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Abstract
Although foundation models are powerful, they
are large and require substantial memory and com-
putation resources to serve. To address this issue,
many pruning methods have been proposed to
reduce model size, thereby achieving memory
and computational efficiency. These methods ad-
just the retained weights to compensate for the
removed weights. In this paper, we propose a
novel approach called input compensation (IC) to
improve the performance of pruned models, i.e.,
adjust the input to compensate for the removed
weights. Unlike existing pruning methods, which
are designed in the parameter space, the proposed
IC is designed in the input space. Hence, IC is
complementary to existing methods and can be
integrated with them. Extensive experiments on
various tasks, including image classification, lan-
guage modeling, and image generation, demon-
strate that IC effectively boosts the performance
of pruned models.

1. Introduction
Foundation models (Radford et al., 2021; Touvron et al.,
2023b; Podell et al., 2024) have achieved great success in
a variety of domains, such as computer vision and natural
language processing. As the availability of data and com-
putational resources expands, these models have scaled in
both size and performance (Touvron et al., 2023a;b; Meta,
2024). However, the substantial number of parameters in
these models require extensive computational resources to
serve, making it challenging to deploy them on resource-
constrained devices such as smartphones and laptops. To
reduce the costs, numerous model compression techniques
have been proposed to reduce the model size, e.g., distil-
lation (Polino et al., 2018; Wang et al., 2019; Liang et al.,
2023), quantization (Lin et al., 2024; Dettmers et al., 2022;
Shao et al., 2024; Xiao et al., 2023), and pruning (Han
et al., 2015; Frantar & Alistarh, 2023; Zhang et al., 2024;
Sun et al., 2024). Quantization requires specialized hard-
ware support, while distillation requires extensive retraining.
Hence, we focus on pruning, which is a simple and repre-
sentative technique.

Pruning reduces the model size by removing individual
weights or rows/columns according to their importance
scores. A pruned model can achieve promising performance
with fewer parameters, resulting in a noticeable reduction
in memory and computational demands. A simple but ef-
fective pruning method is Magnitude Pruning (Han et al.,
2015) which removes weights according to their magnitudes.
The underlying assumption is that weights with smaller val-
ues contribute less to overall performance. However, this
assumption does not always hold and many advanced meth-
ods (Sun et al., 2024; Frantar & Alistarh, 2023; Zhang et al.,
2024) have been proposed recently.

Current state-of-the-art pruning methods (Frantar & Alis-
tarh, 2023; Das et al., 2023; Zhang et al., 2024; Sun et al.,
2024; Dong et al., 2024; An et al., 2024) focus on the param-
eter space to improve pruning efficacy and can be roughly
categorized into two groups: (i) designing an effective score
to measure the importance of weight, and (ii) adjusting the
remaining unpruned weights to reduce the error caused by
the pruned weights. For example, Wanda (Sun et al., 2024)
designs an importance score to incorporate input activations
with weight magnitude to take outlier features into consider-
ation instead of only weight magnitudes in Magnitude Prun-
ing; SparseGPT (Frantar & Alistarh, 2023) proposes to ad-
just the unpruned weights by minimizing reconstruction loss
using the Optimal Brain Surgeon framework (Hassibi et al.,
1993; Singh & Alistarh, 2020; Frantar et al., 2021). The
pruned model can be formulated as F(X;W⊙M+∆w),
where F is the model, X is the input, W is the weight ma-
trix, M is the weight mask determined by the importance
score, ⊙ is element-wise multiplication, and ∆w (called
weight compensation) is an update matrix for the retained
weights.

In this paper, we propose a novel method, called input com-
pensation (IC), for enhancing pruned models by adjusting
the input to compensate for the removed weights. Specifi-
cally, we learn an input compensation ∆x to adjust the input
X, therefore the output of the pruned model is determined
byF(X+∆x;Ŵ), where Ŵ is a sparse weight matrix cor-
responding to the pruned model. We learn a compensation
pool consists of multiple candidate compensations and ∆x

is a weighted combination of the candidate compensations
via the attention mechanism (Vaswani et al., 2017).
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Different from existing pruning methods, the proposed IC is
designed in the input space. Hence, IC complements exist-
ing methods that operate in the parameter space and can be
integrated with them to boost their performance. Extensive
experiments on computer vision and natural language pro-
cessing show that IC brings a large improvement to existing
pruning methods.

Our contributions are summarized as follows: (i) We pro-
pose IC which is a novel direction to enhance pruned mod-
els; (ii) IC is designed in the input space and, thus, is
orthogonal to existing pruning methods designed in the pa-
rameter space. Hence, IC can be combined with existing
pruning methods; (iii) Experimental results on various
tasks demonstrate that IC is beneficial to existing pruning
methods.

2. Related Work
Model Compression. Foundation Models (Touvron et al.,
2023a;b; Meta, 2024; Ho et al., 2020; Radford et al., 2021)
are large pre-trained models designed to serve as base mod-
els for various downstream tasks. Though foundation mod-
els are powerful, their massive parameters usually require
extensive computational and memory resources. Many re-
cent efforts have been devoted to reducing the cost via
model compression (Frantar & Alistarh, 2022; Xu et al.,
2024; Wang et al., 2024). The most popular methods for
model compression are pruning, quantization, and distilla-
tion. Pruning (Han et al., 2015; Zhang et al., 2024; Sun
et al., 2024; Dong et al., 2024; Das et al., 2023; An et al.,
2024; Frantar & Alistarh, 2023) discards parts of the model
that are less important or redundant. Quantization (Lin et al.,
2024; Dettmers et al., 2022; Shao et al., 2024; Xiao et al.,
2023; Yao et al., 2022; Kim et al., 2024) is a technique to
reduce the computational complexity and memory footprint
of a neural network by converting the model’s parameters
(weights and activations) from higher-precision representa-
tions (such as 32-bit floating-point) to lower-precision ones
(such as 8-bit integers). The primary goal of quantization
and pruning is to make the model more compressed without
significantly sacrificing its performance. Distillation (Polino
et al., 2018; Wang et al., 2019; Liang et al., 2023) trains
a smaller and more efficient model to replicate the behav-
ior of a larger and more complex model, thereby retaining
much of its performance while significantly reducing com-
putational resources. Quantization demands specialized
hardware (e.g., NVIDIA TensorRT) that supports lower pre-
cision arithmetic, while distillation requires an expensive
training phase to transfer knowledge from a large teacher
model to a small student model. In this paper, we focus on
pruning, which is a simple and widely used approach.

