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Abstract

Beam search decoding is the de-facto method001
for decoding auto-regressive Neural Machine002
Translation (NMT) models, including multilin-003
gual NMT where the target language is speci-004
fied as an input. However, decoding multilin-005
gual NMT models commonly produces “off-006
target” translations – yielding translation out-007
puts not in the intended language. In this008
paper, we first conduct an error analysis of009
off-target translations for a strong multilingual010
NMT model and identify how these decodings011
are produced during beam search. We then pro-012
pose Language-informed Beam Search (LiBS),013
a general decoding algorithm incorporating014
an off-the-shelf Language Identification (LiD)015
model into beam search decoding to reduce016
off-target translations. LiBS is an inference-017
time procedure that is NMT-model agnostic018
and does not require any additional parallel019
data. Results show that our proposed LiBS al-020
gorithm on average improves +1.1 BLEU and021
+0.9 BLEU on WMT and OPUS datasets, and022
reduces off-target rates from 22.9% to 7.7%023
and 65.8% to 25.3% respectively.1024

1 Motivation025

With Neural Machine Translation (NMT) (Bah-026

danau et al., 2014; Vaswani et al., 2017) becoming027

the state-of-the-art approach in the bilingual Ma-028

chine Translation literature, Multilingual Neural029

Machine Translation (MNMT) has attracted much030

attention (Johnson et al., 2017). MNMT has two031

main advantages: a) it enables one model to trans-032

late between multiple language pairs and thus re-033

duces the model and deployment complexity from034

O(N2) to O(1), and b) it enables transfer learning035

between high-resource and low-resource languages.036

One attractive feature of such transfer learning is037

zero-shot translation, where the multilingual model038

is able to translate between language pairs unseen039

during training. For example, after training from040

1Code to be released after publication.

French to English and English to German MT data, 041

the model could directly translate French to Ger- 042

man. 043

Despite the theoretical benefits, recent stud- 044

ies have found an overwhelming amount of off- 045

target translation especially for the zero-shot direc- 046

tions (Zhang et al., 2020; Yang et al., 2021), where 047

the translation is not in the intended language. Ex- 048

isting methods all aim to mitigate off-targets during 049

training. Gu et al. (2019); Zhang et al. (2020) ap- 050

ply Back Translation (BT) to generate synthetic 051

training data for the zero-shot pairs. Yang et al. 052

(2021) introduces a language prediction loss and 053

regularizes the training gradients with a held-out 054

oracle set. Yet, none of the previous work has 055

investigated the off-target issue at decoding time, 056

i.e. how off -target translations emerge and come to 057

outscore on-target translations during beam search 058

decoding. 059

In this work, we first examine when and how 060

off-target translation emerges during beam search 061

decoding, and then propose Language-informed 062

Beam Search (LiBS), a general algorithm to reduce 063

off-target generation during beam search decoding 064

by incorporating an off-the-shelf Language Identifi- 065

cation (LiD) model. Our experiment results on two 066

large-scale popular MNMT datasets (i.e. WMT and 067

OPUS) demonstrate the effectiveness of LiBS in 068

both reducing off-target rates and improving gen- 069

eral translation performance. On average LiBS 070

reduces off-target rates from 22.9% to 7.7% and 071

65.8% to 25.3% on WMT and OPUS respectively, 072

which translates to +1.1 BLEU and +0.9 BLEU 073

overall quality improvement. Moreover, LiBS can 074

be added post-hoc to reduce off-target translation of 075

any existing multilingual model without requiring 076

any additional data or training. 077

2 Experiment Setup 078

In this section, we illustrate the data and model 079

setup we used, and the experimental results of our 080
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Language-informed Beam Search algorithm.081

