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Abstract001

Transformer-based large language models con-002
tinue to achieve SOTA performance across var-003
ious natural language processing tasks. How-004
ever, their subpar performance on seemingly005
elementary problems, such as basic arithmetic,006
raises concerns about model reliability, safety,007
and ethical deployment. In this study, we pro-008
pose a comprehensive problem analysis frame-009
work to explain the underlying mechanisms010
of vanilla Transformer model trained on inte-011
ger arithmetic tasks, and tune the model using012
strategies effective for humans. We begin by de-013
composing the arithmetic into well-defined sub-014
tasks commonly used by humans and conduct-015
ing loss convergence order analysis together016
with ablation studies for each subtask. Our017
findings reveal that LLMs exhibit learning pat-018
terns similar to those of humans, with a faster019
learning speed for simpler subtasks compared020
to complex ones. In addition, we successfully021
improved the accuracy of LLMs by applying022
human arithmetic strategies. These results sug-023
gest that transformers may share similar infor-024
mation processing mechanisms to humans in025
arithmetic. Our work has important implica-026
tions for enhancing LLMs’ arithmetic abilities027
by applying human strategies and understand-028
ing LLMs using explainable AI verifications029
and comparisons with humans, ultimately fos-030
tering trust in LLMs for critical and high-stakes031
applications.032

1 Introduction033

Recent advances in Natural Language Processing034

(NLP) have been driven by transformers (Vaswani035

et al., 2017), the foundation of modern Large Lan-036

guage Models (LLMs). These models excel across037

diverse tasks, including dialogue, conversational038

agents, and machine translation (Devlin et al., 2018;039

Raffel et al., 2020; Touvron et al., 2023; Dziri et al.,040

2024). The release of models like GPT-4 (Achiam041

et al., 2023) further fueled excitement by pushing042

the frontier of Artificial General Intelligence (AGI).043

Type # Digits

(1,1) (2,2) (3,3) (4,4) (5,5)

+ 100 100 100 99 100

- 100 100 99 96 99

× 99 82 43 13 5

÷ 94 58 29 6 0

Table 1: The accuracy (%) of GPT-4 on 1-5 digits arith-
metic task. We use the prompt “What’s the answer of
a
⊙

b?”, where
⊙

denote the operation symbols. Each
combination of operator and digit is tested 100 times.

Despite their impressive capabilities, LLMs 044

struggle with basic arithmetic. For instance, GPT- 045

4 (Achiam et al., 2023) performs poorly on simple 046

integer calculations (Dziri et al., 2024), as shown 047

in Table 1. This gap between strong performance 048

on complex tasks and failure on elementary ones 049

not only raises concerns about the reliability and 050

ethical deployment of LLMs, but also highlights 051

fundamental limitations in current LLMs. 052

Arithmetic tasks differ significantly from typi- 053

cal NLP tasks, most notably in their deterministic 054

outputs. While NLP tasks often permit multiple 055

valid answers and encourage diversity, arithmetic 056

problems typically have a single correct solution. 057

Additionally, NLP tasks can tolerate omissions 058

of less critical input elements, but arithmetic re- 059

quires precise attention to every digit to ensure 060

accuracy. These tasks also involve complex in- 061

termediate steps that must be correctly handled, 062

posing a unique challenge for transformer-based 063

models. Furthermore, unlike the natural left-to- 064

right processing in language, arithmetic operations 065

(e.g., addition, multiplication) often proceed from 066

the least significant digit. Given these distinctions, 067

arithmetic tasks offer a valuable testbed for devel- 068

oping explainable methods and probing the internal 069

mechanisms of Transformer-based LLMs. 070

Existing eXplainable AI (XAI) methods for 071

Transformers predominantly focus on explainabil- 072

ity in specific instances of certain tasks, such as 073
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indirect object identification (Wang et al., 2022)074

