
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Enhancing Pruned Models by Input Compensation

Anonymous Authors

Abstract
Although foundation models are powerful, they
are large and require substantial memory and com-
putation resources to serve. To address this issue,
many pruning methods have been proposed to
reduce model size, thereby achieving memory
and computational efficiency. These methods ad-
just the retained weights to compensate for the
removed weights. In this paper, we propose a
novel approach called input compensation (IC) to
improve the performance of pruned models, i.e.,
adjust the input to compensate for the removed
weights. Unlike existing pruning methods, which
are designed in the parameter space, the proposed
IC is designed in the input space. Hence, IC is
complementary to existing methods and can be
integrated with them. Extensive experiments on
various tasks, including image classification, lan-
guage modeling, and image generation, demon-
strate that IC effectively boosts the performance
of pruned models.

1. Introduction
Foundation models (Radford et al., 2021; Touvron et al.,
2023b; Podell et al., 2024) have achieved great success in
a variety of domains, such as computer vision and natural
language processing. As the availability of data and com-
putational resources expands, these models have scaled in
both size and performance (Touvron et al., 2023a;b; Meta,
2024). However, the substantial number of parameters in
these models require extensive computational resources to
serve, making it challenging to deploy them on resource-
constrained devices such as smartphones and laptops. To
reduce the costs, numerous model compression techniques
have been proposed to reduce the model size, e.g., distil-
lation (Polino et al., 2018; Wang et al., 2019; Liang et al.,
2023), quantization (Lin et al., 2024; Dettmers et al., 2022;
Shao et al., 2024; Xiao et al., 2023), and pruning (Han
et al., 2015; Frantar & Alistarh, 2023; Zhang et al., 2024;
Sun et al., 2024). Quantization requires specialized hard-
ware support, while distillation requires extensive retraining.
Hence, we focus on pruning, which is a simple and repre-
sentative technique.

Pruning reduces the model size by removing individual
weights or rows/columns according to their importance
scores. A pruned model can achieve promising performance
with fewer parameters, resulting in a noticeable reduction
in memory and computational demands. A simple but ef-
fective pruning method is Magnitude Pruning (Han et al.,
2015) which removes weights according to their magnitudes.
The underlying assumption is that weights with smaller val-
ues contribute less to overall performance. However, this
assumption does not always hold and many advanced meth-
ods (Sun et al., 2024; Frantar & Alistarh, 2023; Zhang et al.,
2024) have been proposed recently.

Current state-of-the-art pruning methods (Frantar & Alis-
tarh, 2023; Das et al., 2023; Zhang et al., 2024; Sun et al.,
2024; Dong et al., 2024; An et al., 2024) focus on the param-
eter space to improve pruning efficacy and can be roughly
categorized into two groups: (i) designing an effective score
to measure the importance of weight, and (ii) adjusting the
remaining unpruned weights to reduce the error caused by
the pruned weights. For example, Wanda (Sun et al., 2024)
designs an importance score to incorporate input activations
with weight magnitude to take outlier features into consider-
ation instead of only weight magnitudes in Magnitude Prun-
ing; SparseGPT (Frantar & Alistarh, 2023) proposes to ad-
just the unpruned weights by minimizing reconstruction loss
using the Optimal Brain Surgeon framework (Hassibi et al.,
1993; Singh & Alistarh, 2020; Frantar et al., 2021). The
pruned model can be formulated as F(X;W⊙M+∆w),
where F is the model, X is the input, W is the weight ma-
trix, M is the weight mask determined by the importance
score, ⊙ is element-wise multiplication, and ∆w (called
weight compensation) is an update matrix for the retained
weights.

In this paper, we propose a novel method, called input com-
pensation (IC), for enhancing pruned models by adjusting
the input to compensate for the removed weights. Specifi-
cally, we learn an input compensation ∆x to adjust the input
X, therefore the output of the pruned model is determined
byF(X+∆x;Ŵ), where Ŵ is a sparse weight matrix cor-
responding to the pruned model. We learn a compensation
pool consists of multiple candidate compensations and ∆x

is a weighted combination of the candidate compensations
via the attention mechanism (Vaswani et al., 2017).

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Enhancing Pruned Models by Input Compensation

Different from existing pruning methods, the proposed IC is
designed in the input space. Hence, IC complements exist-
ing methods that operate in the parameter space and can be
integrated with them to boost their performance. Extensive
experiments on computer vision and natural language pro-
cessing show that IC brings a large improvement to existing
pruning methods.

Our contributions are summarized as follows: (i) We pro-
pose IC which is a novel direction to enhance pruned mod-
els; (ii) IC is designed in the input space and, thus, is
orthogonal to existing pruning methods designed in the pa-
rameter space. Hence, IC can be combined with existing
pruning methods; (iii) Experimental results on various
tasks demonstrate that IC is beneficial to existing pruning
methods.

2. Related Work
Model Compression. Foundation Models (Touvron et al.,
2023a;b; Meta, 2024; Ho et al., 2020; Radford et al., 2021)
are large pre-trained models designed to serve as base mod-
els for various downstream tasks. Though foundation mod-
els are powerful, their massive parameters usually require
extensive computational and memory resources. Many re-
cent efforts have been devoted to reducing the cost via
model compression (Frantar & Alistarh, 2022; Xu et al.,
2024; Wang et al., 2024). The most popular methods for
model compression are pruning, quantization, and distilla-
tion. Pruning (Han et al., 2015; Zhang et al., 2024; Sun
et al., 2024; Dong et al., 2024; Das et al., 2023; An et al.,
2024; Frantar & Alistarh, 2023) discards parts of the model
that are less important or redundant. Quantization (Lin et al.,
2024; Dettmers et al., 2022; Shao et al., 2024; Xiao et al.,
2023; Yao et al., 2022; Kim et al., 2024) is a technique to
reduce the computational complexity and memory footprint
of a neural network by converting the model’s parameters
(weights and activations) from higher-precision representa-
tions (such as 32-bit floating-point) to lower-precision ones
(such as 8-bit integers). The primary goal of quantization
and pruning is to make the model more compressed without
significantly sacrificing its performance. Distillation (Polino
et al., 2018; Wang et al., 2019; Liang et al., 2023) trains
a smaller and more efficient model to replicate the behav-
ior of a larger and more complex model, thereby retaining
much of its performance while significantly reducing com-
putational resources. Quantization demands specialized
hardware (e.g., NVIDIA TensorRT) that supports lower pre-
cision arithmetic, while distillation requires an expensive
training phase to transfer knowledge from a large teacher
model to a small student model. In this paper, we focus on
pruning, which is a simple and widely used approach.

Pruning aims to remove less important weights without
significant performance degradation. Several important met-

rics have been designed recently. The simplest one is based
on the parameter magnitude, i.e., Magnitude Pruning (Han
et al., 2015). Wanda (Sun et al., 2024) further incorporates
weight magnitude with their input activations to consider
outlier features when calculating importance scores, while
RIA (Zhang et al., 2024) uses relative importance as a prun-
ing metric. Taylor pruning (Molchanov et al., 2022) designs
a score based on the weight multiplied by its gradient, while
Diff-Pruning (Fang et al., 2023) further uses Taylor expan-
sion over pruned timesteps to identify and discard unim-
portant parameters. In addition to designing importance
scores to find less useful parameters, one can update the
unpruned weights to compensate for the error caused by
the pruned weights. For example, SparseGPT (Frantar &
Alistarh, 2023) and OBC (Frantar & Alistarh, 2022) propose
to update the unpruned weights by minimizing a reconstruc-
tion loss by the Optimal Brain Surgeon framework (Hassibi
et al., 1993; Singh & Alistarh, 2020; Frantar et al., 2021).
Different from SparseGPT and OBC, we propose input com-
pensation by adjusting the inputs to reduce the error caused
by pruning.

