Under review as a conference paper at ICLR 2025

FUSION-X: ADVANCING LLM ABILITY WITH
ADAPTIVE HETEROGENEOUS MODEL INTEGRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Training LLMs presents significant challenges, including data access, privacy
concerns, the complexity of training schedules, and limited resources. Therefore,
a more accessible approach involves integrating existing LLMs, each tailored for
different tasks or trained on distinct datasets, into an advanced and robust model
with enhanced capabilities. Popular methods like ensemble and weight merging
require substantial memory and struggle to adapt to changing data environments.
Recent efforts have aimed to transfer only the collective knowledge of multiple
LLMs to the target LLM. However, the resulting fused model often suffers from
interference and performance degradation due to a lack of flexibility in the fusion
process, including candidate selection and training pipeline. To address these
issues, we propose a dynamic fusion framework to adaptively select LLMs for
integration. Specifically, to diminish knowledge interference during LLM fusion,
we introduce an adaptive selection network. It is a learnable mechanism that
explicitly evaluates and selects the best-performing source LLMs based on their
rewards, allowing us to fuse knowledge from a flexible number model candidates.
To improve the knowledge fusion process, we propose a dynamic weighted fusion
strategy that considers the intrinsic characteristics of candidate LL.Ms during fusion.
Additionally, we incorporate a feedback-driven loss function to prevent the selector
from converging to a state where it consistently assigns the same candidates. Our
experiments demonstrate that our method consistently enhances model performance
across multiple benchmarks, yielding an improvement of up to 2.2%. Additionally,
our approach achieves a notable reduction in knowledge interference, showing up
to 50% decrease compared to existing work.

1 INTRODUCTION

The emergence of large language models (LLMs) has led to the development of many specialized
versions [Zhang et al.|(2023c)); |Christophe et al. (2024); |Geng et al. (2023); Chenghao Fan & Tian
(2023); |L1 et al. (2023), each tailored to specific domains and enhancing various aspects of daily
life. However, the complexities involved in data collecting and pre-processing, training schedule
design, and substantial training energy are challenging, particularly for academic researchers with
limited experience and resources. Moreover, significant difficulties arise in fields like healthcare and
business, where privacy concerns restrict data sharing between institutions. This limitation hampers
the ability to gather sufficient data to train robust models. Consequently, institutions and companies
often rely solely on their own datasets, which constrains their ability to develop superior models.
Given these challenges, a more straightforward approach has gained attention Jiang et al. (2023);
Jin et al.| (2022);|Zhang et al. (2023b); |Wan et al. (2024a): instead of developing a new LLM from
scratch, integrating existing LLMs into a unified model is more appealing. This integrated model
serves as a robust base that can be further refined for various tasks, thereby avoiding the need for
extensive individual training or data transfer.

Existing solutions, such as ensemble methods Jiang et al.[(2023); Lu et al. (2023)), enhance prediction
performance by aggregating outputs from multiple models but require substantial memory and
increase inference time due to the need to maintain and operate several models simultaneously.
Another method involves merging several neural networks into a single network within the parameter
space Jin et al. (2022). This generally presumes uniform network architecture and relies on manually
configured weight merging or adding additional layers. Additionally, Mixture of Expert (MoE)

Under review as a conference paper at ICLR 2025

Fusion-X

[}
|

Knowledge Fusion Ensemble

Weight Merging

XY BR
_I_Fl_l

Adaptive Selection

A

=
§<—

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q8A :
|

oo -

Q&A
I I Fm m e e e e — o

~~Maintain param. > Merging flexibility | >Maintain param. .~ Merging flexibility | ><Maintain param. .~ Merging flexibility | -~ Maintain param..~Merging flexibility
~~Simple training X Less interference | > Simple training -~ Less interference IxSimple Training -~ Less interference , ~ Simple training ~~Less interference

Figure 1: Different model integration approaches including ensemble, weight merging, knowledge
fusion, and our method. We evaluate these methods based on four aspects: parameter size mainte-
nance, simplified training, merging flexibility, and minimized interference.

structures Shazeer et al.[(2017); Lepikhin et al. (2020); Du et al.|(2022); |[Fedus et al. (2022), such as
Mistral-7bx8 Jiang et al.|(2024), address some inference and weight-sharing issues, but still suffer
from long inference times and the requirement for homogeneous architectures and larger model
sizes. FuseLLM Wan et al. (2024a) and FuseChat|Wan et al. (2024b) have attempted to integrate
the knowledge of multiple source LLMs using generated probability distribution matrices. However,
these approaches suffer from interference and performance degradation in various tasks compared
to the original target model due to unoptimized model selection and uncontrolled fusion processes.
Fig. [T provides an overview of the various model integration approaches. Our approach aims to
address four critical challenges: Parameter size maintenance, simplified training, merging flexibility,
and minimized interference, where existing methods fail to fully meet.

To overcome the limitations of existing LLM integration approaches, we propose a novel dynamic
integration framework that adaptively selects LLMs for integration. More specifically, given a
diverse set of random source LLMs with heterogeneous structures, we introduce an adaptive selection
network, a learnable mechanism that explicitly evaluates and selects the best-performing source
LLMs based on their rewards, thereby alleviating the interference issues typically caused by model
fusion. The rewards are calculated based on each model’s performance across a predefined set of tasks.
Our framework allows flexibility in the number of LLMs selected during this process. To improve the
knowledge fusion process, we implement a dynamic weighted fusion strategy that accounts for the
intrinsic characteristics of candidate LLMs during fusion. The weights assigned in this process are
derived from the reward evaluations, enabling the integration to favor models more likely to improve
the overall performance of the composite LLM. The selector often converges to a state in which it
consistently assigns large weights to the same few candidates. To address this, we incorporate a
feedback-driven loss function that facilitates the training of our adaptive selection network and guides
the selection of candidates.

