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Abstract

Transformer-based large language models con-
tinue to achieve SOTA performance across var-
ious natural language processing tasks. How-
ever, their subpar performance on seemingly
elementary problems, such as basic arithmetic,
raises concerns about model reliability, safety,
and ethical deployment. In this study, we pro-
pose a comprehensive problem analysis frame-
work to explain the underlying mechanisms
of vanilla Transformer model trained on inte-
ger arithmetic tasks, and tune the model using
strategies effective for humans. We begin by de-
composing the arithmetic into well-defined sub-
tasks commonly used by humans and conduct-
ing loss convergence order analysis together
with ablation studies for each subtask. Our
findings reveal that LLMs exhibit learning pat-
terns similar to those of humans, with a faster
learning speed for simpler subtasks compared
to complex ones. In addition, we successfully
improved the accuracy of LLMs by applying
human arithmetic strategies. These results sug-
gest that transformers may share similar infor-
mation processing mechanisms to humans in
arithmetic. Our work has important implica-
tions for enhancing LLMs’ arithmetic abilities
by applying human strategies and understand-
ing LLMs using explainable Al verifications
and comparisons with humans, ultimately fos-
tering trust in LLMs for critical and high-stakes
applications.

1 Introduction

Recent advances in Natural Language Processing
(NLP) have been driven by transformers (Vaswani
et al., 2017), the foundation of modern Large Lan-
guage Models (LLMs). These models excel across
diverse tasks, including dialogue, conversational
agents, and machine translation (Devlin et al., 2018;
Raffel et al., 2020; Touvron et al., 2023; Dziri et al.,
2024). The release of models like GPT-4 (Achiam
et al., 2023) further fueled excitement by pushing
the frontier of Artificial General Intelligence (AGI).

Type | # Digits
‘ (1,D 2,2) 3.,3) 44 5,9
+ ‘ 100 100 100 99 100
- ‘ 100 100 99 96 99
X ‘ 99 82 43 13 5
= ‘ 94 58 29 6 0

Table 1: The accuracy (%) of GPT-4 on 1-5 digits arith-
metic task. We use the prompt “What’s the answer of
a () b?”, where (©) denote the operation symbols. Each
combination of operator and digit is tested 100 times.
Despite their impressive capabilities, LLMs
struggle with basic arithmetic. For instance, GPT-
4 (Achiam et al., 2023) performs poorly on simple
integer calculations (Dziri et al., 2024), as shown
in Table 1. This gap between strong performance
on complex tasks and failure on elementary ones
not only raises concerns about the reliability and
ethical deployment of LLMs, but also highlights
fundamental limitations in current LLMs.
Arithmetic tasks differ significantly from typi-
cal NLP tasks, most notably in their deterministic
outputs. While NLP tasks often permit multiple
valid answers and encourage diversity, arithmetic
problems typically have a single correct solution.
Additionally, NLP tasks can tolerate omissions
of less critical input elements, but arithmetic re-
quires precise attention to every digit to ensure
accuracy. These tasks also involve complex in-
termediate steps that must be correctly handled,
posing a unique challenge for transformer-based
models. Furthermore, unlike the natural left-to-
right processing in language, arithmetic operations
(e.g., addition, multiplication) often proceed from
the least significant digit. Given these distinctions,
arithmetic tasks offer a valuable testbed for devel-
oping explainable methods and probing the internal
mechanisms of Transformer-based LLMs.
Existing eXplainable Al (XAI) methods for
Transformers predominantly focus on explainabil-
ity in specific instances of certain tasks, such as



indirect object identification (Wang et al., 2022)
and colored objects (Merullo et al., 2023). While
these methods provide valuable insights into how
Transformers make decisions, they often fail to
capture the intrinsic correlations in complex tasks
or the broader decision-making process. Further-
more, the inherent complexity of multilayered self-
attention architectures poses significant challenges
in explaining how transformers produce specific
outputs (Vig, 2019). Providing explanations for
Transformers on arithmetic tasks remains an open
research challenge, with only a limited amount of
work (Dziri et al., 2024; Lee et al., 2023) address-
ing this area. However, existing approaches largely
treat these models as black boxes, offering little
insight into their internal mechanisms.

Indeed, recent XAl research has proposed a more
user-centric approach to enhance users’ understand-
ing of Al In particular, a theory-of-mind based
framework emphasizes the importance of highlight-
ing differences between humans and Al models in
task performance and strategy, so that humans users
may use this information to update their beliefs
about AI’s decision-making processes (Hsiao and
Chan, 2023; Qi et al., 2024b,a). For example, a re-
cent study comparing humans and Al models in an
object detection task found that Al models whose
attended features were more closely aligned with
those of humans’ demonstrated better performance,
suggesting that human attention may be used to
improve the detection ability of AI models (Yang
et al., 2023a). Inspired by previous research, we
will compare the similarity between humans and
LLMs in performance and examine whether human
strategies are effective for LLMs in arithmetic tasks.
Examining the comparability between humans and
LLMs could significantly enhance LLMs’ explain-
ability, with important implications for ways to
improve their performance.

