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Abstract

Variational inequalities are a formalism that includes games, minimization, saddle
point, and equilibrium problems as special cases. Methods for variational inequali-
ties are therefore universal approaches for many applied tasks, including machine
learning problems. This work concentrates on the decentralized setting, which is
increasingly important but not well understood. In particular, we consider decen-
tralized stochastic (sum-type) variational inequalities over fixed and time-varying
networks. We present lower complexity bounds for both communication and local
iterations and construct optimal algorithms that match these lower bounds. Our
algorithms are the best among the available literature not only in the decentralized
stochastic case, but also in the decentralized deterministic and non-distributed
stochastic cases. Experimental results confirm the effectiveness of the presented
algorithms.

1 Introduction

Variational inequalities are a broad and flexible class of problems that includes minimization, saddle
point, Nash equilibrium, and fixed point problems as special cases; see [24, 6] for an introduction.
Over the long history of modern research on variational inequalities spanning at least half a century,
the community developed their own methods and theory, differing from the approaches in their
sister field, optimization. The ExtraGradient / MirrorProx methods due to [38, 52, 34] have a similar
foundational standing in the variational inequalities field that gradient descent occupies in the
optimization literature. As in the case of gradient descent, many modifications [31] and variants [66]
of these methods were proposed and studied in the variational inequalities literature.
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1.1 Applications of variational inequalities

In recent years, there has been a significant increase of research activity in the study of variational
inequalities due to new connections to reinforcement learning [58, 32], adversarial training [44], and
GANs [28]. In particular, [21, 26, 47, 20, 42, 60] show that even if one considers the classical (in
the variational inequalities literature) regime involving monotone and strongly monotone inequalities,
it is possible to obtain insights, methods and recommendations useful for the GAN community.

In addition to the above modern applications, and besides their many classical applications in applied
mathematics that include economics, equilibrium theory, game theory and optimal control [23],
variational inequalities remain popular in supervised learning (with non-separable loss [33]; with non-
separable regularizer [3]), unsupervised learning (discriminative clustering [69]; matrix factorization
[4]), image denoising [22, 18], robust optimization [9], and non-smooth optimization via smooth
reformulations [56, 53].

1.2 Processing on the edge

With the proliferation of mobile phones, wearables, digital sensors, smart home appliances, and other
devices capable of capturing, storing and processing data, there is an increased appetite to mine
the richness contained in these sources for the benefit of humanity. However, at the same time, the
traditional centralized approach relying on moving the data into a single proprietary warehouse for
processing via suitable machine learning methods is problematic, and a new modus operandi is on
the rise: processing the data at the source, on the edge, where it was first captured and where it is
stored [37, 46, 35], by the client’s devices that own the data. There are many reasons for a gradual
shift in this direction, including energy efficiency and data privacy.

A key necessary characteristic for any viable algorithmic approach to work in such a massively
decentralized regime is the ability to support decentralized processing reflecting the fact that the
devices are connected through a network of a potentially complicated topology, possibly varying
in time. A central authority may be absent in such a system, and the methods need to rely on
communication patters that correspond to the existing connection links.

1.3 Decentralized algorithms for variational inequalities

In this paper we study
algorithms for solving variational inequalities over decentralized communication networks.

In this regime, a number of nodes (workers, devices, clients) are connected via a communication
network, represented by a graph. Each node can perform computations using its local state and data,
and is only allowed to communicate with its neighbors in the graph.

Decentralized algorithms over fixed communication networks find their applications in sensor net-
works [61], network resource allocation [8], cooperative control [27], distributed spectrum sensing
[7], power system control [25] and, of course, in machine learning [63]. Recently, decentralized
methods over time-varying networks have gained particular popularity due to their relevance to
federated learning [37, 35], where communication failures between devices are a common problem.

Decentralized minimization methods are well studied [49, 36]. In particular, lower bounds and
optimal algorithms for such problems are known in the fixed [63, 30, 40] and time-varying [39, 41]
network topology regimes.

However, in significantly more general and hence potentially much more impactful formalism of
variational inequalities, the question of optimal and efficient decentralized methods is still open.

Motivated by these considerations, our work is devoted to advancing the algorithmic and theoretical
foundations of decentralized variational inequalities, in both the fixed and time-varying network
regimes.