Our method enhances the efficiency and effectiveness of LLM integration while maintaining adapt-
ability and robustness against model diversity and data variability. It achieves this without increasing
the parameter size as well as computation. of the target model, ensuring computational efficiency
compared to traditional methods. Our contributions are as follows:

* We find that merely increasing the number of fusion candidates and expanding the source model
pool does not necessarily enhance the fusion process, a selective strategy is more effective in
minimizing knowledge interference.

* We propose a novel dynamic integration framework that adaptively selects LLMs for integration,
leveraging an adaptive selection network, a permutation assignment fusion strategy, and a feedback-
driven loss function to alleviate interference issues and enhance overall model performance.

* Our model outperforms existing approaches across multiple benchmarks, achieving a notable
reduction in knowledge interference, with up to 50% decrease compared to previous methods.

Under review as a conference paper at ICLR 2025

2 RELATED WORK AND MOTIVATION

2.1 MODEL INTEGRATION

Research on model integration has evolved into distinct categories, each addressing differ-
ent aspects of combining models: 1) Ensemble: LLM-Blender Jiang et al.| (2023) uses
ensemble techniques to enhance performance by combining outputs from multiple models.
This process includes inferring all candidate models and

then ranking them, which can be resource-intensive and =

slow. 2) Weight Merging: Zipit Stoica et al. (2023) o = "o
merges partial layers of two models without additional
training, creating a multi-head model for various tasks. =,

Jin et al.| (2022) merges models in their parameter space,
guided by weights that minimize prediction differences.
Rame et al.|(2022); |Arpit et al. (2022); Wortsman et al.
(2022) employ weighted averaging methods. [Zhang
et al. (2023b) compose models through linear arithmetic

operations in the weight space. These techniques are == ~ """
typically limited to models with identical architectures. g «
3) Composition: CALM Bansal et al.|(2023) uses cross- ¢ ..

attention mechanisms between models to integrate their
representations, introducing new functionalities while
maintaining each model’s parameters, which can be inef-
ficient in terms of speed and size. 4) Knowledge Fusion: PR RN XN TR E T T
FuseLLM Wan et al. (2024a) and FuseChat /Wan et al. Figure 2: Evaluation on BBH benchmark
(2024b) focuses on fusing the probability distributions
from various LLM candidates, integrating them into a
single base LLM, blending knowledge across models.
However, these approaches suffer from knowledge inter-
ference and performance degradation on various tasks
compared to the original target LLM due to unoptimized
model selection and uncontrolled fusion processes.

Big-Bench-Hard Benchmark

when merging three models (upper) and
four models (lower). The performance de-
creases on certain tasks for the integrated
model, and the interference increases when
integrating more models.

Knowledge distillation |Hinton et al. (2015) is also used to integrate information into a model.
However, student models are typically smaller and have lower performance than their teacher models.
In our scenario, there is no limitation on the size or performance of the source models.

2.2 KNOWLEDGE INTERFERENCE

Knowledge Interference refers to the adverse impact on a model’s performance when incorporating
knowledge from other models, leading to decreased task performance. This can occur due to:
1) Conflicting Information: Models trained on different datasets or tasks contribute conflicting
knowledge, resulting in confusion and degraded performance on specific tasks. 2) Dilution of
Valuable Knowledge: Introducing less relevant or lower-quality information can dilute the original
model’s knowledge. 3) Overfitting to Irrelevant Patterns: The fused model may overfit to noise or
less useful patterns from new models, losing focus on critical aspects of the tasks it was initially
trained on. Fig. [2 shows the results of FuseLLM [Wan et al. (2024a)) on 27 tasks of the Big-Bench
Hard [Suzgun et al. (2022)) benchmark, exhibiting performance degradation on multiple tasks (in red).
We also observe that fusing more models (upper part: fusing 3 models, lower part: fusing 4 models)
can lead to even more degradation. Detailed results are shown in Tab. 3]

3 PRELIMINARIES

As a general integration approach parallel to ensembling and weight merging, knowledge fusion

combines the probabilistic distribution matrices Pie" from multiple LLMs. These matrices reflect
each model’s inherent knowledge for text understanding. Let ¢ be a text sequence of length NV, and

t~; denote the sequence preceding the i-th token. The probabilistic distribution matrix Pf" for the

Under review as a conference paper at ICLR 2025

Source Feedback
LLMs Rewards Target Enhanced LLM

. Fused LLM
@ ‘ '—b 4>< '—' Matrix
)
AT &
— Train
’P’uj\‘ P &/
%

=

» —> |
|| cs
MMLU
D M1
—> ——» |
| | 2l Llama-2 FuseLLM Fusion-X

40 45 65 70

Top Candidates

Weighted Fusion

Loy

Benchmark Results Comparison

|
|

Softmax
~
Dynamic Selection

50 60
Adaptive Selection Network Accuracy (%)

Figure 3: Overall framework: Multiple source LL.Ms are evaluated and selected based on perfor-
mance by an adaptive selection network. Top candidates then proceed through a dynamic weighted
fusion process guided by a feedback loss to enhance the ability of the target LLM. The lower right
shows evaluation results on CommonSense, MMLU, and Big-Bench-Hard benchmark.

i-th LLM is given by:

Pl = [pp(ti]t<1),po(talt<a), ... po(tnlt<n)], (D

where, P/ is the probabilistic distribution matrix for the i-th LLM for text sequence t. py, (t|t <) is
the predicted probability distribution for the k-th token given the preceding tokens ¢, according to
the i-th LLM parameterized by 6;. Each element pg, (5|t <) is a vector of probabilities corresponding
to each token in the vocabulary, summing to 1.

