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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) has significantly ad-
vanced the reasoning capabilities of Large Language Models (LLMs) by optimiz-
ing them against factual outcomes. However, this paradigm falters in long-context
scenarios, as its reliance on internal parametric knowledge is ill-suited for tasks
requiring contextual grounding—the ability to find and reason over externally pro-
vided information. We identify a key reason for this failure: a reward based solely
on the final answer is too sparse to effectively guide the model for identifying rele-
vant evidence. We formally prove that the outcome-only reward leads to exponen-
tially vanishing gradients for the context grounding process, rendering learning
intractable. To overcome this bottleneck, we introduce LongRLVR to augment
the sparse answer reward with a dense and verifiable context reward. This aux-
iliary signal directly incentivizes the model for selecting the correct grounding
information, providing a robust learning gradient that solves the underlying opti-
mization challenge. We validate our method on challenging long-context bench-
marks using Qwen and LLaMA models. LongRLVR consistently and significantly
outperforms the standard RLVR across all models and benchmarks, e.g., boosting
a 14B model’s scores on RULER-QA from 73.17 to 88.90 and on LongBench v2
from 39.8 to 46.5. Our work demonstrates that explicitly rewarding the grounding
process is a critical and effective strategy for unlocking the full reasoning potential
of LLMs in long-context applications.

1 INTRODUCTION

Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert et al., 2024; Guo et al., 2025)
has emerged as a pivotal paradigm in advancing the reasoning capabilities of Large Language Mod-
els (LLMs). By rewarding verifiable outcomes, RLVR effectively steers LLMs to explore diverse
reasoning pathways for achieving factually accurate and logically sound solutions. This paradigm
has recently propelled LLMs, such as DeepSeek-R1 (Guo et al., 2025), to achieve expert-level rea-
soning ability in domains like mathematics and programming (Guo et al., 2025; Jaech et al., 2024;
Kimi et al., 2025; Huang & Yang, 2025). The remarkable success of RLVR on complex reasoning
makes it never more compelling for applying to the next frontier: enabling LLMs to explore and rea-
son over vast external environment to unlock broader intelligence (Zhang et al., 2025). However, the
interaction of LLMs with such environments necessitates processing extensive external information,
which poses significant challenges on their long-context capabilities.

Effective long-context reasoning typically hinges upon robust contextual grounding: the ability to
accurately retrieve and synthesize information from external documents (Wan et al., 2025). Yet,
recent studies (Yue et al., 2025; Wen et al., 2025) suggest that RLVR primarily sharpens the internal
knowledge that LLMs have already acquired during pretraining. This may limit the efficacy of
RLVR for enhancing the long-context capabilities of LLMs. As shown in Figure 1, when applying
naive RLVR with outcome-only rewards for final answers upon long-context training, the model’s
contextual recall score (measured by retrieving reference chunks identifiers as detailed in Figure 2)
quickly stagnates. This plateau in relevant retrieval directly creates a ceiling for answer accuracy,
thus halting overall learning progress on training rewards.
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Figure 1: The accuracy reward and contextual recall
of naive RLVR and LongRLVR on the training data.

In this work, we introduce LongRLVR to ad-
dress the bottleneck of naive RLVR on long-
context training. We first formally prove that
the outcome-only reward causes exponen-
tially vanishing gradients for the contextual
grounding, rendering the learning to become
sparse and intractable for long sequences.
To address this, LongRLVR incorporates a
context reward into outcome-only rewards to
augment the sparse learning signal on contex-
tual grounding. Specifically, for each rollout,
we steer the model to generate the ground-
ing chunk identifiers from the long context
before achieving the final answer (see Fig-
ure 2). These identifiers will be compared
with ground-truth counterparts to access a verifiable reward. By explicitly rewarding the model
for extracting relevant evidences, we provide a dense learning signal that mitigates the vanishing
gradient issue. Therefore, our LongRLVR overcomes the bottleneck of long-context RLVR training
and allows both contextual recall and answer accuracy to improve continuously throughout training
(see Figure 1).

To support the training of LongRLVR, we develop a comprehensive data synthetic pipeline that pro-
duces high-quality, long-context question-answering data annotated with the necessary grounding
chunks. We validate its effectiveness through extensive experiments on LLaMA-3.1 (Dubey et al.,
2024) and Qwen2.5 (Yang et al., 2025) models across challenging long-context benchmarks such
as RULER (Hsieh et al., 2024), LongBench v2 (Bai et al., 2024b), and LongReason (Ling et al.,
2025). Our method consistently and significantly outperforms the outcome-only RLVR baseline.
For instance, LongRLVR largely catapults the score of Qwen2.5-14B-1M across all benchmarks
(73.17→ 88.90 on RULER-QA, 40.2→ 46.5 on LongBench v2, and 73.55→ 78.42 on LongRea-
son). By successfully training models to ground their reasoning in provided context, LongRLVR not
only overcomes the limitations of conventional RLVR but empower these models with remarkable
long-context reasoning abilities comparable with, and even superior to, state-of-the-art reasoning
models such as Qwen3 (Qwen, 2025) series.

2 METHOD

In this section, we introduce LongRLVR to remedy the limitations of RLVR in long-context tasks.
We first present an explicit grounding formulation for long-context RLVR in §2.1. Next, in §2.2,
we formally prove that outcome-only rewards lead to a vanishing gradient problem for this ground-
ing process. To solve this, we introduce our verifiable context reward, presenting its theoretical
foundation in §2.3.1 and a practical F-score-based implementation in §2.3.2. Finally, we detail the
synthetic data generation pipeline that enables this approach in §2.4.