1.4 Our contributions and related work

We now briefly summarize our main contributions.

(a) Lower bounds
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We present the first lower bounds for the communication and local computation complexities of

decentralized variational inequalities in the stochastic (finite sum) case, in both the fixed and

time-varying network topology regimes. See Table 1.

Existing literature contains lower bounds for non-distributed finite-sum variational inequalities [29],
which we recover as a special case. Existing literature also contains lower bounds for deterministic
decentralized variational inequalities in the fixed [13] and time-varying [12] regimes. Our bounds
covers these results too. See Table 2 (Appendix G).

(b) Optimal decentralized algorithms

We construct four new algorithms for stochastic (finite sum) decentralized variational inequali-

ties: two for fixed networks, and two for time-varying networks. Two of these algorithms match

our lower bounds, and are therefore optimal in terms of communication and local iteration

complexities. These are the first algorithms for stochastic (finite sum) decentralized variational
inequalities over fixed and time-varying networks. See Table 1.

Moreover, our results offer linear communication complexity for deterministic decentralized strongly
monotone variational inequalities, which is an improvement upon the sublinear results of [14, 13,
10, 12]. Additionally, our algorithms have better guarantees on local computations than the methods
developed by [62]. See Table 2 (Appendix G).

Let us also single out a number of works on decentralized saddle point problems or VIs which are not
suitable for comparison with our results: [67, 5] consider non-monotone(minty) problems, [45] does
not prove convergence, [43] assumes data homogeneity, and [64] considers a discrete problem.

Table 1: Summary of upper and lower bounds for communication and local computation complexities for finding
an "-solution for strongly monotone stochastic (finite-sum) decentralized variational inequality (1) over fixed
and time-varying networks. Convergence is measured by the distance to the solution.

Reference Communication complexity Local complexity Weaknesses
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(1) for saddle point problems; (2) deterministic; (3) stochastic, but not finite sum; (4) convex-concave (monotone) case (we re-
analyzed for strongly monotone case); (5)

B-connected graphs [51] are also considered. For simplicity in comparison with other
works, we put B = 1. To get estimates for B 6= 1, one need to change � to B�; (6) can include additional factors such as n log 1

" ,
� log 1

" , for full complexities, see details in Section 4.
Notation: µ = constant of strong monotonicity of operator F , L = Lipschitz constants of Lm,i, � = characteristic number of the
network (see Assumptions 2.3 and 2.4), n = size of the local dataset.

(c) Optimal non-distributed/centralized algorithms

We believe it is notable that despite the generality of our setup and algorithms, our results, when

specialized to handle this simpler case, improve upon the current state-of-the-art results in

the non-distributed/centralized setting. In particular, unlike existing methods, our algorithms
support batching: while the complexity of the best available algorithms grows with the batch size,
our algorithms are not sensitive to this. This property is of crucial importance when working in the
large batch mode, which is used in the practice [16, 73, 71]. See Table 3 (Appendix G).
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(d) Experiments

Numerical experiments on bilinear problems and robust regression problems confirm the practical
efficiency of our methods, both in the non-distributed stochastic setup and in the decentralized
deterministic one.

2 Problem Setup and Assumptions

We write hx, yi :=
Pn

i=1 xiyi to denote the standard inner product of vectors x, y 2 Rn, where
xi corresponds to the i-th component of x in the standard basis in Rn. This induces the standard
`2-norm in Rn in the following way: kxk :=

p
hx, xi. To denote the Kronecker product of two

matrices A 2 Rm⇥m and B 2 Rn⇥n, we use A⌦B 2 Rnm⇥nm. The identity matrix of size n⇥ n
is denoted by In. We write [n] := {1, 2, . . . , n}. N is the set of positive integers.

2.1 Variational inequality

We study variational inequalities (VI) of the form
Find z⇤ 2 Rd such that hF (z⇤), z � z⇤i+ g(z)� g(z⇤) � 0, 8z 2 Rd, (1)

where F : Rd
! Rd is an operator, and g : Rd

! R [ {+1} is a proper lower semicontinuous
convex function. We also assume that g is proximal friendly, i.e. the computation of the operator
prox⇢g(z) = argminy2Rd{⇢g(y) + 1

2ky � zk2} (with ⇢ > 0) is done for free or costs very low.

To showcase the expressive power of the formalism (1), we now give a few examples of variational
inequalities arising in machine learning.