Prompting (Radford et al., 2019; Brown et al., 2020; Liu
et al., 2022; Ding et al., 2022) is a popular method used
in transformer-based models which inserts additional to-
kens that instruct the model to generate a specific kind
of response. These tokens can be either discrete tokens
(e.g., “The topic is” for topic classification (Zhang et al.,
2022a; Hou et al., 2022; Jiang et al., 2023), “Let’s think
step by step” for reasoning tasks (Kojima et al., 2022)) or
learnable continuous vectors (e.g., prompt tuning (Lester
et al., 2021; Liu et al., 2021; Zhang et al., 2022b) or pre-
fix learning (Li & Liang, 2021; Liu et al., 2023)). Unlike
prompting that inserts extra tokens into the inputs, our input
compensation edits the inputs directly. Furthermore, com-
pensations are input-dependent, while prompts are usually
input-independent (Ding et al., 2022; Lester et al., 2021; Liu
et al., 2021; Zhang et al., 2022b; Bahng et al., 2022).

In control systems, the idea of input compensation (Kuo &
Golnaraghi, 1995; Franklin et al., 2002) is practically used
to adjust the control signal to reduce the influence of dis-
turbance. The goal is to adjust the input so that the overall
system achieves the desired behavior, such as better stabil-
ity, faster response, or improved accuracy. For example, in
feedforward compensation (Campos & Lewis, 1999; Krstic,
2009), if a disturbance is known ahead of time (e.g., wind
gusts affecting an airplane), this information can be incorpo-
rated into the control signal so that the system compensates
for it before it affects the output. In model pruning, the
pruned weights can be viewed as disturbances and we use
input compensation to enhance pruned models.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Enhancing Pruned Models by Input Compensation

 Frozen

 Tuned

catcat

Encoder Attention

...

Pruned Model

outputinput

Compensation Pool

......

Figure 1: Input compensation for pruned models.

3. Preliminary on Pruning Models
Let W ∈ Rdi×do be a weight matrix of a model F and S
be a scoring matrix whose Si,j measures the importance of
Wi,j . To prune p% parameters of W, a threshold β is deter-
mined to satisfy #{Si,j :|Si,j |<β}

#{Si,j} = p%. Using the threshold,
we construct a binary weight mask M whose Mi,j = 1 if
|Si,j | ≥ β else 0 and prune the model as W ⊙M. To
improve the performance of the pruned model, one can ad-
just the unpruned weights to compensate for the removed
weights. Generally, the pruned model is formulated as:

F(X;W ⊙M+∆w), (1)

where ∆w (called weight compensation) is an update matrix
for the retained weights. Various methods have been pro-
posed to enhance pruning by designing an effective scoring
metric or learning an effective weight compensation ∆w,
e.g., Han et al. (2015); Zhang et al. (2024); Sun et al. (2024);
Dong et al. (2024); Das et al. (2023); An et al. (2024) for the
former, and Frantar & Alistarh (2023; 2022) for the latter.
We briefly review three representative pruning approaches.

Magnitude Pruning (Han et al., 2015) is the simplest tech-
nique whose score matrix is defined as Si,j = |Wi,j |, i.e.,
removing the weights whose magnitudes are below a prede-
fined threshold. In practice, magnitude pruning is performed
layer-wise: for each layer, a layer-dependent threshold is de-
termined based on the local distribution of weights. Though
Magnitude pruning has stood out as a strong baseline for
pruning models (Blalock et al., 2020), it has a major limi-
tation: it ignores the importance of input activation, which
plays an equally importance role as weight magnitudes in
determining the output of linear layers (e.g., fully connected
layers, attention layers).

Wanda (Sun et al., 2024) addresses this limitation by incor-
porating both weights and inputs into defining the weight
importance. Specifically, let X ∈ RN×di (where N is the

sequence length) be the input activation of a training sam-
ple. Consider a linear layer Y = XW, Wanda defines the
importance of Wi,j as Si,j = |Wi,j | · ∥X:,i∥2.

SparseGPT (Frantar & Alistarh, 2023) introduces a more
sophisticated pruning approach by incrementally pruning
each column of W, followed by adjusting the remaining
weights to compensate for those that have been pruned by
the Optimal Brain Surgeon framework (Hassibi et al., 1993;
Singh & Alistarh, 2020; Frantar et al., 2021). The score
matrix is determined by Si,j =

|Wi,j |2
[H−1]i,i

and H = X⊤X+

λI (λ is a small positive constant) is the Hessian matrix of
the reconstruction loss.

4. Methodology
Different from existing methods, which primarily focus on
enhancing pruning in the parameter space, e.g., learning
a good scoring metric S or weight compensation ∆w, we
propose enhancing pruning in the input space. Let Ŵ be
the weight of a pruned model. Our objective is to determine
an input compensation ∆x for the input such that the output
of the pruned model approximates that of the dense model,
i.e.,

F(X+∆x;Ŵ) ≈ F(X;W). (2)

The compensation ∆x depends on the input X. Obviously,
learning ∆x from scratch for each input is inefficient. To
deal with this issue, we begin by developing a framework
of learning input compensation within the context of a sim-
ple linear layer and subsequently extend this approach to
general models.

4.1. Linear Models

Recent studies (Yu et al., 2017; Li et al., 2023b; Ding et al.,
2023) have shown that the weight matrix W of neural net-
works can be approximated by a combination of a sparse

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Enhancing Pruned Models by Input Compensation

matrix S ∈ Rdi×do (assume rank(S) = do) and a low-rank
matrix AB⊤ (where A ∈ Rdi×r and B ∈ Rdo×r, r is the
rank). Hence, for a linear layer, its output can be approxi-
mated as:

Y=XW≈X(S+AB⊤) =XS+XAB⊤(S⊤S)−1S⊤︸ ︷︷ ︸
≡B̂

S

=

X+XAB̂⊤︸ ︷︷ ︸
i.e., ∆x

S. (3)

Note that input compensation and weight compensation
are dual for linear models, i.e., for an input X and its
compensation ∆x, one can design a weight compensation
∆w = X⊤(XX⊤)−1∆xW (thus, X∆w = ∆xW) such
that

(X+∆x)W = XW +∆xW = X(W +∆w). (4)

However, for nonlinear models F(X;W), the dual property
does not hold, i.e., for an input compensation ∆x, there does
not exist ∆w such that F(X + ∆x;W) = F(X;W +
∆w).

Let ai and b̂i be the i-th column of A and B̂, respec-
tively. Then, according to (3), the i-th row of ∆x can
be re-expressed as

∑r
j=1(x

⊤
i aj)b̂j , which is similar to the

attention mechanism (Vaswani et al., 2017): {xi} are the
query, {aj} are the keys, and {b̂j} are the values. This ob-
servation inspires us to design a framework of IC for general
models.

4.2. General Models

Building on the above insight from the linear layer, we
propose a general framework based on the attention mecha-
nism for general models. The proposed procedure is shown
in Algorithm 1. Figure 1 provides an overview of the IC
framework, consisting of a frozen encoder E(·) and a learn-
able compensation pool (K,V) (where K ∈ Rde×r and
V ∈ Rr×di). The encoder, which can either be a small sub-
module of the pruned model or an identity function, maps
X into an embedding Qx = E(X) ∈ RN×de , while the
compensation pool consists of r learnable compensations.
Based on attention mechanism, the input compensation is
then constructed as:

∆x = softmax

(
QxK√

de

)
V. (5)

We add ∆x to the input and learn the compensation pool by
minimizing the following supervised loss:

min
K,V

∑
(X,Y)∈D

ℓ(F(X+∆x;Ŵ),Y), (6)

Algorithm 1 Input Compensation.

Require: pruned model F(·;Ŵ), training set D, rank r,
step size η, encoder E(·);

1: initialize K ∈ Rde×r and V ∈ Rr×di ;
2: for t = 1, . . . , T do
3: sample an input X from D;
4: compute query embedding Qx = E(X);
5: compute compensation ∆x=softmax

(
QxK√

de

)
V;

6: compute gradient g=∇(K,V)ℓ(F(X+∆x;Ŵ),Y)

(or ∇(K,V)∥F(X+∆x;Ŵ)−F(X;W)∥2 if Y is un-
available);

7: (K,V)← (K,V)− ηg;
8: end for
9: return (K,V).

where ℓ(·, ·) is a loss function. In cases where labels of
X are unavailable, we can learn the compensation pool by
minimizing the reconstruction loss:

min
K,V

∑
(X,·)∈D

∥F(X+∆x;Ŵ)−F(X;W)∥2. (7)

For NLP tasks, inputs (i.e., sentences) are sequences of dis-
crete tokens, making direct modification of inputs infeasible.
To deal with this issue, input compensation is operated in
the input embedding space. Let Hx ∈ RN×de be the embed-
dings extracted by the input embedding layer of the pruned
LLM. Similar to (5), we construct the input compensation as
∆x = softmax

(
HxK√

de

)
V. The input embeddings are then

adjusted as H+∆x and we learn the compensation pool by
minimizing the reconstruction loss of the last hidden states.