and colored objects (Merullo et al., 2023). While075

these methods provide valuable insights into how076

Transformers make decisions, they often fail to077

capture the intrinsic correlations in complex tasks078

or the broader decision-making process. Further-079

more, the inherent complexity of multilayered self-080

attention architectures poses significant challenges081

in explaining how transformers produce specific082

outputs (Vig, 2019). Providing explanations for083

Transformers on arithmetic tasks remains an open084

research challenge, with only a limited amount of085

work (Dziri et al., 2024; Lee et al., 2023) address-086

ing this area. However, existing approaches largely087

treat these models as black boxes, offering little088

insight into their internal mechanisms.089

Indeed, recent XAI research has proposed a more090

user-centric approach to enhance users’ understand-091

ing of AI. In particular, a theory-of-mind based092

framework emphasizes the importance of highlight-093

ing differences between humans and AI models in094

task performance and strategy, so that humans users095

may use this information to update their beliefs096

about AI’s decision-making processes (Hsiao and097

Chan, 2023; Qi et al., 2024b,a). For example, a re-098

cent study comparing humans and AI models in an099

object detection task found that AI models whose100

attended features were more closely aligned with101

those of humans’ demonstrated better performance,102

suggesting that human attention may be used to103

improve the detection ability of AI models (Yang104

et al., 2023a). Inspired by previous research, we105

will compare the similarity between humans and106

LLMs in performance and examine whether human107

strategies are effective for LLMs in arithmetic tasks.108

Examining the comparability between humans and109

LLMs could significantly enhance LLMs’ explain-110

ability, with important implications for ways to111

improve their performance.112

In this paper, we propose an explainability113

framework to uncover the learning process of114

transformer-based LLM. The proposed framework115

decomposes the complex task into simple subtasks116

based on the intermediate attention pattern and ver-117

ify the subtasks through corresponding ablation ex-118

periments. Specifically, we apply the explainability119

framework on integer arithmetic tasks. We reformu-120

late traditional arithmetic rules into a Transformer-121

friendly framework. We adopted subtask decompo-122

sition methods, learning curve analysis, and model123

visualization analysis to diagnose accuracy issues124

and uncover their root causes. We then integrate125

(a) addition (b) multiplication

5 7 2 5 7

× 5 1 4 2 2

1 1 4 5 1 4

1 1 4 5 1 4

2 2 9 0 2 8

0 5 7 2 5 7

2 8 6 2 8 5

2 9 4 4 2 6 9 4 5 4

1 4 3 3

5 1 2 6 5 5 3 6

1 2 8

5 1 2

1 0 2 4

4 0 9 6

4 0 9 6

0

5 4 1 1 4

+ 9 8 5 1 4

1 5 2 6 2 8

0 8

0 2

0 6

1 2

1 4

(c) division

Figure 1: The decomposed steps of arithmetic tasks,
include (a) addition, (b) multiplication, and (c) division.

human arithmetic strategies and enhance relevant 126

capacities to gain a deeper understanding of the 127

model’s limitations and potential. Our findings 128

provide valuable insight into understanding and in- 129

terpreting Transformer-based models. The main 130

contributions of this work are threefold: 1) We pro- 131

pose a comprehensive problem analysis framework 132

to explain how Transformer-based LLMs handle 133

arithmetic tasks. 2) Based on interpretive analysis, 134

we enhance model’s arithmetic performance and 135

clarify the principles behind the improvements. 3) 136

Our approach contributes to broader research on 137

model understanding and explainability, opening 138

up possibilities for analyzing more complex tasks 139

and Transformer architectures. 140

2 Related Work 141

Since this work focuses on XAI techniques for 142

transformer-based models in arithmetic tasks, the 143

related work will address transformers in arithmetic 144

tasks and their XAI methods. 145

2.1 Transformers in Arithmetic Tasks 146

Transformers (Vaswani et al., 2017) use the self- 147

attention mechanism to capture long-range depen- 148

dencies among tokens and have been widely ap- 149

plied in both natural language processing (De- 150

vlin et al., 2018; Taylor et al., 2022; Thoppilan 151

et al., 2022; Chung et al., 2024) and computer vi- 152

sion (Radford et al., 2021; Li et al., 2023, 2024). 153

Recent studies have explored the application of 154

transformers in arithmetic tasks. (Yang et al., 155

2023b) focus on enhancing the reasoning process 156

by teaching the model step by step. (Lee et al., 157

2023) investigate the impact of data format design 158

in arithmetic tasks, finding that the use of detailed, 159

instructive data with intermediate steps improves 160

both accuracy and sample complexity. (Dziri 161

et al., 2024) explore Transformer’s limitations 162

in arithmetic tasks like multi-digit multiplication 163

through formulating these tasks as computation 164

graphs.These methods analyze the transformer’s 165
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shortcomings in arithmetic primarily through ac-166

curacy, offering limited insight into the internal167

mechanisms by how they perform computations.168

2.2 XAI in Transformers169

XAI encompasses techniques that make AI sys-170

tem decisions interpretable to humans. Early meth-171

ods often rely on gradient-based methods, analyz-172

ing how output predictions change with respect to173

input (Zhou et al., 2016; Selvaraju et al., 2017).174

Recently, numerous XAI studies have sought to175

explain how Transformers make decisions (Wang176

et al., 2022; Merullo et al., 2023; Quirke et al.,177

2023). (Quirke et al., 2023) conducted a compre-178

hensive analysis of a one-layer Transformer on n-179

digit integer addition by decomposing the task into180

three base functions. (Shen et al., 2023) shows that181

reliance on positional information causes poor per-182

formance on arithmetic problems involving fewer183

digits.Although these studies offered some level of184

explainability for transformers, they are either not185

conducted on arithmetic or lack in-depth analysis186

of how models perform tasks, lacking a theoretical187

foundation for more systematic explainability.188
Comparison with existing methods: There are189