Example 1 [Convex minimization]. Consider the convex regularized minimization problem:
min
z2Rd

f(z) + g(z), (2)

where f is typically a smooth data-fidelity term, and g a possibly nonsmooth regularizer. If we define
F (z) := rf(z), then it can be proved that z⇤ 2 dom g is a solution for (1) if and only if z⇤ 2 dom g
is a solution for (2). So, the regularized optimization problem (2) can be cast as a VI (1).

While minimization problems are widely studied in a separate literature, the next class of problems is
much more strongly tied to variational inequalities.

Example 2 [Convex-concave saddles]. Consider the convex-concave saddle point problem
min
x2Rdx

max
y2Rdy

f(x, y) + g1(x)� g2(y), (3)

where g1 and g2 can also be interpreted as regularizers. If we let F (z) := F (x, y) =
[rxf(x, y),�ryf(x, y)] and g(z) = g(x, y) = g1(x)+g2(y), then it can be proved that z⇤ 2 dom g
is a solution for (1) if and only if z⇤ 2 dom g is a solution for (3). So, convex-concave saddle point
problems (3) can be cast as a VI (1).

Saddle point problems are strongly related to variational inequalities. In particular, lower bounds for
the former are also valid for the latter. Moreover, upper bounds for variational inequalities are valid
for saddle point problems. However, what is perhaps more important is that these lower and upper
bounds match. This is in contrast to minimization, where the lower bounds are weaker.

2.2 Decentralized variational inequalities

We consider the decentralized case of problem (1), namely we assume that F is distributed across M
workers,

F (z) :=
MP

m=1
Fm(z), (4)

while each Fm : Rd
! Rd, m 2 [M ], has the finite sum structure

Fm(z) := 1
n

nP
i=1

Fm,i(z). (5)

The data describing Fm being stored on worker m. For example, Fm,i can correspond to the value of
the operator on the ith data point of the m-th dataset.
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2.3 Assumptions

Assumption 2.1 (Lipschitzness). Each operator Fm is L-Lipschitz continuous, i.e. for all u, v 2 Rd

we have kFm(u)� Fm(v)k  Lku� vk.

Further, the collection of operators is L-average Lipschitz continuous, i.e., for all u, v 2 Rd it holds
1
n

Pn
i=1 kFm,i(u)� Fm,i(v)k2  L

2
ku� vk2.

In the context of (2) and (3), L-Lipschitzness of the operator means that the functions f(z) and
f(x, y) are L-smooth.
Assumption 2.2 (Strong monotonicity). Each operator Fm is µ-strongly monotone, i.e., for all
u, v 2 Rd we have hFm(u)� Fm(v);u� vi � µku� vk2.

In the context of (2) and (3), strong monotonicity of F means strong convexity of f(z) and strong
convexity-strong concavity of f(x, y).

2.4 Communication and gossip

Typically, decentralized communication is realized via a gossip protocol [68, 15, 50], which is merely
matrix-vector multiplication with a gossip matrix W, described below, which is different in the fixed
and time-varying cases. Let L = {z = (z1, . . . , zM )> 2 (Rd)M : z1 = . . . = zM} be the consensus
space.
Assumption 2.3 (Fixed network [63]). For a fixed network, communication can be modeled via an
undirected connected graph, G = (V, E), where V = [n] are vertices (workers) and E = {(i, j) | i, j 2
V} are edges. Note that (i, j) 2 E if and only if there exists a communication link between agents i
and j. The gossip matrix W satisfies the following three assumptions: 1) W is symmetric positive
semi-definite; 2) kerW � L; 3) W is supported on the vertices and edges of the network only:
wi,j 6= 0 if and only if i = j or (i, j) 2 E .

To characterize the matrix W, which captures the properties of the network, we denote �max(W) = 1
as the maximum eigenvalue of W, �+

min(W) as the minimum positive eigenvalue of W, and the
characteristic number � = �max(W)/�+

min(W) = 1/�+
min(W).