2.1 RLVR ON LONG CONTEXTS: AN EXPLICIT GROUNDING FORMULATION

The standard RLVR framework aims to optimize a policy πθ(y | X,Q) that generates an answer y
given a context X and a question Q. The objective is to maximize the expected verifiable reward
rans(y), which typically evaluates the correctness of the final answer:

Jans(θ) = E(X,Q)∼D
[
Ey∼πθ(y|X,Q)[rans(y)]

]
. (1)

This formulation, while effective for tasks where reasoning relies on parametric knowledge, ignores
two distinct processes in long-context scenarios: (1) contextual grounding, the act of identifying
the relevant subset of information within X , and (2) answer generation, the act of synthesizing an
answer from the grounded information. When the context X is extensive, the grounding process
becomes non-trivial yet remains implicit within the monolithic policy πθ(y |X,Q).

Here, we refactor the policy to explicitly model these two stages. Let the long context X be seg-
mented into a set of N chunks, C = {c1, . . . , cN}, the long-context policy should jointly involve

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

grounding and answering to identify a subset of selected chunks Z ⊆ C and a final answer y. This
process is modeled as a factorized distribution:

πθ(y, Z | X,Q) = πgnd
θ (Z | X,Q)︸ ︷︷ ︸
Grounding Head

·πans
θ (y | X,Q,Z)︸ ︷︷ ︸

Answer Head

. (2)

The Grounding Head is responsible for contextual grounding, selecting the evidence Z required to
answer the question. The Answer Head then conditions on this selected evidence to produce the
final output y.

2.2 THE VANISHING GROUNDING GRADIENT WITH OUTCOME-ONLY REWARDS

We now formally analyze the learning dynamics of the factorized policy (Eq. 2) when optimized
solely with the final answer reward, rans(y). We will demonstrate that this outcome-only signal
is insufficient for learning the grounding head (πgnd

θ ), creating a fundamental bottleneck for long-
context reasoning.

Our analysis is based on a common property of long-context reasoning tasks: a correct solution often
requires synthesizing a complete set of prerequisite evidence. Partial information, while helpful,
typically fails to yield a high reward. This structure motivates the following formal assumption.
Assumption 1 (Sparse Reward). Let G ⊆ C be the ground-truth set of essential evidence chunks.
The expected answer reward is significantly higher only when the full set of evidence is selected.
Formally, the reward conditioned on the selected set Z is bounded by:

E[rans | Z] = µ0 + δ · 1{Z ⊇ G}, (3)

where 1{·} is the indicator function, µ0 is a baseline reward from partial evidence, and δ > 0 is the
reward bonus for a fully correct answer.

To analyze the gradient, we parameterize the grounding head πgnd
θ such that the selection of each

chunk cj ∈ C is modeled as an independent Bernoulli trial with probability pj = Prθ(cj ∈ Z).
Each probability pj is controlled by a logit sj . The probability of a successful grounding event,
S={Z ⊇ G}, is therefore q=Prθ(S)=

∏
j∈G pj , where |G|=g. This formulation reveals a critical

learning obstruction for the grounding head.
Proposition 1 (Vanishing Gradients for Grounding). Under Assumption 1, the gradient of the ex-
pected answer reward with respect to the logit sj for any essential chunk cj ∈ G is: (see proof
in Appx. §A.2)

∇sjE[rans] = δ · q · (1− pj).

Proposition 1 shows that the learning signal for selecting any single required chunk cj is scaled
by q—the probability of selecting all required chunks simultaneously. In challenging long-context
tasks where the number of essential chunks (g) is large or the initial probabilities (pj) are non-trivial,
q becomes exponentially small. This causes the gradient to vanish, providing a formal explanation
for the empirical plateau observed in Figure 1.

2.3 LONGRLVR: LEARNING WITH A VERIFIABLE CONTEXT REWARD

To surmount the vanishing gradient problem introduced in §2.2, we propose augmenting the sparse,
outcome-only reward with a direct, dense signal that supervises the grounding head. The core is the
incorporation of a verifiable context reward, rctx, which provides a granular learning signal for the
contextual grounding process.

2.3.1 THEORETICAL FOUNDATION

We begin by defining a general class of context rewards as any function monotonically increasing
with the number of correctly identified ground-truth chunks, |Z ∩G|. For analytical tractability, we
consider a simple additive form:

rctx(Z,G) = α · |Z ∩G| = α
∑
j∈G

1{cj ∈ Z}, (4)

3
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<long context>
<CHUNK 1> Marie Curie was born in Warsaw, Poland... she moved to Paris to
pursue higher education... </CHUNK 1>
<CHUNK 2> The Curies’ early research was inspired by Henri Becquerel’s 1896
discovery... </CHUNK 2>
...
<CHUNK N> In December 1898, they announced the discovery of a second ele
ment, "radium,"... </CHUNK N>
</long context>

Question: Where was Marie Curie born and what was the second radioactive
element she co-discovered?