some works focused on arithmetic in transform-190

ers (Dziri et al., 2024; Lee et al., 2023). How-191

ever, these studies differ significantly from ours in192

several ways: 1) These methods are data-driven193

which treat Transformers as black boxes, focusing194

on the influence of data formats. Differently, our195

work instead interprets the internal mechanisms196

of the model. 2) (Dziri et al., 2024) decomposes197

arithmetic into sequential subtasks using complex198

prompts that reflect human reasoning. In contrast,199

we use standard arithmetic equations and analyze200

how specific model components handle subtasks.201

3) (Lee et al., 2023) explores how data formats202

affect accuracy, whereas we examine their impact203

on both accuracy and internal learning processes.204

Despite these differences, our findings are consis-205

tent with previous work. For instance, (Dziri et al.,206

2024) decomposes arithmetic into subtasks, while207

(Lee et al., 2023) shows how reversed outputs ben-208

efit the model. This paper provides a detailed anal-209

ysis of the model’s computation process, visually210

demonstrating how Transformers handle arithmetic211

and proposing improvements to address their lim-212

itations. Our work and these works offer comple-213

mentary perspectives on explainability.214

3 Methodology 215

3.1 Comprehensive problem analysis 216

We propose a comprehensive problem analysis 217

framework to inspect LLM models, which en- 218

hances the explainability of model behaviors 219

through adopting a human-centric approach based 220

on cognitive science theories. The framework has 221

three steps: 1) subtask decomposition, 2) learning 222

curve analysis, and 3) model visualization analy- 223

sis. In human problem solving, human learners 224

often break down complex tasks into a combina- 225

tion of simpler tasks (Lee and Anderson, 2001), and 226

they start from easier tasks before they can solve 227

harder ones (Clements and Sarama, 2020), with dif- 228

ferent brain regions engaged in different subtasks 229

(Arsalidou et al., 2018). Here we decompose the 230

arithmetic tasks into smaller components and exam- 231

ine whether LLMs perform subtasks differentially, 232

which we refer to as subtask decomposition analy- 233

sis. This method helps to identify subtasks that are 234

particularly difficult for LLMs. For each subtask, 235

we inspect learning curves for the output digits to 236

examine the learning process for the specific cal- 237

culation, which we refer to as learning analysis. 238

This method helps to investigate the difficulties of 239

LLMs in generating specific output digits. After 240

inspecting learning curves, we visualize the con- 241

tribution of the attention heads to the output digit. 242

The visualization method helps to examine whether 243

the model follows humans’ information processing 244

strategies for different subtasks. 245

3.2 Human strategy and capacity transfer 246

Researchers in educational psychology and cog- 247

nitive science have explored various learning and 248

problem-solving strategies to improve the arith- 249

metic performance of human learners. Here we 250

test two common strategies, including the right-to- 251

left digit-based strategy (Hickendorff et al., 2019) 252

and the number-based strategy (Lemaire and Cal- 253

lies, 2009), on LLMs in solving arithmetic prob- 254

lems. In digit-based strategy, integers are man- 255

aged in terms of individual digits, and calculated 256

from right to left, without considering their repre- 257

sented place values (Hickendorff et al., 2019). We 258

adopt this strategy to tune the LLM model by us- 259

ing the reversed-order answers as the ground truth. 260

In number-based strategy, numbers are partitioned 261

into tens and units and then combined to simplify 262

calculations (Lemaire and Callies, 2009). We im- 263

plement this strategy in the LLM model through 264
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Chain-of-Thought (CoT) prompting. Also, previ-265

ous research highlights the importance of cogni-266

tive capacities, such as working memory capac-267

ity (Zhang et al., 2022) and general intelligence268

(Bornemann et al., 2010), in math learning. We269

enhance the capacity of LLMs by increasing the270

model depth. Therefore, we hypothesize that em-271

ploying human arithmetic strategies and enhancing272

computational capacity could significantly improve273

model arithmetic performance. Indeed, previous274

research has demonstrated the effectiveness of CoT275

prompting (Imani et al., 2023) in improving LLM’s276

mathematical performance.277

3.3 Arithmetic Tasks Formulation278

This paper focuses on the integer arithmetic279

task in Transformer models. The input is a se-280

quence of symbols, which consists of two n-281

digit operands D = (Dn−1, ..., D1, D0) and282

D′ = (D′
n−1, ..., D

′
1, D

′
0), along with operators283 ⊙

, where
⊙

can be +, × or ÷. We did not study284

subtraction due to its similarity to addition. Trans-285

former first converts the input into a sequence of286

one-hot vectors representing corresponding sym-287

bols through a vocabulary table of size V . These288

one-hot vectors are then mapped to a sequence of289

embeddings, x = (x1, x2, ..., xL), where xi ∈ Rd290

is the embedding of i-th word with dimension d, L291

is sequence length. After “=", the model predicts292

the answer digits A = (Am−1, ..., A1, A0). An293

example of the addition formula is shown as,294

6  5  5  3  6
D4 D3 D2 D1 D0

dividend

5  1  2
A2 A1 A0

quotient

÷ =1  2  8
D2’ D1’ D0’

divisor

6  5  5  3  6  8
D5 D4 D3 D2 D1 D0

dividend

8
D0’

divisor

8  1  9  2  1
A4 A3 A2 A1 A0

quotient

÷ =

6  5 5 3  6
D4  D3  D2  D1 D0

augend answer

+ =

addend

3  2  7  6  8
D2’ D2’ D2’ D1’ D0’ A4  A3  A2  A1  A0

9  8  3  0  4

Accurate calculation of answer digits requires295

complex calculations. Following subtask decom-296

position observed in human behavior (Lockwood297

et al., 2016) and considering the characteristics of298

the self-attention mechanism, we model arithmetic299

tasks as a combination of simple operations acting300

on digit pairs,301

ai =
n∑

i=0

n∑
j=0

fij(Di, D
′
j). (1)302

This data movement between tokens aligns well303

with the self-attention mechanism. Transformers304

need to learn distinct functions for different pairs305

of digits to perform arithmetic calculations. In306

the following sections, we analyze and explain the307

transformer’s learning process and implement for308

arithmetic tasks via task decomposition formula-309

tion, and validate our explanation through ablation 310

experiments and visualizations. 311

4 Problem Analysis in Arithmetic Tasks 312

4.1 Addition 313

Subtask Decomposition: We begin our analysis 314

with addition, the simplest arithmetic task. The ad- 315

dition task takes two n-digit numbers as input, pro- 316

ducing an n+ 1-digit answer. For 5-digit addition, 317

there are 10 billion distinct questions and 200,000 318

possible answers. In addition, the calculation of 319

each answer digit depends on specific digits in the 320

addend and augend, as well as the carry from the 321

previous position. Considering that the model cal- 322

culates answer digits from the highest value digit, 323

the calculation can be formulated as, 324

Ai = ⌊(Di +D′
i)