Assumption 2.4 (Time-varying network [51]). For a time-varying network, at any moment t, com-
munication network can be modeled as a directed B-connected graph, G(t) = (V, E(t)), where
E(t) = {(i, j) | i, j 2 V} are directed edges. B-connectedness means that for any time t, the
graph GB(t) with the set of edges

St+B�1
⌧=t E(t) is connected. To describe the gossip protocol for

time-varying case, we define the multi-consensus gossip matrix

WT (t) = IM �

t+T�1Q
⌧=t

W(⌧). (6)

One can also observe that multiplication with the matrix WT requires to perform multiplication with
T gossip matrices W(t), . . . ,W(t+ T � 1), i.e., it requires T decentralized communications. We
further assume that the gossip matrices W(t) (for G(t)) and WB(t) satisfy: 1) W(t) is supported
on the nodes and edges of the network: wi,j(t) 6= 0 if and only if i = j or (i, j) 2 E(t); 2)
kerW(t) � L; 3) rangeW(t) ⇢ {z 2 (Rd)M :

PM
m=1 zm = 0}; 4) there exists a characteristic

number � � 1 such that kWB(t)z � zk2  (1� ��1)kzk2 for all z 2 rangeWB(t).

3 Lower Bounds

Our lower bounds apply to a specific class of algorithms which are, loosely speaking, allowed to
communicate with neighbors, and compute any local first-order information. We now give a formal
definition.
Definition 3.1 (Oracle). Each agent m has its own local memory Mm with initialization Mm = {0}.
Mm is updated as follows. At each iteration, the algorithm either performs local computations or
communicates.
• Local computation: At each local iteration, device m can sample uniformly and independently
batch Sm of any size b from {Fm,i} and adds to its Mm a finite number of points z, satisfying

z 2 span
�
z0 ,

P
im2Sm

Fm,im(z00), prox⇢g
�
span

�
z000 ,

P
im2Sm

Fm,im(z00)
 � 

(7)
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for z0, z00, z000 2 Mm and ⇢ > 0. Such a call needs b local computations to collect the batch. Batch
of size n represents Fm;
• Communication: Upon communication rounds among the neighboring nodes, and at communica-
tion time t, Mm is updated according to

Mm := span
nS

(i,m)2E(t) Mi

o
. (8)

• Output: The final global output is calculated as ẑ 2 span
nSM

m=1 Mm

o
.

The structure of the above definition is typical for distributed lower bounds [63] and for stochastic
lower bounds [30]. In particular, Definition 3.1 includes all the approaches for working with
stochastic problems, such as SGD or variance reduction techniques (SVRG, SARAH). Note that while
our algorithm can invoke the deterministic oracle (full Fm) in local computations, in the work on
lower bounds in the non-distributed case [29], there is no such a possibility. This narrows the class of
algorithms for which results of [29] are valid. In particular, they can not do SVRG-type updates.

Theorem 3.2 (Lower bound - fixed network). For any L � µ > 0 and � � 1, n 2 N and K,N 2 N,
there exists a decentralized variational inequality (satisfying Assumptions 2.1 and 2.2) on Rd (where
d is sufficiently large) with z⇤ 6= 0 over a fixed network (satisfying Assumption 2.3) with a gossip
matrix W and characteristic number �, such that for any output ẑ of any procedure (Definition 3.1)
with K communication rounds and N local computations, it holds that E[kẑ � z⇤k2] is

⌦

 
exp

 
�

80

1+
q

2L2

µ2 +1
·

K
p
�

!
R2

0

!
and ⌦

0

@exp

0

@�
16

n+

r
2nL2

µ2 +n2

·N

1

AR2
0

1

A ,

where R2
0 = kz0 � z⇤k2 and L = L

p
n

.

Corollary 3.3. In the setting of Theorem 3.2, the number of communication rounds and local
computations required to obtain an "-solution (in expectation) is lower bounded by

⌦
⇣
p
�
⇣
1 + L

µ

⌘
· log

⇣
R2

0
"

⌘⌘
and ⌦

⇣⇣
n+

p
n ·

L
µ

⌘
· log

⇣
R2

0
"

⌘⌘
, respectively.

