
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FUSION-X : ADVANCING LLM ABILITY WITH
ADAPTIVE HETEROGENEOUS MODEL INTEGRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Training LLMs presents significant challenges, including data access, privacy
concerns, the complexity of training schedules, and limited resources. Therefore,
a more accessible approach involves integrating existing LLMs, each tailored for
different tasks or trained on distinct datasets, into an advanced and robust model
with enhanced capabilities. Popular methods like ensemble and weight merging
require substantial memory and struggle to adapt to changing data environments.
Recent efforts have aimed to transfer only the collective knowledge of multiple
LLMs to the target LLM. However, the resulting fused model often suffers from
interference and performance degradation due to a lack of flexibility in the fusion
process, including candidate selection and training pipeline. To address these
issues, we propose a dynamic fusion framework to adaptively select LLMs for
integration. Specifically, to diminish knowledge interference during LLM fusion,
we introduce an adaptive selection network. It is a learnable mechanism that
explicitly evaluates and selects the best-performing source LLMs based on their
rewards, allowing us to fuse knowledge from a flexible number model candidates.
To improve the knowledge fusion process, we propose a dynamic weighted fusion
strategy that considers the intrinsic characteristics of candidate LLMs during fusion.
Additionally, we incorporate a feedback-driven loss function to prevent the selector
from converging to a state where it consistently assigns the same candidates. Our
experiments demonstrate that our method consistently enhances model performance
across multiple benchmarks, yielding an improvement of up to 2.2%. Additionally,
our approach achieves a notable reduction in knowledge interference, showing up
to 50% decrease compared to existing work.

1 INTRODUCTION

The emergence of large language models (LLMs) has led to the development of many specialized
versions Zhang et al. (2023c); Christophe et al. (2024); Geng et al. (2023); Chenghao Fan & Tian
(2023); Li et al. (2023), each tailored to specific domains and enhancing various aspects of daily
life. However, the complexities involved in data collecting and pre-processing, training schedule
design, and substantial training energy are challenging, particularly for academic researchers with
limited experience and resources. Moreover, significant difficulties arise in fields like healthcare and
business, where privacy concerns restrict data sharing between institutions. This limitation hampers
the ability to gather sufficient data to train robust models. Consequently, institutions and companies
often rely solely on their own datasets, which constrains their ability to develop superior models.
Given these challenges, a more straightforward approach has gained attention Jiang et al. (2023);
Jin et al. (2022); Zhang et al. (2023b); Wan et al. (2024a): instead of developing a new LLM from
scratch, integrating existing LLMs into a unified model is more appealing. This integrated model
serves as a robust base that can be further refined for various tasks, thereby avoiding the need for
extensive individual training or data transfer.

Existing solutions, such as ensemble methods Jiang et al. (2023); Lu et al. (2023), enhance prediction
performance by aggregating outputs from multiple models but require substantial memory and
increase inference time due to the need to maintain and operate several models simultaneously.
Another method involves merging several neural networks into a single network within the parameter
space Jin et al. (2022). This generally presumes uniform network architecture and relies on manually
configured weight merging or adding additional layers. Additionally, Mixture of Expert (MoE)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Different model integration approaches including ensemble, weight merging, knowledge
fusion, and our method. We evaluate these methods based on four aspects: parameter size mainte-
nance, simplified training, merging flexibility, and minimized interference.

structures Shazeer et al. (2017); Lepikhin et al. (2020); Du et al. (2022); Fedus et al. (2022), such as
Mistral-7bx8 Jiang et al. (2024), address some inference and weight-sharing issues, but still suffer
from long inference times and the requirement for homogeneous architectures and larger model
sizes. FuseLLM Wan et al. (2024a) and FuseChat Wan et al. (2024b) have attempted to integrate
the knowledge of multiple source LLMs using generated probability distribution matrices. However,
these approaches suffer from interference and performance degradation in various tasks compared
to the original target model due to unoptimized model selection and uncontrolled fusion processes.
Fig. 1 provides an overview of the various model integration approaches. Our approach aims to
address four critical challenges: Parameter size maintenance, simplified training, merging flexibility,
and minimized interference, where existing methods fail to fully meet.

To overcome the limitations of existing LLM integration approaches, we propose a novel dynamic
integration framework that adaptively selects LLMs for integration. More specifically, given a
diverse set of random source LLMs with heterogeneous structures, we introduce an adaptive selection
network, a learnable mechanism that explicitly evaluates and selects the best-performing source
LLMs based on their rewards, thereby alleviating the interference issues typically caused by model
fusion. The rewards are calculated based on each model’s performance across a predefined set of tasks.
Our framework allows flexibility in the number of LLMs selected during this process. To improve the
knowledge fusion process, we implement a dynamic weighted fusion strategy that accounts for the
intrinsic characteristics of candidate LLMs during fusion. The weights assigned in this process are
derived from the reward evaluations, enabling the integration to favor models more likely to improve
the overall performance of the composite LLM. The selector often converges to a state in which it
consistently assigns large weights to the same few candidates. To address this, we incorporate a
feedback-driven loss function that facilitates the training of our adaptive selection network and guides
the selection of candidates.