In this paper, we propose an explainability
framework to uncover the learning process of
transformer-based LLM. The proposed framework
decomposes the complex task into simple subtasks
based on the intermediate attention pattern and ver-
ify the subtasks through corresponding ablation ex-
periments. Specifically, we apply the explainability
framework on integer arithmetic tasks. We reformu-
late traditional arithmetic rules into a Transformer-
friendly framework. We adopted subtask decompo-
sition methods, learning curve analysis, and model
visualization analysis to diagnose accuracy issues
and uncover their root causes. We then integrate
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Figure 1: The decomposed steps of arithmetic tasks,
include (a) addition, (b) multiplication, and (c) division.

human arithmetic strategies and enhance relevant
capacities to gain a deeper understanding of the
model’s limitations and potential. Our findings
provide valuable insight into understanding and in-
terpreting Transformer-based models. The main
contributions of this work are threefold: 1) We pro-
pose a comprehensive problem analysis framework
to explain how Transformer-based LLMs handle
arithmetic tasks. 2) Based on interpretive analysis,
we enhance model’s arithmetic performance and
clarify the principles behind the improvements. 3)
Our approach contributes to broader research on
model understanding and explainability, opening
up possibilities for analyzing more complex tasks
and Transformer architectures.

2 Related Work

Since this work focuses on XAI techniques for
transformer-based models in arithmetic tasks, the
related work will address transformers in arithmetic
tasks and their XAI methods.

2.1 Transformers in Arithmetic Tasks

Transformers (Vaswani et al., 2017) use the self-
attention mechanism to capture long-range depen-
dencies among tokens and have been widely ap-
plied in both natural language processing (De-
vlin et al., 2018; Taylor et al., 2022; Thoppilan
et al., 2022; Chung et al., 2024) and computer vi-
sion (Radford et al., 2021; Li et al., 2023, 2024).
Recent studies have explored the application of
transformers in arithmetic tasks. (Yang et al.,
2023b) focus on enhancing the reasoning process
by teaching the model step by step. (Lee et al.,
2023) investigate the impact of data format design
in arithmetic tasks, finding that the use of detailed,
instructive data with intermediate steps improves
both accuracy and sample complexity. (Dziri
et al.,, 2024) explore Transformer’s limitations
in arithmetic tasks like multi-digit multiplication
through formulating these tasks as computation
graphs.These methods analyze the transformer’s



shortcomings in arithmetic primarily through ac-
curacy, offering limited insight into the internal
mechanisms by how they perform computations.

2.2 XAl in Transformers

XAI encompasses techniques that make Al sys-
tem decisions interpretable to humans. Early meth-
ods often rely on gradient-based methods, analyz-
ing how output predictions change with respect to
input (Zhou et al., 2016; Selvaraju et al., 2017).
Recently, numerous XAl studies have sought to
explain how Transformers make decisions (Wang
et al., 2022; Merullo et al., 2023; Quirke et al.,
2023). (Quirke et al., 2023) conducted a compre-
hensive analysis of a one-layer Transformer on n-
digit integer addition by decomposing the task into
three base functions. (Shen et al., 2023) shows that
reliance on positional information causes poor per-
formance on arithmetic problems involving fewer
digits.Although these studies offered some level of
explainability for transformers, they are either not
conducted on arithmetic or lack in-depth analysis
of how models perform tasks, lacking a theoretical

foundation for more systematic explainability.
Comparison with existing methods: There are

some works focused on arithmetic in transform-
ers (Dziri et al., 2024; Lee et al., 2023). How-
ever, these studies differ significantly from ours in
several ways: 1) These methods are data-driven
which treat Transformers as black boxes, focusing
on the influence of data formats. Differently, our
work instead interprets the internal mechanisms
of the model. 2) (Dziri et al., 2024) decomposes
arithmetic into sequential subtasks using complex
prompts that reflect human reasoning. In contrast,
we use standard arithmetic equations and analyze
how specific model components handle subtasks.
3) (Lee et al., 2023) explores how data formats
affect accuracy, whereas we examine their impact
on both accuracy and internal learning processes.
Despite these differences, our findings are consis-
tent with previous work. For instance, (Dziri et al.,
2024) decomposes arithmetic into subtasks, while
(Lee et al., 2023) shows how reversed outputs ben-
efit the model. This paper provides a detailed anal-
ysis of the model’s computation process, visually
demonstrating how Transformers handle arithmetic
and proposing improvements to address their lim-
itations. Our work and these works offer comple-
mentary perspectives on explainability.

