOnTop-shelf0:
    Arguments: [?x0:shelf, ?x1:hardback]
    Preconditions: [holding-hardback(?x1:hardback), not-openable-hardback(?x1:hardback), not-openable-shelf(?x0:shelf), reachable-shelf(?x0:shelf)]
    Add Effects: [handempty(), ontop-hardback-shelf(?x1:hardback, ?x0:shelf)]
    Delete Effects: [holding-hardback(?x1:hardback)]
    Quantified Delete Effects: []
    Controller: PlaceOnTop-shelf(?x0:shelf)

PlaceOnTop-shelf1:
    Arguments: [?x0:shelf, ?x1:notebook]
    Preconditions: [holding-notebook(?x1:notebook), not-openable-notebook(?x1:notebook), not-openable-shelf(?x0:shelf), reachable-shelf(?x0:shelf)]
    Add Effects: [handempty(), ontop-notebook-shelf(?x1:notebook, ?x0:shelf)]
    Delete Effects: [holding-notebook(?x1:notebook)]
    Quantified Delete Effects: []
    Controller: PlaceOnTop-shelf(?x0:shelf)

Grasp-hardback0:
    Arguments: [?x0:hardback]
    Preconditions: [handempty(), not-openable-hardback(?x0:hardback), reachable-hardback(?x0:hardback)]
    Add Effects: [holding-hardback(?x0:hardback)]
    Delete Effects: [handempty(), reachable-hardback(?x0:hardback)]
    Quantified Delete Effects: [ontop-hardback-coffee_table, ontop-hardback-room_floor]
    Controller: Grasp-hardback(?x0:hardback)
 
NavigateTo-shelf0:
    Arguments: [?x0:shelf]
    Preconditions: [not-openable-shelf(?x0:shelf)]
    Add Effects: [reachable-shelf(?x0:shelf)]
    Delete Effects: []
    Quantified Delete Effects: [ontop-hardback-coffee_table, reachable-board_game, reachable-coffee_table, reachable-hardback, reachable-notebook, 
reachable-video_game]
    Controller: NavigateTo-shelf(?x0:shelf)

NavigateTo-hardback0:
    Arguments: [?x0:hardback]
    Preconditions: [handempty(), not-openable-hardback(?x0:hardback)]
    Add Effects: [reachable-hardback(?x0:hardback)]
    Delete Effects: []
    Quantified Delete Effects: [reachable-board_game, reachable-coffee_table, reachable-hardback, reachable-notebook, reachable-shelf, reachable-video_game]
    Controller: NavigateTo-hardback(?x0:hardback)

Fig. 6. Sorting Books learned operators.
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