Theorem 3.4 (Lower bound - time varying network). For any L � µ > 0 and � � 3, n 2 N and
K,N 2 N, there exist a decentralized variational inequality (satisfying Assumptions 2.1 and 2.2) on
Rd (where d is sufficiently large) with z⇤ 6= 0 over a time-varying network (satisfying Assumption
2.4) with a sequence of gossip matrices W(t) and characteristic number �, such that for any output
ẑ of any procedure (Definition 3.1) with K communication rounds and N local computations, it holds
that E[kẑ � z⇤k2] is

⌦

 
exp

 
�

64⇣
1+
q

2L2

µ2 +1
⌘ ·

K
B�

!
R2

0

!
and ⌦

0

@exp

0

@�
16

n+

r
2nL2

µ2 +n2

·N

1

AR2
0

1

A ,

where R2
0 = kz0 � z⇤k2 and L = L

p
n

.

Corollary 3.5. In the setting of Theorem 3.4, the number of communication rounds and local
computations required to obtain an "-solution (in expectation) is lower bounded by

⌦
⇣
B�

⇣
1 + L

µ

⌘
· log

⇣
R2

0
"

⌘⌘
and ⌦

⇣⇣
n+

p
n ·

L
µ

⌘
· log

⇣
R2

0
"

⌘⌘
, respectively.

See proofs for Theorems 3.2 and 3.4 in Appendix C. The proof uses the idea (example of bad
functions) of non-distributed deterministic lower bounds from [72]. This idea is further extended to
distributed stochastic VIs.

Note that in the time-varying case, the lower bounds for communication differ by the constant B
from the estimates that were previously encountered in the literature [12]. This is due to the fact that
we consider a more general setup with a B-connected graph (see Assumption 2.4), while the existing
literature on lower bounds focuses on the simpler B = 1 case.
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4 Optimal Algorithms

Since in the decentralized gossip protocol each local worker m stores its own zm vector, we consider
the problem

Find z⇤ 2 (Rd)M such that hF(z⇤), z� z⇤i+ g(z)� g(z⇤) � 0, 8z 2 (Rd)M , (9)

where we use new notation: z = (z1, . . . , zM )> and z⇤ = (z⇤1 , . . . , z
⇤

M )>. Additionally, here we
introduce the lifted operator F : (Rd)M ! (Rd)M given as F(z) = (F1(z1), . . . , FM (zM ))>, and
the lifted operator g : (Rd)M ! R [ {+1} defined by g(z) = 1

M

PM
m=1 g(zm).

One can note that (9) is a set of M unrelated variational inequalities with their own variables.
But the original problem (1) + (5) is a sum of variational inequalities with the same variables:PM

m=1

⇥
hF (z⇤), z � z⇤i+ 1

M g(z)� 1
M g(z⇤)

⇤
. To eliminate this issue and move on to problem (1)

+ (5), it is easy to get the following modification of (9)

Find z⇤ 2 L such that hF(z⇤), z� z⇤i+ g(z)� g(z⇤) � 0, 8z 2 L, (10)

where L is the consensus space. Problem (10) is equivalent to (1) + (5). Due to Assumptions 2.1 and
2.2, F is L-Lipschitz continuous, L-average Lipschitz continuous and µ-strongly monotone.

4.1 Fixed networks

We present Algorithm 1 for fixed networks. In Appendix B we give a discussion and
intuition. In particular, we give the deterministic variant as well as the non-distributed
version of Algorithm 1. The next result gives the iteration complexity of Algorithm 1.

Algorithm 1

1: Parameters: Stepsizes ⌘, ✓ > 0, momentums ↵,�, �,
batchsize b 2 {1, . . . , n}, probability p 2 (0, 1)

2: Initialization: Choose z0 = w0
2 (dom g)M , y0

2

L
?. Put z�1 = z0,w�1 = w0, y�1 = y0

3: for k = 0, 1, 2 . . . do

4: Sample jkm,1, . . . , j
k
m,b independently from [n]

5: Sk = {jkm,1, . . . , j
k
m,b}

6: Sample jk+1/2
m,1 , . . . , jk+1/2

m,b independently from [n]

7: Sk+1/2 = {jk+1/2
m,1 , . . . , jk+1/2

m,b }

8: �k = 1
b

P
j2Sk

⇣
Fj(zk)� Fj(wk�1)

+↵[Fj(zk)�Fj(zk�1)]
⌘
+F(wk�1)

9: �k = �k � (yk + ↵(yk
� yk�1))

10: zk+1 = prox⌘g(z
k + �(wk

� zk)� ⌘�k)

11: �k+1/2 = 1
b

P
j2Sk+1/2

�
Fj(zk+1)� Fj(wk)