Pruning aims to remove less important weights without
significant performance degradation. Several important met-

rics have been designed recently. The simplest one is based
on the parameter magnitude, i.e., Magnitude Pruning (Han
et al., 2015). Wanda (Sun et al., 2024) further incorporates
weight magnitude with their input activations to consider
outlier features when calculating importance scores, while
RIA (Zhang et al., 2024) uses relative importance as a prun-
ing metric. Taylor pruning (Molchanov et al., 2022) designs
a score based on the weight multiplied by its gradient, while
Diff-Pruning (Fang et al., 2023) further uses Taylor expan-
sion over pruned timesteps to identify and discard unim-
portant parameters. In addition to designing importance
scores to find less useful parameters, one can update the
unpruned weights to compensate for the error caused by
the pruned weights. For example, SparseGPT (Frantar &
Alistarh, 2023) and OBC (Frantar & Alistarh, 2022) propose
to update the unpruned weights by minimizing a reconstruc-
tion loss by the Optimal Brain Surgeon framework (Hassibi
et al., 1993; Singh & Alistarh, 2020; Frantar et al., 2021).
Different from SparseGPT and OBC, we propose input com-
pensation by adjusting the inputs to reduce the error caused
by pruning.

Prompting (Radford et al., 2019; Brown et al., 2020; Liu
et al., 2022; Ding et al., 2022) is a popular method used
in transformer-based models which inserts additional to-
kens that instruct the model to generate a specific kind
of response. These tokens can be either discrete tokens
(e.g., “The topic is” for topic classification (Zhang et al.,
2022a; Hou et al., 2022; Jiang et al., 2023), “Let’s think
step by step” for reasoning tasks (Kojima et al., 2022)) or
learnable continuous vectors (e.g., prompt tuning (Lester
et al., 2021; Liu et al., 2021; Zhang et al., 2022b) or pre-
fix learning (Li & Liang, 2021; Liu et al., 2023)). Unlike
prompting that inserts extra tokens into the inputs, our input
compensation edits the inputs directly. Furthermore, com-
pensations are input-dependent, while prompts are usually
input-independent (Ding et al., 2022; Lester et al., 2021; Liu
et al., 2021; Zhang et al., 2022b; Bahng et al., 2022).

In control systems, the idea of input compensation (Kuo &
Golnaraghi, 1995; Franklin et al., 2002) is practically used
to adjust the control signal to reduce the influence of dis-
turbance. The goal is to adjust the input so that the overall
system achieves the desired behavior, such as better stabil-
ity, faster response, or improved accuracy. For example, in
feedforward compensation (Campos & Lewis, 1999; Krstic,
2009), if a disturbance is known ahead of time (e.g., wind
gusts affecting an airplane), this information can be incorpo-
rated into the control signal so that the system compensates
for it before it affects the output. In model pruning, the
pruned weights can be viewed as disturbances and we use
input compensation to enhance pruned models.
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Figure 1: Input compensation for pruned models.

3. Preliminary on Pruning Models
Let W ∈ Rdi×do be a weight matrix of a model F and S
be a scoring matrix whose Si,j measures the importance of
Wi,j . To prune p% parameters of W, a threshold β is deter-
mined to satisfy #{Si,j :|Si,j |<β}

#{Si,j} = p%. Using the threshold,
we construct a binary weight mask M whose Mi,j = 1 if
|Si,j | ≥ β else 0 and prune the model as W ⊙M. To
improve the performance of the pruned model, one can ad-
just the unpruned weights to compensate for the removed
weights. Generally, the pruned model is formulated as:

F(X;W ⊙M+∆w), (1)

where ∆w (called weight compensation) is an update matrix
for the retained weights. Various methods have been pro-
posed to enhance pruning by designing an effective scoring
metric or learning an effective weight compensation ∆w,
e.g., Han et al. (2015); Zhang et al. (2024); Sun et al. (2024);
Dong et al. (2024); Das et al. (2023); An et al. (2024) for the
former, and Frantar & Alistarh (2023; 2022) for the latter.
We briefly review three representative pruning approaches.

Magnitude Pruning (Han et al., 2015) is the simplest tech-
nique whose score matrix is defined as Si,j = |Wi,j |, i.e.,
removing the weights whose magnitudes are below a prede-
fined threshold. In practice, magnitude pruning is performed
layer-wise: for each layer, a layer-dependent threshold is de-
termined based on the local distribution of weights. Though
Magnitude pruning has stood out as a strong baseline for
pruning models (Blalock et al., 2020), it has a major limi-
tation: it ignores the importance of input activation, which
plays an equally importance role as weight magnitudes in
determining the output of linear layers (e.g., fully connected
layers, attention layers).

Wanda (Sun et al., 2024) addresses this limitation by incor-
porating both weights and inputs into defining the weight
importance. Specifically, let X ∈ RN×di (where N is the

sequence length) be the input activation of a training sam-
ple. Consider a linear layer Y = XW, Wanda defines the
importance of Wi,j as Si,j = |Wi,j | · ∥X:,i∥2.

SparseGPT (Frantar & Alistarh, 2023) introduces a more
sophisticated pruning approach by incrementally pruning
each column of W, followed by adjusting the remaining
weights to compensate for those that have been pruned by
the Optimal Brain Surgeon framework (Hassibi et al., 1993;
Singh & Alistarh, 2020; Frantar et al., 2021). The score
matrix is determined by Si,j =

|Wi,j |2
[H−1]i,i

and H = X⊤X+

λI (λ is a small positive constant) is the Hessian matrix of
the reconstruction loss.

4. Methodology
Different from existing methods, which primarily focus on
enhancing pruning in the parameter space, e.g., learning
a good scoring metric S or weight compensation ∆w, we
propose enhancing pruning in the input space. Let Ŵ be
the weight of a pruned model. Our objective is to determine
an input compensation ∆x for the input such that the output
of the pruned model approximates that of the dense model,
i.e.,

F(X+∆x;Ŵ) ≈ F(X;W). (2)

The compensation ∆x depends on the input X. Obviously,
learning ∆x from scratch for each input is inefficient. To
deal with this issue, we begin by developing a framework
of learning input compensation within the context of a sim-
ple linear layer and subsequently extend this approach to
general models.