+ (Di−1 +D′
i−1)//10

+ ((Di−2 +D′
i−2)//10 + (Di−1 +D′

i−1)%10)//10⌋
(2) 325

where ⌊·⌋ denotes floor operation. To accurately 326

calculate Ai, the Transformer needs to operate 327

on 3 digit pairs, e.g., (Di,D′
i), (Di−1, D

′
i−1) and 328

(Di−2, D
′
i−2). Imitating the human strategy, we as- 329

sert the transformer utilizes several basic subtasks 330

to operate on digit pairs to complete the addition: 331

1) Base Add (BA): BA calculates the sum of digit 332

pair (Di,D′
i), which is the basic operation of the 333

addition task. 2) Make Carry (MC): MC evaluates 334

whether there is a carry from the previous column. 335

3) Make Sum 9 (MS9): MS9 determines whether 336

the sum at the current position is 9, which is used 337

to calculate consecutive carry operations. Based 338

on basic subtasks, the transformer chains multiple 339

subtasks together to achieve complex tasks, e.g., 340

Use Carry (UC) takes the carry from the previ- 341

ous column and adds it to the sum of the current 342

digit pair, Use Carry and Further Carry (UCFC) 343

uses carry from the previous column and further 344

propagates a carry to the next column. 345

Learning Analysis: Fig.3(a) visualizes the per- 346

digit and overall training loss for 5-digit addition 347

task, with ‘An’ representing the n-th digit and ‘All’ 348

indicating the overall loss. The per-digit loss curves 349

show that the model learns each answer digit inde- 350

pendently. The digit A0 converges much faster than 351

the others because its calculation, which depends 352

only on BA and does not require a carry from the 353

previous column, is relatively straightforward. The 354

loss for higher-order digits decreases more slowly, 355
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(d) Multiplication (ordinal)

BM

CA

UCFC

MLP

A4 = (D4×D0’

+ D3×D0’ // 10

+ (D3×D0’%10 + D2×D0’//10)//10

) mod 10

D4

D3

D2

D1

D0

×
D0’

= A5

A4

A3

A2

A1

A0

A4 = ( D4× D0’ 

+ (D3× D0’) // 10 

+ (D3× D0’)%10 >A3)

) mod 10

BM

CA

UCFC

MLP

D4

D3

D2

D1

D0

×
D0’

= A0

A1

A2

A3

A4

A5

(c) Multiplication (reversed)

D5

D4

D3

D2

D1

D0

÷
D0’

= A5

A4

A3

A2

A1

A0

(d) Division

A3 = (D4÷D0’

+D4÷D0’×10

- (A4×D0’)%10÷D0’

) mod 10

BD

PDD

AD

MLP

D4

D3

D2

D1

D0

+

D4’

D3’

D2’

D1’

D0’

= A5

A4

A3

A2

A1

A0

(a) Addition

A4 = (D4+D4’

+ (D3+D3’) // 10

+ (D2+D2’)//10 +(D3+D3’)%10)//10

) mod 10

BA

MC

MC, MS9

MLP

Figure 2: Attention maps of arithmetic tasks.

(c) UC task

(a) Overall per-digit loss

(d) UCFC task

(b) BA task
Epoch Epoch

Epoch Epoch

Figure 3: Illustrations of (a) the overall loss curve, and
(b-e) per-digit loss curve for each subtask on addition.
as they must account for the carry-over from lower356

digits. We then categorized the training data into357

3 non-overlapping subsets aligned to the BA, UC,358

and UCFC tasks, and visualizes the loss curve of359

each subtask in Fig.3(b-d). As shown, BA and360

UC tasks show similar patterns, with the BA loss361

curve dropping more quickly because BA accuracy362

is needed before UC can be accurate. The curve of363

UCFC is much noisier than other tasks, as this task364

requires considering at least three digits, making it365

more complex than BA and UC.366

Visualization Analysis: We further validated367

the subtasks learned by Transformers through at-368

tention visualization. We selected attention heads369

that showed the clearest task separation. As shown370

in Fig.2(a), distinct heads specialize in the BA and371

UC subtasks, attending sequentially to digits in the372

augend and addend from left to right. Notably, com-373

puting digits A5 and A0 involves slightly different374

subtasks than other positions. This attention pattern375

also explains the noisier loss curve for UCFC: each376

head focuses on only three adjacent digits, which377

is insufficient for capturing cascading UCFC cases.378

Table 2 further confirms that using more than three379

attention heads enables effective addition.380

4.2 Multiplication381

Unlike addition, multiplication involves a series of382

intermediate steps, particularly for large numbers.383

#Heads Add Mul (O) Mul (R) Div

1 89.1 66.2 83.6 31.7

2 98.7 85.3 96.3 86.2

3 99.9 89.8 99.8 99.8

4 100 90.1 100 99.9

5 100 91.1 100 100

Table 2: Accuracy of Transformers on arithmetic with
different attention heads, Mul (O) and Mul (R) denote
multiplication with oridinal and reversed answer digits.