Their fusion process is achieved by minimizing the divergence between the target LLM’s (pre-defined
among the source LLMSs) probabilistic distributions and those of the source LLMs:

Py =F(PM PP, P,)

where F denotes the function that combines multiple matrices. {Pf”’ N, represents the representation
matrix of each LLM. We simplify the notation as P; in the later equations.

The overall objective for continual training consists of a weighted combination of the causal language
modeling objective Ly, and the fusion objective Ly, as follows:

L=)\le + (1 - A)Efuse; (3)

where Ly, is the causal language modeling objective, and Ly is the cross-entropy loss between the
target LLM’s predictions (output) and the fused representation matrix Py.

4 METHODOLOGY

Our method advances existing knowledge fusion methods by introducing a dynamic framework that
consists of an Adaptive Selection Network and a Dynamic Weighted Fusion mechanism, as illustrated
in Fig. 3] Specifically, at each training step, the Adaptive Selector evaluates performance metrics to
dynamically select a subset of candidate models based on their probabilistic distribution matrices
rather than all candidates. More importantly, both the selection of candidates and the number of
candidates selected are adaptive, preventing knowledge interference and enhancing overall model
performance. The selected candidates are then fused using a weighted sum based on normalized
selection probabilities. This process is guided by a specially designed loss function that refines model
selection through feedback. Our framework provides flexibility for future scalability and allows the
integration process to accommodate varying computational constraints and application needs.

4.1 ADAPTIVE SELECTION NETWORK

We propose an Adaptive Selection Network (ASN) to evaluate the source models based on a continu-
ous learning process. It integrates feedback from ongoing interaction, which will be introduced in

Under review as a conference paper at ICLR 2025

Table 1: Experiments on Different Design Choices of our framework under Fusion-X-T scale with
4 source models. We show ablation results on Commonsense and BBH, along with perplexity results.

(a) Selection count. Adaptively se-
lecting the candidates outperforms
selecting the top 2 or all of them.

(b) Layer Choice. Adding 3 linear
layers for our selector leads to the
best performance.

(c) Adding Loss. Adding addi-
tional feedback loss leads to better
results.

Method PPL| CSt BBH{ Method PPL, CSt BBHf Method PPL| CSt BBH?t
Top-2 11.67 40.55 6.75 Conv. 1221 39.73 6.11 w/o Loss 11.48 40091 6.92
Adaptive 11.04 41.32 7.31 1 x Linear 11.42 40.78 6.86 Feed. loss 11.04 41.32 7.31
All 1191 4052 6.64 3 x Linear 11.04 4132 7.31

(d) Fusion method. Averaging can-
didates weighted by their reward
ensures best result.

(e) Threshold setting. We show the
average selected candidates of each
threshold.

(f) Selection metric. Using soft-
max outperforms gumbel softmax
or adding additional random noise.

Method PPL| CSt BBHf Weight Avg. PPL| CSt BBH? Method PPL| CS?t BBH?t
Avg 1132 4085 680 02 127 1378 3924 507

Max 1177 4011 668 015 282 1104 4132 731 E}Ofm;a’l‘ gg‘l‘ g;ﬁ ;‘8(1)
wio Weighted 1196 39.82 638 012 364 1167 4065 675 umbe : : :
Weighted 11.04 4132 731 01 400 1191 4052 664 Noise 13.11 3897 4.90

Sec. [4.3] Various methods are explored during the design process, as shown in Tab[T. The network
takes the normalized matrices P; (regarded as rewards) as input, which are flattened and normalized
using layer normalization to stabilize training. It then computes the logits for each candidate model.
The network consists of three linear layers (see Tab[Ip) with specified dimensions and uses the GELU
activation function for enhanced non-linearity, improving the network’s ability to capture complex
patterns in the input data. The logits for any P; from the {P,iei 1V | can be defined as the following
expression:

z4(P;) = (f* o GELU o f?> 0 GELU o f')(P;), 4)

where f!, f2, and f2 represent the linear layers. The adaptive selection mechanism utilizes the scores
from the network, converting these into a probability via the softmax function:
e*?
Di = N

D iy €7 ,

where p; is the softmax probability associated with the ¢-th candidate, and NV is the total number
of candidates. We also compared the effects of adding Gumbel softmax Jang et al./(2016) or noise
Shazeer et al. (2017) before the softmax (see Tab. The better performance of softmax shows that
the selection process benefits more from the smooth and differentiable mapping of logits, as well as
improved convergence, rather than from adding randomness and increasing variance.

)

Dynamic Candidate Selection To determine which candidate models to select for fusion, we apply
a dynamic thresholding mechanism. A threshold 7 is set, and candidates with selection probabilities
exceeding this threshold are selected:

0, .
Xselected:{PjJ|pj>7—7]:17-'-7K}7 (6)
where the output set Xyeleced = {Pfj } f:l represents a subset of the original set of models {Pfi N
We simplify the notation Pf-" as P; in the later equations.