2.1 Dataset082

Following (Wang et al., 2020; Yang et al., 2021),083

we conduct experiments on two widely used large-084

scale MNMT datasets WMT2 and OPUS-1003,085

where the WMT dataset is concatenated from previ-086

ous year WMT training data including English and087

10 other languages. Since the WMT competition088

does not come with zero-shot evaluation data, we089

use the human labeled multi-way aligned test set090

from (Yang et al., 2021), based on the WMT-19091

test set.092

2.2 Model Training and Evaluation093

For both WMT and OPUS-100, we tokenize the094

dataset with the SentencePiece model (Kudo and095

Richardson, 2018) to form a shared vocabulary096

of 64k tokens. We adopt the Transformer-Big097

setting (Vaswani et al., 2017) in our experiments098

on the open-sourced Fairseq codebase4 (Ott et al.,099

2019). The model is optimized using the Adam100

optimizer (Kingma and Ba, 2015) with a learning101

rate of 5 × 10−4, 4000 warm-up steps, and a to-102

tal of 50k training steps. The multilingual model103

is trained on 8 V100 GPUs with a batch size of104

8192 tokens and gradient accumulation of 8 steps,105

which essentially simulates the training on 64 V100106

GPUs. To evaluate the baseline model, we employ107

beam search decoding with a beam size of 5 and108

a length penalty of 1.0. The BLEU score is then109

measured by the de-tokenized case-sensitive Sacre-110

BLEU5 (Post, 2018).111

To evaluate the off-target rates, we borrow the112

off-the-shelf LiD model6 from FastText (Joulin113

et al., 2016) to detect the language for system trans-114

lations. Similar to (Yang et al., 2021), we observe115

an overwhelming off-target rate (averaging 22.9%)116

across zero-shot pairs on our strong baseline model.117

2Referred to as “WMT-10” in (Wang et al., 2020; Yang
et al., 2021), we denoted it as WMT to disambiguate against
the WMT 2010 campaign.

3We use the deduplicated version from (Yang et al., 2021).
4https://github.com/facebookresearch/

fairseq
5BLEU+case.mixed+lang.src-

tgt+numrefs.1+smooth.exp+tok.13a+version.1.4.14
6https://dl.fbaipublicfiles.com/fasttext/supervised-

models/lid.176.bin

Direction Beam size BLEU Off-Target Rate

De→Fr
5 17.3 23.1%

10 16.1 31.7%
20 14.3 41.4%

Cs→De
5 15.4 12.3%

10 15.0 17.4%
20 14.2 22.0%

Table 1: Multilingual beam search curse on WMT
De→Fr and Cs→De, where larger beam widths con-
sistently lead to more off-target translations.

3 Analyzing Off-Target Occurrence 118

During Beam Search 119

To understand the off-target occurrence during 120

beam search, we analyze the off-target error types 121

on different language pairs, and conduct experi- 122

ments with varying beam sizes. 123

3.1 Multilingual Beam Search Curse 124

The beam search curse phenomenon (Yang et al., 125

2018) is widely observed in bilingual NMT models. 126

Given a larger beam size, the beam search process 127

would explore a larger search space and choose 128

from a larger candidate pool. Yet empirically, trans- 129

lation performance usually drops significantly with 130

increasing beam sizes. In our study, we also found 131

this phenomenon prevailing in the multilingual sys- 132

tem and highly related to the off-target translation 133

error. 134

As an example, we demonstrate the beam search 135

curse on WMT De→Fr and Cs→De translation, 136

since both are between high-resource languages 137

and with decent translation performance (between 138

15 to 20 BLEU). 139

Table 1 illustrates the results on WMT De→Fr 140

and Cs→De. We could clearly observe that the off- 141

target rate grows sub-linearly with the beam size, 142

and as a result the BLEU score drops significantly 143

with increasing beam sizes. It then raises the cu- 144

rious question of why the off-target rate increases 145

drastically with larger beam sizes, and whether the 146

performance drop (i.e. BLEU decrease) is mainly 147

due to the off-target errors. 148

3.2 Off-Target Error Analysis 149

As part of a detailed analysis, we study the off- 150

target error type between six zero-shot pairs (i.e. 151

12 translation directions) from the WMT dataset. 152

We categorize the off-target errors into three types: 153
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Figure 1: The sentence BLEU distribution between
source and system translation from WMT Fr→De
“→Source” errors, with an average BLEU of 85.3.

translating into English7, translating into source154

language, and others.155

The detailed off-target error analysis of WMT156

zero-shot direction is shown in Table 2. We find157

that even though the off-target error is overwhelm-158

ing across languages, it could easily be categorized159

into mostly two types: translating into English and160

“translating” into source. The “Others” error type161

only comprises a negligible 1.1% of cases, given162

the FastText LiD model has an error margin of163

0.81% (Yang et al., 2021).164

“→Source” errors We hypothesize that this er-165

ror is related to the previously studied “source copy-166

ing” behavior (Ott et al., 2018) on the bilingual167

NMT model. We then sample three cases from168

this error type (shown in Table 3). The case study169

confirms that the “→Source” error type is the same170

as source copying behavior on bilingual models for171

these cases. To quantify the degree of source copy-172

ing, we run Sentence BLEU evaluation8 between173

source and system translation on WMT Fr→De174

“→Source” errors. The sentence BLEU distribu-175

tion is shown in Figure 1 with an average sentence176

BLEU of 85.3. It clearly demonstrates that the177

“→Source” error strongly displays a source copy-178

ing behavior and is somehow promoted by larger179

beam sizes.180

“→English” errors Since none of our evaluated181

direction includes English as the target language,182

7English is never the correct target language in our 12
studied translation directions.

