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ABSTRACT

Engineering construction automation aims to transform natural language specifi-
cations into physically viable structures, requiring complex integrated reasoning
under strict physical constraints. While modern LLMs possess broad knowledge
and strong reasoning capabilities that make them promising candidates for this
domain, their construction competencies remain largely unevaluated. To address
this gap, we introduce BuildArena, the first physics-aligned interactive bench-
mark designed for language-driven engineering construction. It takes a first step
towards engineering automation using LLMs. Technically, it contributes to the
community in two aspects: (1) an extendable task design strategy spanning static
and dynamic mechanics across multiple difficulty tiers; (2) a 3D Spatial Geomet-
ric Computation Library for supporting construction based on language instruc-
tions. On eight frontier LLMs, BuildArena comprehensively evaluates their
capabilities for language-driven and physics-grounded construction automation.
We release the code here to benefit construction automation in engineering appli-
cations.

Figure 1: Examples of BuildArena’s construction results by LLMs, covering three tasks: Lift
(left subfigure), Transport (upper right), and Support (lower right).

1 INTRODUCTION

Engineering construction automation is an important field of AI for Engineering. It has various ap-
plications in domains such as automotive, transportation, and civil infrastructure (Wang et al., 2005;
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Domingues et al., 2016; Lin et al., 2019). The goal is to translate high-level task descriptions into ex-
ecutable end-to-end build plans that cover design, fabrication, and assembly. An ideal workflow lets
users describe what they want in plain terms. For example, users request “Design a rocket that meets
Mars mission requirements.” The system then creates realistic parts with precise material details and
manufacturing specs. The workflow also provides assembly instructions that can be integrated into
production systems. Such automation capabilities promise significant improvements in engineering
efficiency and productivity.

Language-driven automated construction presents challenges in two key aspects. On one hand, it ne-
cessitates physics simulation environments with high fidelity to real-world constraints so that virtual
designs and assembly procedures adhere to geometric, physical, and structural constraints. While
modern physics engines and robotics benchmarks offer robust simulation capabilities (Todorov et al.,
2012; Coumans & Bai, 2016; Makoviychuk et al., 2021), there remains a gap in environments that
integrate physics verification with language-driven multi-component assembly processes. On the
other hand, the domain demands multilevel reasoning across long temporal horizons and 3D spatial
contexts, as engineering artifacts inherently exhibit hierarchical organization, and their assembly fol-
lows sequential dependencies with strict feasibility constraints (Jiménez, 2013; De Fazio & Whitney,
2003). These factors collectively require both breadth of domain knowledge and depth of analytical
thinking, challenging even for expert human engineers.

Large language models (LLMs) have progressed rapidly in recent years, accumulating broad world
knowledge and demonstrating strong capabilities in language understanding, mathematical reason-
ing, and code generation (Brown et al., 2020; Guo et al., 2025; Shao et al., 2024; Roziere et al.,
2023). Moreover, they have shown proficiency in following human instructions, generating plans,
invoking tools, and composing executable programs to interact with the external environments (Yao
et al., 2023; Schick et al., 2023; Qin et al., 2023). These general intelligent capabilities position
LLM agentic systems as promising candidates for automatic engineering construction.

Despite these advances, current evaluations on LLMs provide insufficient evidence of their capac-
ity to construct physical entities. Established LLM benchmarks predominantly assess mathemati-
cal and programming capabilities (Cobbe et al., 2021; Hendrycks et al., 2021; Chen et al., 2021),
which are evaluated mainly in textual or static environments, without interactions with physical en-
vironments. Existing physical reasoning datasets focus on physics understanding, but neglect the
multi-step construction processes (Bakhtin et al., 2019; Cherian et al., 2024). Meanwhile, research
in programmatic 3D or CAD generation has advanced generation performance but rarely validates
whether the generated designs yield executable assemblies under realistic physical conditions (Jones
et al., 2020; Mallis et al., 2024). This interdisciplinary gap highlights the absence of frameworks
to evaluate whether LLMs can effectively translate natural language specifications into physically
viable assemblies. This limitation motivates our research question: How can we comprehensively
evaluate LLMs for language-driven and physics-grounded construction automation?

In this paper, we answer the research question by proposing BuildArena, a physics-aligned in-
teractive benchmark designed to assess LLMs’ capabilities in engineering construction tasks. To
our knowledge, this is the first benchmark that enables LLMs to perform 3D structure construction
via natural language instructions and evaluates their performance within a physically constrained
environment. BuildArena enables in-depth comparison and analysis of LLMs, featuring detailed
logging. It by default consists of three components: task definition, LLM-based construction, and
simulation-based evaluation. It supports customization of each component (see Figure 2). Exam-
ples of construction results are shown in Figure 1. Comparison between BuildArena and existing
benchmarks are provided in Table 1 (See Appendix B for more related work), implying that our work
takes a first step towards engineering automation using LLMs. Thus, it substantially expands the
scope of current LLM benchmarks to 3D construction domains. Our technical contributions are
summarized as follows.

• We create an extendable task design strategy. The strategy includes three task categories
with quantifiable difficulty levels, along with corresponding evaluation metrics.

• We develop a key framework module: a 3D Spatial Geometric Computation Library. The
module facilitates computations and feedback in iterative 3D construction to ensure accurate
execution of LLMs’ language instructions. As the geometric computation functions in the
widely used Besiege simulator (Spiderling, 2018) are closed-source and inaccessible, our open-
source module reproduces its building operations.
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Table 1: Comparison between BuildArena and previous benchmarks.

Benchmarks Spatial
Reasoning

3D
Construction

Construction-aimed
Planning

Physical
Simulator

Interactive
Environment

PlanBench (Valmeekam et al., 2023) ✗ ✗ ✗ ✗ ✗
PlanQA (Rodionov et al., 2025) ✓ ✗ ✗ ✗ ✗
PHYRE (Bakhtin et al., 2019) ✓ ✗ ✗ ✓ ✓
VOYAGER (Wang et al., 2023a) ✓ ✗ ✓ ✓ ✓
Embodied Agent Interface (Li et al., 2024) ✓ ✓ ✗ ✓ ✓

BuildArena (ours) ✓ ✓ ✓ ✓ ✓

2 METHOD

This section details our benchmarking methodology, which includes task setup in Section 2.1,
language-driven and physics-grounded construction in Section 2.2, the LLM agentic workflow in
Section 2.3, and the evaluation methodology in Section 2.4. Our method is illustrated in Figure 2.

2.1 TASK

To design tasks in a principled manner, we first abstracted a set of difficulty dimensions that are
commonly encountered in engineering practice:

• Quantification: Extent of explicit numerical reasoning required (Kamble et al., 2024).

• Robustness: Tolerance to single-point failures (Zhao et al., 2023).

• Magnitude: Structural scale in span, load, and module count (Fan et al., 2023).

• Compositionality: Required depth of hierarchical substructure construction and integration
(Thurairajah et al., 2023).

• Precision: Strictness of geometric requirement for placement and orientation (Gao et al.,
2024b).

• Ambiguity: Clarity and completeness of task guidance (Moon et al., 2024).

Upon these dimensions, we construct three representative engineering task categories: Support
(static structural stability), Transport (dynamic horizontal movement), and Lift (dynamic verti-
cal movement). Within each task category, we defined three levels of difficulty, Easy (Lv.1), Medium
(Lv.2), and Hard (Lv.3), by adjusting task details so that the corresponding requirements align with
the above dimensions (see Figure 3). This design ensures both diversity of engineering scenarios
(statics vs. dynamics, horizontal vs. vertical motion) and systematic coverage of engineering dif-
ficulty dimensions. Task descriptions, performance indicators and evaluation criteria of these three
tasks are as follows. Detailed task content as LLM prompts are provided in Appendix G.

Transport focuses on constructing a mechanical structure capable of directional movement on
a planar surface. It primarily examines the LLM agents’ ability to exploit the spatial movement
afforded by given building components. As the difficulty increases beyond Lv.1, the explicit in-
struction of building a four-wheeled vehicle is removed, and the transportation target changes from
the machine itself into a cargo load with level-specific scale, adding challenges on both instruction
interpretation and building larger structures. The maximum transport distance is chosen as the
performance indicator, and we use a distance threshold as the criteria to identify if the machine is
able to deliver effective transportation to the target.