�

+F(wk)
12: yk+1 = yk

� ✓(W ⌦ Id)(zk+1
� �(�k+1/2

� yk))

13: wk+1 =

⇢
zk, with probability p
wk, with probability 1� p

14: end for

⇤Fj(z) = (F1,j1,l(z1), . . . , FM,jM,l(zM ))T , l 2 {1, . . . , b}

Theorem 4.1 (Upper bound - fixed net-
work). Consider the problem (10) (or
(1) + (5)) under Assumptions 2.1 and
2.2 over a fixed graph G (Assumption
2.3) with a gossip matrix W. Let {zk}
be the sequence generated by Algo-
rithm 1 with tuning of ⌘, ✓,↵,�, � as
described in Appendix D. Then, given
" > 0, the number of iterations for
E[kzk � z⇤k2]  " is

O

⇣h
1
p + �+ 1

p
pb

L
µ +

p
�L

µ

i
log 1

"

⌘
.

See the proof in Appendix D. Let us
discuss the results of Theorem. First of
all, we are interested in how to obtain
the complexity of communications and
local computations from iterative com-
plexity. At each iteration we require (in
average) O(b+pn) local computations,
because we need to store batch b twice
and with probability p we update the
point wk+1 by zk, this requires calcu-
lating the full F in the next iteration.
Then, as the optimal p, one can choose
p ⇠ b/n. Then with such choice of p
we have the following local and communication complexities

O

⇣h
n+ b�+

p
nL

µ + b
p
�L

µ

i
log 1

"

⌘
and O

⇣h
n
b + �+

p
n
b

L
µ +

p
�L

µ

i
log 1

"

⌘
,

respectively (since at each iteration Algorithm 1 performs O(1) communications).

Hence, with b = 1 we have the complexities the same as in Table 1. Depending on max{
p
n;

p
�},

we have the optimality of either local communications or decentralized communications. One can

7



note that it is enough to take b � L
p
n/L and guarantee the optimal communication complexity (see

Corollary 3.3), but we have non-optimality in local iterations.

To make the algorithm optimal both in terms of communications and local computations, we need
to slightly modify it. One can make it using Chebyshev acceleration (see Algorithm 3 in Appendix
A). Following [63], we can construct a polynomial P such that 1) P (W) is a gossip matrix, 2)
multiplication by P (W)⌦ Id requires

p
�(W) multiplications by W (i.e.

p
�(W) communication

rounds) 3) �(P (W))  4. Then we can modify Algorithm 1 by replacing W by P (W) and get
Theorem 4.2 (Upper bound - fixed network). Consider the problem (10) (or (1) + (5)) under
Assumptions 2.1 and 2.2 over a fixed connected graph G (Assumption 2.3) with a gossip matrix W.
Let {zk} be the sequence generated by Algorithm 1 with Chebyshev polynomial P (W) as a gossip
matrix and with tuning of ⌘, ✓,↵,�, � as described in Appendix D. Then, given " > 0, the number of
iterations for E[kzk � z⇤k2]  " is

O

⇣h
1
p + 1

p
pb

L
µ + L

µ

i
log 1

"

⌘
.

In this case, the communication complexity of one iteration is �, and the local complexity (in average)
is still O(b+ pn). Then with p = b/n we get the following local and communication complexities

O

⇣h
n+

p
nL

µ + bLµ

i
log 1

"

⌘
and O

⇣h
p
�n

b +
p
�

p
n
b

L
µ +

p
�L

µ

i
log 1

"

⌘
,

respectively. To get optimal results from Table 1 we just need to take b = L
p
n/L.

Algorithm 2

1: Parameters: Stepsizes ⌘z, ⌘y, ⌘x, ✓ > 0, momentums
↵, �,!, ⌧ , parameters ⌫,�, batchsize b 2 {1, . . . , n},
probability p 2 (0, 1)

2: Initialization: Choose z0 = w0
2 (dom g)M , y0

2

(Rd)M , x0
2 L

?. Put z�1 = z0,w�1 = w0, yf =
y�1 = y0, xf = x�1 = x0, m0 = 0

dM

3: for k = 0, 1, 2, . . . do

4: Sample jkm,1, . . . , j
k
m,b independently from [n]

5: Sk = {jkm,1, . . . , j
k
m,b}

6: Sample jk+1/2
m,1 , . . . , jk+1/2

m,b independently from [n]