8We use the sentence_bleu function from (Post,
2018) with smooth_method=‘floor’: https:
//github.com/mjpost/sacrebleu/blob/
master/sacrebleu/compat.py
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Figure 2: The sentence BLEU distribution between
WMT Fr→De “→English” errors and Fr→En transla-
tion with the same source. The average BLEU is 55.9.

translating into English is never promoted and al- 183

ways trigger an off-target error. We similarly sam- 184

pled three “→English” error cases from the WMT 185

Fr→De test set. We also compare them against 186

the real Fr→En translations with the same model 187

and French input. This case study (in Table 4) 188

hints that the “→English” generations from WMT 189

Fr→De are generally similar but slightly worse 190

“English” translations compared to Fr→En. To 191

demonstrate the similarity, we plot the sentence 192

BLEU distribution for all 172 “→English” errors 193

between Fr→De and Fr→En translations in Fig- 194

ure 2. It demonstrates a strong similarity between 195

Fr→De and Fr→En translations, with an average 196

sentence BLEU of 55.9. Since the evaluation data 197

of the WMT corpus is multi-way aligned, we can 198

evaluate the→English translation quality for both 199

Fr→De and Fr→En against the English human 200

references (in Table 5). Results confirm our ob- 201

servation that the “→English” errors are generally 202

poorer English translations. 203

3.3 Beam Search Process Analysis 204

To understand how “→English” and “→Source” 205

errors emerge during beam search and why both 206

errors dramatically increase with larger beam sizes, 207

we investigate the step-by-step beam search process 208

with case studies. Table 10 and 11 illustrates one 209

representative decoding example from the WMT 210

Fr→De test set with b = 5, 20 and French source 211

“Nous avons maintenant une excellente relation. »”. 212

For b = 20, we only print the top-5 beams due to 213

the space limit. From this example, we have a few 214

observations: 215

• English candidates are live in the early steps 216
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Directions
b = 5 b = 20

Total →English →Source Others Total →English →Source Others

De→Fr 23.1% 11.8% 11.1% 0.2% 41.4% 18.5% 22.8% 0.1%
Fr→De 39.9% 10.5% 29.4% 0.0% 62.7% 17.2% 45.5% 0.0%
Cs→De 12.3% 8.5% 3.6% 0.2% 22.0% 17.3% 4.5% 0.2%
De→Cs 19.0% 2.5% 15.8% 0.7% 27.6% 5.9% 21.3% 0.4%
De→Ro 1.6% 0.8% 0.5% 0.3% 1.9% 1.1% 0.5% 0.3%
Ro→De 7.3% 5.9% 0.7% 0.7% 16.3% 14.8% 0.7% 0.8%
Fr→Et 22.5% 8.1% 12.4% 2.0% 30.6% 13.6% 15.6% 1.4%
Et→Fr 26.1% 16.5% 6.3% 3.3% 36.6% 26.2% 6.7% 3.7%
Ro→Et 10.8% 6.3% 1.5% 3.0% 14.8% 10.4% 1.6% 2.8%
Et→Ro 2.0% 0.5% 0.2% 1.3% 1.9% 0.6% 0.3% 1.0%
Tr→Gu 73.7% 73.3% 0.2% 0.2% 78.7% 78.1% 0.2% 0.4%
Gu→Tr 36.4% 35.6% 0.1% 0.7% 41.4% 39.6% 0.0% 1.8%
Average 22.9% 15.0% 6.8% 1.1% 31.3% 20.3% 10.0% 1.1%

Table 2: Off-Target error analysis on 12 WMT zero-shot directions, where most are either→English or→Source.

Source (Fr) System Output (→De)

Sa décision a laissé tout le monde sans voix. Sa décision a laissé tout le monde sans voix.

Abandonnez Chequers et commencez à écouter. » Abandonnez Chequers et commencez à écouter »

« C’est une très bonne chose », dit Jaynes.
C’est une très bonne chose, sagt Jaynes.