Our method enhances the efficiency and effectiveness of LLM integration while maintaining adapt-
ability and robustness against model diversity and data variability. It achieves this without increasing
the parameter size as well as computation. of the target model, ensuring computational efficiency
compared to traditional methods. Our contributions are as follows:

• We find that merely increasing the number of fusion candidates and expanding the source model
pool does not necessarily enhance the fusion process, a selective strategy is more effective in
minimizing knowledge interference.

• We propose a novel dynamic integration framework that adaptively selects LLMs for integration,
leveraging an adaptive selection network, a permutation assignment fusion strategy, and a feedback-
driven loss function to alleviate interference issues and enhance overall model performance.

• Our model outperforms existing approaches across multiple benchmarks, achieving a notable
reduction in knowledge interference, with up to 50% decrease compared to previous methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK AND MOTIVATION

2.1 MODEL INTEGRATION

Research on model integration has evolved into distinct categories, each addressing differ-
ent aspects of combining models: 1) Ensemble: LLM-Blender Jiang et al. (2023) uses
ensemble techniques to enhance performance by combining outputs from multiple models.

Figure 2: Evaluation on BBH benchmark
when merging three models (upper) and
four models (lower). The performance de-
creases on certain tasks for the integrated
model, and the interference increases when
integrating more models.

This process includes inferring all candidate models and
then ranking them, which can be resource-intensive and
slow. 2) Weight Merging: Zipit Stoica et al. (2023)
merges partial layers of two models without additional
training, creating a multi-head model for various tasks.
Jin et al. (2022) merges models in their parameter space,
guided by weights that minimize prediction differences.
Rame et al. (2022); Arpit et al. (2022); Wortsman et al.
(2022) employ weighted averaging methods. Zhang
et al. (2023b) compose models through linear arithmetic
operations in the weight space. These techniques are
typically limited to models with identical architectures.
3) Composition: CALM Bansal et al. (2023) uses cross-
attention mechanisms between models to integrate their
representations, introducing new functionalities while
maintaining each model’s parameters, which can be inef-
ficient in terms of speed and size. 4) Knowledge Fusion:

FuseLLM Wan et al. (2024a) and FuseChat Wan et al.
(2024b) focuses on fusing the probability distributions
from various LLM candidates, integrating them into a
single base LLM, blending knowledge across models.
However, these approaches suffer from knowledge inter-
ference and performance degradation on various tasks
compared to the original target LLM due to unoptimized
model selection and uncontrolled fusion processes.

Knowledge distillation Hinton et al. (2015) is also used to integrate information into a model.
However, student models are typically smaller and have lower performance than their teacher models.
In our scenario, there is no limitation on the size or performance of the source models.

2.2 KNOWLEDGE INTERFERENCE

Knowledge Interference refers to the adverse impact on a model’s performance when incorporating
knowledge from other models, leading to decreased task performance. This can occur due to:
1) Conflicting Information: Models trained on different datasets or tasks contribute conflicting
knowledge, resulting in confusion and degraded performance on specific tasks. 2) Dilution of

Valuable Knowledge: Introducing less relevant or lower-quality information can dilute the original
model’s knowledge. 3) Overfitting to Irrelevant Patterns: The fused model may overfit to noise or
less useful patterns from new models, losing focus on critical aspects of the tasks it was initially
trained on. Fig. 2 shows the results of FuseLLM Wan et al. (2024a) on 27 tasks of the Big-Bench
Hard Suzgun et al. (2022) benchmark, exhibiting performance degradation on multiple tasks (in red).
We also observe that fusing more models (upper part: fusing 3 models, lower part: fusing 4 models)
can lead to even more degradation. Detailed results are shown in Tab. 3.

3 PRELIMINARIES

As a general integration approach parallel to ensembling and weight merging, knowledge fusion
combines the probabilistic distribution matrices P ✓i

i from multiple LLMs. These matrices reflect
each model’s inherent knowledge for text understanding. Let t be a text sequence of length N , and
t<i denote the sequence preceding the i-th token. The probabilistic distribution matrix P

✓i
t for the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: Overall framework: Multiple source LLMs are evaluated and selected based on perfor-
mance by an adaptive selection network. Top candidates then proceed through a dynamic weighted
fusion process guided by a feedback loss to enhance the ability of the target LLM. The lower right
shows evaluation results on CommonSense, MMLU, and Big-Bench-Hard benchmark.

i-th LLM is given by:

P
✓i
t = [p✓(t1|t<1), p✓(t2|t<2), . . . , p✓(tN |t<N)] , (1)

where, P ✓i
t is the probabilistic distribution matrix for the i-th LLM for text sequence t. p✓i(tk|t<k) is

the predicted probability distribution for the k-th token given the preceding tokens t<k, according to
the i-th LLM parameterized by ✓i. Each element p✓i(tk|t<k) is a vector of probabilities corresponding
to each token in the vocabulary, summing to 1.

Their fusion process is achieved by minimizing the divergence between the target LLM’s (pre-defined
among the source LLMs) probabilistic distributions and those of the source LLMs:

Pf = F(P ✓1
1 , P

✓2
2 , . . . , P

✓N
N), (2)

where F denotes the function that combines multiple matrices. {P ✓i
i }Ni=1 represents the representation

matrix of each LLM. We simplify the notation as Pi in the later equations.