3 Methodology

3.1 Comprehensive problem analysis

We propose a comprehensive problem analysis
framework to inspect LLM models, which en-
hances the explainability of model behaviors
through adopting a human-centric approach based
on cognitive science theories. The framework has
three steps: 1) subtask decomposition, 2) learning
curve analysis, and 3) model visualization analy-
sis. In human problem solving, human learners
often break down complex tasks into a combina-
tion of simpler tasks (Lee and Anderson, 2001), and
they start from easier tasks before they can solve
harder ones (Clements and Sarama, 2020), with dif-
ferent brain regions engaged in different subtasks
(Arsalidou et al., 2018). Here we decompose the
arithmetic tasks into smaller components and exam-
ine whether LLMs perform subtasks differentially,
which we refer to as subtask decomposition analy-
sis. This method helps to identify subtasks that are
particularly difficult for LLMs. For each subtask,
we inspect learning curves for the output digits to
examine the learning process for the specific cal-
culation, which we refer to as learning analysis.
This method helps to investigate the difficulties of
LLMs in generating specific output digits. After
inspecting learning curves, we visualize the con-
tribution of the attention heads to the output digit.
The visualization method helps to examine whether
the model follows humans’ information processing
strategies for different subtasks.

3.2 Human strategy and capacity transfer

Researchers in educational psychology and cog-
nitive science have explored various learning and
problem-solving strategies to improve the arith-
metic performance of human learners. Here we
test two common strategies, including the right-to-
left digit-based strategy (Hickendorff et al., 2019)
and the number-based strategy (Lemaire and Cal-
lies, 2009), on LLMs in solving arithmetic prob-
lems. In digit-based strategy, integers are man-
aged in terms of individual digits, and calculated
from right to left, without considering their repre-
sented place values (Hickendorff et al., 2019). We
adopt this strategy to tune the LLM model by us-
ing the reversed-order answers as the ground truth.
In number-based strategy, numbers are partitioned
into tens and units and then combined to simplify
calculations (Lemaire and Callies, 2009). We im-
plement this strategy in the LLM model through



Chain-of-Thought (CoT) prompting. Also, previ-
ous research highlights the importance of cogni-
tive capacities, such as working memory capac-
ity (Zhang et al., 2022) and general intelligence
(Bornemann et al., 2010), in math learning. We
enhance the capacity of LLMs by increasing the
model depth. Therefore, we hypothesize that em-
ploying human arithmetic strategies and enhancing
computational capacity could significantly improve
model arithmetic performance. Indeed, previous
research has demonstrated the effectiveness of CoT
prompting (Imani et al., 2023) in improving LLM’s
mathematical performance.

3.3 Arithmetic Tasks Formulation

This paper focuses on the integer arithmetic
task in Transformer models. The input is a se-
quence of symbols, which consists of two n-
digit operands D = (Dy_1,...,D1,Dp) and
D' = (D),_,,...,D},Dj), along with operators
(), where () can be +, x or +. We did not study
subtraction due to its similarity to addition. Trans-
former first converts the input into a sequence of
one-hot vectors representing corresponding sym-
bols through a vocabulary table of size V. These
one-hot vectors are then mapped to a sequence of
embeddings, x = (1, 29, ..., 21 ), where z; € R?
is the embedding of i-th word with dimension d, L
is sequence length. After “=", the model predicts
the answer digits A = (4,,—-1, ..., A1, Ap). An
example of the addition formula is shown as,

[65536J+[32768J [98304J

augend addend answer

Accurate calculation of answer digits requires
complex calculations. Following subtask decom-
position observed in human behavior (Lockwood
et al., 2016) and considering the characteristics of
the self-attention mechanism, we model arithmetic
tasks as a combination of simple operations acting
on digit pairs,

a;=» > fij(Di, D). )]

i=0 j=0

This data movement between tokens aligns well
with the self-attention mechanism. Transformers
need to learn distinct functions for different pairs
of digits to perform arithmetic calculations. In
the following sections, we analyze and explain the
transformer’s learning process and implement for
arithmetic tasks via task decomposition formula-

tion, and validate our explanation through ablation
experiments and visualizations.