Table 3: Case studies for “→Source” errors. We sample three source-translation pairs from the WMT Fr→De test
set (with translation LiD-ed as French). Token differences are colored in red.

(1-3) of b = 5 but tend to be dropped in later217

time steps. Meanwhile for b = 20, both En-218

glish and French candidates are kept alive219

throughout the decoding process: even though220

they fall out of the top-5 beams at the 4th step,221

the off-target candidates quickly catch up and222

are ranked highest by the 7th step.223

• Closely observing the winning English candi-224

date of b = 20, we notice it suffers a heavy225

penalty in the first step (log prob is -3.58), yet226

all following steps experience small penalties.227

• The final English translation by b = 20 is228

indeed a “better” candidate with greater prob-229

abilities (i.e. model score) compared to the230

final German translation by b = 5, therefore,231

if this off-target candidate is retained through-232

out the process it will naturally win out against233

all valid on-target translations.234

From the above observations, we can try to an-235

swer our previous research questions.236

RQ1. How do “→English” and “→Source”
errors emerge during decoding?

We first observe that both “→English” and 237

“→Source” candidates are easily accessible in the 238

early steps of decoding. Meanwhile, the models 239

place a low probability on decoding the first source 240

or English token, but relatively high transition prob- 241

abilities for the remaining source or English to- 242

kens can result in off-target sentences scoring more 243

highly than on-target. 244

RQ2. Why do both errors dramatically in-
crease with larger beam sizes?

With a larger beam size budget, it is more likely 245

to retain off-target candidates in the earlier steps, 246

when they receive heavy early step penalties. Yet 247

since off-target candidates experience fewer penal- 248

ties in the later steps, they tend to win out over 249

on-target candidates in the long run. We found it 250
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Source (Fr) System Output (→De) System Output (→En)

Comme la campagne était très
avancée, elle avait pris du retard
dans la collecte de fonds, et a
donc juré qu’elle ne participerait
pas à moins de recueillir 2 mil-
lions de dollars.

Since the campaign was very
advanced, it had fallen behind
in the collection of funds, and
therefore swore that it would not
participate to less than raise 2
million dollars.

Since the campaign was very
advanced, it had lagged behind
in raising funds and therefore
swore that it would not partic-
ipate unless it raised $2 million.

Woods a perdu ses quatre matchs
en France et détient maintenant
un record de 13-21-3 en carrière
en Ryder Cup.

Woods has lost his four matches
in France and now holds a record
of 13-21-3 in career in Ryder
Cup.

Woods lost his four matches in
France and now holds a record
of 13-21-3 in the Ryder Cup.

Le couple réfute être raciste, et
assimile les poursuites à une «
extorsion ».

The couple refutes being racist,
and assimilates prosecutions to
a “repression”.

The couple refutes being racist
and treats prosecutions as “extor-
tion”.

Table 4: Case studies for “→English” errors. We sample three source-translation pairs from the WMT Fr→De test
set (with translation LiD-ed as English). As a comparison, we also show the output when the model is asked to
translate into English. Token differences are colored in red.

Direction BLEU chrF2 TER*

Fr→De 26.92 0.572 0.62
Fr→En 34.91 0.611 0.53

Table 5: English translation quality for all WMT Fr→De
“→English” errors. Both translation directions are eval-
uated against English human references. *TER score is
lower the better.