The overall objective for continual training consists of a weighted combination of the causal language
modeling objective Llm and the fusion objective Lfuse as follows:

L = �Llm + (1� �)Lfuse, (3)
where Llm is the causal language modeling objective, and Lfuse is the cross-entropy loss between the
target LLM’s predictions (output) and the fused representation matrix Pf .

4 METHODOLOGY

Our method advances existing knowledge fusion methods by introducing a dynamic framework that
consists of an Adaptive Selection Network and a Dynamic Weighted Fusion mechanism, as illustrated
in Fig. 3. Specifically, at each training step, the Adaptive Selector evaluates performance metrics to
dynamically select a subset of candidate models based on their probabilistic distribution matrices
rather than all candidates. More importantly, both the selection of candidates and the number of
candidates selected are adaptive, preventing knowledge interference and enhancing overall model
performance. The selected candidates are then fused using a weighted sum based on normalized
selection probabilities. This process is guided by a specially designed loss function that refines model
selection through feedback. Our framework provides flexibility for future scalability and allows the
integration process to accommodate varying computational constraints and application needs.

4.1 ADAPTIVE SELECTION NETWORK

We propose an Adaptive Selection Network (ASN) to evaluate the source models based on a continu-
ous learning process. It integrates feedback from ongoing interaction, which will be introduced in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Experiments on Different Design Choices of our framework under Fusion-X -T scale with
4 source models. We show ablation results on Commonsense and BBH, along with perplexity results.

(a) Selection count. Adaptively se-
lecting the candidates outperforms
selecting the top 2 or all of them.

Method PPL# CS" BBH"
Top-2 11.67 40.55 6.75
Adaptive 11.04 41.32 7.31
All 11.91 40.52 6.64

(b) Layer Choice. Adding 3 linear
layers for our selector leads to the
best performance.

Method PPL# CS" BBH"
Conv. 12.21 39.73 6.11
1 ⇥ Linear 11.42 40.78 6.86
3 ⇥ Linear 11.04 41.32 7.31

(c) Adding Loss. Adding addi-
tional feedback loss leads to better
results.

Method PPL# CS" BBH"
w/o Loss 11.48 40.91 6.92
Feed. loss 11.04 41.32 7.31

(d) Fusion method. Averaging can-
didates weighted by their reward
ensures best result.

Method PPL# CS" BBH"
Avg 11.32 40.85 6.80
Max 11.77 40.11 6.68
w/o Weighted 11.96 39.82 6.38
Weighted 11.04 41.32 7.31

(e) Threshold setting. We show the
average selected candidates of each
threshold.

Weight Avg. PPL# CS" BBH"
0.2 1.27 13.78 39.24 5.07
0.15 2.82 11.04 41.32 7.31
0.12 3.64 11.67 40.65 6.75
0.1 4.00 11.91 40.52 6.64

(f) Selection metric. Using soft-
max outperforms gumbel softmax
or adding additional random noise.

Method PPL# CS" BBH"
Softmax 11.04 41.32 7.31
Gumbel 13.41 39.15 5.00
Noise 13.11 38.97 4.90

Sec. 4.3. Various methods are explored during the design process, as shown in Tab.1. The network
takes the normalized matrices Pi (regarded as rewards) as input, which are flattened and normalized
using layer normalization to stabilize training. It then computes the logits for each candidate model.
The network consists of three linear layers (see Tab.1b) with specified dimensions and uses the GELU
activation function for enhanced non-linearity, improving the network’s ability to capture complex
patterns in the input data. The logits for any Pi from the {P ✓i

i }Ni=1 can be defined as the following
expression:

z�(Pi) = (f3 � GELU � f2 � GELU � f1)(Pi), (4)

where f1, f2, and f
3 represent the linear layers. The adaptive selection mechanism utilizes the scores

from the network, converting these into a probability via the softmax function:

pi =
e
z�

PN
i=1 e

z�
, (5)

where pi is the softmax probability associated with the i-th candidate, and N is the total number
of candidates. We also compared the effects of adding Gumbel softmax Jang et al. (2016) or noise
Shazeer et al. (2017) before the softmax (see Tab.1f). The better performance of softmax shows that
the selection process benefits more from the smooth and differentiable mapping of logits, as well as
improved convergence, rather than from adding randomness and increasing variance.

Dynamic Candidate Selection To determine which candidate models to select for fusion, we apply
a dynamic thresholding mechanism. A threshold ⌧ is set, and candidates with selection probabilities
exceeding this threshold are selected:

Xselected =
n
P

✓j
j | pj > ⌧, j = 1, . . . ,K

o
, (6)

where the output set Xselected = {P ✓j
j }Kj=1 represents a subset of the original set of models {P ✓i

i }Ni=1.
We simplify the notation P

✓j
j as Pj in the later equations.