Support requires constructing a static structure to support a load across a gap, aiming to test the
ability of LLM agents to design and build bridges. The span of the gap multiplies across three
levels, as larger span directly requires larger scale of the bridge, making the stable support harder as
well. While only one is allowed in Lv.1, both Lv.2 and Lv.3 permit the modular construction with
no more than three substructures without any detailed instruction, which also requires more precise
assembly. We select maximum load weight as the performance indicator for bridges, and use a
minimum threshold to determine if the bridge successfully supports the load.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Illustration of our BuildArena framework. It contains three parts: (1) Task definition;
(2) LLM-based Construction; (3) Simulation-based Evaluation. The arrows represent our pipeline.
Components in dashed boxes, i.e., task type, LLM agentic workflow, and simulator, could be cus-
tomized by users. Details of the construction procedure is shown in Figure 4.
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Figure 3: Difficulty profiles of the three task
Transport, Support, and Lift across six en-
gineering dimensions: Quantification, Redundancy,
Scale, Modularity, Precision, and Ambiguity. Each
radar chart illustrates how difficulty escalates from
Lv.1 (blue) to Lv.2 (purple) and Lv.3 (red).

Lift requires constructing a rocket. At
Lv.1, LLMs are explicitly required to build
a single rocket engine without instruction
on how to build, with thrust-to-weight
ratio (TWR) as the performance indicator.
TWR > 1 represents the feasibility of pro-
viding effective thrust and marks success-
ful construction. At Lv.2, the task requires
LLMs to construct a rocket-powered air-
craft as an integrated single structure. At
Lv.3, LLMs must first build two sepa-
rate substructures (a rocket engine and a
support frame) before assembling the two
into an aircraft. Both Lv.2 and Lv.3 tasks
require that the aircraft are capable of
launching from the ground. Maximum
Height is adopted as the performance indicator, and the aircraft must reach a specific elevation
to meet the success criterion. The escalation from Lv.1 to Lv.3 compounds multiple sources of en-
gineering difficulty: higher demands on precise module alignment, the presence of multiple single
points of failure (engine placement, structural balance), and strict requirements on modular con-
struction and assembly. Together, these factors make Lift the most challenging task.

Task Customization. Tasks can be customized via textual prompts that define task constraints,
objectives, testing procedures, and evaluation metrics. The prompts are fed into the LLM agentic
workflow (see Section 2.3), which then executes the construction process.

2.2 LANGUAGE-DRIVEN AND PHYSICS-GROUNDED CONSTRUCTION

From the perspective of human engineering practice, construction is inherently an incremental and
constraint-driven process. Structures are assembled step by step, each new component must connect
to existing ones, and physical feasibility (e.g., collision avoidance) is continuously verified (Wilson
& Latombe, 1994; De Fazio & Whitney, 2003). Each successful action requires accurate reason-
ing about the spatial relationships between new and existing structures. These features necessitate
Besiege (Spiderling, 2018), an ideal platform to evaluate the LLMs for physics-grounded construc-
tion automation. Besiege is a popular construction sandbox game with realistic physics simulation,
widely validated by world-wide player community to align with human physical intuition. It has a
rich modules space, a complete collection of basic structural and functional module types that can
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Figure 4: Details of the construction procedure in Figure 2. Our designed workflow (bottom row)
contains five collaborative LLM entities, serves as a baseline for future user-customized alternatives.
The text-based construction space (top row) has two transferable formats: code for physics-aligned
spatial geometric computation, and natural language for LLM interface compatibility.

be combined to build complex objects, all completed by iteratively attachment and refinement of the
native modules. Details about modules are provided in Appendix F.1.

However, Besiege only provides graphical representation of 3D structures in the interactive con-
struction space for human users, instead of natural-language illustration for LLMs. It also only
supports direct manipulation through physical controller inputs, without any interface for symbolic
or language-based interaction, nor any indirect API for programmatically operating the construction
process. Therefore, we develop an open-source Spatial Geometric Computation Library that mir-
rors Besiege’s closed-source construction logic and physical constraints, enabling LLMs to interact
with the construction space through language interfaces. It ensures consistency between the effects
of actions executed by LLMs in the language space and those performed by human users in the
graphic interface, as illustrated in Figure 4.

In implementation, it accepts an action announcing the operation and arguments from the LLM
agent, computes and updates the state accordingly, and conducts physical constraint checks: it either
returns a human-interpretable description of the current state, or prohibits the invalid action if certain
constraints are violated and returns a prompt explaining the failure reason. All actions fall into four
categories Build, Refine, Query , and Control, detailed in Appendix F.2.

2.3 LLM AGENTIC WORKFLOW

LLMs execute the construction procedure via LLM agentic workflow (Zhang et al., 2025a). For
clear comparison between different LLMs, we restrict our consideration to workflows where all its
entities employ the same LLM, differentiated by their respective prompts, as illustrated in Figure
2. After careful refinements, we finally obtained an effective workflow. Its design follows two
principles: (1) a coarse-to-fine structure with an outline plan and progressing to granular, executable
details (Xue et al., 2024); (2) a multi-party debate and multi-turn revision framework for incremental
improvement of construction quality (Du et al., 2023). Based on these principles, our workflow em-
ploys five entities: Planner (P), Drafter (D), Reviewer (R), Builder (B), and Guidance
(G). In addition, Controller (C) is used for the task Transport. Prompt details are provided
in Appendix H. The workflow includes three stages, as shown in the bottom row of Figure 4:

• Plan Phase: Executed by Planner, this phase takes the task description and initial module
set as input, outputting a structured construction plan in a predefined format.

• Draft–Review Loop: Based on the generated plan, Drafter produces design schematics.
Reviewer reviews and verifies the schematics, guiding Drafter ’s revisions. The loop
repeats until approval; and terminates in failure if the plan violates predefined rules.
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• Build–Guidance Loop: With approved schematics as input, Builder and Guidance col-
laborate on execution suggestions, building actions, and feedback. Guidance generates
high-level suggestions step by step based on the draft, specifying the next action to invoke;
Builder converts them into formatted construction commands for the Spatial Geometric
Computation Library, which updates the states and returns either descriptive feedback or er-
ror prompts. The loop ends when Guidance confirms full completion, with the final state
converted via the library into a conflict-free, simulation-compatible runnable file as the final
result. Rejection by Guidance based on predefined rules terminates the process in failure.

This workflow serves as a baseline for the development of advanced workflows in the future. The
workflow component can be substituted with any user-customized one.

2.4 EVALUATION

Our evaluation strategy is as follows. For each task-LLM pair, run the aforementioned construction
procedure to produce a result (e.g., a rocket) with detailed logs (e.g., token consumption, conversa-
tion turns). This result is then placed in the simulation environment to operate, yielding evaluation
metrics. To enhance reliability, the procedure is sampled 64 times for each task-LLM pair, with final
reported results averaged over these 64 runs. Prompt and instructions for all tested LLMs are the
same.

Simulation environments are based on the Besiege sandbox, with task-specific simulation proto-
cols. For Transport tasks, the system evaluates if a constructed machine achieves effective mo-
tion. The LLM agent must specify a control configuration and sequence—invalid or missing controls
cause immediate failure. The machine is then loaded into the environment. If repeated attempts show
no effective movement, the system concludes the structure lacks mobility. For Support tasks, the
environment provides fixed obstacles with varying gap widths according to difficulty level. A pay-
load of gradually increasing weight is placed on the structure, and the simulation measures whether
the machine can support and stabilize the load without collapse or loss of balance. For Lift tasks,
Lv.1 records water cannons’ heating status to calculate TWR; Lv.2–3 continuously activates water
cannon firing to simulate launch, with module trajectories and cannons’ heating status recorded for
evaluation during a fixed window.

Simulation environments can also be customized according to user-defined tasks. Specifically,
users set test conditions for the construction result—for instance, adding a load module above a
constructed bridge—and configure simulation parameters, including the initial position, tracking
points, and control information. All these configurations are implemented by invoking our developed
Spatial Geometric Computation Library. Finally, BuildArena executes the simulation using a
unified script and collects log data throughout the entire simulation process.

Evaluation metrics cover performance and cost. Performance includes three metrics: (1) Num-
ber of parts, referring to the count of modules present in the construction result. A smaller value is
preferable because a core principle in engineering prioritizes simpler system structures to improve
maintainability and reliability (El-Rayes & Khalafallah, 2005). (2) Success rate, defined as the pro-
portion of trials that successfully passed the criteria among 64 samples, a higher value is better. (3)
Performance indicator, a task-specific metric extracted from simulation data that evaluates the per-
formance under realistic physical conditions. A higher value is preferable for all indicators. Detailed
success criterion and indicator setup of each task are specified in Section 2.1. Cost is evaluated using
three metrics: (1) number of accumulated input tokens, (2) number of output tokens, and (3) total
number of LLM requests. A lower value is preferable for all the cost metrics.

3 EXPERIMENTS

In the experiments, we aim to answer the following two questions: (1) Whether BuildArena
serves as an effective benchmark for testing the construction capabilities of LLMs? (2) How exist-
ing mainstream models perform within the BuildArena framework? To answer these questions,
we evaluate eight closed-source LLMs in BuildArena, including GPT-4o, Claude-4, Grok-4,
Gemini-2.0, DeepSeek-3.1, Qwen-3, Kimi-K2, and Seed-1.6. All simulations are conducted on
Besiege. Model snapshots, module space, and simulation details are provided in Appendix E. We
provide the code of BuildArena in this link.
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Table 2: Average (n = 64) performance comparison on different tasks across task levels Lv.1 (easy),
Lv.2 (medium), and Lv.3 (hard). The indicator means maximum displacement for Transport;
maximum load for Support; TWR for Lv.1 and maximum height for Lv.2, Lv.3 of Lift. The
best results are in bold and the second-best are underlined.