5. Experiments
5.1. Experiments on Image Classification

Datasets. We conduct image classification experiments
on ten datasets: CIFAR100 (Krizhevsky & Hinton, 2009),
Flowers (Nilsback & Zisserman, 2008), Food (Bossard et al.,
2014), EuroSAT (Helber et al., 2019), SUN (Xiao et al.,
2016), DTD (Cimpoi et al., 2014), UCF (Soomro et al.,
2012), SVHN (Netzer et al., 2011), OxfordPets (Jawahar
et al., 2012) (denoted by Pets), and RESISC45 (Cheng et al.,
2017) (denoted by RESISC). A summary of the datasets is
in Table 10 of Appendix B.6.

Implementation Details. We adopt CLIP ViT-B/32 and
ViT-B/16 (Radford et al., 2021) as the base models, whose
pruned image encoder is used as the encoder of IC. We
initialize the K and V by the standard normal distribution
and train the compensation pool for 30 epochs using the
SGD optimizer with a learning rate of 40 and momentum

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Enhancing Pruned Models by Input Compensation

Table 1: Testing accuracy on image classification tasks using CLIP ViT-B/32.
Sparsity #Nonzero Params CIFAR100 Flowers Food EuroSAT SUN UCF SVHN Pets DTD RESISC Avg

Magnitude 50% 110M 33.9 26.1 34.2 45.6 30.8 35.4 45.3 38.7 27.9 55.4 37.3
Magnitude 48% 112M 43.4 30.9 44.5 61.3 36.3 43.9 56.7 48.9 31.4 64.8 46.2
Magnitude + IC 50% 112M 73.0 62.9 72.4 96.5 48.9 63.1 94.4 69.2 44.1 87.1 71.2

Wanda 50% 110M 75.0 56.4 74.1 95.2 50.8 59.7 91.8 57.6 43.4 84.4 68.9
Wanda 48% 112M 77.6 63.9 77.5 95.9 55.2 65.0 89.3 65.1 45.7 87.9 72.3
Wanda + IC 50% 112M 80.1 76.4 80.4 97.9 54.7 69.1 96.1 77.5 49.8 91.6 77.4

SparseGPT 50% 110M 83.3 69.1 81.6 97.9 58.0 68.5 93.7 59.4 48.2 89.8 74.9
SparseGPT 48% 112M 84.5 72.4 82.7 97.9 60.4 71.7 91.2 66.3 50.2 91.3 76.9
SparseGPT + IC 50% 112M 82.9 76.2 83.1 98.2 57.2 71.0 96.7 79.7 53.8 92.9 79.2

Magnitude 4:8 110M 49.0 25.9 36.5 45.1 32.8 37.8 60.8 45.3 27.1 60.2 42.1
Magnitude + IC 4:8 112M 72.9 62.4 72.1 96.5 48.2 62.9 94.3 68.3 44.8 87.4 71.0

Wanda 4:8 110M 60.9 30.5 59.2 83.1 37.2 43.2 74.4 47.0 30.9 68.7 53.5
Wanda + IC 4:8 112M 76.9 71.4 77.3 97.2 50.2 64.2 95.2 75.3 51.1 89.5 74.8

SparseGPT 4:8 110M 80.2 55.7 79.6 96.6 52.3 61.4 85.8 58.5 42.3 86.6 69.9
SparseGPT + IC 4:8 112M 81.8 72.6 81.6 98.1 51.7 65.8 96.6 78.1 49.1 92.2 76.8

Magnitude 2:4 110M 30.7 11.2 19.8 42.7 19.4 23.3 27.5 25.8 15.6 35.3 25.1
Magnitude + IC 2:4 112M 78.6 66.5 77.9 97.4 53.9 67.5 96.1 70.9 44.3 90.2 74.3

Wanda 2:4 110M 39.6 14.5 35.1 46.1 21.7 25.5 42.4 25.2 20.9 41.4 31.2
Wanda + IC 2:4 112M 80.6 74.5 80.7 97.7 54.9 68.1 96.5 74.1 51.4 91.6 77.0

SparseGPT 2:4 110M 75.5 40.2 73.0 94.3 44.5 52.6 61.3 45.7 33.5 81.6 60.2
SparseGPT + IC 2:4 112M 82.2 79.4 82.6 98.4 57.7 69.9 96.8 76.4 54.3 92.5 79.0

Table 2: Testing accuracy on image classification tasks using CLIP ViT-B/16.
Sparsity #Nonzero Params CIFAR100 Flowers Food EuroSAT SUN UCF SVHN Pets DTD RESISC Avg

Magnitude 50% 109M 76.9 56.5 78.3 90.7 51.2 65.6 95.3 62.9 42.8 82.1 70.2
Magnitude 47% 111M 80.9 64.6 82.1 94.4 56.5 70.1 95.9 68.5 47.3 86.9 74.7
Magnitude + IC 50% 111M 82.9 86.7 84.7 97.6 60.1 75.1 97.1 82.5 61.1 92.8 82.1

Wanda 50% 109M 84.1 78.1 85.5 97.6 59.5 68.9 96.9 72.7 51.8 91.2 78.6
Wanda 47% 111M 85.6 81.7 86.8 98.0 62.8 71.7 96.8 76.8 55.3 92.9 80.8
Wanda + IC 50% 111M 86.2 82.8 87.8 98.4 63.8 75.5 97.6 83.6 63.5 94.7 83.4

SparseGPT 50% 109M 87.2 80.2 88.1 98.0 63.8 73.8 97.0 75.6 56.4 93.7 81.4
SparseGPT 47% 111M 87.7 82.3 88.8 98.3 63.4 76.2 97.0 80.4 59.8 94.6 82.9
SparseGPT + IC 50% 111M 86.1 86.0 87.9 98.4 64.4 76.2 97.6 85.2 66.4 95.0 84.3

Magnitude 4:8 109M 75.8 52.0 75.4 89.6 50.0 61.4 77.4 68.8 41.4 79.1 67.1
Magnitude + IC 4:8 111M 81.5 84.2 83.2 97.5 57.6 72.5 96.9 81.6 54.4 91.9 80.1

Wanda 4:8 109M 78.6 63.2 81.4 96.0 50.6 61.3 78.2 69.5 42.8 87.7 70.9
Wanda + IC 4:8 111M 84.7 82.1 86.8 98.4 60.6 74.5 97.4 82.0 61.3 94.3 82.2

SparseGPT 4:8 109M 85.1 74.0 87.0 95.6 60.4 69.8 72.6 78.2 50.5 93.7 76.7
SparseGPT + IC 4:8 111M 84.7 84.9 87.1 98.3 60.9 74.9 97.5 83.6 62.2 94.4 82.9

Magnitude 2:4 109M 68.3 39.9 64.5 78.6 39.4 53.2 95.3 56.9 32.9 67.6 59.7
Magnitude + IC 2:4 111M 83.9 83.8 85.9 97.9 61.4 75.7 97.4 84.0 57.3 93.3 82.1

Wanda 2:4 109M 71.5 46.4 71.0 89.7 40.6 50.4 96.2 61.4 33.5 75.2 63.6
Wanda + IC 2:4 111M 84.9 87.2 86.9 98.2 62.7 75.4 97.4 84.3 59.2 94.1 83.0

SparseGPT 2:4 109M 82.8 66.2 82.8 94.4 53.6 63.0 97.2 74.2 43.1 90.2 74.7
SparseGPT + IC 2:4 111M 85.6 89.6 87.7 98.4 63.9 76.9 97.6 84.9 61.2 94.9 84.1

of 0.9. The mini-batch size is 128. Following (Bahng et al.,
2022), vi is learnable padding pixels on all sides, where the
padding size is set to 30. The rank r is chosen as 32 and a
sensitivity analysis is provided in Section 6. We evaluate
two types of sparsity: unstructured sparsity and structured
m:n sparisty (Mishra et al., 2021) (4:8 and 2:4), i.e., at most
m out of every n contiguous weights to be non-zero.