To ensure that at least one candidate is selected per sample 1 6 K 6 N , we check if no candidates
meet the threshold and, if so, select the candidate with the highest probability:

If |Xselected| = 0, then Xselected = {argmax
j

pj}. (7)

In our implementation, we set ⌧ = 0.15 (see Tab.1e). This dynamic selection allows the model
to adaptively choose the most relevant candidates (see Tab.1a) based on the input data and current
learning context.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 DYNAMIC WEIGHTED FUSION

We proceed with the fusion process after selecting the candidate models. First, we normalize the
weights of the selected probabilities obtained from Eq. 5:

p̂ =
p�m

PN
i=1 pjmj + ✏

, (8)

where mj is a binary mask indicating the selected candidates (mj = 1 if j 2 Xselected, else mj = 0),
and ✏ is a small constant to prevent division by zero. To perform the weighted sum, we reshape
the normalized probabilities and masks to match the dimensions of the candidate outputs, enabling
element-wise multiplication. The outputs of the K selected candidates Pj are accumulated based on
their respective weights to produce a unified model output Pf . This is calculated as follows:

Pf = max
⇣
concat

⇣
{Pj · p̂j ·mj}Kj=1 , dim=-1

⌘
, dim=-1

⌘
, (9)

We assign the proportion of the candidates’ probabilistic distributions based on the weights in Eq. 8.
concat denotes the concatenation operation of all K-selected candidates. max function is applied
for fusing the maximum value from these aligned metrics Pf . We found this dynamic fusion process
can constantly let the more influential candidates have a greater effect on the final model (see Tab.1d).
Next, the fused representation Pf goes through the cross-entropy loss Lfuse in Eq. 3.

Our method fundamentally transforms the approach to integration by utilizing a data-driven, adaptive
mechanism to dynamically evaluate contributions of candidate LLMs and select accordingly.

4.3 LOSS AND TRAINING PIPELINE

The selection network often converges to a state where it consistently assigns large weights to the
same few candidates. To facilitate the training of our network, we implement a feedback approach to
guide the selection of candidates (see Tab.1c). Consequently, we adopt a soft constraint approach.
The importance of a model relative to a batch of training examples is defined as the batch-wise sum
of the values p̂j for each LLM. We define a feedback loss Lfeed, which is added to the overall loss
function for the model as described in Eq. 3. This loss is calculated as the square of the coefficient
of variation CV2 of the importance values. The importance values are derived from the weights of
different candidates in the model, summed over the index set K. This formulation is given by:

Lfeed = CV2
⇣X

j2K
p̂j

⌘
=

�
2
⇣P

j2K p̂j

⌘

µ2
⇣P

j2K p̂j

⌘
+ ✏

, (10)

Here, �2 is the variance, µ is the mean, and ✏ is a small constant added to ensure numerical stability
(preventing division by zero). This refined definition emphasizes the goal of making the distribution of
source LLMs’ importance more uniform across the model. Minimizing the variance of the importance
values p̂j reduces the spread or difference between these values, making the distribution of importance
more uniform. Simultaneously maximizing the mean ensures that the feedback loss does not become
excessively sensitive to small variances. Squaring the mean in the denominator helps to normalize the
loss and maintain a consistent scale, emphasizing relative changes in the variance. The full training
objective is a combination of the above objectives:

L(✓t,�ASN) = �Et⇠D [D(Pt, Ot)]| {z }
Llm

+�fuse (�Et⇠D [D(Pt, Pf)])| {z }
Lfuse

+�feedCV2
⇣X

j2K
p̂j

⌘

| {z }
Lfeed

, (11)

where Llm reduces the discrepancy between Pt and the one-hot label matrix, Ot 2 {0, 1}L⇥D.
✓t,�ASN are parameters of target LLM and selection network. Lfuse enforces assignment between the
target LLM’s predictions Pt and the fused representation matrix Pf . We set �fuse = 0.1, �feed = 0.5
in our experiments. Grid search results are shown in Appx. C. Our method is described in Alg. 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Fusion-X for LLMs Integration

Require: Source LLMs probabilistic distribution matrices {Pi}Ni=1, training corpus C.
Ensure: Fused representation matrix Pf , Target LLM T

1: Initialize the adaptive selection network: z�(Pi).
2: for each text in C do

// Step1: Select fusion candidates with ASN.

3: for each input Pi do # Tensor shape:(L, D, N)
4: Obtain logits z�(Pi) using Eq. 4. # Tensor shape:(LD, N)
5: Calculate softmax probability pi using Eq. 5.
6: end for

// Step2: Fuse selected candidates using permutation assignment.

7: Obtain Xselected using Eq. 6. # Selecting based on adaptive threshold ⌧

8: Compute Pf using Eq. 9. # Tensor shape:(L, D, K)

// Step3: Training schedule.

9: Calculate feedback loss Lfeed using Eq. 10.
10: Compute final loss L using q. 11 # Combination of Llm, Lfuse, and Lfeed

11: Update model parameters based on it.
12: end for
13: return Trained T .

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Models and Datasets. We conduct experiments on various scales of models, including Llama-
160M Miao et al. (2023), GPT-Neo-125M Black et al. (2021), Pythia-160M Biderman et al. (2023),
Tiny-starcoder Li et al. (2023), LiteLlama-460M-1T, OpenLLaMA-V2-3B Geng & Liu (2023),
MiniMA-3B Zhang et al. (2023a), Amber Liu et al. (2023), Starcoder2-3B Li et al. (2023), Llama-
2-7B Touvron et al. (2023), OpenLLaMA-7B Geng & Liu (2023), Starcoder2-7B Li et al. (2023).
These models have different parameter sizes, architectures, tokenizers, and vocabulary. We process
model integration by first selecting the source models, then setting one model as our target model,
and performing model fusion by fusing the representation matrices. Results are shown in Sec. 5.2.
We follow Wan et al. (2024a) to use MiniPile Kaddour (2023) for continual training.