Task Model Number of Parts Success Rate (%)↑ Indicator↑
Lv.1 Lv.2 Lv.3 Lv.1 Lv.2 Lv.3 Lv.1 Lv.2 Lv.3

Transport

GPT-4o 11.0 13.1 18.4 9.4 1.6 7.8 13.5 4.2 5.1
Claude-4 9.5 13.4 26.1 17.2 4.7 15.6 34.9 6.8 7.3
Grok-4 12.0 15.6 34.6 25.0 0.0 9.4 19.6 4.2 12.3
Gemini-2.0 9.0 12.3 10.0 1.6 1.6 1.6 4.8 4.6 4.6
DeepSeek-3.1 9.2 11.6 16.7 6.2 0.0 1.6 6.2 4.6 4.6
Qwen-3 9.1 7.8 10.9 10.9 1.6 4.7 18.4 3.3 21.5
Kimi-K2 14.2 17.1 19.5 12.5 0.0 1.6 7.4 4.5 3.5
Seed-1.6 7.4 11.2 28.5 6.2 4.7 7.8 4.3 3.8 6.8

Support

GPT-4o 36.8 16.7 29.9 40.6 0.0 0.0 181.2 0.0 0.0
Claude-4 8.0 21.4 31.5 7.8 1.6 0.0 36.8 3.3 0.0
Grok-4 18.7 22.3 33.3 46.9 15.6 0.0 211.4 44.5 0.0
Gemini-2.0 20.5 23.5 41.0 23.4 0.0 0.0 105.5 0.0 0.0
DeepSeek-3.1 19.0 10.5 17.8 25.0 0.0 0.0 122.6 0.0 0.0
Qwen-3 18.6 18.0 22.2 12.5 4.7 0.0 70.5 13.9 0.0
Kimi-K2 23.3 34.7 16.5 29.7 4.7 0.0 122.6 18.6 0.0
Seed-1.6 33.4 36.2 68.8 45.3 9.4 3.1 197.4 25.8 7.1

Lift

GPT-4o 4.0 7.4 5.1 7.8 3.1 0.0 0.9 9.1 4.1
Claude-4 4.5 7.9 2.5 10.9 1.6 0.0 1.0 4.1 1.2
Grok-4 4.8 6.8 1.1 31.2 31.2 3.1 1.8 890.6 86.5
Gemini-2.0 4.3 6.3 4.9 0.0 0.0 0.0 0.5 2.8 0.8
DeepSeek-3.1 4.5 6.9 1.1 10.9 0.0 0.0 1.0 3.3 0.6
Qwen-3 3.5 7.2 3.2 3.1 0.0 0.0 0.6 2.7 0.8
Kimi-K2 5.3 15.1 12.0 6.2 3.1 0.0 0.7 44.8 1.8
Seed-1.6 3.5 3.3 0.0 6.2 0.0 0.0 0.9 1.7 0.0

Figure 5: Example of the construction process. The rocket is constructed by Grok-4 for the Lift
task under the Lv.2 (Medium) difficulty level. More examples are presented in Figure 10.

3.1 EFFECTIVENESS OF BUILDARENA

The performance of eight models on BuildArena is presented in Table 2, with examples of con-
struction results shown in Figure 9 and examples of construction procedures illustrated in Figure
5. These results demonstrate that, supported by the BuildArena evaluation framework, LLMs
achieve language-based 3D construction automation, as evidenced by the following aspects. (1) Re-
garding task design, the diversity and difficulty levels are reasonably configured. Across individual
tasks, performance tends to decrease as difficulty increases. An exception is the Lift task, where
Lv.1 uses different metrics from Lv.2/3, making direct comparisons inappropriate. Specifically, at
the Hard difficulty level of three tasks, most models exhibit low performance, yet a small number
outperform others, indicating that the difficulty and criteria settings possess good discriminative
power. (2) Concerning the LLM agentic workflow, numerous successful construction outcomes
validate its effectiveness. This workflow enables collaborative behaviors among LLMs such as re-
flection (e.g., the third subfigure from the left in Figure 5), which is essential for long-sequence
planning. (3) Our Spatial Geometric Computation Library facilitates language-driven manipulation
of the physical world. As illustrated in the construction procedure figures, these processes involve
diverse actions including attachment, removal, rotation, shifting, and connection, which collectively
meet the action requirements of construction tasks. (4) The simulator provides environmental sup-
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Figure 6: Distributions of failure reasons averaged over different LLMs.

port for the evaluation phase. For instance, it can place loads on bridges to test their load-bearing
capacity and offer conditional support for the entire launch process of rockets. Overall, these key
components of BuildArena, including task design, library, and simulator, collectively provide
robust support for evaluation, enabling it to function as an effective and reliable benchmark. For
ablation study on the multi-agent workflow, please refer to Table 4 of Appendix I. For more results
about the decoding sensitivity, please refer to Table 5 of Appendix I. BuildArena can also be in-
tegrated into a closed-loop framework that uses feedback from simulator for iterative improvement.
The details are presented in Table 6 of Appendix I.

3.2 PERFORMANCE OF LLMS

3.2.1 LIMITED PERFORMANCE OF CURRENT LLMS

From a complementary perspective, leveraging our BuildArena framework, current LLMs
demonstrate elementary construction capabilities, as shown in Table 2. These capabilities are re-
flected in three aspects as follows. (1) in Transport tasks, as difficulty increases from Lv.2 to
Lv.3—corresponding to an increase in payload size—all models adapt by scaling up the number of
components to meet size constraints, thereby maintaining moving stability during simulation. Such
patterns indicate that current LLMs effectively address challenges related to magnitude and ambi-
guity. (2) Second, when explicit constraints are relaxed, LLMs attempt unconventional solutions:
they propose propulsion-powered carriers for Transport tasks and wheel-integrated bridge struc-
tures for Support tasks. In the latter case, LLMs explicitly state the need to utilize the automatic
braking function of wheels to stabilize the bridge (see Figure 10, Support Lv.1 by DeepSeek-3.1).
These behaviors highlight the potential of LLMs for creative exploration. (3) Remarkably, structures
mirroring real-world engineering practices are constructed by LLMs, such as steel trusses in bridges
and differential steering in vehicles (see Figure 10, Support Lv.2 by Grok-4). This suggests that
structural concepts learned from text are not purely symbolic but carry implicit spatial information,
enabling LLMs to instantiate them as feasible 3D structures. Notably, LLMs construct structures
that align with real-world engineering practices, such as widely used steel trusses in bridges and
differential steering systems in vehicles. This observation suggests that structural concepts learned
from text are not purely symbolic but carry implicit spatial information, enabling LLMs to instantiate
them as feasible 3D structures.

However, these models still suffer from significant limitations. (1) In hierarchical assembly tasks,
such as the Support task, LLMs’ success rates drop sharply as the assembly complexity, i.e.,
the number of bridge substructures, increases. This indicates that the models ability to cope with
compositional constructions is generally weak. (2) In high-precision tasks with low robustness, such
as the Lift tasks, the model’s success rate is generally extremely low. As the difficulty increases,
most success rates drop to zero. This shows that existing models, with the exception of Grok-4, are
unable to accomplish tasks that require high precision and suffer from strong sensitivity.

Figure 6 shows the occupation of different failure reasons during the construction process. Several
features can be extracted from it. (1) Spatial conflict is the most difficult mistake to avoid. Overlap
conflicts and attempts to use an already occupied face task the majority of failed actions. It indicates
that LLM agents frequently fail to capture the updated spatial structures and make accurate next
moves. (2) Failure modes differ across task categories. In the Support tasks, excess connection
errors become more common, showing increasing attempts to reinforce the attachment. And in the
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Lift tasks, more misjudge of face status emerges since the structures have less modules and thus
less redundant faces for attachment.

3.2.2 COMPARISON AMONG DIFFERENT LLMS
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Figure 7: Performance of different LLMs against
six dimensions of task difficulty: Quantification
(Q), Robustness (R), Magnitude (M), Composi-
tionality (C), Precision (P), Ambiguity (A).