To ensure that at least one candidate is selected per sample 1 < K < [V, we check if no candidates
meet the threshold and, if so, select the candidate with the highest probability:

If ‘Xselected| = O, then Xselected = {arg m]aij}' (7)

In our implementation, we set 7 = 0.15 (see Tab[Ie). This dynamic selection allows the model
to adaptively choose the most relevant candidates (see Tab[Ia) based on the input data and current
learning context.

Under review as a conference paper at ICLR 2025

4.2 DYNAMIC WEIGHTED FUSION

We proceed with the fusion process after selecting the candidate models. First, we normalize the
weights of the selected probabilities obtained from Eq. [5}

~ poOMmM
P=—=x (®)
D im1 Py + €

where m; is a binary mask indicating the selected candidates (m; = 1if j € Xielected, €lse m; = 0),
and ¢ is a small constant to prevent division by zero. To perform the weighted sum, we reshape
the normalized probabilities and masks to match the dimensions of the candidate outputs, enabling
element-wise multiplication. The outputs of the K selected candidates P; are accumulated based on
their respective weights to produce a unified model output Py. This is calculated as follows:

K

P; =max (concat ({Pj - Dy -mj}j:1 , dim=—1) , dim=—1) , Q)

We assign the proportion of the candidates’ probabilistic distributions based on the weights in Eq. [8]
concat denotes the concatenation operation of all K -selected candidates. max function is applied
for fusing the maximum value from these aligned metrics P;. We found this dynamic fusion process
can constantly let the more influential candidates have a greater effect on the final model (see Tab[I{).
Next, the fused representation Py goes through the cross-entropy loss Ly in Eq.

Our method fundamentally transforms the approach to integration by utilizing a data-driven, adaptive
mechanism to dynamically evaluate contributions of candidate LLMs and select accordingly.

4.3 LoOSS AND TRAINING PIPELINE

The selection network often converges to a state where it consistently assigns large weights to the
same few candidates. To facilitate the training of our network, we implement a feedback approach to
guide the selection of candidates (see Tabllc). Consequently, we adopt a soft constraint approach.
The importance of a model relative to a batch of training examples is defined as the batch-wise sum
of the values p; for each LLM. We define a feedback loss L4, which is added to the overall loss
function for the model as described in Eq. [3. This loss is calculated as the square of the coefficient

of variation CV? of the importance values. The importance values are derived from the weights of
different candidates in the model, summed over the index set K. This formulation is given by:

2 (. 5
Licsa = CV* (ZjeK ﬁj) B #:(2(31';: ;3]1 4 -

Here, o2 is the variance, 1 1s the mean, and € is a small constant added to ensure numerical stability
(preventing division by zero). This refined definition emphasizes the goal of making the distribution of
source LLMs’ importance more uniform across the model. Minimizing the variance of the importance
values p; reduces the spread or difference between these values, making the distribution of importance
more uniform. Simultaneously maximizing the mean ensures that the feedback loss does not become
excessively sensitive to small variances. Squaring the mean in the denominator helps to normalize the
loss and maintain a consistent scale, emphasizing relative changes in the variance. The full training
objective is a combination of the above objectives:

L0, pasn) = —Eip [D(Pr, O)] + Atuse (—Einp [D(P, Py)]) + AeedCV? (Z]‘eK ﬁj)’ (11)

Lim Liuse

Lieed

where L, reduces the discrepancy between P; and the one-hot label matrix, O; € {0, I}LXD .
0y, pasn are parameters of target LLM and selection network. Ly, enforces assignment between the
target LLM’s predictions P; and the fused representation matrix Py. We set Agyse = 0.1, Afeeq = 0.5
in our experiments. Grid search results are shown in Appx. [C} Our method is described in Alg.

Under review as a conference paper at ICLR 2025

Algorithm 1 Fusion-X" for LLMs Integration

Require: Source LLMs probabilistic distribution matrices { P, }¥,, training corpus C..
Ensure: Fused representation matrix Py, Target LLM T
1: Initialize the adaptive selection network: z4(P;).
2: for each text in C' do
// Stepl: Select fusion candidates with ASN.

3: for each input P; do # Tensor shape: (L, D, N)
4: Obtain logits z,(P;) using Eq. # Tensor shape: (LD, N)
5 Calculate softmax probability p; using Eq.[5]
6: end for
// Step2: Fuse selected candidates using permutation assignment.
7: Obtain Xejected using Eq.@ # Selecting based on adaptive threshold 7
8: Compute Py usingEq.E} # Tensor shape: (L, D, K)

// Step3: Training schedule.
9: Calculate feedback loss Lyeeq using Eq.
10: Compute final loss £ using q.[IT] # Combination of Li., Lree, and Leceo
11: Update model parameters based on it.
12: end for
13: return Trained 7.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Models and Datasets. We conduct experiments on various scales of models, including Llama-
160M [Miao et al.|(2023), GPT-Neo-125M Black et al. (2021), Pythia-160M |Biderman et al.|(2023)),
Tiny-starcoder |L1 et al. (2023), LiteLlama-460M-1T, OpenLLaMA-V2-3B |Geng & Liu (2023),
MiniMA-3B [Zhang et al.|(2023a), Amber Liu et al. (2023), Starcoder2-3B [Li et al. (2023), Llama-
2-7B [Touvron et al.[(2023), OpenLLaMA-7B |Geng & Liu (2023), Starcoder2-7B [Li et al.|(2023).
These models have different parameter sizes, architectures, tokenizers, and vocabulary. We process
model integration by first selecting the source models, then setting one model as our target model,
and performing model fusion by fusing the representation matrices. Results are shown in Sec.
We follow Wan et al.|(2024a) to use MiniPile Kaddour|(2023) for continual training.