to be the general case that the off-target continu-251

ations receive a higher probability (less penalty)252

than the on-target ones, even though the first off-253

target token receives a heavy penalty by the model.254

We hypothesize that it is due to the recency bias255

and poor calibration, yet it remains an interesting256

research question for future work.257

Possible Solutions Off-target candidate gaining258

greater model score demonstrates that the model is259

poorly calibrated, especially for the later steps of260

autoregressive decoding. Methods with additional261

training data (Gu et al., 2019; Zhang et al., 2020)262

or regularizations (Yang et al., 2021) could allevi-263

ate this issue during training with a well-calibrated264

model. In this work, with the knowledge of how265

off-target cases emerge during decoding, we at-266

tempt to fix this issue solely at the decoding time267

by improving on beam search algorithm even with268

a proven poorly calibrated model.269

4 Language-informed Beam Search 270

(LiBS) 271

The standard beam search process originating 272

from the bilingual NMT model is target-language- 273

agnostic and is found to produce an overwhelm- 274

ing number of off-target translations (Zhang et al., 275

2020; Yang et al., 2021). Yet the target language 276

(i.e. the desired language for generation) is always 277

known during decoding, thus it is straightforward 278

to enforce the desired language to reduce the off- 279

target rates without any additional training or data. 280

We thus propose Language-informed Beam Search 281

(LiBS), a general decoding algorithm to inform the 282

beam search process of the desired language during 283

decoding. 284

To inform the beam search process of the desired 285

language, we borrow an off-the-shelf Language 286

Identification (LiD) model to score the running 287

beam search candidates with their probabilities in 288

the correct language. Since the candidates are nor- 289

mally ranked by the NMT model probabilities, we 290

linearly combine the two log probabilities to ideally 291

find the best candidate in the correct language. 292

The detailed algorithm is illustrated in Algo- 293

rithm 1. For each step, we first pre-select top- 294

w candidates from each beam. Then we sort all 295

b · w active candidates by the linearly combined 296

NMT and LiD log probabilities, where we tune the 297

linear coefficient α on the dev set. Same as the 298

Fairseq (Ott et al., 2019) implementation, we only 299
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Algorithm 1: Langugage-informed Beam Search
Input :MNMT model θ, LiD model γ, source sentence x, target language T , beam size b,

pre-select window size w
Output :Finished candidate set C← ∅
▷ Initialize each beam i with BOS symbols and zero score

1 Bi ← {⟨0.0, <s>⟩}
2 repeat

▷ Pre-select top-w candidates from each beam i
3 Wi ← topw{⟨s · pθ(y | x,y), y ◦ y⟩ | ⟨s, y⟩∈Bi, y∈V}

▷ Sort all candidates by the linearly combined NMT and LiD log probabilities
4 W← Sort{⟨log s+ α log pγ(T, y), s, y⟩ | ⟨s, y⟩∈

⋃b
i=1Wi}

▷ Store all finished ones from top-b candidates into C
5 C← {⟨s, y⟩ | ⟨s′, s, y⟩ ∈ topb{W}, y|y| = </s>}

▷ Store the top-b unfinished candidates into B
6 B← topb{⟨s, y⟩ | ⟨s′, s, y⟩ ∈W, y|y| ̸= </s>}
7 until C has b finished candidates (i.e. |C| = b)
▷ Rerank finished candidates by the linearly combined NMT and LiD log probabilities

8 C← Sort{⟨log s+ α log pγ(T, y), y⟩ | ⟨s, y⟩∈C}
9 return C

store the finished ones within the top-b candidates,300

meanwhile save the top-b active candidates into301

the beam for the next step9. The decoding process302

stops when we have found b finished candidates,303

and at the end of the generation, we again rerank304

all finished candidates with the linearly combined305

log probabilities.306

Design Choice and Speed Concern We only pre-307

select b · w candidates for the LiD scoring, instead308

of considering all possible continuations, simply309

because we could not afford to run LiD model on310

all b · |V| candidates.311

Even though in our experiments we only pre-312

select the top-2 continuations from each beam (i.e.313

w = 2), the major slow down of the LiBS algo-314

rithm is still the un-BPE operation and LiD scoring315

on line 4 of Algorithm 1.316

To speed up the LiBS algorithm, we use the Fast-317

Text LiD model since it is both fast and accurate318

(in our case on translation prefixes). With its help,319

LiBS is only 7.5 times slower than the Fairseq320

beam search decoding on a single CPU and 3.5321

times slower with parallelized LiD scoring on 20322

CPUs.323

9We only store the NMT model score instead of the linearly
combined one to avoid overcounting LiD scores.

Model
De→Fr Cs→De

BLEU Off-Tgt BLEU Off-Tgt

Baseline 17.3 23.1% 15.4 12.3%
+LiBS, α = 0.7 20.6 2.0% 16.1 1.6%
+LiBS, α = 0.8 20.7 1.4% 16.2 1.6%
+LiBS, α = 0.9 20.7 1.1% 16.2 1.6%
+LiBS, α = 1.0 20.7 0.9% 16.2 1.4%
+LiBS, α = 1.1 20.7 0.9% 16.2 1.4%
+LiBS, α = 1.2 20.7 0.8% 16.2 1.3%

Table 6: Tuning the linear coefficient α on WMT
De→Fr and Cs→De.