To streamline our analysis and interpretation, we 384

start with multi-digit × unit-digit (m×u) multipli- 385

cation before extending our analysis to multi-digit 386

× multi-digit (m×m) multiplication. 387

4.2.1 Unit-digit Multiplication 388

Subtask Decomposition: Based on the task de- 389

composition formulation, the m× u multiplication 390

can be formulated as, 391

Ai = ⌊(Di ×D′
0)

+ (Di−1 ×D′
0)//10

+ (Di−1 ×D′
0%10 +Di−2 ×D′

0//%10)//10⌋
(3) 392

Imitating human strategy, we assert the transformer 393

utilizes the following basic subtasks that operate on 394

individual digit pairs: 1) Base Multiply (BM): BM 395

calculates the product of two single digits Di and 396

D′
j at each position. 2) Make Carry (MC): MC is 397

responsible for calculating the carryover from the 398

previous digit. Similar to addition, complex func- 399

tions can be achieved through combining simple 400

tasks, e.g., Use Carry (UC) and Use Carry and 401

Further Carry (UCFC). 402

Learning Analysis: Fig. 4(a) presents the per- 403

digit and overall training loss for 5-digit m × u 404

multiplication, where An’ denotes the n-th digit 405

and "All" indicates total loss. The curves suggest 406
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Window 5

(c) UC task (d) UCFC task

(a) Overall per-digit loss (b) BM task

Figure 4: Illustrations of (a) the overall per-digit loss
curve, and (b-e) per-digit loss curve for each subtask on
multiplication task.

that Transformers learn each output digit semi-407

independently. Digits A0 and A5 converge faster408

and with less noise—A0 requires no carry, while409

A5 involves only carry handling. In contrast,410

A1–A4 show similar patterns, reflecting their de-411

pendence on both the previous carry and the current412

digit product, and their role in generating the next413

carry. We further analyze subtasks in Fig. 4(b–d)414

by grouping training samples into non-overlapping415

subsets per subtask and plotting per-digit loss. A416

clear trend emerges: while all tasks start with high417

loss, their curves decline at different rates with418

noticeable time lags. The BM subtask converges419

fastest, as it serves as the foundation for all others.420

UC follows, initially plateauing—indicating its re-421

liance on BM—before dropping once BM adapts422

to more complex, carry-involving cases. This also423

explains the second drop in BM’s curve. Lastly,424

UCFC shows the slowest and noisiest convergence,425

as it spans three digits and is more complex.426

Visualization Analysis: We analyze the model’s427

prediction behavior through attention visualiza-428

tion. Inspired by how humans perform multiplica-429

tion—starting from the least significant digit (Lee430

et al., 2023)—we visualize attention patterns for431

both ordinal and reversed Transformers (data for-432

mat details in Appendix A). In Fig. 2(b), the ordi-433

nal Transformer attends sequentially to digits in the434

multiplicand. Three heads show a 1-token offset,435

each handling specific subtasks—for example, the436

red head computes BM on D4 and D0’. However,437

each head only covers three consecutive tokens,438

which limits the model’s ability to manage cas-439

caded UCFC cases requiring longer-range depen-440

dencies. This limitation contributes to the ordinal441

model’s lower accuracy. In Fig. 2(b), each atten-442

tion head is also responsible for specific subtasks.443

This attention pattern explains why the reversed444

Transformer performs better: it can leverage pre-445

viously generated answer digits to compute the446

Format overall A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0000d 85.3 100 100 100 100 98.4 95.4 94.4 94.9 99.6 100

d000d 16.8 98.6 96.9 95.2 85.1 40.2 28.6 96.0 96.4 99.5 100

000dd 5.2 100 100 100 93.8 45.2 21.6 19.6 20.0 32.0 100

00ddd 0.2 100 100 94.3 43.1 13.4 11.3 10.8 12.4 31.6 100

0dddd 0 100 95.2 44.4 11.8 10.0 10.4 9.3 12.4 31.4 100

ddddd 0 91.3 39.9 13.4 10.5 9.9 9.5 10.5 12.3 32.6 100

Table 3: Overall and per-digit accuracy(%) with various
multipliers.

current digit, enabling it to better handle cascaded 447

UCFC cases. The visualizations of transformers 448

with different heads are shown in Appendix-D. 449

Table 2 shows the performance of Transform- 450

ers with different heads. In the table, the reversed 451

Transformer consistently achieves superior accu- 452

racy with different numbers of attention heads, and 453

performance improvement tends to saturate with 454

more than 3 attention heads, this indicates 3 heads 455

are sufficient to complete multiplication. We also 456

validated the subtasks learned by each head through 457

ablation experiments in Appendix-C. The ablation 458

experiments confirm that each attention head has a 459

distinct and well-defined function. 460

4.2.2 Multi-digit Multiplication 461

This section examines the m × m multiplication 462

task, where vanilla Transformers perform poorly. 463

To understand this limitation, we analyze internal 464

model behaviors and explore potential solutions 465

inspired by human learning strategies. 466

Human strategy transfer: We begin by eval- 467

uating per-digit accuracy of ordinal and reversed 468

Transformers across different multiplier sizes, as 469

shown in Table 3. Accuracy declines with in- 470

creased overlap among intermediate products. For 471

instance, in the ddddd× ddddd format (Fig. 5(c)), 472

digits A4 and A5 involve all intermediate products, 473

leading to the lowest accuracy. This indicates that 474

vanilla Transformers struggle with the complexity 475

of intermediate steps in m×m multiplication. 476

We then evaluate the effectiveness of human 477

strategies and provide interpretation of their im- 478

pact. We first validated these strategies in Table 4. 479

Reversing answer digits improves performance in 480

the m × u task but offers limited gain alone on 481

the more complex m × m task, due to intricate 482

intermediate steps challenging for a shallow model. 483

CoT prompting effectively decomposes m × m 484

multiplication into simpler m× u subtasks, easing 485
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(b) 000𝑑𝑑