4.1. Linear Models

Recent studies (Yu et al., 2017; Li et al., 2023b; Ding et al.,
2023) have shown that the weight matrix W of neural net-
works can be approximated by a combination of a sparse
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matrix S ∈ Rdi×do (assume rank(S) = do) and a low-rank
matrix AB⊤ (where A ∈ Rdi×r and B ∈ Rdo×r, r is the
rank). Hence, for a linear layer, its output can be approxi-
mated as:

Y=XW≈X(S+AB⊤) =XS+XAB⊤(S⊤S)−1S⊤︸ ︷︷ ︸
≡B̂

S

=

X+XAB̂⊤︸ ︷︷ ︸
i.e., ∆x

S. (3)

Note that input compensation and weight compensation
are dual for linear models, i.e., for an input X and its
compensation ∆x, one can design a weight compensation
∆w = X⊤(XX⊤)−1∆xW (thus, X∆w = ∆xW) such
that

(X+∆x)W = XW +∆xW = X(W +∆w). (4)

However, for nonlinear models F(X;W), the dual property
does not hold, i.e., for an input compensation ∆x, there does
not exist ∆w such that F(X + ∆x;W) = F(X;W +
∆w).

Let ai and b̂i be the i-th column of A and B̂, respec-
tively. Then, according to (3), the i-th row of ∆x can
be re-expressed as

∑r
j=1(x

⊤
i aj)b̂j , which is similar to the

attention mechanism (Vaswani et al., 2017): {xi} are the
query, {aj} are the keys, and {b̂j} are the values. This ob-
servation inspires us to design a framework of IC for general
models.

4.2. General Models

Building on the above insight from the linear layer, we
propose a general framework based on the attention mecha-
nism for general models. The proposed procedure is shown
in Algorithm 1. Figure 1 provides an overview of the IC
framework, consisting of a frozen encoder E(·) and a learn-
able compensation pool (K,V) (where K ∈ Rde×r and
V ∈ Rr×di ). The encoder, which can either be a small sub-
module of the pruned model or an identity function, maps
X into an embedding Qx = E(X) ∈ RN×de , while the
compensation pool consists of r learnable compensations.
Based on attention mechanism, the input compensation is
then constructed as:

∆x = softmax

(
QxK√

de

)
V. (5)

We add ∆x to the input and learn the compensation pool by
minimizing the following supervised loss:

min
K,V

∑
(X,Y)∈D

ℓ(F(X+∆x;Ŵ),Y), (6)

Algorithm 1 Input Compensation.

Require: pruned model F(·;Ŵ), training set D, rank r,
step size η, encoder E(·);

1: initialize K ∈ Rde×r and V ∈ Rr×di ;
2: for t = 1, . . . , T do
3: sample an input X from D;
4: compute query embedding Qx = E(X);
5: compute compensation ∆x=softmax

(
QxK√

de

)
V;

6: compute gradient g=∇(K,V)ℓ(F(X+∆x;Ŵ),Y)

(or ∇(K,V)∥F(X+∆x;Ŵ)−F(X;W)∥2 if Y is un-
available);

7: (K,V)← (K,V)− ηg;
8: end for
9: return (K,V).

where ℓ(·, ·) is a loss function. In cases where labels of
X are unavailable, we can learn the compensation pool by
minimizing the reconstruction loss:

min
K,V

∑
(X,·)∈D

∥F(X+∆x;Ŵ)−F(X;W)∥2. (7)

For NLP tasks, inputs (i.e., sentences) are sequences of dis-
crete tokens, making direct modification of inputs infeasible.
To deal with this issue, input compensation is operated in
the input embedding space. Let Hx ∈ RN×de be the embed-
dings extracted by the input embedding layer of the pruned
LLM. Similar to (5), we construct the input compensation as
∆x = softmax

(
HxK√

de

)
V. The input embeddings are then

adjusted as H+∆x and we learn the compensation pool by
minimizing the reconstruction loss of the last hidden states.

5. Experiments
5.1. Experiments on Image Classification

Datasets. We conduct image classification experiments
on ten datasets: CIFAR100 (Krizhevsky & Hinton, 2009),
Flowers (Nilsback & Zisserman, 2008), Food (Bossard et al.,
2014), EuroSAT (Helber et al., 2019), SUN (Xiao et al.,
2016), DTD (Cimpoi et al., 2014), UCF (Soomro et al.,
2012), SVHN (Netzer et al., 2011), OxfordPets (Jawahar
et al., 2012) (denoted by Pets), and RESISC45 (Cheng et al.,
2017) (denoted by RESISC). A summary of the datasets is
in Table 10 of Appendix B.6.

Implementation Details. We adopt CLIP ViT-B/32 and
ViT-B/16 (Radford et al., 2021) as the base models, whose
pruned image encoder is used as the encoder of IC. We
initialize the K and V by the standard normal distribution
and train the compensation pool for 30 epochs using the
SGD optimizer with a learning rate of 40 and momentum

4
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Table 1: Testing accuracy on image classification tasks using CLIP ViT-B/32.
Sparsity #Nonzero Params CIFAR100 Flowers Food EuroSAT SUN UCF SVHN Pets DTD RESISC Avg

Magnitude 50% 110M 33.9 26.1 34.2 45.6 30.8 35.4 45.3 38.7 27.9 55.4 37.3
Magnitude 48% 112M 43.4 30.9 44.5 61.3 36.3 43.9 56.7 48.9 31.4 64.8 46.2
Magnitude + IC 50% 112M 73.0 62.9 72.4 96.5 48.9 63.1 94.4 69.2 44.1 87.1 71.2

Wanda 50% 110M 75.0 56.4 74.1 95.2 50.8 59.7 91.8 57.6 43.4 84.4 68.9
Wanda 48% 112M 77.6 63.9 77.5 95.9 55.2 65.0 89.3 65.1 45.7 87.9 72.3
Wanda + IC 50% 112M 80.1 76.4 80.4 97.9 54.7 69.1 96.1 77.5 49.8 91.6 77.4