4 Problem Analysis in Arithmetic Tasks

4.1 Addition

Subtask Decomposition: We begin our analysis
with addition, the simplest arithmetic task. The ad-
dition task takes two n-digit numbers as input, pro-
ducing an n + 1-digit answer. For 5-digit addition,
there are 10 billion distinct questions and 200,000
possible answers. In addition, the calculation of
each answer digit depends on specific digits in the
addend and augend, as well as the carry from the
previous position. Considering that the model cal-
culates answer digits from the highest value digit,
the calculation can be formulated as,

A; = |(D; + Dj)
+ (D;—1 + D;_1)//10

+ ((Di—2 + Dj_5)//10 4 (D;—1 + D;_1)%10)//10]

2
where |- | denotes floor operation. To accurately
calculate A;, the Transformer needs to operate
on 3 digit pairs, e.g., (Di, D}), (D;—1,D}_;) and
(Dj—2, D._,). Imitating the human strategy, we as-
sert the transformer utilizes several basic subtasks
to operate on digit pairs to complete the addition:
1) Base Add (BA): BA calculates the sum of digit
pair (D1, D), which is the basic operation of the
addition task. 2) Make Carry (MC): MC evaluates
whether there is a carry from the previous column.
3) Make Sum 9 (MS9): MS9 determines whether
the sum at the current position is 9, which is used
to calculate consecutive carry operations. Based
on basic subtasks, the transformer chains multiple
subtasks together to achieve complex tasks, e.g.,
Use Carry (UC) takes the carry from the previ-
ous column and adds it to the sum of the current
digit pair, Use Carry and Further Carry (UCFC)
uses carry from the previous column and further
propagates a carry to the next column.

Learning Analysis: Fig.3(a) visualizes the per-
digit and overall training loss for 5-digit addition
task, with ‘An’ representing the n-th digit and ‘All’
indicating the overall loss. The per-digit loss curves
show that the model learns each answer digit inde-
pendently. The digit AO converges much faster than
the others because its calculation, which depends
only on BA and does not require a carry from the
previous column, is relatively straightforward. The
loss for higher-order digits decreases more slowly,
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Figure 3: Illustrations of (a) the overall loss curve, and
(b-e) per-digit loss curve for each subtask on addition.
as they must account for the carry-over from lower
digits. We then categorized the training data into
3 non-overlapping subsets aligned to the BA, UC,
and UCFC tasks, and visualizes the loss curve of
each subtask in Fig.3(b-d). As shown, BA and
UC tasks show similar patterns, with the BA loss
curve dropping more quickly because BA accuracy
is needed before UC can be accurate. The curve of
UCEFC is much noisier than other tasks, as this task
requires considering at least three digits, making it
more complex than BA and UC.

Visualization Analysis: We further validated
the subtasks learned by Transformers through at-
tention visualization. We selected attention heads
that showed the clearest task separation. As shown
in Fig.2(a), distinct heads specialize in the BA and
UC subtasks, attending sequentially to digits in the
augend and addend from left to right. Notably, com-
puting digits A5 and AO involves slightly different
subtasks than other positions. This attention pattern
also explains the noisier loss curve for UCFC: each
head focuses on only three adjacent digits, which
is insufficient for capturing cascading UCFC cases.
Table 2 further confirms that using more than three
attention heads enables effective addition.

4.2 Multiplication

Unlike addition, multiplication involves a series of
intermediate steps, particularly for large numbers.

n -i ********* A2
n o
h L N " N
b -1 L |
A4 = (D4x DO’ BM A3 = (D4+D0’ BD
+(D3x D0) // 10 CA +D4-+D0’x10 PDD
+(D3x D0")%10 >A3)  UCFC - (A4xD0°)%10+D0 AD
) mod 10 MLP ) mod 10 MLP
(c) Multiplication (reversed) (d) Division
#Heads ‘ Add Mul (O) Mul (R) Div
1 \ 89.1 66.2 83.6 31.7
2 \ 98.7 85.3 96.3 86.2
3 \ 99.9 89.8 99.8 99.8
4 \ 90.1 100 99.9
5 \ 91.1 100 100

Table 2: Accuracy of Transformers on arithmetic with
different attention heads, Mul (O) and Mul (R) denote
multiplication with oridinal and reversed answer digits.

To streamline our analysis and interpretation, we
start with multi-digit x unit-digit (mxu) multipli-
cation before extending our analysis to multi-digit
x multi-digit (mxm) multiplication.

4.2.1 Unit-digit Multiplication

Subtask Decomposition: Based on the task de-
composition formulation, the m x u multiplication
can be formulated as,

+ (Di—1 x Dy)//10

+ (Di—l X D(/)%lo + D;_9 X Dé//%lO)//lOJ

3)
Imitating human strategy, we assert the transformer
utilizes the following basic subtasks that operate on
individual digit pairs: 1) Base Multiply (BM): BM
calculates the product of two single digits D; and
D;- at each position. 2) Make Carry (MC): MC is
responsible for calculating the carryover from the
previous digit. Similar to addition, complex func-
tions can be achieved through combining simple
tasks, e.g., Use Carry (UC) and Use Carry and
Further Carry (UCFC).