The performance of different LLMs across six
task difficulty dimensions is presented in Fig-
ure 7. It calculates the weighted score of each
LLM across all the difficulty dimensions based
on its score ranking in each task, followed
by averaging the scores across the nine task-
difficulty combinations. Key observations are
as follows. (1) Grok-4 shows the strongest
overall performance, which aligns with exist-
ing research (ARC Prize Foundation, 2025). In
particular, Grok-4 exhibits exceptional perfor-
mance in Precision and Robustness. (2) Aside
from Grok-4, different models show a high de-
gree of similarity in the distribution of their ca-
pabilities to handle tasks of varying difficulty.
For each model, its strengths are consistently
stretched in the Magnitude and Ambiguity di-
mensions, which is consistent with their perfor-
mance in the Transport task in Table 2. In contrast, all LLMs exhibit consistent weaknesses
across the other four dimensions. These findings provide clear directions for future improvements
of LLMs.

3.2.3 COST ANALYSIS
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Figure 8: Trade-off between performance and cost. Longer output does not imply better results.

Figure 8 presents the relationship between cost and performance. Detailed results are provided in
Appendix 3. From these results, we observation that massive inference does not guarantee high
performance. In all the three tasks, best construction results often consume only moderate numbers
of tokens, whereas many failed attempts incur massive token usage. This shows that beyond a certain
capability threshold, additional inference cost does not translate into better performance.

4 CONCLUSION AND LIMITATIONS

In this work, we have introduced BuildArena, the first physics-aligned interactive benchmark
designed to evaluate LLMs in engineering construction tasks. While our work represents the first
step toward the promising domain of LLM-based engineering construction, it still has the follow-
ing limitations. First, the framework lacks an extended outer loop to refine construction results
based on simulator-derived evaluation outcomes, thereby failing to fully unlock the models’ poten-
tial. Addressing this gap would involve designing an evaluation framework that enables closed-loop
improvement driven by evaluation results. Second, the limited diversity of basic units in the mod-
ule library constrains the range of constructible objects, a limitation that necessitates collaborative
efforts from the research community to contribute a richer set of infrastructure assets. Looking for-
ward, we believe our work paves the way for enabling and evaluating LLMs for complex engineering
constructions, important for bridging LLMs with the physical world.
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REPRODUCIBILITY STATEMENT

The anonymous code is available at https://anonymous.4open.science/r/
BuildArena-9B7B/. We provide a unified and modular code framework, together with
scripts for reproducing all experiments.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, the use of LLMs is limited to assisting in the writing and polishing of the paper.
Additionally, we utilize Visual Languange Model (by Seed) to generate the cartoon images of the
LLM agents shown in Figure 2 and Figure 4.

B RELATED WORK

LLM Capability Benchmarks. There have been numerous research evaluating the capabilities of
LLMs recently, but few focus on construction tasks as BuildArena. In long-term planning, popu-
lar benchmarks such as PlanBench (Valmeekam et al., 2023), PlanGenLLMs (Wei et al., 2025), and
PlanningArena (Zheng et al., 2025) all operate in abstract and static settings, ignoring physical con-
straints. Physical reasoning benchmarks like PhYRE (Bakhtin et al., 2019), PIQA (Bisk et al., 2020),
Newton (Wang et al., 2023b), and ABench-Physics (Zhang et al., 2025b) do not involve assembly
process. Spatial understanding work, such as GeoGramBench (Luo et al., 2025), PlanQA (Rodionov
et al., 2025), reveals LLM blind spots in real-world layout reasoning but omits construction. None
of them tie LLM capabilities to physics-constrained engineering assembly, whereas BuildArena
uses a physics sandbox to evaluate interactive construction.

Physics Simulation Environments. Advanced engines (MuJoCo (Todorov et al., 2012), Isaac Gym
(Makoviychuk et al., 2021)) and platforms (Autodesk (Autodesk Inc., 2024), SimScale (SimScale
GmbH, 2024)) offer robust physics modeling, while digital twins create virtual structure represen-
tations (Dai et al., 2024). However, they lack integration with language interfaces for interactive
construction, limiting their potential for following human instructions. LLM-based simulation stud-
ies focus on decision-making, not mechanical assembly (Kleiman et al., 2025; Gao et al., 2024a),
and robot-centric environments (Gazebo, DART-LLM (Wang et al., 2024)) mainly target manipula-
tion rather than structural building. BuildArena uniquely integrates a physics-aligned sandbox
with a standardized language interaction protocol, tailored to evaluate the engineering construction
driven by LLMs.

AI-Driven Construction Automation. AI applications in construction focus on parameterized de-
sign (Newton, 2019) and construction planning optimization (Zhang & Yang, 2025). Integrations
with LLMs are still in the early stages(Ma12 et al.). The critical challenge of translating natural
language to physically feasible structural assembly remains to be solved.

C MORE CONSTRUCTION RESULTS

More construction results are presented in Figure 9.

D MORE RESULTS OF CONSTRUCTION PROCEDURES

More results of construction procedures are presented in Figure 10.

E EXPERIMENTS DETAILS

E.1 MODEL SNAPSHOTS

• Grok-4: grok4-0709

• GPT-4o: gpt-4o

• Claude-4: claude-sonnet-4-20250514

• Gemini-2.0: gemini-2.0-flash

• DeepSeek-3.1: deepseek-chat (DeepSeek-V3.1)

• Seed-1.6: doubao-seed-1-6-250615

• Kimi-K2: kimi-k2-turbo-preview
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Table 3: Average (n = 64) cost comparison of models on different tasks across levels Lv.1 (easy),
Lv.2 (medium), and Lv.3 (hard). The number of input/output tokens (# Input/Output Tokens) repre-
sents the cumulative total across multiple LLM requests required to complete one task instance on
average.

Task Model # Input Tokens (×103)↓ # Output Tokens (×103)↓ # LLM Requests↓
Lv.1 Lv.2 Lv.3 Lv.1 Lv.2 Lv.3 Lv.1 Lv.2 Lv.3

Transport

GPT-4o 326.7 546.2 458.1 22.1 11.1 11.6 63.5 69.4 74.7
Claude-4 203.0 264.9 751.5 18.5 19.1 25.3 41.3 48.0 74.3
Grok-4 233.5 368.3 1259.9 8.9 10.8 15.5 40.7 49.3 98.4
Gemini-2.0 382.5 371.6 361.7 11.0 10.8 9.3 65.4 63.1 63.9
DeepSeek-3.1 252.8 469.4 715.5 18.5 23.6 28.2 49.8 67.9 80.1
Qwen-3 473.8 381.1 841.3 18.5 19.9 21.8 59.7 51.1 72.2
Kimi-K2 635.5 1099.6 968.7 13.9 16.0 14.2 82.2 96.8 99.8
Seed-1.6 197.1 248.7 899.3 41.0 43.2 63.7 34.1 41.1 81.5

Support

GPT-4o 1008.6 748.7 1671.8 19.5 19.0 22.5 102.5 135.7 192.5
Claude-4 116.3 548.5 1134.4 8.6 30.9 40.3 26.7 94.4 135.1
Grok-4 301.8 545.1 1152.0 7.6 11.9 14.7 45.5 69.4 91.1
Gemini-2.0 425.3 1413.9 2308.0 10.4 20.1 22.2 62.7 142.2 186.5
DeepSeek-3.1 484.4 299.0 424.8 22.1 19.3 18.4 70.5 57.0 64.8
Qwen-3 880.1 817.5 1263.5 17.7 23.9 23.3 63.8 89.4 104.0
Kimi-K2 508.8 1750.3 861.1 8.6 22.6 7.3 60.9 160.0 64.2
Seed-1.6 880.3 2043.2 5423.0 51.5 112.2 165.4 78.3 165.5 293.2

Lift

GPT-4o 345.7 232.3 423.6 23.7 8.7 13.8 51.2 50.8 88.1
Claude-4 279.8 376.0 386.8 22.6 28.8 30.6 44.9 50.7 68.9
Grok-4 103.4 180.9 128.0 6.7 8.4 10.2 24.2 33.0 34.3
Gemini-2.0 290.5 266.1 445.1 7.1 10.3 14.1 40.4 47.6 80.3
DeepSeek-3.1 317.3 401.6 396.8 22.5 24.7 29.5 54.4 61.3 76.0
Qwen-3 483.7 987.0 877.2 22.0 28.6 18.1 49.7 76.5 76.5
Kimi-K2 288.8 885.8 715.2 7.4 11.1 13.4 46.5 84.6 96.5
Seed-1.6 227.4 233.3 244.3 51.4 52.1 62.9 35.0 35.8 50.3
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Figure 9: More examples of construction results of BuildArena, spanning three tasks:
Transport (vehicles), Support (bridges) and Lift (rockets with nozzles).

• Qwen-3: qwen-plus (Qwen3 series)

All models are accessed via official API endpoints encapsulated by AutoGen (Wu et al., 2023)
framework.

E.2 BASIC MODULES

For our experiments, we have defined a set of six basic modules that serve as the fundamental build-
ing blocks for all tasks. This curated selection—comprising the small wooden block, powered wheel,
water cannon, torch, brace, and winch—is sufficient to realize the necessary constructions without
introducing overpowered or overly specialized parts. The detailed descriptions and specifications of
each module are presented below.