SparseGPT 50% 110M 83.3 69.1 81.6 97.9 58.0 68.5 93.7 59.4 48.2 89.8 74.9
SparseGPT 48% 112M 84.5 72.4 82.7 97.9 60.4 71.7 91.2 66.3 50.2 91.3 76.9
SparseGPT + IC 50% 112M 82.9 76.2 83.1 98.2 57.2 71.0 96.7 79.7 53.8 92.9 79.2

Magnitude 4:8 110M 49.0 25.9 36.5 45.1 32.8 37.8 60.8 45.3 27.1 60.2 42.1
Magnitude + IC 4:8 112M 72.9 62.4 72.1 96.5 48.2 62.9 94.3 68.3 44.8 87.4 71.0

Wanda 4:8 110M 60.9 30.5 59.2 83.1 37.2 43.2 74.4 47.0 30.9 68.7 53.5
Wanda + IC 4:8 112M 76.9 71.4 77.3 97.2 50.2 64.2 95.2 75.3 51.1 89.5 74.8

SparseGPT 4:8 110M 80.2 55.7 79.6 96.6 52.3 61.4 85.8 58.5 42.3 86.6 69.9
SparseGPT + IC 4:8 112M 81.8 72.6 81.6 98.1 51.7 65.8 96.6 78.1 49.1 92.2 76.8

Magnitude 2:4 110M 30.7 11.2 19.8 42.7 19.4 23.3 27.5 25.8 15.6 35.3 25.1
Magnitude + IC 2:4 112M 78.6 66.5 77.9 97.4 53.9 67.5 96.1 70.9 44.3 90.2 74.3

Wanda 2:4 110M 39.6 14.5 35.1 46.1 21.7 25.5 42.4 25.2 20.9 41.4 31.2
Wanda + IC 2:4 112M 80.6 74.5 80.7 97.7 54.9 68.1 96.5 74.1 51.4 91.6 77.0

SparseGPT 2:4 110M 75.5 40.2 73.0 94.3 44.5 52.6 61.3 45.7 33.5 81.6 60.2
SparseGPT + IC 2:4 112M 82.2 79.4 82.6 98.4 57.7 69.9 96.8 76.4 54.3 92.5 79.0

Table 2: Testing accuracy on image classification tasks using CLIP ViT-B/16.
Sparsity #Nonzero Params CIFAR100 Flowers Food EuroSAT SUN UCF SVHN Pets DTD RESISC Avg

Magnitude 50% 109M 76.9 56.5 78.3 90.7 51.2 65.6 95.3 62.9 42.8 82.1 70.2
Magnitude 47% 111M 80.9 64.6 82.1 94.4 56.5 70.1 95.9 68.5 47.3 86.9 74.7
Magnitude + IC 50% 111M 82.9 86.7 84.7 97.6 60.1 75.1 97.1 82.5 61.1 92.8 82.1

Wanda 50% 109M 84.1 78.1 85.5 97.6 59.5 68.9 96.9 72.7 51.8 91.2 78.6
Wanda 47% 111M 85.6 81.7 86.8 98.0 62.8 71.7 96.8 76.8 55.3 92.9 80.8
Wanda + IC 50% 111M 86.2 82.8 87.8 98.4 63.8 75.5 97.6 83.6 63.5 94.7 83.4

SparseGPT 50% 109M 87.2 80.2 88.1 98.0 63.8 73.8 97.0 75.6 56.4 93.7 81.4
SparseGPT 47% 111M 87.7 82.3 88.8 98.3 63.4 76.2 97.0 80.4 59.8 94.6 82.9
SparseGPT + IC 50% 111M 86.1 86.0 87.9 98.4 64.4 76.2 97.6 85.2 66.4 95.0 84.3

Magnitude 4:8 109M 75.8 52.0 75.4 89.6 50.0 61.4 77.4 68.8 41.4 79.1 67.1
Magnitude + IC 4:8 111M 81.5 84.2 83.2 97.5 57.6 72.5 96.9 81.6 54.4 91.9 80.1

Wanda 4:8 109M 78.6 63.2 81.4 96.0 50.6 61.3 78.2 69.5 42.8 87.7 70.9
Wanda + IC 4:8 111M 84.7 82.1 86.8 98.4 60.6 74.5 97.4 82.0 61.3 94.3 82.2

SparseGPT 4:8 109M 85.1 74.0 87.0 95.6 60.4 69.8 72.6 78.2 50.5 93.7 76.7
SparseGPT + IC 4:8 111M 84.7 84.9 87.1 98.3 60.9 74.9 97.5 83.6 62.2 94.4 82.9

Magnitude 2:4 109M 68.3 39.9 64.5 78.6 39.4 53.2 95.3 56.9 32.9 67.6 59.7
Magnitude + IC 2:4 111M 83.9 83.8 85.9 97.9 61.4 75.7 97.4 84.0 57.3 93.3 82.1

Wanda 2:4 109M 71.5 46.4 71.0 89.7 40.6 50.4 96.2 61.4 33.5 75.2 63.6
Wanda + IC 2:4 111M 84.9 87.2 86.9 98.2 62.7 75.4 97.4 84.3 59.2 94.1 83.0

SparseGPT 2:4 109M 82.8 66.2 82.8 94.4 53.6 63.0 97.2 74.2 43.1 90.2 74.7
SparseGPT + IC 2:4 111M 85.6 89.6 87.7 98.4 63.9 76.9 97.6 84.9 61.2 94.9 84.1

of 0.9. The mini-batch size is 128. Following (Bahng et al.,
2022), vi is learnable padding pixels on all sides, where the
padding size is set to 30. The rank r is chosen as 32 and a
sensitivity analysis is provided in Section 6. We evaluate
two types of sparsity: unstructured sparsity and structured
m:n sparisty (Mishra et al., 2021) (4:8 and 2:4), i.e., at most
m out of every n contiguous weights to be non-zero.