5 7 2 5 7

× 0 0 0 2 2

1 1 4 5 1 4

1 1 4 5 1 4   

0 0 0 1 2 5 9 6 5 4

(a) 𝑑000𝑑

5 7 2 5 7

× 5 0 0 0 2

1 1 4 5 1 4

2 8 6 2 8 5            

2 8 6 2 9 6 4 5 1 4

(c) 𝑑𝑑𝑑𝑑𝑑

5 7 2 5 7

× 5 1 4 2 2

1 1 4 5 1 4

1 1 4 5 1 4   

2 2 9 0 2 8      

0 5 7 2 5 7         

2 8 6 2 8 5            

2 9 4 4 2 6 9 4 5 4

Figure 5: The overlap of per-digit products with dif-
ferent multiplier formats, with darker colors indicating
more overlapping digits.

prediction. Similarly, increasing model depth en-486

hances capacity to handle these steps. Reflecting487

human multiplication strategies, combining these488

components yields the best accuracy.489

4.3 Division490

Different from addition and multiplication, the cal-491

culation order of division is reversed. In this sec-492

tion, we also conduct analysis starting with the493

simpler m÷ u division.494

4.3.1 Unit-digit Divisor Division495

Subtask Decomposition: We first decompose the496

division as pairwise digit operation based on our497

task decomposition formulation,498

Ai = ⌊Di

D′
0

+
Di+1

D′
0

×10− (Ai+1 ×D′
0)%10

D′
0

×10⌋

(4)499

where ⌊·⌋ denotes floor operation. To accurately500

calculate Ai, the model needs to operate on 3 digit501

pairs, e.g., (Di,D′
0), (Di+1, D

′
0) and (Ai+1, D

′
0).502

We assert the transformer utilizes several basic sub-503

tasks to operate on these digit pairs: 1) Base Divi-504

sion (BD): BD operates on digit pair (Di,D′
0) to505

calculates the base quotient of two single digits. 2)506

Previous Digit Division (PDD): PDD calculate the507

quotient of the previous digit Di+1 and divisor D′
0,508

which is subsequently used for remainder division509

calculations. 3) Answer Division (AD): AD is re-510

sponse for the calculation of the portion occupied511

during the calculation of the previous digit.512

Learning Analysis: We first analyze Trans-513

former’s overall training behavior in Fig. 6(a),514

where An’ denotes the n-th answer digit and All’515

represents the total loss across all digits. The train-516

ing process unfolds in three stages: the first two517

feature rapid loss reduction, indicating the model’s518

“grokking” of division rules, while the third stage519

shows slower convergence as all digits are gradu-520

ally mastered, leading to a smooth and low loss.521

The per-digit loss curves reveal the learning order.522

Reserve Depth CoT Accuracy
Multiply Division

0.0 1.2
✓ 0.0 0.0

✓ 79.1 65.1
✓ 80.2 83.9

✓ ✓ 99.9 30.1
✓ ✓ 99.6 -

✓ ✓ 99.3 100
✓ ✓ ✓ 100 -

Table 4: Effectiveness of refinements on multiplication
and division.

(b) Base div (w/o remainder)

(c) PDD task (d) AD task

stage1
stage2

stage3

(a) Overall loss

(c) Base div (w/ remainder)

(b) BD task(a) Overall per-digit loss

Figure 6: Illustrations of (a) the overall training loss
curve and (b-d) per-digit loss curves for division task.

A5 converges the fastest, as it does not depend on 523

any prior remainder. Digits A4 to A1 follow sim- 524

ilar patterns, with each curve shifting later due to 525

their reliance on remainders from preceding digits. 526

Interestingly, A0 follows a distinct trajectory—it 527

converges faster than A4–A1. This is likely be- 528

cause the model can often “guess” A0 from the 529

divisor and the last digit of the dividend; for exam- 530

ple, when D0 = 4 and D′ = 6, A0 is constrained 531

to a small set of possibilities, such as 4 or 9, sim- 532

plifying its prediction. 533

We further analyze the Transformer’s learning 534

behavior by grouping training data into subtask- 535

specific subsets and plotting per-digit loss in 536

Fig.6(b–d). As shown in Fig.6(b), the BD task 537

converges fastest, consistent with its simplicity and 538

the rapid loss drop in stage 1 of Fig. 6(a). The 539

PDD and AD losses decline later, reflecting their 540

dependency on prior digit outputs. This illustrates 541

the Transformer’s progressive learning. 542

Visualization Analysis: We visualize how 543

Transformers perform division in Fig. 2(d). Each 544

attention head focuses on a specific digit pair to 545

handle a distinct subtask—for example, the blue 546

head performs the BD task using digit Di from the 547

dividend and D′
0 from the divisor. The outputs of 548

all heads are then integrated by the MLP layer to 549

produce the final answer digit. 550
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4.3.2 Multi-digit Division Analysis551