Training details. Our model is optimized using the AdamW optimizer with betal = 0.9 and beta2 =
0.95, with gradient clipping set to 1.0 and weight decay to 0.1. A cosine learning rate schedule is
employed, with a maximum learning rate of 3e-5 for models under 1B and le-5 for models larger
than 1B and a warmup ratio of 0.008. We train with 4 A100 GPUs, each with 80GB of memory.

Evaluation benchmarks. We evaluate Fusion-X" on three benchmarks that represent different core
capabilities of LLMs: Common Sense (CS) [Talmor et al./ (2018), Big-Bench Hard (BBH) [Suzgun
et al. (2022), Multi-task Language Understanding (MMLU) Hendrycks et al. (2021), and MultiPL-E
(ME) Cassano et al.| (2023), representing the ability of commonsense, reasoning, and code generation,
respectively. A detailed description of the four benchmarks are presented in the Appx. D.

5.2 MAIN RESULTS

Tab. 2 shows the zero-shot performance of Fusion-X and the baseline methods on the Common
Sense (CS) benchmark when fusing 4 LLMs. We present our model in three scales: 1) Fusion-X-T:
Integrated with Llama-160M, GPT-Neo-125M, Pythia-160M, Tiny-starcoder. 2) Fusion-X'-S: Inte-
grated with OpenLLaMA-V2-3B, MiniMA-3B, Amber, Starcoder2-3B. 3) Fusion-X’-B: Integrated
with Llama-2-7B, OpenLLaMA-7B, MPT-7B, Starcoder2-7B.

The results demonstrate that our model consistently surpasses the target models across all six
tasks achieving an average performance improvement of 0.78% over Llama-160M, 1.07% over
OpenLLaMA-3B, and 1.16% over Llama-2-7B , with a standard deviation of —0.02 ~ +40.02.
Our model also outperforms the state-of-the-art fusion method, FuseLLM, at all scales. More

Under review as a conference paper at ICLR 2025

Table 2: Overall results of Fusion-X" and baselines in commonsense evaluations on CommonSense
(CS), where percentages indicate the rate of improvement/decrease compared to our target model,
denoted with ”*”, Larger values indicate better results.

Model / Task | ARC-easy ARC-challenge BoolQ HellaSwag OpenBookQA Winogrande | Avg. 6 Tasks
Llama-160M* 43.35 23.04 61.44 35.23 30.00 50.20 40.54
GPT-Neo-125M 43.60 2295 61.68 30.44 26.20 50.67 39.26
Pythia-160M 43.90 23.55 54.59 30.24 27.00 51.38 38.44
Tiny-starcoder 30.72 20.31 61.68 29.24 25.20 51.78 36.49
FuseLLM 4354 (+0.19) 2193 (-1.11) 61.48 (+0.04) 34.74(-0.49) 30.20 (+0.20) 51.23 (+1.03) | 40.52 (-0.02)
Fusion-X-T 44.23 (+0.88) 22.95(-0.09) 61.59 (+0.15) 3547 (+0.24) 31.60 (+1.60) 52.09 (+1.89) | 41.32 (+0.78)
OpenLLaMA-V2-3B* 63.30 36.35 65.44 69.93 37.80 63.22 56.01
MiniMA-3B 25.88 28.41 62.17 25.19 28.20 49.33 36.53
Amber 65.87 36.60 68.72 72.41 41.40 64.33 58.22
Starcoder2-3B 55.47 30.80 64.40 46.43 30.00 54.70 46.97
FuseLLM 63.72 (+0.42) 35.55(-0.80) 66.51 (+1.07) 70.23 (+0.30) 37.10(-0.70) 63.59 (+0.37) | 56.17 (+0.16)
Fusion-X-S 65.03 (+1.73) 36.43 (+0.05) 67.31 (+1.78) 70.75 (+0.82) 38.25(+0.45) 64.69 (+1.47) | 57.08 (+1.07)
Llama-2-7B* 74.58 46.33 77.71 76.00 44.20 69.30 64.69
OpenLLaMA-7B 69.70 41.38 72.29 74.50 40.80 65.82 60.75
MPT-7B 70.12 42.15 74.74 76.25 42.40 68.15 62.30
Starcoder2-7B 60.61 34.90 69.08 51.00 32.00 55.17 50.46
FuseLLM{ 75.04 47.44 78.13 76.78 45.40 69.03 65.30
FuseLLM 75.23 (+0.65) 47.14 (+0.81) 78.22 (+0.51) 76.40 (+0.40) 44.34 (+0.14) 69.22 (-0.08) | 65.09 (+0.40)
Fusion-X-B 75.46 (+0.88) 47.50 (+1.17) 78.86 (+1.15) 76.97 (+0.97) 46.02 (+1.82) 70.33 (+1.03) | 65.85 (+1.16)

importantly, our method notably reduces knowledge interference during model integration, especially
on tasks such as ARC-Challenge, HellaSwag, and OpenBookQA. Our approach effectively prevents
model performance degradation caused by integrating models with less relevant or lower-quality
information. Given that the source models have large differences in performance, our method ensures
the preservation of the original model’s knowledge. We will discuss this further in Appx. [A.