Learning Analysis: Fig. 4(a) presents the per-
digit and overall training loss for 5-digit m x u
multiplication, where An’ denotes the n-th digit
and "All" indicates total loss. The curves suggest
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Figure 4: Illustrations of (a) the overall per-digit loss
curve, and (b-e) per-digit loss curve for each subtask on
multiplication task.

that Transformers learn each output digit semi-
independently. Digits AO and A5 converge faster
and with less noise—AQO requires no carry, while
AS involves only carry handling. In contrast,
A1-A4 show similar patterns, reflecting their de-
pendence on both the previous carry and the current
digit product, and their role in generating the next
carry. We further analyze subtasks in Fig. 4(b—d)
by grouping training samples into non-overlapping
subsets per subtask and plotting per-digit loss. A
clear trend emerges: while all tasks start with high
loss, their curves decline at different rates with
noticeable time lags. The BM subtask converges
fastest, as it serves as the foundation for all others.
UC follows, initially plateauing—indicating its re-
liance on BM—before dropping once BM adapts
to more complex, carry-involving cases. This also
explains the second drop in BM’s curve. Lastly,
UCEC shows the slowest and noisiest convergence,
as it spans three digits and is more complex.
Visualization Analysis: We analyze the model’s
prediction behavior through attention visualiza-
tion. Inspired by how humans perform multiplica-
tion—starting from the least significant digit (Lee
et al., 2023)—we visualize attention patterns for
both ordinal and reversed Transformers (data for-
mat details in Appendix A). In Fig. 2(b), the ordi-
nal Transformer attends sequentially to digits in the
multiplicand. Three heads show a 1-token offset,
each handling specific subtasks—for example, the
red head computes BM on D4 and DO’. However,
each head only covers three consecutive tokens,
which limits the model’s ability to manage cas-
caded UCFC cases requiring longer-range depen-
dencies. This limitation contributes to the ordinal
model’s lower accuracy. In Fig. 2(b), each atten-
tion head is also responsible for specific subtasks.
This attention pattern explains why the reversed
Transformer performs better: it can leverage pre-
viously generated answer digits to compute the

Format|overall| A9 A8 A7 A6 A5 A4 A3 A2 Al A0
0000d| 85.3 100 100 100 100 98.495.494.494.999.6 100
d000d| 16.8 [98.696.995.285.140.228.696.096.499.5 100
000dd| 5.2 |100 100 100 93.845.221.619.620.032.0100
00ddd| 0.2 |100 100 94.343.113.411.310.812.431.6100
0dddd| 0 |10095.244.411.810.010.4 9.3 12.431.4100
ddddd| 0 [91.339.913.410.5 9.9 9.5 10.512.332.6100

Table 3: Overall and per-digit accuracy(%) with various
multipliers.

current digit, enabling it to better handle cascaded
UCEFC cases. The visualizations of transformers
with different heads are shown in Appendix-D.

Table 2 shows the performance of Transform-
ers with different heads. In the table, the reversed
Transformer consistently achieves superior accu-
racy with different numbers of attention heads, and
performance improvement tends to saturate with
more than 3 attention heads, this indicates 3 heads
are sufficient to complete multiplication. We also
validated the subtasks learned by each head through
ablation experiments in Appendix-C. The ablation
experiments confirm that each attention head has a
distinct and well-defined function.

4.2.2 Multi-digit Multiplication

This section examines the m x m multiplication
task, where vanilla Transformers perform poorly.
To understand this limitation, we analyze internal
model behaviors and explore potential solutions
inspired by human learning strategies.

Human strategy transfer: We begin by eval-
uating per-digit accuracy of ordinal and reversed
Transformers across different multiplier sizes, as
shown in Table 3. Accuracy declines with in-
creased overlap among intermediate products. For
instance, in the ddddd x ddddd format (Fig. 5(c)),
digits A4 and AS involve all intermediate products,
leading to the lowest accuracy. This indicates that
vanilla Transformers struggle with the complexity
of intermediate steps in m X m multiplication.

We then evaluate the effectiveness of human
strategies and provide interpretation of their im-
pact. We first validated these strategies in Table 4.
Reversing answer digits improves performance in
the m x u task but offers limited gain alone on
the more complex m x m task, due to intricate
intermediate steps challenging for a shallow model.
CoT prompting effectively decomposes m X m
multiplication into simpler m X wu subtasks, easing
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prediction. Similarly, increasing model depth en-
hances capacity to handle these steps. Reflecting
human multiplication strategies, combining these
components yields the best accuracy.