The vanilla Transformer also performs poorly on552

m ÷ m division tasks. This section explores the553

reasons for the accuracy drop and provides an ex-554

planation of the internal mechanisms of potential555

solutions inspired by human learning processes.556

Human strategy transfer: We first analyze per-557

digit accuracy on m ÷ m division with various558

dividend formats in Table 5 (e.g., ‘00000ddd’ rep-559

resents an 8-digit number with the first 5 digits560

fixed as zero). When the dividend is dddddddd,561

the model achieves very low accuracy (1.2%). No-562

tably, accuracy decreases sequentially from left to563

right as we move to non-zero dividend digits, re-564

flecting the accumulation of errors in remainder565

calculation. This indicates that the model struggles566

to handle the intermediate remainder. However,567

the accuracy for the units digit (e.g., A0) remains568

consistently high across different dividend formats.569

The reason is similar to A0 in m÷ u division: the570

Transformer can ‘guess’ the units digit based on the571

divisor and dividend, avoiding error accumulation.572

We then studied the effectiveness of human573

strategies, including reversing answer digits, using574

CoT prompting, and increasing model depth.We575

first validated the effectiveness of these strategies576

in Table 4. Reversing the digits is effective for577

multiplication, but it actually reduces performance578

for division. This is because division calculations579

start from the higher-order digits, which aligns with580

human experience. Increasing the model depth im-581

proved the accuracy of division calculations. This582

is because deeper models have a greater capac-583

ity to handle intermediate results, leading to more584

accurate division calculations. CoT prompting de-585

composed complex tasks, effectively reducing the586

model’s prediction difficulty, and thus led to better587

performance. The effects of these strategies align588

with human findings.589

4.4 Analysis of LLMs in Arithmetic590

We analyze the possible reasons for the suboptimal591

performance of LLMs on arithmetic tasks based on592

findings in this paper. 1) Model capacity: although593

LLMs have a large capacity, due to the scarcity594

of arithmetic data in the internet-collected training595

data, only a small fraction of neurons are ‘special-596

ized’ in arithmetic. 2) Data format: in internet-597

collected data, the arithmetic data are usually pre-598

sented in ordinal order. However, arithmetic tasks599

have different calculation orders, e.g., the multipli-600

cation follow entirely different calculation orders.601

dividend overall A5 A4 A3 A2 A1 A0

00000ddd 57.2 100 100 100 100 57.2 95.7

0000dddd 21.6 100 100 100 100 22.0 90.6

000ddddd 19.1 100 100 100 87.4 22.4 90.4

ddddd000 9.7 97.2 62.1 69.7 15.2 100 100

dddddddd 1.2 98.7 89.1 45.8 12.7 10.5 90.5

Table 5: Overall and per-digit accuracy on division.

3) Output diversity: NLP tasks allow diverse out- 602

comes hence the LLM are encouraged diversified 603

outputs, while arithmetic have definite results. 604

5 Conclusion 605

This paper presents a comprehensive analysis 606

framework to inspect and explain Transformer’s 607

implementation on arithmetic tasks through the 608

consideration of human strategies. Our findings 609

demonstrated that the Transformer decomposes the 610

arithmetic task into multiple parallel streams and 611

combines the partial results to yield the final out- 612

come. Through learning and visualization analy- 613

ses, we explain the underlying mechanisms of the 614

Transformer’s inferior performance on arithmetic 615

tasks. Furthermore, we enhanced the model’s ac- 616

curacy and explainability by transferring human 617

arithmetic strategies and cognitive capacity, sug- 618

gesting that LLMs may share similar information 619

processing mechanisms to humans in solving arith- 620

metic problems. These findings have important 621

implications for ways to improve the arithmetic 622

ability of transformer-based LLMs through compar- 623

isons with human information processing. Our ap- 624

proaches contribute to the broader fields of model 625

enhancement and explainability. It paves the way 626

for enhancing the explainability of more complex 627

tasks and larger Transformer-based models. 628

Limitations 629

This work focuses on small-scale Transformer mod- 630

els, which facilitates explainability but may not cap- 631

ture the full capabilities of large language models 632

(LLMs). Future research will extend the analy- 633

sis to larger models to examine the scalability and 634

generalizability of our findings. Additionally, our 635

study is limited to single-operation arithmetic tasks. 636

Real-world scenarios often involve composite ex- 637

pressions requiring multi-step reasoning. Extend- 638

ing the framework to such settings will be essential 639

for evaluating and improving the arithmetic robust- 640

ness of Transformer-based models. 641
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A Data Format802

Table 6 summarizes the data format used in our ex-803

periments, including addition, multiplication, and804

division. For multiplication, we validated the im-805

pact of reversing the answer digits, the formats of806

ordinal and reversed answer digits are marked as807

(O) and (R) in the table. For multiplication and di-808

vision, we also validated the impact of CoT, which809

is also illustrated in Table 6.810

Type data Example

addition m+m 65536 + 65535 = 131071

multiply

m× u (O) 57257× 2 = 114514

m× u (R) 57257× 2 = 415411

m×m (O) 57257× 51422 = 2944269454

m×m (R) 57257× 51422 = 4549624492

m×m with CoT

57257× 5 = 286285
57257× 1 = 57257
57257× 4 = 229028
57257× 2 = 114514
57257× 2 = 114514
57257× 51422 = 4549624492

division

m÷ u 131072÷ 4 = 32768

m÷m 16777216÷ 256 = 65536

m÷m with CoT

167÷ 256 = 0, 167
1677÷ 256 = 6, 141
1417÷ 256 = 5, 137
1372÷ 256 = 5, 092
0921÷ 256 = 3, 153
1536÷ 256 = 6, 000
16777216÷ 256 = 65536

Table 6: Examples of data format of arithmetic tasks.
The symbols in red after “=" are what the model needs
to predict.

B Implementation Details811

Training: We conducted our experiments using812

a single-layer decoder-only transformer, which in-813

cludes a Multi-Head Self-Attention (MHSA) layer814

and a Feed-Forward (FF) layer. The dimensions815

of MHSA and FF layers are 512 and 2048, respec-816

tively. For scaling experiments, we extend this to a817

multi-layer transformer with consistent dimensions.818

The model was trained with standard cross-entropy819

loss for next-token prediction, which is widely used820

in transformer training. The overall training pro-821

cess consists of 5000 iterations with a batch size of822

64, using the Adam optimizer and a learning rate823

of 1e-4. Each digit in the training data is indepen-824

dently sampled from a uniform distribution 0,1,...,9.825

For the division task, we ensured that the first digit826

Ablated Head Avg loss Conclusion

- 0.000 -

0 0.315 Minor impact.