Output:
<think> ... </think>

<useful chunks> <CHUNK 1>, <CHUNK N> </useful chunks>

<answer> Marie Curie was born in Warsaw, Poland, and the second
radioactive element she co-discovered was radium. </answer>

Figure 2: Data format for LongRLVR training. The model is tasked to retrieve useful chunks from
the long context before generating the final answer. These chunk identifiers are utilized to derive
verifiable context rewards.

where α > 0 is a scaling constant. This formulation ensures the policy receives positive feedback
for each relevant chunk it selects, irrespective of whether the complete evidence set G is recovered.

The final reward in the LongRLVR framework is a linear combination of the answer and context
rewards:

rtotal(y, Z) = rans(y) + rctx(Z,G). (5)

We then prove this general structure is sufficient to provably resolve the vanishing gradient problem.

Proposition 2 (Non-Vanishing Grounding Signal). For a context reward rctx = α|Z ∩ G|, the
gradient of the expected total reward with respect to the logit sj for any essential chunk cj ∈ G is:
(see proof in Appx. §A.3)

∇sjE[rtotal] = δ · q · (1− pj)︸ ︷︷ ︸
From rans

+α · pj(1− pj)︸ ︷︷ ︸
From rctx

.

The second term provides a dense learning signal for each chunk that is independent of the joint suc-
cess probability q, preventing the gradient from vanishing. This theoretical foundation establishes
that rewarding intermediate grounding steps is a sound and effective strategy for overcoming the
learning bottleneck in long-context RLVR.

2.3.2 A PRACTICAL INSTANTIATION: THE MODULATED F-SCORE REWARD

While our general formulation guarantees a non-vanishing gradient, a well-designed, normalized
reward is crucial for stable and effective training. A naive metric like recall (|Z ∩G|/|G|) is insuffi-
cient, as it would incentivize a degenerate policy of selecting all available chunks. A practical reward
must balance the retrieval of correct evidence (recall) with the avoidance of irrelevant information
(precision).

To this end, we adopt the Fβ-score as the core measure of grounding quality. The Fβ-score is the
weighted harmonic mean of precision and recall:

Fβ(Z,G) = (1 + β2)
Precision(Z,G) · Recall(Z,G)

(β2 · Precision(Z,G)) + Recall(Z,G)
, (6)

4
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where β is a parameter that allows us to weigh recall more heavily than precision (e.g., β = 2),
ensuring the model is primarily incentivized to gather all necessary evidence.

To create a synergistic effect between grounding and final answer accuracy, we formulate our context
reward as a modulated combination of the Fβ-score and the answer reward:

rctx(y, Z,G) = η · Fβ(Z,G) + (1− η) · rans(y) · Fβ(Z,G), (7)

where η ∈ [0, 1] is a blending hyperparameter. This reward structure has two key components: (1)
Unconditional Grounding Reward (η ·Fβ): This term provides a dense, stable reward for selecting
correct evidence, ensuring the grounding head always receives a learning signal. (2) Synergistic
Success Reward ((1− η)·rans·Fβ): This component acts as a synergistic gate, ensuring that the full
reward for high-quality grounding is unlocked only upon generating a correct answer. It incentivizes
the model to treat accurate grounding as a means to a correct final answer, unifying both objectives
and preventing the policy from perfecting grounding in isolation.

With our proposed context reward, the final LongRLVR objective is to maximize the expected total
reward over the data distribution and the stochastic policy:

J(θ) = E(X,Q,G)∼D
[
E(Z,y)∼πθ(Z,y|X,Q) [rans(y) + rctx (y, Z,G)]

]
. (8)

This objective can be optimized using standard policy gradient algorithms such as PPO and GRPO.
To facilitate the computation of rctx, we design the policy to first generate a list of identifiers for the
selected chunks (Z) before generating the final answer (y), as illustrated in Figure 2.

2.4 SYNTHETIC DATA GENERATION FOR GROUNDED QA

Training LongRLVR necessitates a specialized dataset comprising tuples of (X,Q,G, y), where G
is the ground-truth set of evidence chunks from context X essential for answering question Q with
answer y. As such datasets are exceedingly rare, we developed the automated pipeline detailed in
Algorithm 1 to produce high-fidelity, challenging QA pairs with precise grounding annotations. This
pipeline is crucial for the direct supervision of the contextual grounding mechanism in our model.

Algorithm 1 Synthetic Data Generation Pipeline for Grounded QA
1: Input: A collection of long documents X .
2: Output: A filtered dataset D = {(X,Q,G, y)}.
3: for each document X ∈ X do
4: // Step 1: Semantic Clustering and Evidence Identification
5: Partition X into a set of text chunks C = {c1, . . . , cN}.
6: Embed all chunks into a dense vector space using a sentence encoder.
7: Apply a density-based clustering algorithm to the embeddings to form thematic clusters K =
{K1,K2, . . . }.

8: // Step 2: Per-Cluster QA Generation and Scoring
9: Initialize a set of best-per-cluster candidates, Sdoc ← ∅.

10: for each cluster Ki ∈ K do
11: Generate Candidates: Prompt a generator LLM with the content of Ki to synthesize k candidate

tuples {(Qj , yj , Gj)}kj=1.
12: ▷ Crucially, the LLM itself identifies the necessary evidence Gj ⊆ Ki for each QA pair.
13: Score Candidates: For each candidate tuple, use a verifier LLM to assign a quality score sj based

on question clarity, answer fidelity, and evidence necessity.
14: Intra-Cluster Selection (Stage 1): Identify the candidate (Q∗

i , y
∗
i , G

∗
i ) with the highest score s∗i

within the cluster.
15: Add the highest-scoring tuple (Q∗

i , y
∗
i , G

∗
i , s

∗
i ) to Sdoc.