4.3 Division

Different from addition and multiplication, the cal-
culation order of division is reversed. In this sec-
tion, we also conduct analysis starting with the
simpler m -+ u division.
4.3.1 Unit-digit Divisor Division
Subtask Decomposition: We first decompose the
division as pairwise digit operation based on our
task decomposition formulation,
D; D; Aiv1 x DY)%10
A= | 2oy D g (Hivr X Do)
Dy Dy Dy

x10]
C))

where |-| denotes floor operation. To accurately
calculate A;, the model needs to operate on 3 digit
pairs, e.g., (Di, DY), (D;y1, Dj)) and (A;41, D).
We assert the transformer utilizes several basic sub-
tasks to operate on these digit pairs: 1) Base Divi-
sion (BD): BD operates on digit pair (D7, D})) to
calculates the base quotient of two single digits. 2)
Previous Digit Division (PDD): PDD calculate the
quotient of the previous digit D;; and divisor Dy,
which is subsequently used for remainder division
calculations. 3) Answer Division (AD): AD is re-
sponse for the calculation of the portion occupied
during the calculation of the previous digit.
Learning Analysis: We first analyze Trans-
former’s overall training behavior in Fig. 6(a),
where An’ denotes the n-th answer digit and All’
represents the total loss across all digits. The train-
ing process unfolds in three stages: the first two
feature rapid loss reduction, indicating the model’s
“grokking” of division rules, while the third stage
shows slower convergence as all digits are gradu-
ally mastered, leading to a smooth and low loss.
The per-digit loss curves reveal the learning order.

Accurac
Reserve  Depth  CoT  —grpr Division

0.0 1.2
7 0.0 0.0
v 79.1 65.1
v 80.2 83.9
7 V4 99.9 30.1

v v 99.6 -
v N 99.3 100

7 V4 V4 100 -

Table 4: Effectiveness of refinements on multiplication
and division.
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Figure 6: Illustrations of (a) the overall training loss
curve and (b-d) per-digit loss curves for division task.

A5 converges the fastest, as it does not depend on
any prior remainder. Digits A4 to A1l follow sim-
ilar patterns, with each curve shifting later due to
their reliance on remainders from preceding digits.
Interestingly, AO follows a distinct trajectory—it
converges faster than A4—A1l. This is likely be-
cause the model can often “guess” AO from the
divisor and the last digit of the dividend; for exam-
ple, when DO = 4 and D’ = 6, A0 is constrained
to a small set of possibilities, such as 4 or 9, sim-
plifying its prediction.

We further analyze the Transformer’s learning
behavior by grouping training data into subtask-
specific subsets and plotting per-digit loss in
Fig.6(b—d). As shown in Fig.6(b), the BD task
converges fastest, consistent with its simplicity and
the rapid loss drop in stage 1 of Fig. 6(a). The
PDD and AD losses decline later, reflecting their
dependency on prior digit outputs. This illustrates
the Transformer’s progressive learning.

Visualization Analysis: We visualize how
Transformers perform division in Fig. 2(d). Each
attention head focuses on a specific digit pair to
handle a distinct subtask—for example, the blue
head performs the BD task using digit D; from the
dividend and D}, from the divisor. The outputs of
all heads are then integrated by the MLP layer to
produce the final answer digit.



4.3.2 Multi-digit Division Analysis

The vanilla Transformer also performs poorly on
m + m division tasks. This section explores the
reasons for the accuracy drop and provides an ex-
planation of the internal mechanisms of potential
solutions inspired by human learning processes.

Human strategy transfer: We first analyze per-
digit accuracy on m <+ m division with various
dividend formats in Table 5 (e.g., ‘00000ddd’ rep-
resents an 8-digit number with the first 5 digits
fixed as zero). When the dividend is dddddddd,
the model achieves very low accuracy (1.2%). No-
tably, accuracy decreases sequentially from left to
right as we move to non-zero dividend digits, re-
flecting the accumulation of errors in remainder
calculation. This indicates that the model struggles
to handle the intermediate remainder. However,
the accuracy for the units digit (e.g., AOQ) remains
consistently high across different dividend formats.
The reason is similar to A0 in m + w division: the
Transformer can ‘guess’ the units digit based on the
divisor and dividend, avoiding error accumulation.

We then studied the effectiveness of human
strategies, including reversing answer digits, using
CoT prompting, and increasing model depth.We
first validated the effectiveness of these strategies
in Table 4. Reversing the digits is effective for
multiplication, but it actually reduces performance
for division. This is because division calculations
start from the higher-order digits, which aligns with
human experience. Increasing the model depth im-
proved the accuracy of division calculations. This
is because deeper models have a greater capac-
ity to handle intermediate results, leading to more
accurate division calculations. CoT prompting de-
composed complex tasks, effectively reducing the
model’s prediction difficulty, and thus led to better
performance. The effects of these strategies align
with human findings.