Fig. 4| shows the results for the code generation evaluation,
the zero-shot performance of Llama-2, FuseLLM, and JavaScript __ PHP
our Fusion-X on the MultiPL-E (ME) benchmark. We
observe that Fusion-X outperforms FuseLLM in all tasks.
Our model surpasses Llama-2 by a large margin, with an
average performance increase of remarkable performances
in code generation tasks compared to Llama-2, the fusion
result via Fusion-A" achieves an average performance gain
of 2.15%, which is higher than the 0.69% improvement
observed in FuseLLM. Detailed results of multiple scales
can be found in the Appx. [G.

The overall results of the Fusion-X model compared to
baseline methods on the BBH benchmark are presented in
Tab. [3] The four source LLMs show varying performance
across the 27 BBH tasks. After integration, our Fusion-X’
model achieves an average improvement of 2.11% across Llama-2-7B/" FuseLLM Ours

all tasks, demonstrating the effectiveness of our approach. Figure 4: Evaluation results compari-
Compared to FuseLLM, our method doubles the perfor- son on MultiPL-E benchmark.

mance increase (1.05 vs. 2.11) compared to Llama-2. We

can also observe knowledge interference in some tasks. This interference arises due to two primary
reasons. First, other source LLMs, apart from Llama-2, perform poorly on certain tasks, affecting
the fusion results. Second, the relevance between the continual training dataset and downstream
tasks contributes to performance degradation. Despite FuseLLLM showing an average performance
gain compared to Llama-2-7B, it performs worse than Llama-2 on 10 tasks, indicating significant
knowledge interference. For instance, in the Snarks task, Llama-2 achieves 50.56%, while FuseLLM
scores 46.21%. This drop is because all other LLMs perform worse on this task compared to Llama-2,
highlighting how less relevant or lower-quality information can degrade the model’s performance.

TypeScript Rust

In contrast, Fusion-X only has 5 tasks that perform lower than Llama-2-7B, showing a 50% reduction
in knowledge interference compared to FuseLLM. We are also able to reduce the performance drop
of the tasks that are effected by knowledge interference. These results indicate that our method
effectively limits knowledge interference, resulting in more consistent performance improvements.

Under review as a conference paper at ICLR 2025

Table 3: Overall results of Fusion-X" and baselines in reasoning evaluations on Big-Bench Hard
(BBH), where percentages indicate the rate of improvement/decrease compared to Llama-2-7B.

Task \ Llama-2* OpenLlama MPT Starcoder FuseLLM Fusion-t
Boolean Expressions 69.60 75.60 66.20 75.60 65.00 (-4.60) 72.60 (+3.00)
Causal Judgement 52.94 54.55 50.60 20.26 46.67 (-6.27) 51.20 (-1.74)
Date Understanding 62.80 43.20 43.60 51.20 61.40 (-1.40) 57.60 (-5.20)
Disambiguation QA 46.40 36.80 47.60 44.40 46.30 (-0.10) 50.40 (+4.00)
Dyck Languages 6.00 6.00 5.20 23.20 10.20 (+4.20) 7.60 (+1.60)
Formal Fallacies 49.60 50.80 52.40 41.60 50.80 (+1.20) 50.20 (+0.60)
Geometric Shapes 32.80 0.00 0.00 22.40 20.20 (-12.60) 22.00 (-10.8)
Hyperbaton 51.60 66.80 53.21 72.40 61.20 (+9.60) 58.00 (+6.40)
Logical Deduction (3 objects) 56.00 41.60 40.80 52.80 58.00 (+2.00) 56.40 (+0.40)
Logical Deduction (5 objects) 32.00 25.20 31.20 42.40 33.20 (+1.20) 32.40 (+0.40)
Logical Deduction (7 objects) 24.00 16.80 18.40 41.20 27.60 (+3.60) 24.40 (+0.40)
Movie Recommendation 70.40 40.00 52.00 45.20 74.40 (+4.00) 72.80 (+2.40)
Multistep Arithmetic Two 0.40 0.80 0.40 24.80 4.80 (+4.40) 3.20 (+2.80)
Navigate 53.20 53.20 48.80 75.20 64.00 (+10.8) 63.60 (+10.4)
Object Counting 49.20 49.20 40.40 52.40 54.40 (+5.20) 54.80 (+5.60)
Penguins in a Table 31.51 26.03 28.08 50.68 27.27 (-4.24) 31.51 (+0.00)
Reasoning about Colored Objects 48.00 28.00 31.60 57.20 48.20 (+0.20) 52.00 (+4.00)
Ruin Names 33.20 28.00 23.20 43.60 30.40 (-2.80) 34.00 (+8.00)
Salient Translation Error Detection 24.80 16.00 0.00 33.60 31.00 (+6.20) 30.00 (+5.20)
Snarks 50.56 44.38 45.51 40.01 46.21 (-4.35) 54.44 (+3.88)
Sports Understanding 88.40 66.00 82.40 53.60 88.50 (+0.10) 90.40 (+2.00)
Temporal Sequences 12.40 31.60 20.80 26.80 15.80 (+3.40) 18.00 (+5.60)
Tracking Shuffled Obj. (3 objects) 32.40 35.60 30.40 37.20 33.20 (+0.80) 33.60 (+1.20)
Tracking Shuffled Obj. (5 objects) 17.60 20.00 14.60 33.60 15.40 (-2.20) 14.80 (-2.80)
Tracking Shuffled Obj. (7 objects) 10.80 10.80 2.00 17.60 14.80 (+4.00) 24.40 (+13.6)
Web of Lies 51.60 53.20 63.60 57.60 61.80 (+10.2) 60.00 (+8.40)
Word Sorting 10.80 5.20 6.80 25.60 6.60 (-4.20) 5.60 (-5.20)
Avg. 27 Tasks \ 39.59 34.27 33.33 44.19 40.64 (+1.05) 41.70 (+2.11)

6 ABLATION & ANALYSIS

Distribution of Activation Frequencies

Fig.[3 provides an analysis of the LLM fusion candi-
date selection distribution when training Fusion-X-T.
The left panel shows the selection across 120K train-
ing steps, the consistent patterns observed in the se-
lection distribution indicate that our adaptive selection
network is effectively distributing the selection load
among the candidates. The adaptive mechanism al-
lows the network to dynamically adjust which LLMs

to select based on the ongoing learning process.