16: // Step 3: Inter-Cluster Selection and Finalization (Stage 2)
17: Select the tuple (Q∗, y∗, G∗) from Sdoc that has the overall highest score, breaking ties randomly.
18: Add the final, document-best tuple (X,Q∗, G∗, y∗) to the dataset D.
19: return D

This automated, multi-stage pipeline enables the scalable creation of challenging long-context QA
examples with the explicit evidence annotations required to compute our verifiable context reward.

5
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3 EXPERIMENTAL SETUP

3.1 IMPLEMENTATION DETAILS

Data Curation. To train our model, we constructed a large-scale, high-quality dataset of 46K
long-context question-answering pairs with explicit grounding annotations. We sourced documents
from book, arXiv, and code domains, filtering for lengths between 8K and 64K tokens. Following
the pipeline detailed in Alg. 1, we first identified semantically coherent clusters of text segments
within each document. For each document, we then used a powerful generator model, Qwen3-235B-
A22B (Qwen, 2025), to create multiple candidate QA pairs, with each answer grounded in specific
evidence segments. To ensure the highest quality, the same model was used as a judge to score the
correctness and evidence relevance of each pair. A two-stage rejection sampling process selected
the single best QA pair per document, and we applied a strict final filter, retaining only pairs with a
quality rating above 9 out of 10. See more details in Appx. §B.

Training Details. We train three models: LLaMA-3.1-8B, Qwen2.5-7B-1M, and Qwen2.5-14B-
1M 1 with RLVR implemented by naive Group Relative Policy Optimization (GRPO) (Shao et al.,
2024). Crucially, before training of each model, we exclude easy questions for which its answer
upon full long context is rated 8 or higher by a Qwen3-A235B-A22B judge. For the RL training, we
use the AdamW optimizer with a constant learning rate of 1e-6 and a 5-step linear warmup. During
rollouts, we use a prompt batch size of 512 and sample 8 responses per prompt, with a maximum
context length of 64K and a response length of 4096. We train all models for one epoch on 46K
crafted data. For hyperparameters, we set η as 0.1 and β as 2 in Eq. (7).

3.2 EVALUATION PROTOCOL

Baselines. We compare LongRLVR against two controlled baselines: Supervised Fine-Tuning
(SFT) and naive RLVR (GRPO). All methods are applied to LLaMA-3.1-8B, Qwen2.5-7B-1M, and
Qwen2.5-14B-1M, using the same synthetic training data. To contextualize performance, we also
report scores for leading open-source models (LLaMA-3.1-70B, Qwen2.5-72B, Qwen3 series) and
a specialized long-context baseline, QwenLong-L1-32B (Wan et al., 2025). The context windows
of Qwen2.5-72B and Qwen3 models are extended to 128K using YaRN (Peng et al., 2023), while
Qwen3 models are evaluated in their thinking mode.

Benchmarks. We evaluate all models on three challenging long-context QA benchmarks: (1)
RULER-QA (Hsieh et al., 2024): A synthetic benchmark testing multi-hop reasoning over arbitrary
context length. We focus on this QA task with the lengths of 32K, 64K, and 128K. (2) LongBench
v2 (Bai et al., 2024b): A realistic multi-choice QA benchmark on documents up to 128K tokens.
Standard baselines are evaluated with CoT, while models that output reasoning steps (ours and the
Qwen3 series) are evaluated on their final answer. (3) LongReason (Ling et al., 2025): A synthetic
multi-choice benchmark designed for controllable evaluation of long-context reasoning. We evaluate
the lengths of 32K, 64K, and 128K.

4 RESULTS AND ANALYSES

4.1 MAIN RESULTS

In Table 1, we present the comprehensive evaluation of LongRLVR against various baselines. The
results reveal the exceptional effectiveness of our approach, which we analyze through two critical
comparisons: (1) against naive SFT and RLVR baselines to demonstrate consistent and substantial
gains, and (2) against superior LLMs to establish its competitiveness.

Consistent and substantial gains over naive SFT and RLVR. LongRLVR consistently and sub-
stantially outperforms both SFT and naive RLVR when applied to the same base models with identi-
cal training data. This is established across different model families (LLaMA and Qwen) and scales
(7B, 8B, and 14B), confirming the general applicability of our approach. For instance, LongRLVR
achieves large gains over naive RLVR across all benchmarks and models: for Qwen2.5-14B-1M
(e.g., 46.5 vs. 39.8 on LongBench v2), Qwen2.5-7B-1M (e.g., 38.6 vs. 32.4 on LongBench v2),
and LLaMA-3.1-8B (e.g., 36.2 vs. 32.4 on LongBench v2). The consistency of these large gains

1All models refer to the instruct version.
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Table 1: The evaluation of models on long-context benchmarks. The metric in all benchmarks
is accuracy. The best score across all models is highlighted in green, and the second-best is in
red. Additionally, the best score within each trained model comparing among SFT, RLVR, and
our LongRLVR is bolded.

RULER-QA LongBench v2 LongReason

Model 32K 64K 128K AVG Short Medium Long Overall 32k 64k 128k Avg.