1 0.632 Minor impact.

2 5.552 Large impact, head 2 is key for BM.

Table 7: The influence of ablating each attention on BM
task.

Table 8: The influence of ablating each attention on CA
task.

Ablated Head Avg loss Conclusion

- 0.001 -

0 7.846 Large impact, head 0 is key for CA.

1 0.979 Minor impact.

2 1.258 Minor impact.

in divisor is non-zero in both m ÷ u and m ÷m 827

divisions. Appendix A summarizes the data format 828

used in our experiments. 829

Inference: During inference, the input consists 830

of dividend, division sign, divisor, and equal sign, 831

e.g., “123456 × 7 =". The model generates each 832

digit of the product answer in an autoregressive 833

manner. The autoregressive process stops when 834

generating the final digit. We test on 10k randomly 835

sampled data that does not appear in the training 836

set. 837

C Verification of learned subtasks 838

We validated the learned subtasks by each attention 839

head of the reversed transformer. For each head, 840

we used an ablation intervention technique (Quirke 841

et al., 2023) that overrode its output with the mean 842

value of the whole dataset and computed the aver- 843

age loss on specific samples related to the target 844

BM task. 845

The experimental results on the BM task are 846

shown in table 7. As shown, ablating head 0 and 847

head 1 has a minor impact on the loss of the BD 848

task, while ablating head 2 causes a significant loss 849

increase. We hence conclude that head 2 is the 850

key for the calculation of the BM task. Similar 851

conclusions can also be observed on other heads in 852

Table 8 and 9. This indicates that each attention 853

head has a well-defined role, and they collaborate 854

to accomplish the division task. 855

11



(a) 1 head (d) 4 heads(c) 3 heads(b) 2 heads

Figure 7: The attention map of reversed transformer with different attention heads.

head0 head2head1

59483 × 2
= 118966

59483 × 3
= 178499

59483 × 3
= 178499

59483 × 5
= 297415

59483 × 6
= 356898

59483 × 23356
= 1389284948

(a) Ordinal multiplication

59483 × 2
= 118966

59483 × 3
= 178499

59483 × 3
= 178499

59483 × 5
= 297415

59483 × 6
= 356898

59483 × 23356
= 8494829831

head0 head1 head2

(b) Reversed multiplication

head0 head2head1

16777216 ÷
256 = 65536

167 ÷ 256
= 0, 167
1677 ÷ 256
= 6, 141
1417 ÷ 256
= 5, 137
1372 ÷ 256
= 5, 092
0921 ÷ 256
= 3, 153
1536 ÷ 256
= 6, 000

(c) Division

Figure 8: The attention map of transformer with CoT input, (a) ordinal transformer on multiplication task, (b)
reversed transformer on multiplication task, and (c) ordinal transformer on division task. The characters that the
transformer needs to predict are highlighted in red.

Ablated Head Avg loss Conclusion

- 0.002 -

0 0.784 Minor impact.

1 6.161 Large impact, head 1 is key for UCFC.

2 1.116 Minor impact.

Table 9: The influence of ablating each attention on
UCFC task.

D The attention map with different856

attention heads857

858

The visualizations of transformers with differ-859

ent heads are shown in Fig.7. As shown, when860

the head number is less than 3, multiple tasks are861

packed into a single head, hence causing the low862

accuracy. Conversely, when there are more than 3863

heads, multiple heads end up performing the same864

subtask. The model with 3 heads demonstrates the865

clearest task separation in attention patterns, it has866

separate attention heads for BA, CA, and UCFC867

tasks.868

Algorithm reuse: We explored whether the869

subtasks are learned by similar Transformer-based870

models. We first train the same model on the 5-digit871

(a) 10-digit multiplication (b) 15-digit multiplication

head1

head2

head3

head1

head2

head3

Figure 9: The attention map of transformer on 10-digit
and 15-digit multiplication.

multiplication task with different random seeds or 872

optimizers. The resulting models show similar be- 873

havior to the previous one. We then train Trans- 874

formers on 10-digit and 15-digit multiplication, and 875

visualize the attention maps in Fig.9. The new mod- 876

els also use BM, UC and UCFC subtasks to com- 877

plete the multiplication calculation. This analysis 878

suggests that the Transformer architecture, when 879

trained on the multiplication task, converges to a 880

consistent algorithm for performing multiplication, 881

indicating a robust algorithmic solution emerges 882

from the Transformer’s architecture and training. 883

E Verification of CoT input 884

We visualize the attention maps of ordinal and re- 885

versed Transformers with CoT input on multiplica- 886

tion task in Fig. 8(a) and (b). CoT decomposes the 887
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m×m task into simpler m×u multiplications and888

additions, reducing calculation complexity. Since889

the addition task is also easier when computed from890

lower-order digits, the reversed Transformer also891

outperforms the ordinal transformer with CoT in-892

puts.893

We then visualized the attention map of Trans-894

formers with CoT input on the division task in895

Fig. 8(c). As shown, when performing m ÷ m896

division, the Transformer not only focuses on divi-897

dend and divisor, but also attends to the previous898

intermediate results. This decomposes the complex899

division task into multiple simpler ones, reducing900

prediction difficulty.901
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