E.2.1 4 KINDS OF AVAILABLE BLOCKS

Powered Wheel (shape: [2, 2, 0.5], mass: 1.0)

Description: A powered wooden wheel (diameter = 2, thickness = 0.5)
rotates at a constant speed of 100 rpm, and automatically brakes when
the wheel stops. Each powered wheel can be individually controlled

to rotate forward or backward by pressing and holding configurable
control keys. The wheel’s motion is governed by the following
constraints: - The wheel’s rotation axis is perpendicular to the
attached face. - The rolling direction is always parallel to the
attached face. - For example, if the attached face is a horizontal
face, the wheel will also be horizontal; if the attached face is a
vertical face, the wheel will also be vertical. - For example, if the
wheel is attached to a side face, the wheel will be rotating

parallel to the side face and the rolling direction is perpendicular
to the side face. - For example, if the wheel is attached to a bottom
face, the wheel will be rotating parallel to the bottom face and

unable to roll effectively.

Small Wooden Block (shape: [1, 1, 1], mass: 0.3)

Description: Small wooden cubic block with shape of [1, 1, 1]

Torch (shape: [1.5, 0.5, 0.5], mass: 1)

16
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Figure 10: Building procedure examples across 9 tasks.

Description: The torch flame sets flammable blocks, structures, and
entities on fire. It can be extinguished by Water Cannons (and Steam
Cannons!), and reignited by other burning blocks. Their most common

use is in heating water cannons so they produce steam, particularly
in vanilla builds However, they can be extinguished by steam plumes,
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so care must be taken not to fly backwards. The torch will generate
a spherical heating area with a radius of 0.3 unit in front of its

flame nozzle direction (that is, the position of the torch body plus
the orientation vector). All objects in this area will be heated or
ignited by the flame. They can also be used for setting fire to
things for destructive purposes. Torches have no attachable faces for
further attachment or connection. The Torch is shaped as a short

horizontal support (length of 0.5), and a vertical shaft (length of
1), the flame is at the end of the vertical shaft. For example, if
the torch is attached to a vertical face (face center is [0.5, 0, 0])
and points upwards, the torch coordinates will be [1, 0, 0] since

the horizontal support of the torch has a offset of 0.5 from the
attached surface, and the heating area will be a sphere with radius
0.3 centered at [1, 0, 1] since the length of the vertical shaft is
1.

Water Cannon (shape: [2, 2, 1], mass: 1.5)
Description: The Water Cannon sprays water in a fixed direction, which is

determined by the attachment and orientation of the water cannon.
Generates constant recoil force of 1.6 units of mass at normal
gravity. The recoil force is not affected by speed or external
conditions. Each water cannon can be individually controlled to fire
by pressing and holding a configurable control key. Water Cannon has
no attachable faces for further attachment or connection. Steam Mode:
If any part of the water cannon is heated, it will fire steam

instead of water and deliver 8.6 times the regular recoil force.
Water Cannon has a peanut-shaped body (narrower in the middle than at
the two ends, inlet and outlet are at the two ends) with length of

1.75, width of 1, and height of 1. The middle part of the water
cannon is narrower, making it hard to be directly heated if the heat
source is small. For example, if the water cannon is attached to a
vertical face (face center is [0.5, 0, 0]) and points downwards, the
water cannon center coordinates will be [1, 0, 0] since the
connection part of the water cannon has a offset of 0.5 from the
surface, and the water cannon inlet will be at [1, 0, 0.75] and the
water cannon outlet will be at [1, 0, -1] with a shape of 1.75x1x1
cylinder (narrower in the middle than at the two ends).

E.2.2 2 KINDS OF AVAILABLE CONNECTORS:

Brace (mass: 0.5)
Description: The Brace is a block that can be used to connect two

separated blocks with a solid hinge. It can be used to enhance two
blocks that are already connected together, or to assemble structures
that are separated in the space. The mass of this block is always

the same regardless of the length. Brace must be connected between
two attachable faces of existing blocks, it cannot be directly
attached to a single block.

Winch (mass: 0.4)
Description: The Simple Rope + Winch (simply as Winch or Rope) is a

machine block composed of two winches at its end node which connects
two blocks by a variable-length rope. Winch must be connected between
two attachable faces of existing blocks, it cannot be directly

attached to a single block.

E.3 SIMULATION DETAILS

All simulations are conducted on Besiege v1.75 (build 23370) with Lua Scripting Mod (for con-
trolling and logging), using the Steam distribution on Windows, performed in the native physics
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settings of the game and executed by a unified automation script. Motion trajectories are recorded
at a sampling rate of 25 Hz for subsequent quantitative analysis.

F 3D SPATIAL GEOMETRIC COMPUTATION LIBRARY

F.1 MODULE SPACE

The modules space V is a complete collection of basic module types like small wooden block, pow-
ered wheel, water cannon, torch, brace and winch that can be combined to build complex objects.
The state in the construction procedures is represented as a triple S = ⟨V,P, c⟩. Here, V ⊂ V de-
notes the set of modules involved in the current structure; The projection operator P : V → SE(3)
maps each module in V element-wisely to its 3D pose; and c = ⟨(t1, k1,∆t1), . . . , (tn, km,∆tn)⟩
forms a control sequence, where tn is the timestamp of pressing control key km, ∆tn is the press
duration, and overlapping key-press operations are permitted.

To be more specific, each module v ∈ V is characterized by four attributes, expressed as v =
⟨F , G, γ, π⟩. Geometric attribute G encodes mesh, collision shape, initial orientation, and relative
coordinates/orientations of connectable faces; F is a finite set of connectable faces where with each
face is associated with a normal vector derived from P(v) and G, described via natural-language-
aligned terms like letter labels and angular coordinates; γ represents physical/functional parameters
such as mass, rotational speed, thrust; control attributes π maps control keys to actions and spin
directions. Additionally, each module is accompanied by a natural-language summary cinit(G, γ, π)
for initial prompts, with few-shot examples for modules (e.g., Powered Wheel) to help LLM agents
align with critical functional info, such as rolling/jetting directions.

F.2 ACTION SPACE

The action space comprises five categories of operators that cover the whole construction process:
Build, Refine, Assemble, Control, and Query . A sequence of these actions forms a tra-
jectory ā = ⟨(a1, r1), (a2, r2), . . . , (aT , rT )⟩, where each ai ∈ A and ri denotes return information,
including success / failure codes and natural-language descriptions of spatial structures. These cat-
egories are defined as follows:

Build: Enables core construction operations in the simulated environment, including module at-
tachment, connection, removal, resetting, rotation, translation, and reversal.

Refine: When the structural state generated in the Build phase contains rotating modules, a sub-
sequent Refine phase follows to allow fine-tuning of the structural state, in an attempt to ensure that
the rotating modules have a reasonable rotation direction.

Assemble: If multiple substructures were built, an Assembly phase is then initialized, allowing
the reuse of former construction results as building components.

Control: Manages control-related functionalities, such as updating action-to-control-key map-
pings in πv and appending control operations (t, k,∆t) to the control sequence δ within s.

Query: Retrieves natural-language descriptions of structural states, including: a summary of the
overall state s as rt = cs(V,P); detailed module v information as rt = cv(Fv, pv); function-
to-key mappings for control-enabled modules in s as rt = cs(π1, π2, . . . , πv); descriptions of s’s
control sequence as rt = cs(δ); and function-to-pose mappings for control-enabled modules in s as
rt = cs(p1, p2, . . . , pv).

F.3 SPATIAL GEOMETRIC COMPUTATION LIBRARY

F.3.1 BESIEGE SIMULATOR

Besiege is a physics-based construction sandbox game environment that enables the assembly and
simulation of mechanical structures using modular components. It features a realistic physics en-
gine, validated through extensive community use, which aligns closely with real-world physical
principles. The environment includes a diverse set of structural and functional modules (over 70
types), allowing for the iterative construction of complex objects such as vehicles and static sup-
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ports. These can be tested in simulated scenarios, with support for multiplayer validation and access
to over 200,000 user-generated designs via an integrated workshop. In this work, we leverage Be-
siege as a neutral platform for evaluating language-driven construction under physical constraints,
emphasizing its modular building system and simulation fidelity.

Besiege serves as the underlying simulation backend, providing a validated physics engine for test-
ing constructed structures. As a construction sandbox, it simulates realistic dynamics, including
gravity, friction, and module interactions, using Unity’s physics system. Our library interfaces indi-
rectly with Besiege by replicating its core operations (e.g., module attachment and control sequenc-
ing) without direct API access.