Training details. Our model is optimized using the AdamW optimizer with beta1 = 0.9 and beta2 =
0.95, with gradient clipping set to 1.0 and weight decay to 0.1. A cosine learning rate schedule is
employed, with a maximum learning rate of 3e-5 for models under 1B and 1e-5 for models larger
than 1B and a warmup ratio of 0.008. We train with 4 A100 GPUs, each with 80GB of memory.

Evaluation benchmarks. We evaluate Fusion-X on three benchmarks that represent different core
capabilities of LLMs: Common Sense (CS) Talmor et al. (2018), Big-Bench Hard (BBH) Suzgun
et al. (2022), Multi-task Language Understanding (MMLU) Hendrycks et al. (2021), and MultiPL-E
(ME) Cassano et al. (2023), representing the ability of commonsense, reasoning, and code generation,
respectively. A detailed description of the four benchmarks are presented in the Appx. D.

5.2 MAIN RESULTS

Tab. 2 shows the zero-shot performance of Fusion-X and the baseline methods on the Common
Sense (CS) benchmark when fusing 4 LLMs. We present our model in three scales: 1) Fusion-X -T:
Integrated with Llama-160M, GPT-Neo-125M, Pythia-160M, Tiny-starcoder. 2) Fusion-X -S: Inte-
grated with OpenLLaMA-V2-3B, MiniMA-3B, Amber, Starcoder2-3B. 3) Fusion-X -B: Integrated
with Llama-2-7B, OpenLLaMA-7B, MPT-7B, Starcoder2-7B.

The results demonstrate that our model consistently surpasses the target models across all six
tasks achieving an average performance improvement of 0.78% over Llama-160M, 1.07% over
OpenLLaMA-3B, and 1.16% over Llama-2-7B , with a standard deviation of �0.02 ⇠ +0.02.
Our model also outperforms the state-of-the-art fusion method, FuseLLM, at all scales. More

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Overall results of Fusion-X and baselines in commonsense evaluations on CommonSense
(CS), where percentages indicate the rate of improvement/decrease compared to our target model,
denoted with ”*”. Larger values indicate better results.

Model / Task ARC-easy ARC-challenge BoolQ HellaSwag OpenBookQA Winogrande Avg. 6 Tasks
Llama-160M* 43.35 23.04 61.44 35.23 30.00 50.20 40.54
GPT-Neo-125M 43.60 22.95 61.68 30.44 26.20 50.67 39.26
Pythia-160M 43.90 23.55 54.59 30.24 27.00 51.38 38.44
Tiny-starcoder 30.72 20.31 61.68 29.24 25.20 51.78 36.49
FuseLLM 43.54 (+0.19) 21.93 (-1.11) 61.48 (+0.04) 34.74 (-0.49) 30.20 (+0.20) 51.23 (+1.03) 40.52 (-0.02)
Fusion-X -T 44.23 (+0.88) 22.95 (-0.09) 61.59 (+0.15) 35.47 (+0.24) 31.60 (+1.60) 52.09 (+1.89) 41.32 (+0.78)

OpenLLaMA-V2-3B* 63.30 36.35 65.44 69.93 37.80 63.22 56.01
MiniMA-3B 25.88 28.41 62.17 25.19 28.20 49.33 36.53
Amber 65.87 36.60 68.72 72.41 41.40 64.33 58.22
Starcoder2-3B 55.47 30.80 64.40 46.43 30.00 54.70 46.97
FuseLLM 63.72 (+0.42) 35.55 (-0.80) 66.51 (+1.07) 70.23 (+0.30) 37.10 (-0.70) 63.59 (+0.37) 56.17 (+0.16)
Fusion-X -S 65.03 (+1.73) 36.43 (+0.05) 67.31 (+1.78) 70.75 (+0.82) 38.25 (+0.45) 64.69 (+1.47) 57.08 (+1.07)

Llama-2-7B* 74.58 46.33 77.71 76.00 44.20 69.30 64.69
OpenLLaMA-7B 69.70 41.38 72.29 74.50 40.80 65.82 60.75
MPT-7B 70.12 42.15 74.74 76.25 42.40 68.15 62.30
Starcoder2-7B 60.61 34.90 69.08 51.00 32.00 55.17 50.46
FuseLLM† 75.04 47.44 78.13 76.78 45.40 69.03 65.30
FuseLLM 75.23 (+0.65) 47.14 (+0.81) 78.22 (+0.51) 76.40 (+0.40) 44.34 (+0.14) 69.22 (-0.08) 65.09 (+0.40)
Fusion-X -B 75.46 (+0.88) 47.50 (+1.17) 78.86 (+1.15) 76.97 (+0.97) 46.02 (+1.82) 70.33 (+1.03) 65.85 (+1.16)

importantly, our method notably reduces knowledge interference during model integration, especially
on tasks such as ARC-Challenge, HellaSwag, and OpenBookQA. Our approach effectively prevents
model performance degradation caused by integrating models with less relevant or lower-quality
information. Given that the source models have large differences in performance, our method ensures
the preservation of the original model’s knowledge. We will discuss this further in Appx. A.