LLaMA-3.1-70B 70.4 64.2 47.6 60.73 36.2 45.0 34.0 25.9 61.16 63.30 48.30 57.59
Qwen2.5-72B-YaRN 66.9 54.5 47.2 56.20 43.5 48.9 40.9 43.5 74.27 74.53 69.48 72.76
Qwen3-8B (Thinking) 86.5 84.0 81.8 84.10 43.3 28.8 32.4 37.6 77.23 71.28 65.99 71.50
Qwen3-14B (Thinking) 91.2 89.0 82.6 87.60 51.7 42.3 38.9 44.9 80.86 77.08 74.56 77.50
QwenLong-L1-32B 89.0 77.0 72.4 79.47 53.3 34.4 33.3 41.0 84.13 83.63 75.06 80.94

LLaMA-3.1-8B 65.8 63.7 58.8 62.77 34.4 31.6 21.3 30.4 51.45 49.94 46.53 49.31
-SFT 68.4 65.3 60.4 64.70 36.1 28.4 28.7 31.2 50.88 49.11 48.87 49.62
-RLVR 72.0 68.8 62.6 67.80 35.6 31.2 29.6 32.4 49.87 49.62 49.37 49.62
-LongRLVR 85.5 76.5 79.0 80.33 41.1 30.7 38.9 36.2 51.89 51.01 56.80 53.23

Qwen2.5-7B-1M 70.5 66.0 58.5 65.00 37.8 31.2 28.7 33.0 66.75 66.25 66.36 66.45
-SFT 72.4 64.2 56.8 64.47 36.7 32.6 28.7 33.2 68.64 66.83 66.62 67.36
-RLVR 74.4 68.5 57.8 66.90 37.2 29.3 30.6 32.4 70.78 69.02 68.01 69.27
-LongRLVR 82.5 76.5 77.0 78.67 45.6 35.8 32.4 38.6 80.35 79.47 77.83 79.22

Qwen2.5-14B-1M 90.6 70.6 64.4 75.20 51.7 34.0 33.3 40.2 75.44 71.79 73.42 73.55
-SFT 88.0 66.5 62.2 72.23 48.9 34.9 33.3 39.6 74.18 70.03 69.27 71.16
-RLVR 86.3 69.0 64.2 73.17 48.3 36.7 31.5 39.8 74.06 71.91 71.03 72.33
-LongRLVR 95.4 87.8 83.5 88.90 55.6 43.3 38.0 46.5 81.23 77.96 76.07 78.42
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Figure 3: Study on reward components. The answer-only model suffers from stagnating contextual
recall, which caps its final performance. The context-only model excels at recall but fails to achieve
accurate rewards. By synergizing both signals, Qwen2.5-7B-1M-LongRLVR achieves the best and
most stable performance on the LongBench v2 benchmark, proving that both rewards are essential.

provides strong evidence that LongRLVR effectively remedies the fundamental limitations of naive
RLVR on long-context scenarios by directly supervising the contextual grounding process. In ad-
dition, the superiority to SFT demonstrates the potential of RLVR as a compelling post-training
approach for incentivizing long-context capabilities.

Comparable to superior LLMs. Beyond outperforming direct RLVR, LongRLVR elevates LLMs
to a exceptional performance tier, enabling them to surpass much larger conventional models and
rival the latest specialized reasoning LLMs. First, our LongRLVR demonstrates remarkable pa-
rameter efficiency against larger, conventional LLMs. Our Qwen2.5-7B-1M model (79.22 on Lon-
gReason) significantly outperforms both the LLaMA-3.1-70B (57.59) and the Qwen2.5-72B-YaRN
(72.76). Similarly, our 14B model (46.5 on LongBench v2) even surpass the performance of the
72B model, showcasing the ability to instill powerful long-context reasoning capabilities in a much
smaller parameter footprint. Second, LongRLVR empower conventional base models with excep-
tional long-context reasoning abilities that compete with and even surpass specialized models. No-
tably, our Qwen2.5-14B-1M, trained with LongRLVR, outperforming the newer Qwen3-14B (88.90
vs 87.60 on RULER-QA, 78.42 vs 77.50 on LongReason) which benefits from a more advanced
backbone and post-training strategy. Moreover, our 14B model is comparable to the much larger

7
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(a) Effect of blending factor η.
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(b) Effect of F-score parameter β.
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(c) Robustness to chunk number.

Figure 5: Ablation studies on key hyperparameters for LongRLVR. We analyze the overall per-
formance on LongBench v2 while varying (a) the blending factor η in the context reward, (b) the
F-score parameter β, and (c) the number of chunks per document. Results are reported for both
Qwen2.5-7B and LLaMA-3.1-8B.

QwenLong-L1-32B, which derives from the reasoning model, R1-Distilled-Qwen-32B, trained with
long-context RLVR. This demonstrates the significant effectiveness our method to unlock superior
long-context reasoning for non-reasoning LLMs.

4.2 IMPACT OF REWARD COMPONENTS

In Figure 1, we demonstrate that our LongRLVR overcomes the bottleneck of outcome-based RLVR
by incorporating verifiable context rewards. To isolate the impact of the context reward, in Figure 3,
we compare the training of Qwen2.5-7B-1M with the full LongRLVR against using answer-only and
context-only (Fβ score in Eq. (7)) rewards, respectively. The results confirm our central hypothesis
that the contextual recall of answer-only baseline quickly stagnates, thus creating a hard perfor-
mance ceiling on both the training reward and the downstream task. Conversely, the model trained
with context-only reward, despite involving a flat answer reward, shows rapid initial performance
gains on the LongBench v2 benchmark. This demonstrates that mastering contextual grounding is
a foundational capabilities that directly boosts long-context reasoning. However, without the final
answer reward to steer reasoning toward a correct outcome, its downstream performance eventually
degrades. While our LongRLVR succeeds by synergizing both signals, hence achieving continually
improved training answer reward and downstream tasks performance.