4.4 Analysis of LLMs in Arithmetic

We analyze the possible reasons for the suboptimal
performance of LLMs on arithmetic tasks based on
findings in this paper. 1) Model capacity: although
LLMs have a large capacity, due to the scarcity
of arithmetic data in the internet-collected training
data, only a small fraction of neurons are ‘special-
ized’ in arithmetic. 2) Data format: in internet-
collected data, the arithmetic data are usually pre-
sented in ordinal order. However, arithmetic tasks
have different calculation orders, e.g., the multipli-
cation follow entirely different calculation orders.

dividend |overall| A5 A4 A3 A2 Al A0
OOOOOddd‘ 57.2 ‘ 100 100 100 100 57.2 95.7
OOOOdddd‘ 21.6 ‘ 100 100 100 100 22.0 90.6

000ddddd | 19.1 | 100 100 100 87.4 22.4 90.4
ddddd000| 9.7 |97.2 62.1 69.7 152 100 100
dddddddd| 1.2 |98.7 89.1 45.8 12.7 10.5 90.5

Table 5: Overall and per-digit accuracy on division.

3) Output diversity: NLP tasks allow diverse out-
comes hence the LLM are encouraged diversified
outputs, while arithmetic have definite results.

5 Conclusion

This paper presents a comprehensive analysis
framework to inspect and explain Transformer’s
implementation on arithmetic tasks through the
consideration of human strategies. Our findings
demonstrated that the Transformer decomposes the
arithmetic task into multiple parallel streams and
combines the partial results to yield the final out-
come. Through learning and visualization analy-
ses, we explain the underlying mechanisms of the
Transformer’s inferior performance on arithmetic
tasks. Furthermore, we enhanced the model’s ac-
curacy and explainability by transferring human
arithmetic strategies and cognitive capacity, sug-
gesting that LLMs may share similar information
processing mechanisms to humans in solving arith-
metic problems. These findings have important
implications for ways to improve the arithmetic
ability of transformer-based LLMs through compar-
isons with human information processing. Our ap-
proaches contribute to the broader fields of model
enhancement and explainability. It paves the way
for enhancing the explainability of more complex
tasks and larger Transformer-based models.

Limitations

This work focuses on small-scale Transformer mod-
els, which facilitates explainability but may not cap-
ture the full capabilities of large language models
(LLMs). Future research will extend the analy-
sis to larger models to examine the scalability and
generalizability of our findings. Additionally, our
study is limited to single-operation arithmetic tasks.
Real-world scenarios often involve composite ex-
pressions requiring multi-step reasoning. Extend-
ing the framework to such settings will be essential
for evaluating and improving the arithmetic robust-
ness of Transformer-based models.
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A Data Format

Table 6 summarizes the data format used in our ex-
periments, including addition, multiplication, and
division. For multiplication, we validated the im-
pact of reversing the answer digits, the formats of
ordinal and reversed answer digits are marked as
(O) and (R) in the table. For multiplication and di-
vision, we also validated the impact of CoT, which
is also illustrated in Table 6.

Ablated Head|Avg loss|Conclusion
- ] 0000 |-

| 0.315 |Minor impact.

| 0.632 |Minor impact.
| 5.552 |Large impact, head 2 is key for BM.

0
1
2

Table 7: The influence of ablating each attention on BM
task.

Table 8: The influence of ablating each attention on CA

T dat. E 1
ype |data |Example task.
addition ‘m +m \65536 + 65535 = 131071
|m x u (0) |57257 x 2 = 114514 Ablated Head|Avg loss|Conclusion
|m % u (R) 57257 x 2 = 415411 - | 0.001 |-
| x m (0) |57257 x 51422 = 2944269454 0 | 7.846 [Large impact, head 0 is key for CA.
Itipl
MUY | % m (R) |57257 x 51422 = 4549624492 1 | 0.979 [Minor impact.
57257 x 5 = 286285 2 ‘ 1.258 ‘Minor impact.
57257 x 1 = 57257
. 57257 x 4 = 229028
m x m with CoT | s7o57 « 2 = 114514
57257 x 2 = 114514 o )
57257 x 51422 = 4549624492  in divisor is non-zero in both m <+« and m + m
Im = u 131072 = 4 = 32768 divisions. Appendix A summarizes the data format
Im <m 16777216 + 256 = 65536 used in our experiments. _ _
167 = 256 — 0. 167 Il}ff:rence: .D}Jr'lng 1'nferer.10.e, the input conS}Sts
division 1677 =+ 256 = 6, 141 of dividend, division sign, divisor, and equal sign,

1417 + 256 = 5,137
1372 + 256 = 5,092
0921 + 256 = 3,153
1536 + 256 = 6,000
16777216 = 256 = 65536

m -+ m with CoT

Table 6: Examples of data format of arithmetic tasks.
The symbols in red after “=" are what the model needs
to predict.