5 Experiment Results 324

To fully verify the performance of the LiBS algo- 325

rithm, we compare LiBS against the baseline beam 326

search decoding on both WMT and OPUS-100 327

datasets. 328

5.1 WMT Results 329

Tuning the Linear Coefficient α We tune the 330

linear coefficient α on the dev set. As shown in 331

Table 6, any α value from 0.8 to 1.2 performs 332

similarly well. Because the linear coefficient α 333

controls the weight of the LiD model score, as α 334

increases, the off-target rate monotonically drops. 335

We use α = 0.9 for all the experiments on the 336

WMT dataset. 337
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Model
De→Fr Cs→De

b = 5 b = 10 b = 20 b = 5 b = 10 b = 20

Baseline
BLEU 17.3 16.1 14.3 15.4 15.0 14.2
Off-Tgt 23.1% 31.7% 41.4% 12.3% 17.4% 22.0%

+LiBS
BLEU 20.7 20.9 20.7 16.2 16.4 16.2
Off-Tgt 1.1% 1.2% 1.1% 1.6% 1.7% 1.5%

Table 7: LiBS breaks the beam search curse on WMT De→Fr and Cs→De.

Multilingual Beam Search Curse As illustrated338

before, the beam search curse exists in Multilin-339

gual NMT models predominantly due to the in-340

creasing off-target errors with larger beam sizes.341

As shown in Table 7, LiBS successfully breaks the342

beam search curse by preventing off-target transla-343

tions.344

Zero-Shot Performance Table 8 illustrates the345

full results of LiBS on the WMT dataset. On aver-346

age across all zero-shot directions, LiBS improves347

+1 BLEU score while reducing the off-target rates348

from 22.91% to 7.71%. We notice that for many349

directions the off-target rate is barely around the350

error margin of the FastText LiD model, which is351

0.81% reported from (Yang et al., 2021). It hints352

that those translation directions do not suffer from353

off-target errors anymore, and the reported errors354

are largely due to the LiD model error. Meanwhile,355

the MNMT model still suffers from a large num-356

ber of off-target errors, especially on Gu→Tr and357

Tr→Gu translations, which we hypothesize is due358

to the extremely low resources for both languages359

(WMT contains 180K and 80K parallel data for360

Tr-En and Gu-En respectively.).361

5.2 OPUS-100 Results362

To verify the effectiveness of our LiBS algorithm,363

we further compare it against the baseline beam364

search decoding on the large-scale OPUS-100365

dataset, which includes a total of 100 languages.366

Different from the WMT experiment, we tune367

and set α = 1.8 for all directions. This is due to368

the challenging nature of the OPUS-100 dataset369

that it performs very poorly on the zero-shot direc-370

tions with a massive amount of off-target transla-371

tions. A higher α value for LiBS could effectively372

reduce the off-target rates and improve the trans-373

lation performance. For example, Figure 3 plots374

the performance curve on the OPUS-100 Fr→De375

test set with increasing α values. It clearly shows a376
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Figure 3: Translation performance (BLEU and off-target
rates) with different α values on OPUS-100 Fr→De test
set.

larger α value would consistently decrease the off- 377

target rates and improve the overall performance 378

(i.e. higher BLEU score)10. 379

Zero-shot translation performance of LiBS on 380

the OPUS-100 dataset is shown in Table 9. Across 381

all directions, LiBS consistently improves an aver- 382

age of +0.9 BLEU and reduces the off-target rates 383

from 65.79% to 25.34%. 384

Both WMT and OPUS-100 results clearly show 385

our LiBS algorithm notably improves the zero-shot 386

translation performance by significantly reducing 387

the off-target translations. 388

6 Related Work 389

Off-Target Translation Off-target translation is 390

a commonly observed failure mode in multilingual 391

NMT models (Arivazhagan et al., 2019), and Rios 392

et al. (2020) has linked it to the predominance of 393

English in the training data of multilingual models. 394

Gu et al. (2019); Zhang et al. (2019); Yang et al. 395

(2021) all observe it under different data settings 396

and propose to mitigate it using additional mono- 397

lingual data or held-out oracle set. Similarly to our 398

10The flat BLEU curve is due to the one decimal digit
precision of sacreBLEU evaluation.
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Zero-Shot Fr-De De-Cs Ro-De Et-Fr Et-Ro Gu-Tr
Average← → ← → ← → ← → ← → ← →

Baseline
BLEU 17.3 11.7 15.4 13.9 17.2 16.1 10.6 13.5 11.9 14.1 0.9 2.0 12.05
Off-Tgt 23.1% 39.9% 12.3% 19.0% 1.6% 7.3% 22.5% 26.1% 10.8% 2.0% 73.7% 36.6% 22.91%

+LiBS
BLEU 20.7 15.7 16.2 15.3 17.1 16.5 11.8 14.6 12.4 13.9 1.2 2.3 13.14
Off-Tgt 1.1% 6.5% 1.6% 3.8% 0.6% 0.6% 8.3% 4.6% 2.9% 0.3% 47.2% 15.0% 7.71%

Table 8: BLEU score and Off-Target rate of zero-shot translations on WMT dataset.