4.3 IMPACT OF DATA QUALITY
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Figure 4: Data quality ablation on LongBench
v2. Left: The effect of rejection sampling qual-
ity. Right: The effect of different data filter-
ing strategies. High-quality, challenging data is
shown to be most effective. Results are reported
on Qwen2.5-7B-1M-LongRLVR.

We study the impact of our two data quality
strategies in our data synthetic pipeline: (1)
using rejection sampling to select high-quality
generated QA pairs, and (2) filtering out easy
questions. We ablate these choices using the
Qwen2.5-7B-1M model and report the overall
score on LongBench v2. The results are shown
in Figure 4. First, Figure 4 (left) shows that re-
jection sampling quality is critical. Using the
best-rated samples achieves our top score of
38.6, which degrades significantly with median
(36.6) and worst-rated (34.8) samples. Second,
Figure 4 (right) analyzes our filtering strategy.
Our default method of filtering only easy ques-
tions proves most effective. Crucially, filtering
out hard questions is highly detrimental, caus-
ing performance to plummet to 35.8, nearly as
low as applying no filtering at all (35.6). This
suggests that these challenging examples are
essential for enhancing the complex reasoning
ability required for long-context tasks.
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4.4 ABLATION STUDIES ON HYPERPARAMETERS

We further conduct ablation studies to analyze key hyperparameters in our method, with results
shown in Figure 5. (1) Blending Factor η. This factor balances the unconditional grounding reward
(Fβ) and the synergistic reward (rans · Fβ). Figure 5a shows that performance peaks at a small,
non-zero value (η = 0.1). A purely synergistic reward (η = 0) is suboptimal because the initial
learning signal is too sparse. Conversely, a purely unconditional reward (η = 1) decouples ground-
ing from the final goal of producing a correct answer, hence leading to inferior effectiveness. (2)
F-score Parameter β. The β parameter trades off recall and precision in the grounding reward. As
shown in Figure 5b, performance is optimal at β = 2. This moderately prioritizes recall, which is
critical for complex reasoning where failing to retrieve a single essential piece of evidence can be
catastrophic. A lower β encourages an overly conservative policy that fails to retrieve all necessary
chunks, while a higher β incentivizes retrieving too much irrelevant context, which complicates the
final reasoning step. (3) Robustness to Number of Chunks. Figure 5c demonstrates that LongR-
LVR is remarkably robust to the number of chunks per document, maintaining high performance
from 16 to 128 chunks per document during evaluation. This is a significant practical advantage
over traditional retrieval systems, which are often highly sensitive to chunking strategy. This ro-
bustness indicates that the model learns a flexible semantic grounding policy rather than relying on
surface-level features, allowing it to identify relevant information regardless of how it is segmented.

5 RELATED WORK

Reinforcement Learning with Verifiable Rewards (RLVR). Reinforcement Learning with Ver-
ifiable Rewards (RLVR) has emerged as a powerful paradigm for enhancing the reasoning of LLMs
by rewarding models based on deterministic, ground-truth outcomes like passing unit tests or deriv-
ing a correct solution (Lambert et al., 2024; Guo et al., 2025). This approach has propelled models
to expert-level (e.g., IMO-level mathematics) performance on complex, self-contained reasoning
tasks such as mathematics and programming (Guo et al., 2025; Jaech et al., 2024; Kimi et al., 2025;
Huang & Yang, 2025). In these settings, the primary challenge is to refine the model’s internal,
parametric knowledge to discover a correct chain of thought (Yue et al., 2025; Wen et al., 2025).
However, the efficacy of this outcome-only reward structure is limited in long-context scenarios,
where success hinges first on identifying relevant evidence from a vast external input—a process we
term contextual grounding (Wan et al., 2025). Our work directly addresses this gap by introducing
a verifiable reward for the intermediate grounding process itself.

Long Context Alignment. Previous studies successfully extended model context windows
through methods like Rotary Position Embedding (RoPE) scaling (Su et al., 2022; Chen et al., 2023;
Peng et al., 2023; An et al., 2024). Yet, the extended models with long context windows often fail to
reliably use the information in applications. To solve this, long-context alignment becomes crucial to
unlock the model’s latent capabilities by post training, which includes long-context SFT (Bai et al.,
2024a), DPO (Chen et al., 2025), and RLVR (Wan et al., 2025). We investigate the challenges of
applying RLVR in long-context settings and propose a novel framework that substantially enhances
its efficacy for alignment.

6 CONCLUSION

In this work, we addressed a fundamental limitation of Reinforcement Learning with Verifiable
Rewards (RLVR) in long-context scenarios: its inability to effectively learn contextual grounding
due to sparse, outcome-only rewards. We formally identified this issue as the “vanishing grounding
gradient” problem, where the learning signal for retrieving evidence diminishes exponentially with
the complexity of the task. To overcome this, we introduced LongRLVR, a novel training paradigm
that augments the standard answer reward with a verifiable context reward. This dense reward
signal explicitly teaches the model to first identify and extract relevant evidence before generating
an answer. Our extensive experiments demonstrate that LongRLVR substantially outperforms both
SFT and naive RLVR baselines across multiple models and benchmarks. Our analyses confirm that
this success stems from the synergy between the context and answer rewards for both improved
grounding and answer quality. By directly training models to ground their reasoning in provided
evidence, LongRLVR provides a robust and effective framework for unlocking the long-context
reasoning capabilities of LLMs.