7: Sk+1/2 = {jk+1/2
m,1 , . . . , jk+1/2

m,b }

8: �k = 1
b

P
j2Sk

⇣
Fj(zk)� Fj(wk�1)

+↵[Fj(zk)� Fj(zk�1)]
⌘
+ F(wk�1)

9: �k
z = �k � ⌫zk � yk

� ↵(yk
� yk�1)

10: zk+1 = prox⌘zg(z
k + !(wk

� zk)� ⌘z�k
z)

11: yk
c = ⌧yk + (1� ⌧)yk

f

12: xk
c = ⌧xk + (1� ⌧)xk

f

13: �k
y = ⌫�1(yk

c + xk
c ) + zk+1 + �(yk + xk + ⌫zk)

14: �k+1/2 = 1
b

P
j2Sk+1/2

�
Fj(zk+1)� Fj(wk)

�

+F(wk)
15: �k

x = ⌫�1(yk
c + xk

c ) + �(xk + �k+1/2)
16: yk+1 = yk

� ⌘y�k
y

17: xk+1 = xk
� (WT (Tk)⌦ Id)(⌘x�k

x +mk)
18: mk+1 = ⌘x�k

x +mk

�(WT (Tk)⌦ Id)(⌘x�k
x +mk)

19: yk+1
f = yk

c + ⌧(yk+1
� yk)

20: xk+1
f = xk

c � ✓(WT (Tk)⌦ Id)(yk
c + xk

c )

21: wk+1 =

⇢
zk, with probability p
wk, with probability 1� p

22: end for

In contrast to algorithms of [14, 13]
(the closest papers in theoretical con-
vergence), our Algorithm 1 needs
multi-consensus/Chebyshev accelera-
tion for both optimal rates, but can
work without these additional proce-
dures. Algorithms [14, 13] requires
O(

p
� log "�1) iterations for Cheby-

shev acceleration, which makes the al-
gorithms less practical.

4.2 Time-varying networks

We present Algorithm 2 for time-
varying networks. It needs to compute
WT using (6), it requires T communi-
cations. In Appendix B we give a dis-
cussion and intuition of this algorithm.
The next result gives the iteration com-
plexity of Algorithm 2.
Theorem 4.3 (Upper bound - time
varying network). Consider the prob-
lem (10) (or (1) + (5)) under Assump-
tions 2.1 and 2.2 over a sequence of
time-varying graphs G(k) (Assumption
2.4) with gossip matrices W(k). Let
{zk} be the sequence generated by
Algorithm 2 with T � B and tun-
ing of parameters as described in Ap-
pendix E. Let the choice of T guaran-
tees contraction property (Assumption
2.4 point 4) with �(T ). Then , given
" > 0, the number of iterations for
E[kzk � z⇤k2]  " is

Õ

⇣
�2(T ) + 1

p + �(T )Lµ + 1
p
bp

L
µ

⌘
.
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Note that an important detail of the method is that T � B. This limitation is due to the fact that
network is B-connected. In particular, for B > 1 it can happen that in some communications we use
empty graphs. Therefore, the requirement T � B is natural to guarantee the contraction property
(Assumption 2.4, point 4). This means that if B > 1 we have to use multi-consensus (6).

But with B = T = 1, we can avoid multi-consensus, let us this case first. The same way as in fixed
graph case we choose p = b/n. Then we get the estimates on communications and local calls

O

⇣h
�2 + n

b + �L
µ +

p
n
b

L
µ

i
log 1

"

⌘
.

If we put b = 1, we have the same estimates as in Table 1.

Now we consider general case with any B. We use a multi-gossip step and take T > 1. In particular,
let us choose T = B · d� ln 2e. Than using (6) and point 4 of Assumption 2.4, we can guarantee that
kWT (t)z � zk2 

1
2kzk

2. Therefore, �(T ) = 2, but we need T communications per iteration. With
p = b/n and b = L

p
n/L, the iteration complexity from Theorem 4.3 can be rewritten as follows

O

⇣h
1 +

p
nL

L
+ L

µ

i
log 1

"

⌘
.