The right panel illustrates the proportion of each se-
lection throughout the training. The proportions are
as follows 27.12%, 25.42%, 16.95%, 30.51%. These
results indicate that our method finds LLM 4 (Tiny-
starcoder) to be more valuable than the others, and
LLM 3 (Pythia-160M) to be less valuable for the cur-

Selection Distribution

Selection Frequency

Training Steps (K)
3 8

©
S

27.12

25.42

30.51

o
o

(%) uomiodoig

16.95

o

120

LLM 1

LLM2

LLIM3 LLM4 LM 1

Candidate LLMs for Fusion

LLM2 LLM3 LLM4

Figure 5: Candidate selection distribution.
The Left shows the selection for each train-
ing step, and the right shows the proportion
of each selection for the training.

rent integration process. Our statistical results demonstrate that we can accurately identify effective
LLM candidates for the current task from the source model candidate pool at each training step.

Scaling Results

Model scaling is a critical evaluation for LLMs. In our paper, we conduct experiments in two
directions: scaling the model size and scaling the number of source models. We evaluate model
scaling on the Commonsense, BBH, and MMLU datasets, assessing both the average performance
across all tasks and the knowledge interference on individual tasks. Results on the Commonsense
dataset are shown in Tab. [2] For BBH and MMLU, we present the results in Figlf] In the figure, the
lines represent the average performance (left y-axis) of FuseLLM and our model when fusing 3 LLMs,

Under review as a conference paper at ICLR 2025

BBH - 100M Scale BBH - 7B Scale MMLU - 100M Scale 4 MMLU - 7B Scale
. . 0.9

7.5 0.8 42 0.8 255 0.8 48
7 07 41 07 25 / 07 47 07
T 0.6 40 06 245 W‘ 06 46 0.6

0.8

N

6.5

o .5
3LLM 4LLm 5LLM 3LLM 4LLm 5LLM 3LLM 4LLM 5LLM 3LLM 4LLM 5LLM
et FUSELLM === Fusion-X wt==FuseLLM e=w==Fusion-X et FUSeLLM ==w==Fusion-X et FUSeLLM ==w==Fusion-X

(a) (b) (c) (d)

Figure 6: Scaling number of fusion candidates. The line charts display the accuracy for FuseLLM
and our model on the BBH and MMLU benchmarks. The histograms show the percentage of tasks
outperforming the baseline when integrating 3, 4, and 5 LLMs. Dotted lines represent the baseline.

4 LLMs, and 5 LLMs. The dotted line in each subfigure shows the baseline model performance of
Llama-160M (160M scale) and LLaMA-2-7B (7B scale). In Fig. [6h, the performance of FuseLLM is
even lower than the baseline on the BBH benchmark when fusing 4 LLMs and 5 LLMs. In contrast,
our model consistently increases performance when integrating more LLMs. The performance
degradation in FuseLLM is due to knowledge interference, which is reflected in the histogram (right
y-axis). It shows the percentage of tasks BBH (total 27 tasks) and MMLU (total 57 tasks) that
perform higher than the baseline. FuseLLM shows much less improvement compared to our model.
Especially for the 4 LLMs and 5 LLMs settings, where only around 60% of tasks perform better,
leading to degradation in almost half of the tasks (details are shown in Tab. [3]and Appendix). We can
reduce the knowledge interference by up to 50%.

This shows that simply scaling the LLM integration does not always improve performance. While
adding more models provides a wider range of knowledge, it can also lead to knowledge saturation
and inefficiencies. Our Fusion-X consistently yields better outcomes by effectively selecting and
integrating the most relevant models. Therefore, we believe that a selective strategy for LLM
integration is crucial. More importantly, designing a better selective strategy can prevent knowledge
interference and maximize the overall performance of the fused model.

Different Model Integration Methods

We compare Fusion-X with other integration techniques, including LLM-Blender Jiang et al. (2023),
OAssistRM [Kopf et al. (2024), UltraRM |Cui et al. (2024), and FuseLLM Wan et al.| (2024a)). Our
experiments were conducted on the Big-Bench Hard and MMLU benchmarks.

As shown in Tab. 4, highlight the performance of
integrating 4 LLMs with these methods. LLM- Typle 4: Performance Comparison of Fusion-X
Blender (Rank&Fuse) uses a ranker to select the jth different integration methods

top three results, which are then combined by a

fuser, whereas LLM-Blender (Rank) simply selects g s | BBH MMLU
the top result. Our findings show that our Fusion-

X method consistently outperforms existing works ~ L1ama-2-7B 39.59 454
y oub st v LLM-Blender (Rank&Fuse) | 23.58 42.1

across the evaluated benchmarks. By selecting a
R . .. LLM-Blender (Rank) 35.66 45.3
robust target model and incorporating specialized OAssistRM 3521 457
models that excel in specific tasks, we achieve su- {jjaRM 3721 462
perior overall performance. This demonstrates the FuseLLM 40.64 46.5
effectiveness of our targeted fusion approach in cre- Fusion-X-B 41.70 48.1

ating a more capable and versatile language model.