Zero-Shot De-Fr Ru-Fr Nl-De Zh-Ru Zh-Ar Nl-Ar
Average← → ← → ← → ← → ← → ← →

Baseline
BLEU 3.3 3.0 5.4 4.0 5.9 5.2 5.7 11.8 3 11.6 1.2 3.2 5.28
Off-Tgt 95.2% 93.7% 68.9% 91.2% 88.4% 89.7% 37.0% 20.2% 89.9% 8.0% 93.0% 14.3% 65.79%

+LiBS
BLEU 5.0 3.8 9.6 4.4 7.4 5.9 5.9 12.2 3.5 11.1 2.5 2.8 6.18
Off-Tgt 46.9% 49.5% 22.5% 41.6% 37.9% 40.0% 5.8% 1.1% 28.3% 0.7% 28.4% 1.4% 25.34%

Table 9: BLEU score and Off-Target rate of zero-shot translations on OPUS-100 dataset.

work, Sennrich et al. (2023) proposes to mitigate399

off-target errors with constrastive decoding, yet400

their approach usually hurts the translation quality,401

on average -1.1 BLEU on high resource languages.402

Our work is the first to study off-target errors dur-403

ing decoding time, specifically how the off-target404

translations outscore on-target ones over time.405

NMT Decoding Since beam search becomes the406

de-facto method for decoding NMT models (Bah-407

danau et al., 2014), studies has observed various408

flaws with it. Koehn and Knowles (2017) observes409

beam search curse, where the translation quality410

usually degrades with increasing beam sizes. Yang411

et al. (2018); Stahlberg and Byrne (2019) observe412

length bias, where the model heavily prefers shorter413

candidates. To address those issues, extensive414

work has proposed sampling-based decoding al-415

gorithms, where the most popular one is Minimum416

Bayes Risk (MBR) decoding (Eikema and Aziz,417

2020). Yet, MBR decoding suffers severely from418

the quadratic complexity thus a slow inference419

speed. Another line of research adopts external420

Language models to NMT beam search. Yet this421

external LM usually interferes with NMT’s internal422

LM (iLM). However, with iLM neutralization, this423

approach still lags behind leveraging the additional424

monolingual data through back-translation (Herold425

et al., 2023). Most similarly to our work, He et al.426

(2017); Ren et al. (2017) propose to incorporate427

a trained Value network during beam search de-428

coding to improve the image-captioning task. Our429

work instead attempts to mitigate off-target trans-430

lation errors with a small off-the-shelf LiD model,431

while keeping the inference overhead to the linear 432

scale (3.5x slow down). 433

7 Conclusions 434

Our work conducts a comprehensive off-target er- 435

ror analysis with strong multilingual NMT models, 436

to answer the question of how off-target translation 437

wins over time during decoding. We additionally 438

propose an empirical Language-informed Beam 439

Search algorithm to mitigate off-target errors dur- 440

ing decoding time and with linear-scale overhead. 441

8 Limitations 442

In this study, we utilize the widely adopted Fast- 443

Text LiD model, and the performance of LiBS may 444

vary with the use of alternative LiD models. As 445

our method is a modified beam search algorithm, it 446

is not directly applicable to recent Language Lan- 447

guage Models (Brown et al., 2020), which often do 448

sampling during inference. Yet, we believe it will 449

be particular interesting to adopt similar approach 450

for LLM inference, as study shows LLMs are prune 451

to hallucination (Zhang et al., 2023). 452
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b = 5 b = 20