Using that per iteration we make O(B ·d� ln 2e) communications and O
�
L
p
n/L
�

local computations,
we get

O

⇣h
B�+B�

p
nL

L
+B�L

µ

i
log 1

"

⌘
commn-s and O

⇣h
n+ L

p
n

L +
p
nL

µ

i
log 1

"

⌘
local calls.

These results are reflected in Table 1.

5 Experiments

We now perform several experiments with the goal of corroborating our theoretical results. Note
though that we are the first who consider the decentralized stochastic (finite-sum) setting for VIs, and
hence there are no competing methods. Therefore, we compare the non-distributed finite sum setting
and decentralized deterministic setting separately.

5.1 Variance reduction

In this section, we compare the main methods for solving strongly monotone non-distributed stochastic
(finite-sum) variational inequalities with non-distributed version of our Algorithm 1.

Problem. We first consider bilinear problem:

min
x24d

max
y24d

1
n

nP
i=1

x>Aiy, (11)

where 4
d is the unit simplex in Rd. We use the same experimental setup as in [1], in particular we

consider policeman and burglar matrix from [54] and two test matrices from [55].
Figure 1: Comparison epoch complexities of Algo-
rithm 1, EG-Alc-Alg1, EG-Alc-Alg2 and EG-Car on
(11) with matrix from [54]. Dashed lines give conver-
gence with theoretical parameters, solid lines – with
tuned parameters.

Setting. For comparison, we took methods from
Table 3. In particular, we chose EG-Alc-Alg1

and EG-Alc-Alg2 from [1], EG-Car from [17].
The parameters of all methods are selected in
two ways: 1) as described in the theory of the
corresponding papers, and 2) tuned for the best
convergence. We run all methods with different
batch sizes. The comparison criterion is the
number of epochs (one full gradient = epoch).

Results. The plots from Figure 1 show that in
the case of a theoretical choice of parameters,
our Algorithm 1 is ahead of other methods for
any batch size (including b = 1). In the case of
tuning parameters, the specialized method from
[17] is better than our algorithm. See more experiments with other matrices in Appendix F.1.
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5.2 Decentralized methods

In this section, we compare the state-of-the-art methods for solving strongly monotone decentralized
variational inequalities over fixed and time-varying networks with our Algorithms 1 and 2.

Problem. We now consider robust linear regression:

min
w

max
krke

1
N

NP
i=1

(w>(xi + ri)� yi)2 +
�
2 kwk

2
�

�
2 krk

2, (12)

where w are model weights, {(xi, yi)}Ni=1 are pairs of the training data, ri are noise vectors, and �
and � are regularization parameters. The noises ri resist training the model, thereby inducing more
robustness and stability.

Setting. For comparison, we took methods from Table 1 for decentralized problems over fixed and
time-varying networks. In particular, we choose EGD-GT from [48], EGD-Con from [13, 12] and
Sliding from [14]. Note that only EGD-Con has a theory for fixed and time-varying networks, despite
this, we use all methods in both cases.

For a fair comparison, we consider the deterministic setup, i.e., each worker can compute full gra-
dients. We take datasets from LiBSVM [19] and divided unevenly across M = 25 workers. For
communication networks we chose the star, the ring and the grid topologies. For time-varying
networks, the topologies remain the same, but the locations of the vertices in them change ran-
domly. All methods are tuned for the best convergence. The comparison criterion is the number of
communication rounds.

5.2.1 Fixed networks
Figure 2: Comparison communication complexities of
Algorithm 1, EGD-GT, EGD-Con and Sliding on (12)
over fixed networks.

Results. The plots from Figure 2 show that our
Algorithm 1 is ahead of other methods. Among
other things, it is ahead of Sliding from [14],
which has a fast theoretical communication com-
plexity. However, this happens when the dataset
is relatively homogeneous and uniformly di-
vided across the devices. In our setting, this
is not the case. See more experiments with other
datasets in Appendix F.2.1.

5.2.2 Time-varying networks

Figure 3: Comparison communication complexities of
Algorithm 2, EGD-GT, EGD-Con and Sliding on (12)
over time-varying networks.

Results. The plots from Figure 3 show that
our Algorithm 2 is ahead of other methods in
the case of the grid network. In the case of the
ring topology, EGD-Con shows the best results.
Indeed, such an algorithm in fact implements
centralized communications via a decentralized
protocol and this approach is not always the
fastest, but reliable. See more experiments with
other datasets in Appendix F.2.2.
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