Baselines. The proposed IC can be integrated into any
existing pruning methods. To verify its effectiveness,
we consider three pruning methods: (i) Magnitude Prun-
ing (Han et al., 2015) which discards weights based on
their magnitudes; (ii) Wanda (Sun et al., 2024) designs

a scoring metric as the weight magnitudes multiplied by
the corresponding input activations on a per-output basis;
(iii) SparseGPT (Frantar & Alistarh, 2023) which adjusts
the unpruned weights by solving a layer-wise reconstruc-
tion problem using a second-order optimizer. SparseGPT
is a weight compensation method, while Magnitude and
Wanda design a scoring metric for pruning without updat-
ing weights. For all methods, the base models are fully
finetuned on the training set of all tasks before pruning.

Results. Tables 1 and 2 show the testing accuracy on
ten image classification tasks using CLIP ViT-B/32 and
ViT-B/16, respectively. As can be seen, IC consistently

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Enhancing Pruned Models by Input Compensation

brings large improvements to existing pruning methods
in both unstructured (sparsity=50%) and structured (4:8
and 2:4) cases. Specifically, compared with Magnitude,
Magnitude + IC achieves improvements of 25% and 10%
on ViT-B/32 and ViT-B/16, respectively; Compared with
Wanda, Wanda + IC has improvements of about 2.5%; Com-
pared with SparseGPT, SparseGPT + IC performs better by
an improvement of 2% on ViT-B/32. The large improve-
ments contributed by IC verify that the learned compensa-
tion pool is effective in constructing input compensation
for the pruned models. Moreover, SparseGPT + IC con-
sistently performs the best, demonstrating that combining
both weight compensation and input compensation is more
desirable. We can also observe that unstructured pruning
(sparsity=50%) achieves higher accuracy than structured
pruning (sparsity=4:8), which is aligned with findings in
previous works (Sun et al., 2024; Frantar & Alistarh, 2023;
Zhang et al., 2024).

In our IC framework, as the encoder is a submodule of
the pruned model, the additional parameters are only from
the very small compensation pool (only 2.3M). To verify
that IC’s improvements over baselines are not due to these
additional parameters, we reduce the sparsity of baseline
methods to increase the number of nonzero parameters. As
shown in Tables 1 and 2, when using the same number of
non-zero parameters, combining Magnitude + IC, Wanda
+ IC, and SparseGPT + IC consistently achieve higher av-
erage accuracy than Magnitude, Wanda, and SparseGPT,
respectively.

5.2. Experiments on Natural Language Processing

Models and Datasets. We evaluate IC on the LLaMA
model family, i.e., LLaMA-1 (7B) (Touvron et al., 2023a),
LLaMA-2 (7B) (Touvron et al., 2023b), and LLaMA-3.1
(8B) (Meta, 2024). Following (Sun et al., 2024; Fran-
tar & Alistarh, 2023), 128 sequences sampled from the
first shard of the C4 dataset (Raffel et al., 2020) are used
as training data. We evaluate the pruned models on two
types of tasks: (i) language modeling task which evaluates
the perplexity on the held-out validation data of WikiText-
2 (Merity et al., 2016); and (ii) seven zero-shot tasks in-
clude BoolQ (Clark et al., 2019), RTE (Wang, 2018), Hel-
laSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al.,
2021), ARC-easy/challenging (Clark et al., 2018), and Open-
bookQA (Mihaylov et al., 2018)) from the EleutherAI LM
Harness package (Gao et al., 2024). As LLMs contain
billions of parameters, to make pruned models more com-
pressed, we follow (Yin et al., 2024) and focus on the un-
structured sparsity of 70% case. Implementation details are
in Appendix B.4.

Results on Language Modeling Task. Table 3 shows the
WikiText validation perplexity. As can be seen, IC consis-

Table 3: WikiText validation perplexity of pruned LLaMA
family of models.

Sparsity LLaMA-1 (7B) LLaMA-2 (7B) LLaMA-3.1 (8B)

Magnitude 70% 48432 52457 3483567
Magnitude + IC 70% 19678 8585 33194

Wanda 70% 85.0 74.4 99.7
Wanda + IC 70% 56.5 67.0 80.1

SparseGPT 70% 26.8 24.7 38.8
SparseGPT + IC 70% 17.7 18.3 27.5

Wanda + OWL 70% 24.6 30.9 70.7
Wanda + OWL + IC 70% 19.1 24.5 63.1

tently brings a significant improvement to existing pruning
methods, verifying the effectiveness of compensating inputs
for pruned LLMs. For example, SparseGPT + IC achieves a
perplexity improvement of 6.0 over SparseGPT on all three
LLaMA family of models, while Wanda + IC outperforms
Wanda by a large margin of 7.0 on all three LLMs. Al-
though Magnitude performs much worse, Magnitude + IC
still effectively reduces the perplexity by over 60%.

Results on Zero-shot Tasks. Table 4 shows the testing
accuracy of seven zero-shot tasks on the LLaMA family of
models. As can be seen, IC consistently brings a noticeable
improvement (averaged over all tasks) to all existing pruning
methods. For example, Wanda + IC outperforms Wanda on
LLaMA-3.1-8B, LLaMA-2-7B, and LLaMA-1-7B by mar-
gins of 1.09%, 1.73%, and 0.4%, respectively, indicating
that the learned compensation pool can be effectively used
to construct input compensation for pruned models without
any weight update. Moreover, SparseGPT + IC consistently
achieves the highest accuracy for all models, showing that
learning ∆x and ∆w are complementary and thus can be
combined together for boosting performance.

5.3. Experiments on Image Generation

Experimental Setting. We evaluate IC on Denoising Dif-
fusion Probability Models (DDPM) (Ho et al., 2020). Fol-
lowing (Fang et al., 2023), the CIFAR-10 dataset (with the
image size of 32 × 32) (Krizhevsky & Hinton, 2009) and
the off-the-shelf DDPM from (Ho et al., 2020) are used.
K is initialized with zero and V is initialized randomly
by a normal distribution with a standard deviation of 0.01,
where the rank r is set to 128. We train K and V using
the Adam optimizer (Kingma & Ba, 2015) with a learning
rate of 0.002 over 100K steps. The mini-batch size is set to
128. The identity function is used as the encoder of IC to
keep more original image information, which is crucial for
image generation. Following (Fang et al., 2023), we focus
on the sparsity of 30% case and compare IC with three prun-
ing methods: Magnitude Pruning (Han et al., 2015), Taylor
Pruning (Molchanov et al., 2022), and Diff-Pruning (Fang
et al., 2023).

Results. Table 5 shows the Frechet Inception Distance
(FID) (Heusel et al., 2017). As can be seen, IC consis-

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Enhancing Pruned Models by Input Compensation

Table 4: Testing accuracy of zero-shot tasks using LLaMA family of models.
Sparsity BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Avg

L
L

aM
A

-1
(7

B
) Magnitude 70% 38.29 52.71 25.62 51.14 26.64 19.71 11.60 32.24

Magnitude + IC 70% 55.99 52.35 25.33 48.38 25.93 21.93 15.00 34.99

Wanda 70% 57.16 54.87 28.73 50.91 32.15 18.86 13.80 36.64
Wanda + IC 70% 59.60 53.07 28.80 52.01 34.55 18.86 12.40 37.04

SparseGPT 70% 63.43 56.32 33.89 58.96 44.07 23.63 17.80 42.58
SparseGPT + IC 70% 66.06 54.87 37.47 60.06 48.40 25.51 18.20 44.37

L
L

aM
A

-2
(7

B
)

Magnitude 70% 37.95 53.07 25.95 49.25 27.74 22.78 16.80 33.36
Magnitude + IC 70% 42.57 52.35 25.77 49.33 25.84 22.10 16.20 33.45

Wanda 70% 46.09 52.71 27.86 51.14 30.05 18.09 11.80 33.96
Wanda + IC 70% 58.01 52.71 27.91 50.28 29.80 19.54 11.60 35.69