9
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REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. All theoretical claims
are formally proven in the appendix, with detailed, step-by-step derivations provided for both RE-
INFORCE and GRPO estimators in Appx. §A. The synthetic data generation pipeline, which is
crucial for our method, is described in Alg. 1 and further detailed in Appx. §B, covering corpus
sourcing, preprocessing, and quality control. All implementation details, including model specifics,
training hyperparameters, and the learning strategy, are documented in §3.1. The evaluation pro-
tocol, including baselines, benchmarks, and metrics, is clearly outlined in §3.2. To facilitate direct
replication of our results, we will release our source code, the generated dataset, and trained model
checkpoints upon publication.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilized Large Language Models (LLMs), including Google’s Gemini and OpenAI’s GPT series,
as assistive tools in the preparation of this manuscript. Their use was limited to the following tasks:

• Generating Python code for the data visualizations in Figures 1, 3, 4, and 5.

• Assisting with the LaTeX formatting of complex elements, particularly Table 1.

• Proofreading and copy-editing the text for grammatical correctness and clarity.

The core research ideation, theoretical contributions, experimental design, and interpretation of re-
sults are entirely the work of the human authors. LLMs served strictly as productivity and presenta-
tion aids.
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A DETAILED PROOFS FOR PROPOSITIONS 1 AND 2

This appendix provides detailed derivations for the theoretical results presented in Section 2.2 and
Section 2.3. We formally prove that outcome-only rewards lead to vanishing gradients for contextual
grounding and show how the proposed context reward resolves this issue. The proofs are provided
for both the standard REINFORCE policy gradient estimator and the Group-Relative Policy Opti-
mization (GRPO) algorithm.

A.1 PRELIMINARIES AND NOTATION

We begin by summarizing the formal setup used throughout the proofs. The policy is factorized
into a grounding head and an answer head, such that πθ(y, Z | X,Q) = πgnd

θ (Z | X,Q) · πans
θ (y |

X,Q,Z). Our analysis focuses on the gradients with respect to the parameters of the grounding
head, πgnd

θ .

Grounding Head. The long context X is partitioned into a set of chunks C = {c1, . . . , cN}. The
grounding head models the selection of each chunk cj as an independent Bernoulli trial, outputting a
binary selection vector Z = (z1, . . . , zN ) ∈ {0, 1}N , where zj = 1{cj is selected}. The probability
of selecting chunk cj is pj = σ(sj), where sj is the corresponding logit. The full grounding policy
is:

πgnd
θ (Z) =

N∏
j=1

p
zj
j (1− pj)

1−zj .

The gradient of the log-probability of this policy with respect to a logit sj is the score function:
∇sj log π

gnd
θ (Z) = zj − pj .

Ground-Truth and Reward. Let G ⊆ C be the ground-truth set of essential evidence chunks
required to answer the question, with |G| = g. We define the “success” event S as the selection of all
essential chunks, i.e., S ≡ {Z ⊇ G}. The probability of this event is q ≜ Prθ(S) =

∏
k∈G pk. Our

analysis relies on two reward assumptions. First, under the Sparse Answer Reward (Assumption
1), the expected answer reward is conditioned on success: E[rans | Z] = µ0 + δ · 1{Z ⊇ G}, where
δ > 0. The unconditional expected reward is thus E[rans] = µ0 + δq. Second, for the proof of
Proposition 2, we use a simple Additive Context Reward, rctx(Z,G) = α

∑
k∈G zk with α > 0,

making the total reward rtotal = rans + rctx.

Policy Gradient Estimators. The gradient of an expected reward E[R(Z)] is computed using the
REINFORCE identity (the score function estimator):

∇sj E[R(Z)] = E
[
R(Z)∇sj log π

gnd
θ (Z)

]
= E

[
R(Z) (zj − pj)

]
. (9)

Using a baseline b that does not depend on zj , this is equivalent to the covariance between the reward
and the action score:

∇sj E[R(Z)] = E
[
(R(Z)− b) (zj − pj)

]
= Cov

(
R(Z), zj

)
. (10)

A.2 PROOF OF PROPOSITION 1: VANISHING GRADIENTS FOR OUTCOME-ONLY REWARDS

Proposition 1. Under Assumption 1, the gradient of the expected answer reward with respect to the
logit sj for any essential chunk cj ∈ G is:

∇sjE[rans] = δ · q · (1− pj).

Proof using REINFORCE. Using the covariance form of the policy gradient from Eq. (10), we have
∇sj E[rans] = Cov(rans, zj). We substitute the conditional expectation from Assumption 1:

Cov(rans, zj) = Cov(µ0 + δ · 1{S}, zj) = δ · Cov(1{S}, zj).
The covariance term Cov(1{S}, zj) is expanded as E[1{S} · zj ]− E[1{S}]E[zj ]. For an essential
chunk cj ∈ G, the success event S requires zj = 1, so the event {S ∧ zj = 1} is identical to S. This
simplifies the expectation:

E[1{S} · zj ] = Pr(S ∧ zj = 1) = Pr(S) = q.
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Substituting this back into the covariance calculation yields:

Cov(1{S}, zj) = q − Pr(S) · Pr(zj = 1) = q − q · pj = q(1− pj).