Figure 4: Evaluation results compari-
son on MultiPL-E benchmark.

Fig. 4 shows the results for the code generation evaluation,
the zero-shot performance of Llama-2, FuseLLM, and
our Fusion-X on the MultiPL-E (ME) benchmark. We
observe that Fusion-X outperforms FuseLLM in all tasks.
Our model surpasses Llama-2 by a large margin, with an
average performance increase of remarkable performances
in code generation tasks compared to Llama-2, the fusion
result via Fusion-X achieves an average performance gain
of 2.15%, which is higher than the 0.69% improvement
observed in FuseLLM. Detailed results of multiple scales
can be found in the Appx. G.

The overall results of the Fusion-X model compared to
baseline methods on the BBH benchmark are presented in
Tab. 3. The four source LLMs show varying performance
across the 27 BBH tasks. After integration, our Fusion-X
model achieves an average improvement of 2.11% across
all tasks, demonstrating the effectiveness of our approach.
Compared to FuseLLM, our method doubles the perfor-
mance increase (1.05 vs. 2.11) compared to Llama-2. We
can also observe knowledge interference in some tasks. This interference arises due to two primary
reasons. First, other source LLMs, apart from Llama-2, perform poorly on certain tasks, affecting
the fusion results. Second, the relevance between the continual training dataset and downstream
tasks contributes to performance degradation. Despite FuseLLM showing an average performance
gain compared to Llama-2-7B, it performs worse than Llama-2 on 10 tasks, indicating significant
knowledge interference. For instance, in the Snarks task, Llama-2 achieves 50.56%, while FuseLLM
scores 46.21%. This drop is because all other LLMs perform worse on this task compared to Llama-2,
highlighting how less relevant or lower-quality information can degrade the model’s performance.

In contrast, Fusion-X only has 5 tasks that perform lower than Llama-2-7B, showing a 50% reduction
in knowledge interference compared to FuseLLM. We are also able to reduce the performance drop
of the tasks that are effected by knowledge interference. These results indicate that our method
effectively limits knowledge interference, resulting in more consistent performance improvements.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Overall results of Fusion-X and baselines in reasoning evaluations on Big-Bench Hard
(BBH), where percentages indicate the rate of improvement/decrease compared to Llama-2-7B.

Task Llama-2* OpenLlama MPT Starcoder FuseLLM Fusion-X
Boolean Expressions 69.60 75.60 66.20 75.60 65.00 (-4.60) 72.60 (+3.00)
Causal Judgement 52.94 54.55 50.60 20.26 46.67 (-6.27) 51.20 (-1.74)
Date Understanding 62.80 43.20 43.60 51.20 61.40 (-1.40) 57.60 (-5.20)
Disambiguation QA 46.40 36.80 47.60 44.40 46.30 (-0.10) 50.40 (+4.00)
Dyck Languages 6.00 6.00 5.20 23.20 10.20 (+4.20) 7.60 (+1.60)
Formal Fallacies 49.60 50.80 52.40 41.60 50.80 (+1.20) 50.20 (+0.60)
Geometric Shapes 32.80 0.00 0.00 22.40 20.20 (-12.60) 22.00 (-10.8)
Hyperbaton 51.60 66.80 53.21 72.40 61.20 (+9.60) 58.00 (+6.40)
Logical Deduction (3 objects) 56.00 41.60 40.80 52.80 58.00 (+2.00) 56.40 (+0.40)
Logical Deduction (5 objects) 32.00 25.20 31.20 42.40 33.20 (+1.20) 32.40 (+0.40)
Logical Deduction (7 objects) 24.00 16.80 18.40 41.20 27.60 (+3.60) 24.40 (+0.40)
Movie Recommendation 70.40 40.00 52.00 45.20 74.40 (+4.00) 72.80 (+2.40)
Multistep Arithmetic Two 0.40 0.80 0.40 24.80 4.80 (+4.40) 3.20 (+2.80)
Navigate 53.20 53.20 48.80 75.20 64.00 (+10.8) 63.60 (+10.4)
Object Counting 49.20 49.20 40.40 52.40 54.40 (+5.20) 54.80 (+5.60)
Penguins in a Table 31.51 26.03 28.08 50.68 27.27 (-4.24) 31.51 (+0.00)
Reasoning about Colored Objects 48.00 28.00 31.60 57.20 48.20 (+0.20) 52.00 (+4.00)
Ruin Names 33.20 28.00 23.20 43.60 30.40 (-2.80) 34.00 (+8.00)
Salient Translation Error Detection 24.80 16.00 0.00 33.60 31.00 (+6.20) 30.00 (+5.20)
Snarks 50.56 44.38 45.51 40.01 46.21 (-4.35) 54.44 (+3.88)
Sports Understanding 88.40 66.00 82.40 53.60 88.50 (+0.10) 90.40 (+2.00)
Temporal Sequences 12.40 31.60 20.80 26.80 15.80 (+3.40) 18.00 (+5.60)
Tracking Shuffled Obj. (3 objects) 32.40 35.60 30.40 37.20 33.20 (+0.80) 33.60 (+1.20)
Tracking Shuffled Obj. (5 objects) 17.60 20.00 14.60 33.60 15.40 (-2.20) 14.80 (-2.80)
Tracking Shuffled Obj. (7 objects) 10.80 10.80 2.00 17.60 14.80 (+4.00) 24.40 (+13.6)
Web of Lies 51.60 53.20 63.60 57.60 61.80 (+10.2) 60.00 (+8.40)
Word Sorting 10.80 5.20 6.80 25.60 6.60 (-4.20) 5.60 (-5.20)