Baselines. The proposed IC can be integrated into any
existing pruning methods. To verify its effectiveness,
we consider three pruning methods: (i) Magnitude Prun-
ing (Han et al., 2015) which discards weights based on
their magnitudes; (ii) Wanda (Sun et al., 2024) designs

a scoring metric as the weight magnitudes multiplied by
the corresponding input activations on a per-output basis;
(iii) SparseGPT (Frantar & Alistarh, 2023) which adjusts
the unpruned weights by solving a layer-wise reconstruc-
tion problem using a second-order optimizer. SparseGPT
is a weight compensation method, while Magnitude and
Wanda design a scoring metric for pruning without updat-
ing weights. For all methods, the base models are fully
finetuned on the training set of all tasks before pruning.

Results. Tables 1 and 2 show the testing accuracy on
ten image classification tasks using CLIP ViT-B/32 and
ViT-B/16, respectively. As can be seen, IC consistently
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brings large improvements to existing pruning methods
in both unstructured (sparsity=50%) and structured (4:8
and 2:4) cases. Specifically, compared with Magnitude,
Magnitude + IC achieves improvements of 25% and 10%
on ViT-B/32 and ViT-B/16, respectively; Compared with
Wanda, Wanda + IC has improvements of about 2.5%; Com-
pared with SparseGPT, SparseGPT + IC performs better by
an improvement of 2% on ViT-B/32. The large improve-
ments contributed by IC verify that the learned compensa-
tion pool is effective in constructing input compensation
for the pruned models. Moreover, SparseGPT + IC con-
sistently performs the best, demonstrating that combining
both weight compensation and input compensation is more
desirable. We can also observe that unstructured pruning
(sparsity=50%) achieves higher accuracy than structured
pruning (sparsity=4:8), which is aligned with findings in
previous works (Sun et al., 2024; Frantar & Alistarh, 2023;
Zhang et al., 2024).

In our IC framework, as the encoder is a submodule of
the pruned model, the additional parameters are only from
the very small compensation pool (only 2.3M). To verify
that IC’s improvements over baselines are not due to these
additional parameters, we reduce the sparsity of baseline
methods to increase the number of nonzero parameters. As
shown in Tables 1 and 2, when using the same number of
non-zero parameters, combining Magnitude + IC, Wanda
+ IC, and SparseGPT + IC consistently achieve higher av-
erage accuracy than Magnitude, Wanda, and SparseGPT,
respectively.

5.2. Experiments on Natural Language Processing

Models and Datasets. We evaluate IC on the LLaMA
model family, i.e., LLaMA-1 (7B) (Touvron et al., 2023a),
LLaMA-2 (7B) (Touvron et al., 2023b), and LLaMA-3.1
(8B) (Meta, 2024). Following (Sun et al., 2024; Fran-
tar & Alistarh, 2023), 128 sequences sampled from the
first shard of the C4 dataset (Raffel et al., 2020) are used
as training data. We evaluate the pruned models on two
types of tasks: (i) language modeling task which evaluates
the perplexity on the held-out validation data of WikiText-
2 (Merity et al., 2016); and (ii) seven zero-shot tasks in-
clude BoolQ (Clark et al., 2019), RTE (Wang, 2018), Hel-
laSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al.,
2021), ARC-easy/challenging (Clark et al., 2018), and Open-
bookQA (Mihaylov et al., 2018)) from the EleutherAI LM
Harness package (Gao et al., 2024). As LLMs contain
billions of parameters, to make pruned models more com-
pressed, we follow (Yin et al., 2024) and focus on the un-
structured sparsity of 70% case. Implementation details are
in Appendix B.4.

Results on Language Modeling Task. Table 3 shows the
WikiText validation perplexity. As can be seen, IC consis-

Table 3: WikiText validation perplexity of pruned LLaMA
family of models.

Sparsity LLaMA-1 (7B) LLaMA-2 (7B) LLaMA-3.1 (8B)

Magnitude 70% 48432 52457 3483567
Magnitude + IC 70% 19678 8585 33194

Wanda 70% 85.0 74.4 99.7
Wanda + IC 70% 56.5 67.0 80.1

SparseGPT 70% 26.8 24.7 38.8
SparseGPT + IC 70% 17.7 18.3 27.5

Wanda + OWL 70% 24.6 30.9 70.7
Wanda + OWL + IC 70% 19.1 24.5 63.1

tently brings a significant improvement to existing pruning
methods, verifying the effectiveness of compensating inputs
for pruned LLMs. For example, SparseGPT + IC achieves a
perplexity improvement of 6.0 over SparseGPT on all three
LLaMA family of models, while Wanda + IC outperforms
Wanda by a large margin of 7.0 on all three LLMs. Al-
though Magnitude performs much worse, Magnitude + IC
still effectively reduces the perplexity by over 60%.

Results on Zero-shot Tasks. Table 4 shows the testing
accuracy of seven zero-shot tasks on the LLaMA family of
models. As can be seen, IC consistently brings a noticeable
improvement (averaged over all tasks) to all existing pruning
methods. For example, Wanda + IC outperforms Wanda on
LLaMA-3.1-8B, LLaMA-2-7B, and LLaMA-1-7B by mar-
gins of 1.09%, 1.73%, and 0.4%, respectively, indicating
that the learned compensation pool can be effectively used
to construct input compensation for pruned models without
any weight update. Moreover, SparseGPT + IC consistently
achieves the highest accuracy for all models, showing that
learning ∆x and ∆w are complementary and thus can be
combined together for boosting performance.

5.3. Experiments on Image Generation

Experimental Setting. We evaluate IC on Denoising Dif-
fusion Probability Models (DDPM) (Ho et al., 2020). Fol-
lowing (Fang et al., 2023), the CIFAR-10 dataset (with the
image size of 32 × 32) (Krizhevsky & Hinton, 2009) and
the off-the-shelf DDPM from (Ho et al., 2020) are used.
K is initialized with zero and V is initialized randomly
by a normal distribution with a standard deviation of 0.01,
where the rank r is set to 128. We train K and V using
the Adam optimizer (Kingma & Ba, 2015) with a learning
rate of 0.002 over 100K steps. The mini-batch size is set to
128. The identity function is used as the encoder of IC to
keep more original image information, which is crucial for
image generation. Following (Fang et al., 2023), we focus
on the sparsity of 30% case and compare IC with three prun-
ing methods: Magnitude Pruning (Han et al., 2015), Taylor
Pruning (Molchanov et al., 2022), and Diff-Pruning (Fang
et al., 2023).