SparseGPT 70% 65.75 53.07 33.47 57.06 43.73 22.35 17.40 41.83
SparseGPT + IC 70% 65.11 52.71 36.50 57.85 49.33 24.49 17.60 43.37

L
L

aM
A

-3
.1

(8
B

) Magnitude 70% 37.83 52.71 26.16 49.33 26.09 20.14 14.60 32.41
Magnitude + IC 70% 37.83 53.79 25.71 49.88 25.21 22.78 15.20 32.91

Wanda 70% 56.27 52.71 27.51 47.83 32.20 17.66 13.00 35.31
Wanda + IC 70% 61.74 52.71 27.75 49.25 33.25 17.92 12.20 36.40

SparseGPT 70% 67.71 52.71 33.60 56.20 43.14 21.08 16.40 41.55
SparseGPT + IC 70% 67.71 54.15 34.25 57.62 46.63 22.78 15.60 42.68

Table 5: FID of pruned DDPMs on CIFAR-10.
Sparsity FID

Magnitude 30% 5.48
Magnitude + IC 30% 5.31

Taylor Pruning 30% 5.56
Taylor Pruning + IC 30% 5.21

Diff-Pruning 30% 5.29
Diff-Pruning + IC 30% 5.15

tently improves the existing pruning methods, demonstrat-
ing the effectiveness of compensating inputs for pruned
LLMs. For instance, Taylor Pruning+IC achieves an FID
improvement of 0.35 compared to Taylor Pruning. Similarly,
Diff-Pruning+IC outperforms Diff-Pruning by 0.14.

6. Analysis
In this section, we conduct empirical analyses to investi-
gate the key components of IC, including rank r, sparsity,
computation cost, sparse retraining, and input-dependent
compensation. We adopt the experimental setting used in
Section 5.1 with CLIP ViT-B/32.

Sensitivity of Rank. We conduct experiments to study the
sensitivity of rank r to the performance of Magnitude + IC,
where r is chosen from {2, 4, 8, 16, 32, 64, 128}. Figure 2
shows the testing accuracy with different ranks (detailed
results are shown in Table 8 of Appendix B.3). As can be
seen, a very small rank (e.g., 2) is not desirable. When the
rank is small (≤ 16), increasing the rank leads to better
performance. A very large rank (e.g., 128) contains more
parameters but does not contribute to better performance. In

0 20 40 60 80 100 120
rank

66

68

70

72

74

Av
er

ag
e

Te
st

in
g

A
cc

ur
ac

y
(%

)

Figure 2: Performance of Magnitude + IC with different
ranks on image classification tasks using CLIP ViT-B/32.

practice, we can choose the rank ∈ [16, 32].

Sensitivity of Sparsity. We study the performance of Mag-
nitude + IC with different sparsities. Figure 3 shows the
trend of testing accuracy (averaged over ten tasks) w.r.t.
sparsity (detailed results are shown in Table 6 of Appendix
B.1). As can be seen, when the sparsity is high (≥ 40%),
Magnitude + IC significantly outperforms Magnitude; When
the sparsity is low (≤ 20%), Magnitude + IC and Magnitude
perform comparably. In practice, a high sparsity is more de-
sirable for pruning in order to reduce the model size; Thus,
IC is practically useful for enhancing pruned models.

Computation Cost. Compared with existing pruning meth-
ods, the proposed IC needs two extra components (encoder
and compensation pool) for adjusting the inputs. As the
encoder is either a submodule of the pruned model or an
identity function and the compensation pool is very small
(only 2.3M in experiments), the extra storage is negligible
and the computation cost is small. For example, in the

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Enhancing Pruned Models by Input Compensation

10% 20% 30% 40% 50% 60% 70% 80% 90%
sparsity

0

20

40

60

80

100

Av
er

ag
e

Te
st

in
g

A
cc

ur
ac

y
(%

)

Magnitude
Magnitude+IC

Figure 3: Performance of Magnitude and Magnitude + IC
with different sparsities on image classification tasks using
CLIP ViT-B/32.

Magnitude Wanda SparseGPT
72

74

76

78

80

82

84

86

Av
er

ag
e

Te
st

in
g

ac
cu

ra
cy

78.4

80.3 79.8

81.3

83.2 83.6
w/o IC
w/ IC

(a) Sparsity=50%.

Magnitude Wanda SparseGPT
72

74

76

78

80

82

84

86

Av
er

ag
e

Te
st

in
g

ac
cu

ra
cy

73.5

76.3
77.7

78.6

80.6
81.9

w/o IC
w/ IC

(b) Sparsity=4:8.

Figure 4: Testing accuracy (averaged over ten image classifi-
cation tasks) using CLIP ViT-B/32 with sparse retraining

image classification experiment with CLIP ViT-B/32, com-
pared with Magnitude, computation cost of Magnitude + IC
increases by only 1% (from 305G to 309G FLOPs) and in-
ference speed drops slightly from 665 to 535 images/second.
Note that testing accuracy increases largely (Table 1), veri-
fying that such additional computation cost is worthwhile.

Sparse Retraining with IC. In Section 5.1, we combine
IC with three pruning methods without sparse retraining
(i.e., retraining the sparse model following the pruning step),
which can approach the performance of the dense model.
We conduct experiments to investigate whether IC is benefi-
cial to pruning methods with sparse retraining. We retrain
retained parameters on the training data for 3 epochs using
the AdamW optimizer with a learning rate of 0.000001 and
weight decay of 0.01. Figure 4 shows the testing accuracy
(averaged over ten tasks) of pruning methods w/ or w/o IC
when sparse retraining is applied (detailed results are in
Table 7 of Appendix B.2). As can be seen, IC consistently
boosts existing pruning methods when sparse retraining is
applied. Moreover, sparse retraining achieves higher accu-
racy than those without retraining (Table 1).

Input-dependent vs. Input-independent Compensation.
The design of our IC ensures the compensation ∆x is input-
aware. A straightforward variant of IC is learning a globally
shared (i.e., input-independent) compensation ∆ for all
inputs. We conduct experiments to investigate the effective-
ness of our input-dependent mechanism. Figure 5 shows the
testing accuracy (averaged over ten tasks). As can be seen,
IC performs much better than the input-independent vari-
ant, demonstrating that input-dependent compensation is

Magnitude Wanda SparseGPT
60

65

70

75

80

85

Av
er

ag
e

Te
st

in
g

ac
cu

ra
cy

64.6

69.8

73.2
71.2

77.4
79.2

input-independent
input-dependent

(a) Sparsity=50%.

Magnitude Wanda SparseGPT
60

65

70

75

80

85

Av
er

ag
e

Te
st

in
g

ac
cu

ra
cy

61.4
64.1

69.4
71.0

74.8
76.8

input-independent
input-dependent

(b) Sparsity=4:8.
Figure 5: Testing accuracy (averaged over ten image classifi-
cation tasks) of IC and an input-independent variant using
CLIP ViT-B/32

Fl
ow

er
s

Fo
od

C
IF

AR
10

0
cl

as
s

in
de

x

Fl
ow

er
s

Fo
od

C
IF

AR
10

0
cl

as
s

in
de

x

…
<latexit sha1_base64="+cLO9ttZglsfHW0oJKs//ivRvgU=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi1WXRjcsK9gFNKJPppB06mYR5FErob7hxoYhbf8adf+OkzUJbDwwczrmXe+aEKWdKu+63U9rY3NreKe9W9vYPDo+qxycdlRhJaJskPJG9ECvKmaBtzTSnvVRSHIecdsPJfe53p1QqlognPUtpEOORYBEjWFvJ92Osx2GUTecDNqjW3Lq7AFonXkFqUKA1qH75w4SYmApNOFaq77mpDjIsNSOcziu+UTTFZIJHtG+pwDFVQbbIPEcXVhmiKJH2CY0W6u+NDMdKzeLQTuYZ1aqXi/95faOj2yBjIjWaCrI8FBmOdILyAtCQSUo0n1mCiWQ2KyJjLDHRtqaKLcFb/fI66VzVvUa98Xhda94VdZThDM7hEjy4gSY8QAvaQCCFZ3iFN8c4L86787EcLTnFzin8gfP5A3/EkgE=</latexit>vi

Figure 6: Distribution of attention weights on image classifi-
cation tasks using CLIP ViT-B/32.

more effective in reducing the error caused by the removed
weights.