F.3.2 SPATIAL GEOMETRIC COMPUTATION LIBRARY

The Spatial Geometric Computation Library implements the core functionalities for managing 3D
spatial operations in the BuildArena framework. It handles state updates, geometric transformations,
and constraint validations, bridging LLM-generated instructions to Besiege’s physics simulation.
Functions are organized into tool groups for modular use: control for sequencing actions, build
for assembling structures, refine for post-attachment adjustments, default for querying states, and
build only for initialization. Below, we highlight representative functions from each group, with
illustrations.

Control Tool Group This group manages timed control sequences for powered modules, enabling
dynamic behaviors in simulated environments.

add control sequence: Facilitates the addition of timed inputs to simulate machine operations, es-
sential for tasks requiring sequential activation.

1 def add_control_sequence(time: float, key: str, hold_for: float) -> str:
2 """Add a new control sequence entry."""
3 # Implementation: Append to sequence list with validation
4 return "Sequence added successfully."

review control config: Provides visibility into current control mappings, supporting iterative debug-
ging during construction.

1 def review_control_config() -> str:
2 """A tool to review the current control configuration."""
3 # Implementation: Aggregate and format control data
4 return "Control config: [list of keys and actions]"

Build Tool Group This group supports the core assembly of structures, including attachments and
connections under geometric constraints.

attach block to: Enables precise module placement on existing structures, enforcing face-based
alignment for stable builds.

1 def attach_block_to(base_block: Union[str, int], face: str, new_block:
str, note: str) -> str:

2 """Attach a new block to a face of an existing block."""
3 # Implementation: Compute pose, check collisions, update state
4 return "Block attached successfully."

connect blocks: Establishes reinforced links between modules, crucial for enhancing structural in-
tegrity in complex designs.

1 def connect_blocks(block_a: Union[str, int], face_a: str, block_b: Union[
str, int], face_b: str, connector: str, note: str) -> str:

2 """Connect two blocks using a connector."""
3 # Implementation: Validate distance, add connector module
4 return "Blocks connected successfully."
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Refine Tool Group This group allows fine-tuning of module positions and orientations after initial
placement, aiding in overlap resolution.

twist block: Adjusts rotational alignment to optimize functional orientations, particularly for direc-
tional components.

1 def twist_block(block_id: Union[str, int], angle: float) -> str:
2 """Twist a block clockwise relative to its rooted surface."""
3 # Implementation: Apply rotation matrix, update pose
4 return "Block twisted successfully."

Default Tool Group This group provides state inspection tools, ensuring accurate feedback for LLM
reasoning loops.

get machine summary: Offers a high-level overview of the current build state, mandatory for final
validations before simulation.

1 def get_machine_summary() -> str:
2 """Get the latest state of the machine without face captions."""
3 # Implementation: Summarize blocks and poses
4 return "Machine summary: [overview details]"

Build-Only Tool Group This group handles initialization, setting the foundation for new construc-
tions.

start: Initializes the build environment with a starting module, incorporating initial offsets for cus-
tom positioning.

1 def start(init_shift: List[float], init_rotation: List[float], note: str)
-> str:

2 """Start to build the machine by creating and positioning the
starting block."""

3 # Implementation: Create initial block, apply transformations
4 return "Starting block positioned."

G TASK DETAILS

Prompts of all the three tasks are listed as follows.

G.1 TRANSPORT

G.1.1 EASY (LV.1)

**Constraints:**
- Use only one sub-structure.
- The vehicle must have at least four wheels.
- The vehicle must be capable of forward driving and demonstrate a

steering mechanism.
- Conventional steering mechanisms (e.g., rotating front wheels relative

to the body) are not available with the provided blocks. Alternative
steering strategies must be employed.

**Goal:**
- Drive the vehicle from the starting position (x=0, y=0) on the ground

to the target position (x=10, y=10) on the ground (north-east
direction) in the simulation environment.

**Evaluation Protocol:**
- The vehicle will be placed at (x=0, y=0) on the ground in the

simulation environment.
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- An open-loop control sequence will be programmed by a specialized AI
agent following your plan, consisting of a list of commands with the
format:

- [time: when to press the control key, command: the control key to press
, duration: how long to hold the key]

- The trajectory of the vehicle will be recorded as feedback and
optimized over three trials by adjusting the control sequence.

- The final score will be the best score across the three trials.

**Scoring Metrics:**
- *Trajectory Deviation:* Distance between the actual trajectory and the

ideal straight-line path from start to target (smaller is better).
- *Structure Stability:* Whether the vehicle remains intact during

driving (higher stability is better).
- *Time Efficiency:* Time taken to reach the target position (shorter is

better).
- *Cost:* Number of blocks used to construct the vehicle (fewer is better

).

G.1.2 MEDIUM (LV.2)

**Constraints:**
- Use only one sub-structure.
- The cargo will not show in the building process, do not include it in

the building plan.

**Goal:**
- Move a 2.5 × 2.5 × 1.5 cargo with 50 units mass from the starting

position (x=0, y=0) on the ground to the target position (x=10, y=10)
on the ground (north-east direction) in the simulation environment.

**Evaluation Protocol:**
- The machine will be placed at (x=0, y=0) on the ground in the

simulation environment.
- The cargo will be loaded to the machine by freely dropping from above

the starting position (x=0, y=0, z=3.5).
- The cargo will not have solid connection with the machine.
- An open-loop control sequence will be programmed by a specialized AI

agent following your plan, consisting of a list of commands with the
format:

- [time: when to press the control key, command: the control key to press
, duration: how long to hold the key]

- The trajectory of both cargo and machine will be recorded as feedback
and optimized over three trials by adjusting the control sequence.

- The final score will be the best score across the three trials.

**Scoring Metrics:**
- *Trajectory Deviation:* Distance between the actual trajectory of the

cargo and the ideal straight-line path from start to target (smaller
is better).

- *Structure Stability:* Whether the machine remains intact during
driving (higher stability is better).

- *Time Efficiency:* Time taken to reach the target position (shorter is
better).

- *Cost:* Number of blocks used to construct the machine (fewer is better
).

G.1.3 HARD (LV.3)

**Constraints:**
- Use only one sub-structure.
- The cargo will not show in the building process, do not include it in

the building plan.
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**Goal:**
- Move a 4 × 8 × 1.5 cargo (long axis along the north-south direction)

with 50 units mass from the starting position (x=0, y=0) on the
ground to the target position (x=10, y=10) on the ground (north-east
direction), and back to the starting position in the simulation
environment.

**Evaluation Protocol:**
- The machine will be placed at (x=0, y=0) on the ground in the

simulation environment.
- The cargo will be loaded to the machine by freely dropping from above

the starting position (x=0, y=0, z=3.5).
- The cargo will not have solid connection with the machine.
- An open-loop control sequence will be programmed by a specialized AI

agent following your plan, consisting of a list of commands with the
format:

- [time: when to press the control key, command: the control key to press
, duration: how long to hold the key]

- The trajectory of both cargo and machine will be recorded as feedback
and optimized over three trials by adjusting the control sequence.

- The final score will be the best score across the three trials.

**Scoring Metrics:**
- *Trajectory Deviation:* Distance between the actual trajectory of the

cargo and the ideal straight-line path from start to target (smaller
is better).

- *Structure Stability:* Whether the machine remains intact during
driving (higher stability is better).

- *Time Efficiency:* Time taken to reach the target position (shorter is
better).

- *Cost:* Number of blocks used to construct the machine (fewer is better
).

G.2 SUPPORT

G.2.1 EASY (LV.1)

**Constraints:**
- Use only one sub-structure.

**Goal:**
- Build a bridge capable of spanning a gap between two flat terrains (5

units wide, 5 units high).
- The bridge must be able to support a 2.5 × 2.5 × 1.5 cargo placed at

its center.

**Evaluation Protocol:**
- The terrains are positioned with edges at (x=0, y=2.5, z=5) and (x=0, y

=-2.5, z=5), forming a 5-unit-wide gap along the north-south axis
with a vertical drop of 5 units.

- The bridge will be initially placed at (x=0, y=0, z=7), slightly above
the terrain tops, so it can gently fall into position.

- There will be no fixed connection between the bridge and the terrain.
- A cargo of size 2.5 × 2.5 × 1.5 will be dropped at (x=0, y=0, z=7),

directly above the center of the gap.
- The cargo will rest on the bridge without any fixed connection.
- The cargo’s weight will gradually and linearly increase from zero (no

initial impact).
- The trajectory of the cargo will be tracked; the load at which the

cargo sinks below the gap will be recorded as the bridge’s maximum
supported load.

- If the bridge fails to span the gap or misses the cargo at the start,
the score is 0.
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**Scoring Metrics:**
- *Maximum Load:* Maximum load supported before the cargo falls below the

gap (higher is better).
- *Cost:* Number of blocks used to build the bridge (fewer is better).

G.2.2 MEDIUM (LV.2)

**Constraints:**
- Use no more than 3 sub-structures.

**Goal:**
- Build a bridge capable of spanning a gap between two flat terrains (10

units wide, 5 units high).
- The bridge must be able to support a 2.5 × 2.5 × 1.5 cargo placed at

its center.