The final gradient is therefore ∇sj E[rans] = δ · q(1 − pj). For any non-essential chunk cj /∈ G, zj
is independent of S, so the covariance and gradient are zero. ■

Proof using GRPO. GRPO uses a group-relative baseline. For a group of K ≥ 2 i.i.d. trajectories,
the unclipped GRPO surrogate gradient at θ = θold is proportional to the covariance:

∇sj LGRPO(θold) =
K − 1

K
Cov(rans, zj).

Using our previous result for the covariance term, we find:

∇sj LGRPO(θold) =
K − 1

K
· δ · q(1− pj).

This confirms that the GRPO gradient also vanishes exponentially with q. ■

Verification via Direct Differentiation. The result can be verified by directly differentiating the
expected reward. Since E[rans] = µ0 + δq and q =

∏
k∈G pk, the chain rule gives:

∇sj E[rans] = δ · ∂q

∂sj
= δ · ∂q

∂pj

∂pj
∂sj

= δ ·
(

q

pj

)
· pj(1− pj) = δ · q(1− pj).

A.3 PROOF OF PROPOSITION 2: NON-VANISHING GROUNDING SIGNAL

Proposition 2. For a total reward rtotal = rans + rctx where rctx = α|Z ∩ G|, the gradient of the
expected total reward with respect to the logit sj for any essential chunk cj ∈ G is:

∇sjE[rtotal] = δ · q · (1− pj)︸ ︷︷ ︸
From rans

+α · pj(1− pj)︸ ︷︷ ︸
From rctx

.

Proof using REINFORCE. By linearity of expectation, the gradient decomposes: ∇sj E[rtotal] =
Cov(rans, zj)+Cov(rctx, zj). From Proposition 1, we know Cov(rans, zj) = δ ·q(1−pj) for j ∈ G.
We compute the contribution from the context reward, rctx = α

∑
k∈G zk:

Cov(rctx, zj) = Cov

(
α
∑
k∈G

zk, zj

)
= α

∑
k∈G

Cov(zk, zj).

Since chunk selections are independent, Cov(zk, zj) = 0 for k ̸= j. The sum collapses to a single
term:

Cov(rctx, zj) = α · Cov(zj , zj) = α ·Var(zj) = α · pj(1− pj).

Combining the gradients from both reward components gives the final result:

∇sj E[rtotal] = δ · q(1− pj) + α · pj(1− pj).

The second term is not scaled by q, providing a dense, non-vanishing learning signal. ■

Verification for GRPO and Direct Differentiation. The GRPO gradient is similarly scaled by
(K − 1)/K, yielding K−1

K (δq(1− pj) + αpj(1− pj)), which preserves the non-vanishing term.
Direct differentiation of the expected total reward, E[rtotal] = µ0 + δq+α

∑
k∈G pk, also yields the

same result.

B DATA CURATION AND GENERATION DETAILS

This section provides a comprehensive overview of the pipeline used to generate the grounded long-
context question-answering dataset for training LongRLVR.
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B.1 CORPUS SOURCING AND PREPROCESSING

Our data generation process began with a large corpus of long documents from diverse domains, in-
spired by Gao et al. (2025). Book and arXiv documents were sourced from the Long-Data-Collection
dataset, while code documents were sourced from the StarCoder dataset (Li et al., 2023), where all
files within a repository were concatenated to form a single document. We filtered this raw corpus to
retain only documents with token lengths between 8K and 64K tokens, as measured by the Qwen2.5
tokenizer. This step yielded an intermediate corpus of approximately 18K book, 16K arXiv, and
17K code documents.

B.2 DOCUMENT SEGMENTATION AND SEMANTIC CLUSTERING

To prepare documents for evidence identification, each document was partitioned into exactly 64
segments. This process was sentence-aware, ensuring splits occurred only at natural text boundaries
(e.g., after a period or a newline) to preserve the semantic integrity of each chunk. All segments were
then embedded into a high-dimensional vector space using the BGE-M3 sentence encoder (Chen
et al., 2024). We applied the DBSCAN algorithm (Ester et al., 1996) to the embeddings within each
document, grouping semantically related segments into thematic clusters that would form the basis
for targeted question generation.

B.3 QA GENERATION AND QUALITY CONTROL

We employed a multi-stage generation and filtering process to ensure the final dataset was of high
quality. For each document, we randomly selected 4 distinct semantic clusters (with a minimum of
4 chunks each) and prompted the Qwen3-235B-A22B model (Qwen, 2025) to generate 3 candidate
(Q, y,G) tuples per cluster, where G is the set of evidence chunks the model deemed necessary. To
maintain high standards, we used the same model as an automated judge to assign a quality rating
from 1 to 10 for each generated pair, based on clarity, correctness, and evidence relevance. Both
generation and judging used chain-of-thought prompting. A two-stage rejection sampling process
then selected the single best QA pair for each document: first, we selected the top-scoring candidate
within each cluster, and second, we selected the best among these four candidates. As a final quality
filter, we discarded any pair that received a final rating below 9. This pipeline resulted in our final
dataset of 46K documents, each paired with a single, high-quality, and well-grounded question-
answer pair.
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