Results. Table 5 shows the Frechet Inception Distance
(FID) (Heusel et al., 2017). As can be seen, IC consis-
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Table 4: Testing accuracy of zero-shot tasks using LLaMA family of models.
Sparsity BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Avg

L
L

aM
A

-1
(7

B
) Magnitude 70% 38.29 52.71 25.62 51.14 26.64 19.71 11.60 32.24

Magnitude + IC 70% 55.99 52.35 25.33 48.38 25.93 21.93 15.00 34.99

Wanda 70% 57.16 54.87 28.73 50.91 32.15 18.86 13.80 36.64
Wanda + IC 70% 59.60 53.07 28.80 52.01 34.55 18.86 12.40 37.04

SparseGPT 70% 63.43 56.32 33.89 58.96 44.07 23.63 17.80 42.58
SparseGPT + IC 70% 66.06 54.87 37.47 60.06 48.40 25.51 18.20 44.37

L
L

aM
A

-2
(7

B
)

Magnitude 70% 37.95 53.07 25.95 49.25 27.74 22.78 16.80 33.36
Magnitude + IC 70% 42.57 52.35 25.77 49.33 25.84 22.10 16.20 33.45

Wanda 70% 46.09 52.71 27.86 51.14 30.05 18.09 11.80 33.96
Wanda + IC 70% 58.01 52.71 27.91 50.28 29.80 19.54 11.60 35.69

SparseGPT 70% 65.75 53.07 33.47 57.06 43.73 22.35 17.40 41.83
SparseGPT + IC 70% 65.11 52.71 36.50 57.85 49.33 24.49 17.60 43.37

L
L

aM
A

-3
.1

(8
B

) Magnitude 70% 37.83 52.71 26.16 49.33 26.09 20.14 14.60 32.41
Magnitude + IC 70% 37.83 53.79 25.71 49.88 25.21 22.78 15.20 32.91

Wanda 70% 56.27 52.71 27.51 47.83 32.20 17.66 13.00 35.31
Wanda + IC 70% 61.74 52.71 27.75 49.25 33.25 17.92 12.20 36.40

SparseGPT 70% 67.71 52.71 33.60 56.20 43.14 21.08 16.40 41.55
SparseGPT + IC 70% 67.71 54.15 34.25 57.62 46.63 22.78 15.60 42.68

Table 5: FID of pruned DDPMs on CIFAR-10.
Sparsity FID

Magnitude 30% 5.48
Magnitude + IC 30% 5.31

Taylor Pruning 30% 5.56
Taylor Pruning + IC 30% 5.21

Diff-Pruning 30% 5.29
Diff-Pruning + IC 30% 5.15

tently improves the existing pruning methods, demonstrat-
ing the effectiveness of compensating inputs for pruned
LLMs. For instance, Taylor Pruning+IC achieves an FID
improvement of 0.35 compared to Taylor Pruning. Similarly,
Diff-Pruning+IC outperforms Diff-Pruning by 0.14.

6. Analysis
In this section, we conduct empirical analyses to investi-
gate the key components of IC, including rank r, sparsity,
computation cost, sparse retraining, and input-dependent
compensation. We adopt the experimental setting used in
Section 5.1 with CLIP ViT-B/32.

Sensitivity of Rank. We conduct experiments to study the
sensitivity of rank r to the performance of Magnitude + IC,
where r is chosen from {2, 4, 8, 16, 32, 64, 128}. Figure 2
shows the testing accuracy with different ranks (detailed
results are shown in Table 8 of Appendix B.3). As can be
seen, a very small rank (e.g., 2) is not desirable. When the
rank is small (≤ 16), increasing the rank leads to better
performance. A very large rank (e.g., 128) contains more
parameters but does not contribute to better performance. In
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Figure 2: Performance of Magnitude + IC with different
ranks on image classification tasks using CLIP ViT-B/32.

practice, we can choose the rank ∈ [16, 32].

Sensitivity of Sparsity. We study the performance of Mag-
nitude + IC with different sparsities. Figure 3 shows the
trend of testing accuracy (averaged over ten tasks) w.r.t.
sparsity (detailed results are shown in Table 6 of Appendix
B.1). As can be seen, when the sparsity is high (≥ 40%),
Magnitude + IC significantly outperforms Magnitude; When
the sparsity is low (≤ 20%), Magnitude + IC and Magnitude
perform comparably. In practice, a high sparsity is more de-
sirable for pruning in order to reduce the model size; Thus,
IC is practically useful for enhancing pruned models.

Computation Cost. Compared with existing pruning meth-
ods, the proposed IC needs two extra components (encoder
and compensation pool) for adjusting the inputs. As the
encoder is either a submodule of the pruned model or an
identity function and the compensation pool is very small
(only 2.3M in experiments), the extra storage is negligible
and the computation cost is small. For example, in the
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Figure 3: Performance of Magnitude and Magnitude + IC
with different sparsities on image classification tasks using
CLIP ViT-B/32.
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Figure 4: Testing accuracy (averaged over ten image classifi-
cation tasks) using CLIP ViT-B/32 with sparse retraining

image classification experiment with CLIP ViT-B/32, com-
pared with Magnitude, computation cost of Magnitude + IC
increases by only 1% (from 305G to 309G FLOPs) and in-
ference speed drops slightly from 665 to 535 images/second.
Note that testing accuracy increases largely (Table 1), veri-
fying that such additional computation cost is worthwhile.

Sparse Retraining with IC. In Section 5.1, we combine
IC with three pruning methods without sparse retraining
(i.e., retraining the sparse model following the pruning step),
which can approach the performance of the dense model.
We conduct experiments to investigate whether IC is benefi-
cial to pruning methods with sparse retraining. We retrain
retained parameters on the training data for 3 epochs using
the AdamW optimizer with a learning rate of 0.000001 and
weight decay of 0.01. Figure 4 shows the testing accuracy
(averaged over ten tasks) of pruning methods w/ or w/o IC
when sparse retraining is applied (detailed results are in
Table 7 of Appendix B.2). As can be seen, IC consistently
boosts existing pruning methods when sparse retraining is
applied. Moreover, sparse retraining achieves higher accu-
racy than those without retraining (Table 1).