7 CONCLUSION

In this paper, we propose a novel dynamic fusion framework for integrating multiple LLMs. Our
adaptive selection network selectively integrates the best-performing source LLMs, overcoming the
limitations of existing methods and minimizing knowledge interference. We also introduce a dynamic
weighted fusion strategy and a feedback-driven loss function to enhance the fusion process. Our
method significantly improves adaptability and performance, offering an efficient solution for LLM
integration while maintaining parameter size and computational efficiency. Limitations remain due to
the intensive token alignment required prior to training, and future work should explore training on
diverse datasets.

10

Under review as a conference paper at ICLR 2025

8 REPRODUCIBILITY STATEMENT

We describe our training settings, dataset used in Sec. [5.1 and Appx. [C] We introduce the benchmark
used in Appx. [D. The details model structure and framework are presented in Sec. 4 and Appx. [B]

REFERENCES

Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Improv-
ing model selection and boosting performance in domain generalization. Advances in Neural
Information Processing Systems, 35:8265-8277, 2022.

Rachit Bansal, Bidisha Samanta, Siddharth Dalmia, Nitish Gupta, Sriram Ganapathy, Abhishek
Bapna, Prateek Jain, and Partha Talukdar. Llm augmented llms: Expanding capabilities through
composition. In The Twelfth International Conference on Learning Representations, 2023.

BIG bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvos .

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397-2430. PMLR, 2023.

Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Autore-
gressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.org/
10.5281/zenodo.5297715. If you use this software, please cite it using these metadata.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-e:
a scalable and polyglot approach to benchmarking neural code generation. IEEE Transactions on
Software Engineering, 2023.

Zhenyi Lu Chenghao Fan and Jie Tian. Chinese-vicuna: A chinese instruction-following llama-based
model. 2023. URL https://github.com/Facico/Chinese-Vicuna.

Clément Christophe, Praveen K Kanithi, Prateek Munjal, Tathagata Raha, Nasir Hayat, Ronnie Rajan,
Ahmed Al-Mahrooqi, Avani Gupta, Muhammad Umar Salman, Gurpreet Gosal, Bhargav Kanakiya,
Charles Chen, Natalia Vassilieva, Boulbaba Ben Amor, Marco AF Pimentel, and Shadab Khan.
Med42 — evaluating fine-tuning strategies for medical llms: Full-parameter vs. parameter-efficient
approaches. 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
Ruobing Xie, Yankai Lin, et al. Ultrafeedback: Boosting language models with scaled ai feedback.
In Forty-first International Conference on Machine Learning, 2024.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547-55609.
PMLR, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1-39,
2022.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

11

https://openreview.net/forum?id=uyTL5Bvosj
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://github.com/Facico/Chinese-Vicuna
https://zenodo.org/records/10256836

Under review as a conference paper at ICLR 2025

Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023. URL https:
//github.com/openlm—-research/open_llama.

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wallace, Pieter Abbeel, Sergey Levine, and
Dawn Song. Koala: A dialogue model for academic research. Blog post, April 2023. URL
https://bair.berkeley.edu/blog/2023/04/03/koala/.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021. URL https://arxiv.
org/abs/2009.03300!

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. stat,
1050:9, 2015.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 14165-14178, 2023.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. In The Eleventh International Conference on Learning
Representations, 2022.

Jean Kaddour. The minipile challenge for data-efficient language models. arXiv preprint
arXiv:2304.08442, 2023.

Andreas Kopf, Yannic Kilcher, Dimitri von Riitte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richard Nagyfi, et al. Openassistant
conversations-democratizing large language model alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo
Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang,
Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqgiang Shen, Xuguang Ren,
Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Tim Baldwin, and Eric P.
Xing. LIm360: Towards fully transparent open-source llms, 2023.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models. arXiv preprint
arXiv:2311.08692, 2023.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating
generative llm serving with speculative inference and token tree verification, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct

electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

12

https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300

Under review as a conference paper at ICLR 2025

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari,
and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. Advances in
Neural Information Processing Systems, 35:10821-10836, 2022.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

George Stoica, Daniel Bolya, Jakob Brandt Bjorner, Pratik Ramesh, Taylor Hearn, and Judy Hoff-
man. Zipit! merging models from different tasks without training. In The Twelfth International
Conference on Learning Representations, 2023.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging
big-bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Fanqgi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge fusion
of large language models. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=jiDsk12gcz.

Fanqi Wan, Ziyi Yang, Longguang Zhong, Xiaojun Quan, Xinting Huang, and Wei Bi. Fusechat:
Knowledge fusion of chat models. arXiv preprint arXiv:2402.16107, 2024b.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965-23998. PMLR, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Chen Zhang, Dawei Song, Zheyu Ye, and Yan Gao. Towards the law of capacity gap in distilling
language models. 2023a. URL https://arxiv.org/abs/2311.07052.

Jinghan Zhang, Junteng Liu, Junxian He, et al. Composing parameter-efficient modules with
arithmetic operation. Advances in Neural Information Processing Systems, 36:12589-12610,
2023b.

Xinlu Zhang, Chenxin Tian, Xianjun Yang, Lichang Chen, Zekun Li, and Linda Ruth Petzold.
Alpacare:instruction-tuned large language models for medical application, 2023c.

13

https://openreview.net/forum?id=jiDsk12qcz
https://arxiv.org/abs/2311.07052