**Evaluation Protocol:**
- The terrains are positioned with edges at (x=0, y=5, z=5) and (x=0, y

=-5, z=5), forming a 10-unit-wide gap along the north-south axis with
a vertical drop of 5 units.

- The bridge will be initially placed at (x=0, y=0, z=7), slightly above
the terrain tops, so it can gently fall into position.

- There will be no fixed connection between the bridge and the terrain.
- A cargo of size 2.5 × 2.5 × 1.5 will be dropped at (x=0, y=0, z=7),

directly above the center of the gap.
- The cargo will rest on the bridge without any fixed connection.
- The cargo’s weight will gradually and linearly increase from zero (no

initial impact).
- The trajectory of the cargo will be tracked; the load at which the

cargo sinks below the gap will be recorded as the bridge’s maximum
supported load.

- If the bridge fails to span the gap or misses the cargo at the start,
the score is 0.

**Scoring Metrics:**
- *Maximum Load:* Maximum load supported before the cargo falls below the

gap (higher is better).
- *Cost:* Number of blocks used to build the bridge (fewer is better).

G.2.3 HARD (LV.3)

**Constraints:**
- Use no more than 3 sub-structures.

**Goal:**
- Build a bridge capable of spanning a gap between two flat terrains (20

units wide, 5 units high).
- The bridge must be able to support a 2.5 × 2.5 × 1.5 cargo placed at

its center.

**Evaluation Protocol:**
- The terrains are positioned with edges at (x=0, y=10, z=5) and (x=0, y

=-10, z=5), forming a 20-unit-wide gap along the north-south axis
with a vertical drop of 5 units.

- The bridge will be initially placed at (x=0, y=0, z=7), slightly above
the terrain tops, so it can gently fall into position.

- There will be no fixed connection between the bridge and the terrain.
- A cargo of size 2.5 × 2.5 × 1.5 will be dropped at (x=0, y=0, z=7),

directly above the center of the gap.
- The cargo will rest on the bridge without any fixed connection.
- The cargo’s weight will gradually and linearly increase from zero (no

initial impact).
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- The trajectory of the cargo will be tracked; the load at which the
cargo sinks below the gap will be recorded as the bridge’s maximum
supported load.

- If the bridge fails to span the gap or misses the cargo at the start,
the score is 0.

**Scoring Metrics:**
- *Maximum Load:* Maximum load supported before the cargo falls below the

gap (higher is better).
- *Cost:* Number of blocks used to build the bridge (fewer is better).

G.3 LIFT

G.3.1 EASY (LV.1)

**Constraints:**
- Use only one sub-structure.

**Goal:**
- Build a single rocket engine capable of providing propulsion to a

single direction.

**Evaluation Protocol:**
- The rocket engine will be placed at position (x=0, y=0, z=0) on the

ground plane.
- During the simulation, the firing control key of the rocket engine will

be pressed and held continuously.
- The vertical propulsion force of the rocket engine will be calculated

by the difference in vertical position of the rocket engine between
the start and end of the simulation.

**Scoring Metrics:**
- *Maximum Propulsion Force:* The maximum propulsion force achieved by

the rocket engine (higher is better).
- *Cost:* The total number of blocks used to construct the rocket engine

(fewer is better).

G.3.2 MEDIUM (LV.2)

**Constraints:**
- Use only one sub-structure.

**Goal:**
- Build a rocket capable of lifting off from the ground and ascending

into the sky in the simulation environment.

**Evaluation Protocol:**
- The rocket will be placed at position (x=0, y=0, z=0) on the ground

plane.
- During the simulation, the firing control key of the rocket engine will

be pressed and held continuously.
- The motion trajectory of the rocket will be recorded throughout the

simulation.

**Scoring Metrics:**
- *Maximum Height:* The highest vertical position (z) reached by any

block of the rocket (higher is better).
- *Trajectory Deviation:* The average lateral distance between the rocket

’s actual trajectory and the ideal vertical line (smaller is better).
- *Maximum Speed:* The highest speed achieved by any block of the rocket

(higher is better).
- *Cost:* The total number of blocks used to construct the rocket (fewer

is better).
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G.3.3 HARD (LV.3)

**Constraints:**
- Use only two sub-structures.

**Goal:**
- Build a single rocket engine capable of providing propulsion to a

single direction.
- Build a simple chassis to assemble the rocket engines using braces to

form a symmetric rocket.
- The assembled rocket should be able to lift off from the ground to the

sky in the simulation environment.

**Evaluation Protocol:**
- The assembled rocket will be placed at position (x=0, y=0, z=0) on the

ground plane.
- During the simulation, the firing control key of the rocket engine will

be pressed and held continuously.
- The motion trajectory of the assembled rocket will be recorded

throughout the simulation.

**Scoring Metrics:**
- *Maximum Height:* The highest vertical position (z) reached by any

block of the assembled rocket (higher is better).
- *Trajectory Deviation:* The average lateral distance between the

assembled rocket’s actual trajectory and the ideal vertical line (
smaller is better).

- *Maximum Speed:* The highest speed achieved by any block of the
assembled rocket (higher is better).

- *Cost:* The total number of blocks used to construct the assembled
rocket (fewer is better).

H WORKFLOW AND PROMPTS

Prompts of entities in the workflow are listed as follows. Planner:

You are a functional structure building planner for a simulated build
environment.

Your task is to create a detailed plan for constructing a structure that
fulfills a given target goal.

You will be provided with a goal and a list of available building blocks.
Your plan should include an overall structure design and a breakdown of

this structure into basic sub-structures if specified.
All sub-structures should be able to be parallel built using the

available building blocks.

Here are the available building blocks you can use:
<available_blocks>
{available_blks}
</available_blocks>

- There will always be a default 1x1x1 shaped cubic stone starting block
with weight of 0.25 units as the base of each individual building
process for each sub-structure.

- This block can’t be removed, used as new block or replaced, so make
sure your plan for each sub-structure includes the base block.

- The global coordinates of the simulation environment in [x, y, z]
format are defined as:

positive x points east,
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positive y points north,
positive z points upward (sky).

Analyze the goal carefully and conceptualize a structure that can achieve
this goal. Consider how the available blocks can be used to create

this structure. Think about the physics and mechanics involved in
achieving the goal.

Plan your structure by following these steps:
1. Envision an overall structure that can achieve the goal.
2. If necessary, break down this structure into non-redundant and

reusable basic sub-structures or components, each sub-structure
should be constructed independently, and the final structure will be
assembled by attaching or connecting the sub-structures together.

3. For each sub-structure, determine which building blocks will be used
and how they will be arranged.

4. Consider how these sub-structures will be assembled to form the
complete structure.

5. Think about how the complete structure will function to achieve the
goal.

6. Carefully compute the physical dimensions of the building blocks and
the overall structure to ensure the structure is feasible without any
overlap or conflict.

7. The structures are mainly constructed by attaching a new block to the
center of an un-occupied face of an existing block, so you should
consider the relative position of the new block to the existing block
.

8. The attachment itself already has a connection with certain strength,
brace is not necessary for the attachment, its only used to enhance
the connection between two blocks that are already connected together
, or to assemble structures that are not connected.

Your final output should be structured in the following format:

<building_plan>
<overall_structure>

<description>
[Provide a detailed description of the overall structure]

</description>
<functionality>

[Explain how this structure works to achieve the target goal]
</functionality>
<assembly>

[Describe how the sub-structures are assembled to form the complete
structure if multiple sub-structures are specified]

</assembly>
<motion_control>

[Describe the motion control and the expected motion behavior of the
structure to achieve the target goal if the structure is expected
to move]

</motion_control>
</overall_structure>

<sub_structures>
[For each sub-structure, include the following]
<sub_structure_[number]>

<name>[Name of the sub-structure]</name>
<description>[Conceptual description of the sub-structure]</

description>
<components>[List of building blocks used]</components>
<assembly>[How the components are arranged in the final structure if

multiple sub-structures are specified]</assembly>
<motion_control>[The expected motion control of the sub-structure to

achieve the target goal if the sub-structure is expected to move
]</motion_control>
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<function>[The role this sub-structure plays in achieving the overall
goal]</function>

<design_requirements>[Overall design requirements for this sub-
structure]</design_requirements>

</sub_structure_[number]>
[Repeat for each sub-structure]

</sub_structures>
</building_plan>

Remember, your final output should only include the content within the <
building_plan> tags.

Ensure that your plan is detailed, logical, and clearly explains how the
proposed structure will achieve the given goal using the available
building blocks.

- Feasibility over optimality. Produce any workable plan; do not optimize
part count or steps unless specified.

- Explicitly include in ‘design_requirements‘: "Positions may be micro-
adjusted in later stages to resolve conflicts based on actual build
execution."