Visualization. In Section 5.1, we learn a compensation pool
with r = 32 for ten image classification tasks, i.e., ∆x is a
weighted combination of 32 vi’s. Here, we study whether
different tasks lead to different preferences for vi’s. Fig-
ure 6 shows the average attention weights between vi and
testing samples belonging to different classes of three tasks
(Flowers, Food, CIFAR100) (other tasks are not shown due
to limited space). As can be seen, samples from Flowers pre-
fer {v1, . . . ,v5}; samples from Food prefer {v6, . . . ,v10};
samples from CIFAR100 prefer {v11, . . . ,v17}.

7. Conclusion
In this paper, we proposed input compensation (IC) for
enhancing pruned models by adjusting the inputs to com-
pensate for the error caused by the pruned weights. A pool
of multiple compensations is learned to construct input-
dependent compensations. IC is designed in the input space
while existing pruning methods are designed in the param-
eter space. Hence, IC can be integrated into any existing
pruning methods. Extensive experiments on NLP and CV
verify that IC largely enhances pruned models.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Enhancing Pruned Models by Input Compensation

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
An, Y., Zhao, X., Yu, T., Tang, M., and Wang, J. Fluctuation-

based adaptive structured pruning for large language mod-
els. In AAAI Conference on Artificial Intelligence, 2024.

Bahng, H., Jahanian, A., Sankaranarayanan, S., and Isola, P.
Exploring visual prompts for adapting large-scale models.
Preprint arXiv:2203.17274, 2022.

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag,
J. What is the state of neural network pruning? In
Proceedings of machine learning and systems, 2020.

Bossard, L., Guillaumin, M., and Van Gool, L. Food-101–
mining discriminative components with random forests.
In European Conference on Computer Vision, 2014.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Neural Information
Processing Systems, 2020.

Campos, J. and Lewis, F. Adaptive critic neural network for
feedforward compensation. In American Control Confer-
ence, 1999.

Cheng, G., Han, J., and Lu, X. Remote sensing image
scene classification: Benchmark and state of the art. In
Proceedings of the Institute of Electrical and Electronics
Engineers, 2017.

Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and
Vedaldi, A. Describing textures in the wild. In IEEE
Conference on Computer Vision and Pattern Recognition,
2014.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. BoolQ: Exploring the surpris-
ing difficulty of natural yes/no questions. Preprint
arXiv:1905.10044, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try ARC, the AI2 reasoning chal-
lenge. Preprint arXiv:1803.05457, 2018.

Das, R. J., Ma, L., and Shen, Z. Beyond size: How gradi-
ents shape pruning decisions in large language models.
Preprint arXiv:2311.04902, 2023.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
GPT3.Int8 (): 8-bit matrix multiplication for transformers
at scale. In Neural Information Processing Systems, 2022.

Ding, N., Hu, S., Zhao, W., Chen, Y., Liu, Z., Zheng, H.-T.,
and Sun, M. OpenPrompt: An open-source framework for
prompt-learning. In Annual Meeting of the Association
for Computational Linguistics, 2022.

Ding, N., Lv, X., Wang, Q., Chen, Y., Zhou, B., Liu, Z.,
and Sun, M. Sparse low-rank adaptation of pre-trained
language models. In Conference on Empirical Methods
in Natural Language Processing, 2023.

Dong, P., Li, L., Tang, Z., Liu, X., Pan, X., Wang, Q., and
Chu, X. Pruner-Zero: Evolving symbolic pruning metric
from scratch for large language models. In International
Conference on Machine Learning, 2024.

Fan, Y. and Hunter, A. Understanding the cooking process
with english recipe text. In Findings of the Association
for Computational Linguistics, 2023.

Fang, G., Ma, X., and Wang, X. Structural pruning for diffu-
sion models. In Neural Information Processing Systems,
2023.

Franklin, G. F., Powell, J. D., Emami-Naeini, A., and Powell,
J. D. Feedback control of dynamic systems. Prentice Hall
Upper Saddle River, 2002.

Frantar, E. and Alistarh, D. Optimal brain compression: A
framework for accurate post-training quantization and
pruning. In Neural Information Processing Systems,
2022.

Frantar, E. and Alistarh, D. SparseGPT: Massive language
models can be accurately pruned in one-shot. In Interna-
tional Conference on Machine Learning, 2023.

Frantar, E., Kurtic, E., and Alistarh, D. M-FAC: Efficient
matrix-free approximations of second-order information.
In Neural Information Processing Systems, 2021.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation.
Technical report, 2024.

Guo, R., Xu, W., and Ritter, A. Meta-tuning LLMs to
leverage lexical knowledge for generalizable language

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Enhancing Pruned Models by Input Compensation

style understanding. In Annual Meeting of the Association
for Computational Linguistics, 2024.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network. In
Nneural Information Processing Systems, 2015.

Hassibi, B., Stork, D. G., and Wolff, G. J. Optimal brain sur-
geon and general network pruning. In IEEE International
Conference on Neural Networks, 1993.

Helber, P., Bischke, B., Dengel, A., and Borth, D. EuroSAT:
A novel dataset and deep learning benchmark for land
use and land cover classification. IEEE Journal of Se-
lected Topics in Applied Earth Observations and Remote
Sensing, 2019.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. GANs trained by a two time-scale update
rule converge to a local nash equilibrium. In Neural
Information Processing Systems, 2017.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion prob-
abilistic models. In Neural Information Processing Sys-
tems, 2020.

Hou, Y., Dong, H., Wang, X., Li, B., and Che, W.
MetaPrompting: Learning to learn better prompts. In
International Conference on Computational Linguistics,
2022.

Jawahar, C., Zisserman, A., Vedaldi, A., and Parkhi, O. Cats
and dogs. In IEEE Conference on Computer Vision and
Pattern Recognition, 2012.

Jiang, W., Zhang, Y., and Kwok, J. Effective structured
prompting by meta-learning and representative verbalizer.
In International Conference on Machine Learning, 2023.

Kim, S., Hooper, C. R. C., Gholami, A., Dong, Z., Li, X.,
Shen, S., Mahoney, M. W., and Keutzer, K. SqueezeLLM:
Dense-and-sparse quantization. In International Confer-
ence on Machine Learning, 2024.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. In
Neural Information Processing Systems, 2022.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Technical report, 2009.

Krstic, M. Input delay compensation for forward complete
and strict-feedforward nonlinear systems. IEEE Transac-
tions on Automatic Control, 2009.

Kuo, B. C. and Golnaraghi, M. F. Automatic control systems.
Prentice Hall Englewood Cliffs, NJ, 1995.

Lester, B., Al-Rfou, R., and Constant, N. The power of
scale for parameter-efficient prompt tuning. In Empirical
Methods in Natural Language Processing, 2021.

Li, J., Li, D., Xiong, C., and Hoi, S. BLIP: Bootstrapping
language-image pre-training for unified vision-language
understanding and generation. In International Confer-
ence on Machine Learning, 2022.

Li, J., Li, D., Savarese, S., and Hoi, S. BLIP-2: Boot-
strapping language-image pre-training with frozen image
encoders and large language models. In International
Conference on Machine Learning, 2023a.

Li, J., Tang, T., Zhao, W. X., Nie, J.-Y., and Wen, J.-R. Pre-
trained language models for text generation: A survey.
ACM Computing Surveys, 2024.

Li, X. L. and Liang, P. Prefix-Tuning: Optimizing contin-
uous prompts for generation. In Annual Meeting of the
Association for Computational Linguistics, 2021.

Li, Y., Yu, Y., Zhang, Q., Liang, C., He, P., Chen, W., and
Zhao, T. LoSparse: Structured compression of large lan-
guage models based on low-rank and sparse approxima-
tion. In International Conference on Machine Learning,
2023b.

Liang, C., Zuo, S., Zhang, Q., He, P., Chen, W., and Zhao, T.
Less is more: Task-aware layer-wise distillation for lan-
guage model compression. In International Conference
on Machine Learning, 2023.

Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.-M., Wang,
W.-C., Xiao, G., Dang, X., Gan, C., and Han, S. AWQ:
Activation-aware weight quantization for on-device LLM
compression and acceleration. In Proceedings of Machine
Learning and Systems, 2024.

Liu, J., Shen, D., Zhang, Y., Dolan, W. B., Carin, L., and
Chen, W. What makes good in-context examples for
GPT-3? In Proceedings of Deep Learning Inside Out,
2022.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig,
G. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. ACM
Computing Surveys, 2023.

Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang,
Z., and Tang, J. GPT understands, too. Preprint
arXiv:2103.10385, 2021.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2019.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Enhancing Pruned Models by Input Compensation

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. Preprint arXiv:1609.07843,
2016.

Meta. The LLaMA 3 herd of models. Preprint
arXiv:2407.21783, 2024.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? a new dataset for open
book question answering. Preprint arXiv:1809.02789,
2018.

Mishra, A., Latorre, J. A., Pool, J., Stosic, D., Stosic, D.,
Venkatesh, G., Yu, C., and Micikevicius, P. Accelerating
sparse deep neural networks. Preprint arXiv:2104.08378,
2021.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J.
Pruning convolutional neural networks for resource effi-
cient inference. In International Conference on Learning
Representations, 2022.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. In Neural Information
Processing Systems Workshop, 2011.

Nilsback, M.-E. and Zisserman, A. Automated flower classi-
fication over a large number of classes. In Indian Confer-
ence on Computer Vision, Graphics & Image Processing,
2008.

Podell, D., English, Z., Lacey, K., Blattmann, A., Dock-
horn, T., Müller, J., Penna, J., and Rombach, R. SDXL:
Improving latent diffusion models for high-resolution im-
age synthesis. In International Conference on Learning
Representations, 2024.

Polino, A., Pascanu, R., and Alistarh, D. Model compres-
sion via distillation and quantization. In International
Conference on Learning Representations, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. OpenAI Blog, 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision. In
International Conference on Machine Learning, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
2020.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
WinoGrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 2021.

Shao, W., Chen, M., Zhang, Z., Xu, P., Zhao, L., Li, Z.,
Zhang, K., Gao, P., Qiao, Y., and Luo, P. OmniQuant:
Omnidirectionally calibrated quantization for large lan-
guage models. In International Conference on Learning
Representations, 2024.

Singh, S. P. and Alistarh, D. WoodFisher: Efficient second-
order approximation for neural network compression. In
Neural Information Processing Systems, 2020.

Soomro, K., Zamir, A. R., and Shah, M. UCF101: A dataset
of 101 human actions classes from videos in the wild.
Preprint arXiv:1212.0402, 2012.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models. In
International Conference on Learning Representations,
2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. LLAMA: Open and efficient foundation language
models. Preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. LLaMA 2: Open foundation and fine-
tuned chat models. Preprint arXiv:2307.09288, 2023b.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Neural Information Processing
Systems, 2017.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Enhancing Pruned Models by Input Compensation

Wang, A. GLUE: A multi-task benchmark and analysis
platform for natural language understanding. Preprint
arXiv:1804.07461, 2018.

Wang, J., Bao, W., Sun, L., Zhu, X., Cao, B., and Philip, S. Y.
Private model compression via knowledge distillation. In
AAAI Conference on Artificial Intelligence, 2019.

Wang, W., Chen, W., Luo, Y., Long, Y., Lin, Z., Zhang,
L., Lin, B., Cai, D., and He, X. Model compression and
efficient inference for large language models: A survey.
Preprint arXiv:2402.09748, 2024.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., brian ichter,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. Chain of
thought prompting elicits reasoning in large language
models. In Neural Information Processing Systems, 2022.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. SmoothQuant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, 2023.

Xiao, J., Ehinger, K. A., Hays, J., Torralba, A., and Oliva,
A. SUN database: Exploring a large collection of scene
categories. International Journal of Computer Vision,
2016.

Xu, M., Yin, W., Cai, D., Yi, R., Xu, D., Wang, Q., Wu,
B., Zhao, Y., Yang, C., Wang, S., et al. A survey of
resource-efficient LLM and multimodal foundation mod-
els. Preprint arXiv:2401.08092, 2024.

Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li,
C., and He, Y. ZeroQuant: Efficient and affordable post-
training quantization for large-scale transformers. In
Neural Information Processing Systems, 2022.

Yin, L., Wu, Y., Zhang, Z., Hsieh, C.-Y., Wang, Y., Jia, Y.,
Pechenizkiy, M., Liang, Y., Wang, Z., and Liu, S. Out-
lier weighed layerwise sparsity (OWL): A missing secret
sauce for pruning LLMs to high sparsity. In International
Conference on Machine Learning, 2024.

Yu, L., Jiang, W., Shi, H., Yu, J., Liu, Z., Zhang, Y., Kwok,
J., Li, Z., Weller, A., and Liu, W. MetaMath: Bootstrap
your own mathematical questions for large language mod-
els. In International Conference on Learning Representa-
tions, 2024.

Yu, X., Liu, T., Wang, X., and Tao, D. On compressing deep
models by low rank and sparse decomposition. In IEEE
Conference on Computer Vision and Pattern Recognition,
2017.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y.
HellaSwag: Can a machine really finish your sentence?
In Annual Meeting of the Association for Computational
Linguistics, 2019.

Zhang, H., Zhang, X., Huang, H., and Yu, L. Prompt-
based meta-learning for few-shot text classification. In
Conference on Empirical Methods in Natural Language
Processing, 2022a.

Zhang, N., Li, L., Chen, X., Deng, S., Bi, Z., Tan, C.,
Huang, F., and Chen, H. Differentiable prompt makes
pre-trained language models better few-shot learners. In
International Conference on Learning Representations,
2022b.

Zhang, T., Yu, T., Hashimoto, T., Lewis, M., Yih, W.-t.,
Fried, D., and Wang, S. Coder reviewer reranking for
code generation. In International Conference on Machine
Learning, 2023.

Zhang, Y., Bai, H., Lin, H., Zhao, J., Hou, L., and Can-
nistraci, C. V. Plug-and-play: An efficient post-training
pruning method for large language models. In Interna-
tional Conference on Learning Representations, 2024.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Enhancing Pruned Models by Input Compensation

Appendix

A. Additional Related Works on Foundation Models
Foundation Models are large pre-trained models designed to serve as base models for various downstream tasks. These
models are typically trained on a large amount of data and contain massive of parameters. Notable examples include Large
Language Models (LLMs) like LLaMA series (Touvron et al., 2023a;b; Meta, 2024), which have promising performance in
natural language processing tasks such as text generation (Li et al., 2024; Zhang et al., 2023), understanding (Guo et al.,
2024; Fan & Hunter, 2023), and reasoning (Wei et al., 2022; Yu et al., 2024). In the realm of computer vision (CV), models
like CLIP (Contrastive Language-Image Pretraining) (Radford et al., 2021) use multimodal learning to bridge textual and
visual information, enhancing various CV tasks such as image classification (Radford et al., 2021), image captioning and
visual question answering (Li et al., 2022; 2023a). Additionally, diffusion models like DDPM (Ho et al., 2020), Stable
Diffusion (Rombach et al., 2022), and SDXL (Podell et al., 2024) have revolutionized image generation by employing a
process of gradually transforming noise into images, showing the diverse applications of foundation models in creative
applications.

B. Additional Experimental Results
B.1. Sensitivity of Sparsity

Table 6 shows the testing accuracy of Magnitude and Magnitude + IC with different sparsities. We can see that Magnitude +
IC significantly outperforms Magnitude when the sparsity is high (≥ 40%). In practice, a high sparsity is more desirable for
pruning to reduce the model size. Hence, IC is practically useful for boosting the performance of pruned models.

Table 6: Performance of Magnitude and Magnitude + IC with different sparsities.