Avg. 27 Tasks 39.59 34.27 33.33 44.19 40.64 (+1.05) 41.70 (+2.11)

6 ABLATION & ANALYSIS

Distribution of Activation Frequencies

Figure 5: Candidate selection distribution.
The Left shows the selection for each train-
ing step, and the right shows the proportion
of each selection for the training.

Fig. 3 provides an analysis of the LLM fusion candi-
date selection distribution when training Fusion-X -T.
The left panel shows the selection across 120K train-
ing steps, the consistent patterns observed in the se-
lection distribution indicate that our adaptive selection
network is effectively distributing the selection load
among the candidates. The adaptive mechanism al-
lows the network to dynamically adjust which LLMs
to select based on the ongoing learning process.

The right panel illustrates the proportion of each se-
lection throughout the training. The proportions are
as follows 27.12%, 25.42%, 16.95%, 30.51%. These
results indicate that our method finds LLM 4 (Tiny-
starcoder) to be more valuable than the others, and
LLM 3 (Pythia-160M) to be less valuable for the cur-
rent integration process. Our statistical results demonstrate that we can accurately identify effective
LLM candidates for the current task from the source model candidate pool at each training step.

Scaling Results
Model scaling is a critical evaluation for LLMs. In our paper, we conduct experiments in two
directions: scaling the model size and scaling the number of source models. We evaluate model
scaling on the Commonsense, BBH, and MMLU datasets, assessing both the average performance
across all tasks and the knowledge interference on individual tasks. Results on the Commonsense
dataset are shown in Tab. 2. For BBH and MMLU, we present the results in Fig.6. In the figure, the
lines represent the average performance (left y-axis) of FuseLLM and our model when fusing 3 LLMs,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 6: Scaling number of fusion candidates. The line charts display the accuracy for FuseLLM
and our model on the BBH and MMLU benchmarks. The histograms show the percentage of tasks
outperforming the baseline when integrating 3, 4, and 5 LLMs. Dotted lines represent the baseline.

4 LLMs, and 5 LLMs. The dotted line in each subfigure shows the baseline model performance of
Llama-160M (160M scale) and LLaMA-2-7B (7B scale). In Fig. 6a, the performance of FuseLLM is
even lower than the baseline on the BBH benchmark when fusing 4 LLMs and 5 LLMs. In contrast,
our model consistently increases performance when integrating more LLMs. The performance
degradation in FuseLLM is due to knowledge interference, which is reflected in the histogram (right
y-axis). It shows the percentage of tasks BBH (total 27 tasks) and MMLU (total 57 tasks) that
perform higher than the baseline. FuseLLM shows much less improvement compared to our model.
Especially for the 4 LLMs and 5 LLMs settings, where only around 60% of tasks perform better,
leading to degradation in almost half of the tasks (details are shown in Tab. 3 and Appendix). We can
reduce the knowledge interference by up to 50%.

This shows that simply scaling the LLM integration does not always improve performance. While
adding more models provides a wider range of knowledge, it can also lead to knowledge saturation
and inefficiencies. Our Fusion-X consistently yields better outcomes by effectively selecting and
integrating the most relevant models. Therefore, we believe that a selective strategy for LLM
integration is crucial. More importantly, designing a better selective strategy can prevent knowledge
interference and maximize the overall performance of the fused model.

Different Model Integration Methods
We compare Fusion-X with other integration techniques, including LLM-Blender Jiang et al. (2023),
OAssistRM Köpf et al. (2024), UltraRM Cui et al. (2024), and FuseLLM Wan et al. (2024a). Our
experiments were conducted on the Big-Bench Hard and MMLU benchmarks.

Table 4: Performance Comparison of Fusion-X
with different integration methods

Model BBH MMLU
Llama-2-7B 39.59 45.4
LLM-Blender (Rank&Fuse) 23.58 42.1
LLM-Blender (Rank) 35.66 45.3
OAssistRM 35.21 45.7
UltraRM 37.21 46.2
FuseLLM 40.64 46.5
Fusion-X -B 41.70 48.1

As shown in Tab. 4, highlight the performance of
integrating 4 LLMs with these methods. LLM-
Blender (Rank&Fuse) uses a ranker to select the
top three results, which are then combined by a
fuser, whereas LLM-Blender (Rank) simply selects
the top result. Our findings show that our Fusion-
X method consistently outperforms existing works
across the evaluated benchmarks. By selecting a
robust target model and incorporating specialized
models that excel in specific tasks, we achieve su-
perior overall performance. This demonstrates the
effectiveness of our targeted fusion approach in cre-
ating a more capable and versatile language model.