Step Beam LiD LogProb Beam LiD LogProb

1

_Wir De -1.10 _Wir De -1.10

_" En -2.93 _" En -2.93

_Jetzt De -3.02 _Jetzt De -3.02

_We En -3.58 _We En -3.58

_„ Ro -3.61 _„ Ro -3.61

2

_Wir _haben De -1.44 _Wir _haben De -1.44

_Jetzt _haben De -3.48 _Jetzt _haben De -3.48

_We _now En -4.10 _We _now En -4.10

_Wir _verfügen De -4.29 _Nous _avons Fr -4.13

_We _have En -4.83 _Wir _verfügen De -4.29

3

_Wir _haben _jetzt De -2.22 _Wir _haben _jetzt De -2.22

_Wir _haben _nun De -2.82 _Wir _haben _nun De -2.82

_Jetzt _haben _wir De -3.60 _Jetzt _haben _wir De -3.60

_We _now _have En -4.20 _We _now _have En -4.20

_Wir _haben _eine De -4.83 _Nous _avons _maintenant Fr -4.36

4

_Wir _haben _jetzt _eine De -2.65 _Wir _haben _jetzt _eine De -2.65

_Wir _haben _nun _eine De -3.24 _Wir _haben _nun _eine De -3.24

_Wir _haben _jetzt _ein De -3.93 _Wir _haben _jetzt _ein De -3.93

_Jetzt _haben _wir _eine De -4.12 _Jetzt _haben _wir _eine De -4.12

_Wir _haben _nun _ein De -4.58 _Wir _haben _nun _ein De -4.58

5

_Wir _haben _jetzt _eine
_ausgezeichnete

De -3.66 _Wir _haben _jetzt _eine
_ausgezeichnete

De -3.66

_Wir _haben _nun _eine
_ausgezeichnete

De -4.23 _Wir _haben _nun _eine
_ausgezeichnete

De -4.23

_Wir _haben _jetzt _eine
_hervorragende

De -4.25 _Wir _haben _jetzt _eine
_hervorragende

De -4.25

_Wir _haben _nun _eine
_hervorragende

De -4.81 _We _now _have _an _excellent En -4.80

_Wir _haben _jetzt _eine
_exzellente

De -4.95 _Wir _haben _nun _eine
_hervorragende

De -4.81

Table 10: Beam Search case study for b = 5 and b = 20 on one example from WMT Fr→De test set. English
candidates (“→English” errors) are colored in red, while French candidates (“→Source” errors) are colored in blue.

10



b = 5 b = 20

Step Beam LiD LogProb Beam LiD LogProb

6

_Wir _haben _jetzt _eine
_ausgezeichnete _Beziehung

De -3.82 _Wir _haben _jetzt _eine
_ausgezeichnete _Beziehung

De -3.82

_Wir _haben _nun _eine
_ausgezeichnete _Beziehung

De -4.39 _Wir _haben _nun _eine
_ausgezeichnete _Beziehung

De -4.39

_Wir _haben _jetzt _eine
_hervorragende _Beziehung

De -4.42 _Wir _haben _jetzt _eine
_hervorragende _Beziehung

De -4.42

_Wir _haben _nun _eine
_hervorragende _Beziehung

De -4.98 _We _now _have _an _excellent
_relationship

En -4.89

_Wir _haben _jetzt _eine
_exzellente _Beziehung

De -5.12 _Wir _haben _nun _eine
_hervorragende _Beziehung

De -4.98

7

_Wir _haben _jetzt _eine
_ausgezeichnete _Beziehung .“

De -5.73 _Nous _avons _maintenant _une
_excellent e _relation

Fr -5.53

_Wir _haben _jetzt _eine
_ausgezeichnete _Beziehung .

De -5.89 _Wir _haben _jetzt _ein
_ausgezeichnete s _Verhältnis

De -5.54

_Wir _haben _jetzt _eine
_ausgezeichnete _Beziehung ."

De -5.95 _We _now _have _an _excellent
_relationship ."

En -5.70

_Wir _haben _jetzt _eine
_hervorragende _Beziehung .“

De -6.28 _Wir _haben _jetzt _eine
_ausgezeichnete _Beziehung .“

De -5.73

_Wir _haben _nun _eine
_ausgezeichnete _Beziehung .“

De -6.31 _Wir _haben _jetzt _ein
_hervorragende s _Verhältnis

De -5.82

Table 11: Beam Search case study for b = 5 and b = 20 on one example from WMT Fr→De test set. English
candidates (“→English” errors) are colored in red, while French candidates (“→Source” errors) are colored in blue.
Final translations (at step 7) are in bold, where b = 5 generates a German translation, and b = 20 generates an
off-target English translation at the 7th step.
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