Input-dependent vs. Input-independent Compensation.
The design of our IC ensures the compensation ∆x is input-
aware. A straightforward variant of IC is learning a globally
shared (i.e., input-independent) compensation ∆ for all
inputs. We conduct experiments to investigate the effective-
ness of our input-dependent mechanism. Figure 5 shows the
testing accuracy (averaged over ten tasks). As can be seen,
IC performs much better than the input-independent vari-
ant, demonstrating that input-dependent compensation is

Magnitude Wanda SparseGPT
60

65

70

75

80

85

Av
er

ag
e 

Te
st

in
g 

ac
cu

ra
cy

64.6

69.8

73.2
71.2

77.4
79.2

input-independent
input-dependent

(a) Sparsity=50%.

Magnitude Wanda SparseGPT
60

65

70

75

80

85

Av
er

ag
e 

Te
st

in
g 

ac
cu

ra
cy

61.4
64.1

69.4
71.0

74.8
76.8

input-independent
input-dependent

(b) Sparsity=4:8.
Figure 5: Testing accuracy (averaged over ten image classifi-
cation tasks) of IC and an input-independent variant using
CLIP ViT-B/32
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Figure 6: Distribution of attention weights on image classifi-
cation tasks using CLIP ViT-B/32.

more effective in reducing the error caused by the removed
weights.

Visualization. In Section 5.1, we learn a compensation pool
with r = 32 for ten image classification tasks, i.e., ∆x is a
weighted combination of 32 vi’s. Here, we study whether
different tasks lead to different preferences for vi’s. Fig-
ure 6 shows the average attention weights between vi and
testing samples belonging to different classes of three tasks
(Flowers, Food, CIFAR100) (other tasks are not shown due
to limited space). As can be seen, samples from Flowers pre-
fer {v1, . . . ,v5}; samples from Food prefer {v6, . . . ,v10};
samples from CIFAR100 prefer {v11, . . . ,v17}.

7. Conclusion
In this paper, we proposed input compensation (IC) for
enhancing pruned models by adjusting the inputs to com-
pensate for the error caused by the pruned weights. A pool
of multiple compensations is learned to construct input-
dependent compensations. IC is designed in the input space
while existing pruning methods are designed in the param-
eter space. Hence, IC can be integrated into any existing
pruning methods. Extensive experiments on NLP and CV
verify that IC largely enhances pruned models.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
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Appendix

A. Additional Related Works on Foundation Models
Foundation Models are large pre-trained models designed to serve as base models for various downstream tasks. These
models are typically trained on a large amount of data and contain massive of parameters. Notable examples include Large
Language Models (LLMs) like LLaMA series (Touvron et al., 2023a;b; Meta, 2024), which have promising performance in
natural language processing tasks such as text generation (Li et al., 2024; Zhang et al., 2023), understanding (Guo et al.,
2024; Fan & Hunter, 2023), and reasoning (Wei et al., 2022; Yu et al., 2024). In the realm of computer vision (CV), models
like CLIP (Contrastive Language-Image Pretraining) (Radford et al., 2021) use multimodal learning to bridge textual and
visual information, enhancing various CV tasks such as image classification (Radford et al., 2021), image captioning and
visual question answering (Li et al., 2022; 2023a). Additionally, diffusion models like DDPM (Ho et al., 2020), Stable
Diffusion (Rombach et al., 2022), and SDXL (Podell et al., 2024) have revolutionized image generation by employing a
process of gradually transforming noise into images, showing the diverse applications of foundation models in creative
applications.

B. Additional Experimental Results
B.1. Sensitivity of Sparsity

Table 6 shows the testing accuracy of Magnitude and Magnitude + IC with different sparsities. We can see that Magnitude +
IC significantly outperforms Magnitude when the sparsity is high (≥ 40%). In practice, a high sparsity is more desirable for
pruning to reduce the model size. Hence, IC is practically useful for boosting the performance of pruned models.

Table 6: Performance of Magnitude and Magnitude + IC with different sparsities.

Sparsity IC CIFAR100 Flowers Food EuroSAT SUN UCF SVHN Pets DTD RESISC Avg

10% ✗ 88.2 97.7 89.1 98.8 73.6 86.0 97.1 91.6 74.6 96.0 89.3
10% ✓ 87.7 97.6 88.8 98.5 73.3 85.1 97.0 91.7 73.8 96.0 88.9

20% ✗ 87.5 96.5 88.4 98.6 72.9 84.1 96.9 90.4 72.8 95.4 88.3
20% ✓ 87.2 96.3 88.1 98.5 72.6 83.2 96.9 90.4 72.2 95.3 88.1

30% ✗ 84.8 88.8 84.2 97.6 68.6 79.2 96.5 88.3 67.7 94.1 85.0
30% ✓ 84.9 91.0 85.3 98.3 68.5 78.9 96.7 88.3 67.0 94.2 85.3

40% ✗ 71.1 57.0 70.0 93.5 54.6 65.8 93.8 73.2 49.7 87.7 71.6
40% ✓ 79.8 81.9 80.7 97.4 60.4 72.9 96.2 81.4 58.9 91.6 80.1

50% ✗ 33.9 26.1 34.2 45.6 30.8 35.4 45.3 38.7 27.9 55.4 37.3
50% ✓ 73.0 62.9 72.4 96.5 48.9 63.1 94.4 69.2 44.1 87.1 71.2

60% ✗ 5.6 5.2 4.3 4.3 5.5 4.7 9.1 9.0 10.0 10.2 6.8
60% ✓ 57.5 25.0 52.0 89.4 26.1 37.0 85.6 29.0 16.5 74.1 49.2

70% ✗ 1.7 2.7 2.0 13.0 0.8 2.1 7.5 2.9 2.8 3.3 3.9
70% ✓ 19.3 6.1 13.8 75.4 4.0 7.0 51.6 4.1 4.0 26.6 21.2

80% ✗ 1.0 1.0 0.8 13.0 0.3 1.4 6.5 2.8 1.7 2.4 3.1
80% ✓ 6.9 5.1 5.2 68.8 1.0 3.5 38.8 3.8 2.8 22.1 15.8

90% ✗ 1.1 0.5 1.0 6.9 0.2 0.7 6.4 2.6 2.1 2.1 2.4
90% ✓ 3.5 2.7 2.2 49.5 0.5 2.1 6.7 3.5 3.4 7.5 8.2
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B.2. Sparse Retraining with IC

We conduct experiments to study the performance of IC when sparse retraining is applied. Table 7 shows the testing accuracy
on image classification tasks using CLIP ViT-B/32. As shown, IC brings a significant improvement to existing pruning
methods when sparse retraining is used.