B Implementation Details

Training: We conducted our experiments using
a single-layer decoder-only transformer, which in-
cludes a Multi-Head Self-Attention (MHSA) layer
and a Feed-Forward (FF) layer. The dimensions
of MHSA and FF layers are 512 and 2048, respec-
tively. For scaling experiments, we extend this to a
multi-layer transformer with consistent dimensions.
The model was trained with standard cross-entropy
loss for next-token prediction, which is widely used
in transformer training. The overall training pro-
cess consists of 5000 iterations with a batch size of
64, using the Adam optimizer and a learning rate
of 1e-4. Each digit in the training data is indepen-
dently sampled from a uniform distribution 0,1,...,9.
For the division task, we ensured that the first digit

11

e.g., “123456 x 7 =". The model generates each
digit of the product answer in an autoregressive
manner. The autoregressive process stops when
generating the final digit. We test on 10k randomly
sampled data that does not appear in the training
set.

C Verification of learned subtasks

We validated the learned subtasks by each attention
head of the reversed transformer. For each head,
we used an ablation intervention technique (Quirke
et al., 2023) that overrode its output with the mean
value of the whole dataset and computed the aver-
age loss on specific samples related to the target
BM task.

The experimental results on the BM task are
shown in table 7. As shown, ablating head 0 and
head 1 has a minor impact on the loss of the BD
task, while ablating head 2 causes a significant loss
increase. We hence conclude that head 2 is the
key for the calculation of the BM task. Similar
conclusions can also be observed on other heads in
Table 8 and 9. This indicates that each attention
head has a well-defined role, and they collaborate
to accomplish the division task.
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Figure 7: The attention map of reversed transformer with different attention heads.
59483 x2 [ M, 59483 x 2 [ M, 167 + 256 {}-,
=118966 | I’ = 118966 ! =0,167 )
59483 x 3 2 59483 x 3 ! 1_6;7111256 B
= 178499 = 178499 1417 + 256 :
59483 x 3 59483 x 3 =5,137 [ i
= 178499 = 178499 1372 + 256 {
59483 X 5 59483 x 5 = 5,092
=1297415 =297415 0951]:2256
59483 X 6 59;*228);; 1536 + 256
= 356898 = = 6,000
59483 x 23356 59483 x 23356 | 16777216 +
= 1389284948 = 8494829831 } 256 = 65536
head0 headl = head2 head0 headl " head2 head0 headl . head2
(@) Ordinal multiplication (b) Reversed multiplication (c) Division

Figure 8: The attention map of transformer with CoT input, (a) ordinal transformer on multiplication task, (b)
reversed transformer on multiplication task, and (c) ordinal transformer on division task. The characters that the

transformer needs to predict are highlighted in red.

Ablated Head|Avg loss|Conclusion

| 0.002 |-

| 0.784 |Minor impact.

| 6.161 |Large impact, head 1 is key for UCFC.

= O

| 1.116 |Minor impact.

Table 9: The influence of ablating each attention on
UCFC task.

D The attention map with different
attention heads

The visualizations of transformers with differ-
ent heads are shown in Fig.7. As shown, when
the head number is less than 3, multiple tasks are
packed into a single head, hence causing the low
accuracy. Conversely, when there are more than 3
heads, multiple heads end up performing the same
subtask. The model with 3 heads demonstrates the
clearest task separation in attention patterns, it has
separate attention heads for BA, CA, and UCFC
tasks.

Algorithm reuse: We explored whether the
subtasks are learned by similar Transformer-based
models. We first train the same model on the 5-digit

12

", head1
e [

™ headl

" head2 " head2

-
!
% head3 " head3
i /

(a) 10-digit multiplication (b) 15-digit multiplication

Figure 9: The attention map of transformer on 10-digit
and 15-digit multiplication.

multiplication task with different random seeds or
optimizers. The resulting models show similar be-
havior to the previous one. We then train Trans-
formers on 10-digit and 15-digit multiplication, and
visualize the attention maps in Fig.9. The new mod-
els also use BM, UC and UCFC subtasks to com-
plete the multiplication calculation. This analysis
suggests that the Transformer architecture, when
trained on the multiplication task, converges to a
consistent algorithm for performing multiplication,
indicating a robust algorithmic solution emerges
from the Transformer’s architecture and training.

E Verification of CoT input

We visualize the attention maps of ordinal and re-
versed Transformers with CoT input on multiplica-
tion task in Fig. 8(a) and (b). CoT decomposes the



m X m task into simpler m x u multiplications and
additions, reducing calculation complexity. Since
the addition task is also easier when computed from
lower-order digits, the reversed Transformer also
outperforms the ordinal transformer with CoT in-
puts.

We then visualized the attention map of Trans-
formers with CoT input on the division task in
Fig. 8(c). As shown, when performing m + m
division, the Transformer not only focuses on divi-
dend and divisor, but also attends to the previous
intermediate results. This decomposes the complex
division task into multiple simpler ones, reducing
prediction difficulty.
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