Sparsity IC CIFAR100 Flowers Food EuroSAT SUN UCF SVHN Pets DTD RESISC Avg

10% ✗ 88.2 97.7 89.1 98.8 73.6 86.0 97.1 91.6 74.6 96.0 89.3
10% ✓ 87.7 97.6 88.8 98.5 73.3 85.1 97.0 91.7 73.8 96.0 88.9

20% ✗ 87.5 96.5 88.4 98.6 72.9 84.1 96.9 90.4 72.8 95.4 88.3
20% ✓ 87.2 96.3 88.1 98.5 72.6 83.2 96.9 90.4 72.2 95.3 88.1

30% ✗ 84.8 88.8 84.2 97.6 68.6 79.2 96.5 88.3 67.7 94.1 85.0
30% ✓ 84.9 91.0 85.3 98.3 68.5 78.9 96.7 88.3 67.0 94.2 85.3

40% ✗ 71.1 57.0 70.0 93.5 54.6 65.8 93.8 73.2 49.7 87.7 71.6
40% ✓ 79.8 81.9 80.7 97.4 60.4 72.9 96.2 81.4 58.9 91.6 80.1

50% ✗ 33.9 26.1 34.2 45.6 30.8 35.4 45.3 38.7 27.9 55.4 37.3
50% ✓ 73.0 62.9 72.4 96.5 48.9 63.1 94.4 69.2 44.1 87.1 71.2

60% ✗ 5.6 5.2 4.3 4.3 5.5 4.7 9.1 9.0 10.0 10.2 6.8
60% ✓ 57.5 25.0 52.0 89.4 26.1 37.0 85.6 29.0 16.5 74.1 49.2

70% ✗ 1.7 2.7 2.0 13.0 0.8 2.1 7.5 2.9 2.8 3.3 3.9
70% ✓ 19.3 6.1 13.8 75.4 4.0 7.0 51.6 4.1 4.0 26.6 21.2

80% ✗ 1.0 1.0 0.8 13.0 0.3 1.4 6.5 2.8 1.7 2.4 3.1
80% ✓ 6.9 5.1 5.2 68.8 1.0 3.5 38.8 3.8 2.8 22.1 15.8

90% ✗ 1.1 0.5 1.0 6.9 0.2 0.7 6.4 2.6 2.1 2.1 2.4
90% ✓ 3.5 2.7 2.2 49.5 0.5 2.1 6.7 3.5 3.4 7.5 8.2

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Enhancing Pruned Models by Input Compensation

B.2. Sparse Retraining with IC

We conduct experiments to study the performance of IC when sparse retraining is applied. Table 7 shows the testing accuracy
on image classification tasks using CLIP ViT-B/32. As shown, IC brings a significant improvement to existing pruning
methods when sparse retraining is used.

Table 7: Testing accuracy on image classification tasks using CLIP ViT-B/32 with sparse retraining.
Sparsity CIFAR100 Flowers Food EuroSAT SUN UCF SVHN Pets DTD RESISC Avg

Magnitude 50% 79.3 80.8 81.2 87.8 61.6 73.8 95.5 78.2 55.1 90.6 78.4
Magnitude + IC 50% 82.4 82.6 83.0 98.2 63.1 76.3 96.8 80.0 57.7 92.5 81.3

SparseGPT 50% 80.3 85.4 83.4 83.1 63.1 74.7 96.1 82.0 58.2 91.3 79.8
SparseGPT + IC 50% 84.5 88.3 86.0 98.4 65.7 77.5 96.8 83.3 61.5 93.9 83.6

Wanda 50% 81.2 84.8 83.5 88.1 62.8 73.8 96.0 81.8 59.3 92.0 80.3
Wanda + IC 50% 84.6 87.4 85.3 98.4 64.7 76.6 96.8 82.6 61.5 94.0 83.2

Magnitude 4:8 75.9 70.4 78.7 77.0 57.1 68.1 94.9 76.1 47.9 88.9 73.5
Magnitude + IC 4:8 81.1 76.7 81.2 97.8 59.5 72.0 96.5 78.0 51.8 91.6 78.6

SparseGPT 4:8 79.6 80.3 82.7 80.9 60.0 70.0 95.7 81.2 55.6 90.8 77.7
SparseGPT + IC 4:8 83.8 84.0 84.8 98.3 62.2 74.3 96.7 82.7 58.7 93.7 81.9

Wanda 4:8 78.9 76.9 81.4 80.3 58.0 68.7 95.6 78.6 54.6 90.2 76.3
Wanda + IC 4:8 83.6 81.4 83.3 98.0 60.5 71.9 96.7 80.0 57.3 92.8 80.6

B.3. Sensitivity of Rank

Table 8 shows the testing accuracy and number of parameters of (K,V) with different ranks. We can see that a very small
rank (e.g., 2) is not desirable. In practice, we can choose the rank from 16 to 32.

Table 8: Testing accuracy of Magnitude + IC (sparsity=50%) with different ranks on image classification tasks using CLIP
ViT-B/32.

Rank #Params CIFAR100 Flowers Food EuroSAT SUN UCF SVHN Pets DTD RESISC Avg

2 0.14M 70.9 51.7 69.5 94.9 47.1 58.2 93.8 57.2 38.1 83.5 66.5
4 0.29M 73.5 56.6 71.6 95.8 47.9 60.3 94.2 61.9 40.6 85.7 68.8
8 0.58M 73.9 62.0 72.2 96.4 49.4 62.7 94.3 65.8 42.7 86.4 70.6
16 1.15M 73.5 62.0 72.9 96.9 49.6 63.8 94.4 69.8 44.0 87.2 71.4
32 2.30M 73.0 62.9 72.4 96.5 48.9 63.1 94.4 69.2 44.1 87.1 71.2
64 4.60M 73.1 64.3 73.1 96.8 50.8 64.4 94.4 65.5 42.4 87.9 71.3

128 9.20M 73.5 56.7 72.6 96.6 49.8 62.0 94.2 62.7 40.4 87.0 69.5

B.4. Implementation Details of NLP Experiments

Implementation Details. We randomly initialize K and V by a normal distribution with zero mean and standard deviation
0.01, where the rank r is set to 32. We train K and V using the AdamW optimizer (Loshchilov & Hutter, 2019) with
a learning rate of 0.001 and a linear warmup scheduler over 20 epochs. The mini-batch size is set to 1, with a gradient
accumulation of 2. The input embedding layer is used as the encoder of IC.

B.5. Language Modeling Task with Sparsity=50%

For language modeling experiments in Section 5.2, we focus on sparsity of 70% for making models more compressed. Here,
we also follow Wanda (Sun et al., 2024) and conduct experiments to evaluate IC under the 50% sparsity. The table below
shows the WikiText validation perplexity of pruned LLaMA family of models (results with † are reported in the original
publication). As can be seen, IC consistently brings a significant improvement to existing pruning methods, verifying the
effectiveness of compensating inputs for pruned LLMs again.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Enhancing Pruned Models by Input Compensation

Table 9: WikiText validation perplexity of pruned LLaMA family of models.

Sparsity LLaMA-1 (7B) LLaMA-2 (7B) LLaMA-3.1 (8B)

Magnitude† 50% 17.29 14.89 -
Magnitude 50% 17.29 14.90 134.26
Magnitude + IC 50% 14.60 12.44 80.37

Wanda† 50% 7.26 6.41 -
Wanda 50% 7.26 6.42 9.88
Wanda + IC 50% 7.17 6.33 8.80

SparseGPT† 50% 7.22 6.51 -
SparseGPT 50% 7.22 6.52 9.46
SparseGPT + IC 50% 7.07 6.38 8.51

B.6. Statistics of Image Classification Datasets

Table 10 shows the statistics of the image classification datasets.

Table 10: Summary of ten image classification datasets.

Dataset Training Size Testing Size #Classes

CIFAR100 (Krizhevsky & Hinton, 2009) 50,000 10,000 100
Flowers (Nilsback & Zisserman, 2008) 4,093 2,463 102
Food (Bossard et al., 2014) 50,500 30,300 101
EuroSAT (Helber et al., 2019) 13,500 8,100 10
SUN (Xiao et al., 2016) 15,888 19,850 397
DTD (Cimpoi et al., 2014) 2,820 1,692 47
UCF (Soomro et al., 2012) 7,639 3,783 101
SVHN (Netzer et al., 2011) 73,257 26,032 10
Pets (Jawahar et al., 2012) 2,944 3,669 37
RESISC (Cheng et al., 2017) 18,900 6,300 45

15