Table 7: Testing accuracy on image classification tasks using CLIP ViT-B/32 with sparse retraining.
Sparsity CIFAR100 Flowers Food EuroSAT SUN UCF SVHN Pets DTD RESISC Avg

Magnitude 50% 79.3 80.8 81.2 87.8 61.6 73.8 95.5 78.2 55.1 90.6 78.4
Magnitude + IC 50% 82.4 82.6 83.0 98.2 63.1 76.3 96.8 80.0 57.7 92.5 81.3

SparseGPT 50% 80.3 85.4 83.4 83.1 63.1 74.7 96.1 82.0 58.2 91.3 79.8
SparseGPT + IC 50% 84.5 88.3 86.0 98.4 65.7 77.5 96.8 83.3 61.5 93.9 83.6

Wanda 50% 81.2 84.8 83.5 88.1 62.8 73.8 96.0 81.8 59.3 92.0 80.3
Wanda + IC 50% 84.6 87.4 85.3 98.4 64.7 76.6 96.8 82.6 61.5 94.0 83.2

Magnitude 4:8 75.9 70.4 78.7 77.0 57.1 68.1 94.9 76.1 47.9 88.9 73.5
Magnitude + IC 4:8 81.1 76.7 81.2 97.8 59.5 72.0 96.5 78.0 51.8 91.6 78.6

SparseGPT 4:8 79.6 80.3 82.7 80.9 60.0 70.0 95.7 81.2 55.6 90.8 77.7
SparseGPT + IC 4:8 83.8 84.0 84.8 98.3 62.2 74.3 96.7 82.7 58.7 93.7 81.9

Wanda 4:8 78.9 76.9 81.4 80.3 58.0 68.7 95.6 78.6 54.6 90.2 76.3
Wanda + IC 4:8 83.6 81.4 83.3 98.0 60.5 71.9 96.7 80.0 57.3 92.8 80.6

B.3. Sensitivity of Rank

Table 8 shows the testing accuracy and number of parameters of (K,V) with different ranks. We can see that a very small
rank (e.g., 2) is not desirable. In practice, we can choose the rank from 16 to 32.

Table 8: Testing accuracy of Magnitude + IC (sparsity=50%) with different ranks on image classification tasks using CLIP
ViT-B/32.

Rank #Params CIFAR100 Flowers Food EuroSAT SUN UCF SVHN Pets DTD RESISC Avg

2 0.14M 70.9 51.7 69.5 94.9 47.1 58.2 93.8 57.2 38.1 83.5 66.5
4 0.29M 73.5 56.6 71.6 95.8 47.9 60.3 94.2 61.9 40.6 85.7 68.8
8 0.58M 73.9 62.0 72.2 96.4 49.4 62.7 94.3 65.8 42.7 86.4 70.6
16 1.15M 73.5 62.0 72.9 96.9 49.6 63.8 94.4 69.8 44.0 87.2 71.4
32 2.30M 73.0 62.9 72.4 96.5 48.9 63.1 94.4 69.2 44.1 87.1 71.2
64 4.60M 73.1 64.3 73.1 96.8 50.8 64.4 94.4 65.5 42.4 87.9 71.3

128 9.20M 73.5 56.7 72.6 96.6 49.8 62.0 94.2 62.7 40.4 87.0 69.5

B.4. Implementation Details of NLP Experiments

Implementation Details. We randomly initialize K and V by a normal distribution with zero mean and standard deviation
0.01, where the rank r is set to 32. We train K and V using the AdamW optimizer (Loshchilov & Hutter, 2019) with
a learning rate of 0.001 and a linear warmup scheduler over 20 epochs. The mini-batch size is set to 1, with a gradient
accumulation of 2. The input embedding layer is used as the encoder of IC.

B.5. Language Modeling Task with Sparsity=50%

For language modeling experiments in Section 5.2, we focus on sparsity of 70% for making models more compressed. Here,
we also follow Wanda (Sun et al., 2024) and conduct experiments to evaluate IC under the 50% sparsity. The table below
shows the WikiText validation perplexity of pruned LLaMA family of models (results with † are reported in the original
publication). As can be seen, IC consistently brings a significant improvement to existing pruning methods, verifying the
effectiveness of compensating inputs for pruned LLMs again.
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Table 9: WikiText validation perplexity of pruned LLaMA family of models.

Sparsity LLaMA-1 (7B) LLaMA-2 (7B) LLaMA-3.1 (8B)

Magnitude† 50% 17.29 14.89 -
Magnitude 50% 17.29 14.90 134.26
Magnitude + IC 50% 14.60 12.44 80.37

Wanda† 50% 7.26 6.41 -
Wanda 50% 7.26 6.42 9.88
Wanda + IC 50% 7.17 6.33 8.80

SparseGPT† 50% 7.22 6.51 -
SparseGPT 50% 7.22 6.52 9.46
SparseGPT + IC 50% 7.07 6.38 8.51

B.6. Statistics of Image Classification Datasets

Table 10 shows the statistics of the image classification datasets.

Table 10: Summary of ten image classification datasets.

Dataset Training Size Testing Size #Classes

CIFAR100 (Krizhevsky & Hinton, 2009) 50,000 10,000 100
Flowers (Nilsback & Zisserman, 2008) 4,093 2,463 102
Food (Bossard et al., 2014) 50,500 30,300 101
EuroSAT (Helber et al., 2019) 13,500 8,100 10
SUN (Xiao et al., 2016) 15,888 19,850 397
DTD (Cimpoi et al., 2014) 2,820 1,692 47
UCF (Soomro et al., 2012) 7,639 3,783 101
SVHN (Netzer et al., 2011) 73,257 26,032 10
Pets (Jawahar et al., 2012) 2,944 3,669 37
RESISC (Cheng et al., 2017) 18,900 6,300 45
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