7 CONCLUSION

In this paper, we propose a novel dynamic fusion framework for integrating multiple LLMs. Our
adaptive selection network selectively integrates the best-performing source LLMs, overcoming the
limitations of existing methods and minimizing knowledge interference. We also introduce a dynamic
weighted fusion strategy and a feedback-driven loss function to enhance the fusion process. Our
method significantly improves adaptability and performance, offering an efficient solution for LLM
integration while maintaining parameter size and computational efficiency. Limitations remain due to
the intensive token alignment required prior to training, and future work should explore training on
diverse datasets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

8 REPRODUCIBILITY STATEMENT

We describe our training settings, dataset used in Sec. 5.1 and Appx. C. We introduce the benchmark
used in Appx. D. The details model structure and framework are presented in Sec. 4 and Appx. B.

REFERENCES

Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Improv-
ing model selection and boosting performance in domain generalization. Advances in Neural

Information Processing Systems, 35:8265–8277, 2022.

Rachit Bansal, Bidisha Samanta, Siddharth Dalmia, Nitish Gupta, Sriram Ganapathy, Abhishek
Bapna, Prateek Jain, and Partha Talukdar. Llm augmented llms: Expanding capabilities through
composition. In The Twelfth International Conference on Learning Representations, 2023.

BIG bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvosj.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International

Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Autore-
gressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.org/
10.5281/zenodo.5297715. If you use this software, please cite it using these metadata.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-e:
a scalable and polyglot approach to benchmarking neural code generation. IEEE Transactions on

Software Engineering, 2023.

Zhenyi Lu Chenghao Fan and Jie Tian. Chinese-vicuna: A chinese instruction-following llama-based
model. 2023. URL https://github.com/Facico/Chinese-Vicuna.

Clément Christophe, Praveen K Kanithi, Prateek Munjal, Tathagata Raha, Nasir Hayat, Ronnie Rajan,
Ahmed Al-Mahrooqi, Avani Gupta, Muhammad Umar Salman, Gurpreet Gosal, Bhargav Kanakiya,
Charles Chen, Natalia Vassilieva, Boulbaba Ben Amor, Marco AF Pimentel, and Shadab Khan.
Med42 – evaluating fine-tuning strategies for medical llms: Full-parameter vs. parameter-efficient
approaches. 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
Ruobing Xie, Yankai Lin, et al. Ultrafeedback: Boosting language models with scaled ai feedback.
In Forty-first International Conference on Machine Learning, 2024.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–5569.
PMLR, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

11

https://openreview.net/forum?id=uyTL5Bvosj
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://github.com/Facico/Chinese-Vicuna
https://zenodo.org/records/10256836

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023. URL https:
//github.com/openlm-research/open_llama.

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wallace, Pieter Abbeel, Sergey Levine, and
Dawn Song. Koala: A dialogue model for academic research. Blog post, April 2023. URL
https://bair.berkeley.edu/blog/2023/04/03/koala/.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021. URL https://arxiv.
org/abs/2009.03300.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. stat,
1050:9, 2015.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv

preprint arXiv:1611.01144, 2016.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. In Proceedings of the 61st Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pp. 14165–14178, 2023.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. In The Eleventh International Conference on Learning

Representations, 2022.

Jean Kaddour. The minipile challenge for data-efficient language models. arXiv preprint

arXiv:2304.08442, 2023.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
conversations-democratizing large language model alignment. Advances in Neural Information

Processing Systems, 36, 2024.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo
Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang,
Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen, Xuguang Ren,
Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Tim Baldwin, and Eric P.
Xing. Llm360: Towards fully transparent open-source llms, 2023.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models. arXiv preprint

arXiv:2311.08692, 2023.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating
generative llm serving with speculative inference and token tree verification, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

12

https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari,
and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. Advances in

Neural Information Processing Systems, 35:10821–10836, 2022.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv

preprint arXiv:1701.06538, 2017.

George Stoica, Daniel Bolya, Jakob Brandt Bjorner, Pratik Ramesh, Taylor Hearn, and Judy Hoff-
man. Zipit! merging models from different tasks without training. In The Twelfth International

Conference on Learning Representations, 2023.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging
big-bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge fusion
of large language models. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=jiDsk12qcz.

Fanqi Wan, Ziyi Yang, Longguang Zhong, Xiaojun Quan, Xinting Huang, and Wei Bi. Fusechat:
Knowledge fusion of chat models. arXiv preprint arXiv:2402.16107, 2024b.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Chen Zhang, Dawei Song, Zheyu Ye, and Yan Gao. Towards the law of capacity gap in distilling
language models. 2023a. URL https://arxiv.org/abs/2311.07052.

Jinghan Zhang, Junteng Liu, Junxian He, et al. Composing parameter-efficient modules with
arithmetic operation. Advances in Neural Information Processing Systems, 36:12589–12610,
2023b.

Xinlu Zhang, Chenxin Tian, Xianjun Yang, Lichang Chen, Zekun Li, and Linda Ruth Petzold.
Alpacare:instruction-tuned large language models for medical application, 2023c.

13

https://openreview.net/forum?id=jiDsk12qcz
https://arxiv.org/abs/2311.07052