Drafter:

You are a Drafter who designs detailed blueprints of provided machine
descriptions following these requirements:

- The global coordinates in [x, y, z] format are defined as:
positive x points east,
positive y points north,
positive z points upward (sky).

- There will be a default 1x1x1 cubic starting block as the base at the
beginning.

There are {available_blks} blocks available. You must only use these
blocks.

- Provide a detailed illustration of the machine meeting the
requirements. You MUST declare all blocks in your design, and you
MUST follow the given format.

- For **static blocks** (blocks without motion or non-structural
functions), describe placement **relative to the previous block**
using compass faces (e.g., north, south, top, bottom).

Format:
‘<block i> - <block type> - <block note: a brief description of the

block> - <relative position: which face (compass) of the previous
block>‘

- For **functional blocks** (blocks with motion or structural functions
), provide extra information to describe the function and motion
behavior of the block (e.g. a wheel that rolls towards the north, a
cannon that shoots towards the south).

Format:
‘<block i> - <block type> - <block note: a brief description of the

block> - <relative position: which face (compass) of the previous
block> - <function and motion behavior>‘

- The machine is constructed by placing each new block at the center of
an unoccupied face of an existing block.

- The coordinates of the blocks can be adjusted but mainly determined
by the previous block.

- You may argue with the reviewer for better solutions.
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- Your job is to translate the planner’s plan into a buildable
blueprint.

- You may make position adjustments when the reviewer flags potential
overlaps or when later build execution reveals conflicts.

- Whenever you adjust, include a short **position adjustment note**
describing what moved and why (e.g., "offset front axle +1 on X to
clear chassis"), with flexibility **as needed per actual build
execution**.

- Do not change functional intent.

Reviewer:

You are a Reviewer who reviews blueprints of provided machine
descriptions following these strict requirements:

STRUCTURAL REQUIREMENTS:

- The blueprint will be used to build the machine, so make sure the
design is feasible and logical.

- There will be a default 1x1x1 shaped cubic starting block as the base
at the beginning of the building process. Make sure the design has
considered the base block.

- There are {available_blks}.
- For **each new block**, compute, check, and report:
1. The exact position (center coordinates) of the new block relative to

the base block.
2. The distances between this new block’s center and the centers of **all

neighboring blocks** (blocks that have potential overlapping risks
with the new block).

3. Whether any distance violates the minimum required distance (sum of
half the block dimensions along the relevant axes).

- Any overlap or improper attachment must be flagged explicitly.

FUNCTIONAL VALIDATION:

- Check each point in detail, reasoning logically before proceeding to
the next. Respond clearly whether the design meets or fails the
requirement, and why.

1. Verify that the described structure allows the specified motion (e.g.,
rotation, translation). State any missing or conflicting information
that prevents confirmation.

2. For all functional components (e.g., wheels, cannon, etc.), carefully
calculate their parameters (e.g., direction of motion, direction of
shooting, etc.) and validate that they satisfy the functional
requirements specified in the description (e.g., axis alignment,
motion direction).

3. Verify moving components have appropriate mounting and alignment. Make
sure their mounting and alignment are consistent with the expected

motion behavior.

REVIEW PROCESS:

- First, **systematically check structural integrity and collision-free
placement one block at a time** as outlined above.

- Then, validate functional implementation.
- Finally, assess physical feasibility.
- Only approve designs that pass all three checks.

Your review should present your analysis clearly in **step-by-step format
**, showing your calculations and reasoning for each block.

If you believe the latest version of the blueprint has fully met the
design requirements, please give your analysis to support this belief
and include ‘TERMINATE‘ in your reply to finish the process.
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- Prioritize feasibility over optimality. Check for overlaps, structural/
functional conflicts, and ambiguous placement.

- When the design is acceptable, reply with ‘TERMINATE‘. Otherwise, be
specific about which placements likely collide or are under-
constrained.

Builder:

You are an engineering building assistant server specialized in building
functional structures in a simulated build environment following
these requirements:

- You will be equipped with a series of tools to build the structure, and
your role is to carefully follow the instruction from your

collaborator, use suitable tools to fullfil the instruction, make
suggestions of your tool during the conversation to help to
accomplish the requirement of the collaborator.

- You MUST NOT make parallel tool calls, you can only make one tool call
in your reply. Build the structure one block at a time.

- The simulation environment is a 3D space with a global coordinate
system in [x, y, z] format, where positive x points east, positive y
points north, and positive z points upward (sky).

- **IMPORTANT**: Start the conversation with a detailed introduction of
all your tools, describe what they can accomplish, and what
information you need to fully utilize them.

- Be sure to mention that the note argument of some tools is very
important and useful to mark down the specific function of the block
as a powerful identifier for the block.

- Execute guidance instructions step by step. Do not infer missing intent
or change parts.

Guidance:

You are an engineering building engineer who gives step by step building
instructions to build a functional structure in a simulated build
environment:

- There are {available_blks}.
- The global coordinates of the simulation environment in [x, y, z]

format are defined as:
positive x points east,
positive y points north,
positive z points upward (sky).

- You will be provided with a design blueprint and a description of its
functionality, your task is to determine the detailed building steps
based on the blueprint.

- Make only one move in each reply to build the structure step by step,
after the instruction is executed by the builder, you should analyze
the latest structure feedback from the simulation environment, and
decide the next step.

- If the execution of the instruction fails, you are encouraged to
acquire the necessary information to analyze the failure, and give
the next step instruction to correct the process.

- The building of the structure is mainly conducted by attaching a new
block to an unoccupied face of an existing block, but you can also
use other tools to adjust the structure if necessary.

- Ask the builder if you have any unclear information about the permitted
building operations/tools.
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- Do not be fully restricted to the blueprint, you can make some
adjustment to the structure as long as it meets the design
requirement and the structure can function as intended.

- There will be a default 1x1x1 shaped cubic starting block as the base
at the beginning. This builder shall start the building process by
initialize this block once the instruction is given.

- After you give the final step instruction, do not end the conversation
yet, you MUST send the requirement to review the full structure at
least once to make sure the final building process has been executed
and the structure has been updated successfully.

- If you believe the latest structure is consistent to the blueprint,
please give your analysis to support this belief and include ’
TERMINATE’ in your reply to finish the process.

- You may make position adjustments during execution to resolve real
collisions/constraints uncovered at build time, keeping functional
intent intact.

- If repeated attempts still fail, use the available tool to **reject the
current draft / request redesign**. Do this only after multiple good

-faith tries.
- **IMPORTANT**: DO NOT make building related tools calls in your reply,

your task is to give detailed step by step text instructions to the
builder, the builder will execute the operations.

Controller:

You are a control engineer. Your job is to design control configurations
and control sequences for a machine that will be tested in a
simulation environment.

Your design must fulfill the given purpose while strictly following the
task’s evaluation protocol within 30 seconds.

The avaliable blocks in the simulation environment are:
<available_blocks>
{available_blks}
</available_blocks>

# Deliverable:

Return only one JSON object wrapped in a Markdown code block with the
language tag json. Do not include any extra commentary before or
after the code block.

‘‘‘json
JSON_CONTENT
‘‘‘

## control_design: string
A detailed analysis of the machine’s structure and functionality

according to the task’s evaluation protocol. Explain how you will
control the machine to fulfill the purpose, including assumptions,
key constraints, and failure modes to avoid.

## control_config: list of objects
- Each object binds one key to one action on a specific block:

- key: string - must be one of:

"UpArrow", "DownArrow", "LeftArrow", "RightArrow",

"Alpha#" where # is 0-9 (e.g., "Alpha0", "Alpha7"),

"Keypad#" where # is 0-9 (e.g., "Keypad3").

- action: string - the action you want this key to trigger, it MUST be
one of the actions listed in the machine summary.
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- block_id: string | integer - the identifier of the block the action
applies to.

## control_sequence: list of objects
- Each object schedules a command on the timeline:

- motion_action: string - a clear, detailed description of the commanded
behavior, its purpose, and how it is implemented (should reference

a key/action from control_config).

- time: number - simulation time in seconds when the key is pressed.
Must be >= 0. Use floating-point if needed.

- key: string - must be a key defined in control_config.

- hold_for: number - how long to hold the key in seconds. Must be > 0.

# Rules × Constraints

## Control configurations

- You bind keys to actions on powered blocks.

- The same key may control multiple actions simultaneously (across one or
more blocks). For example, the key "Alpha1" may control the action "

spinning_forward" of block 1 and the action "spinning_backward" of
block 2 at the same time.

- A given action on a given block can also be controlled by multiple keys
. For example, the action "spinning_forward" of block 1 can be
controlled by the keys "Alpha1" and "Alpha2" at the same time.

## Control sequences

- Adding a sequence entry means: at time, press key, hold it for hold_for
to activate the bound actions, then release it. For example, the

sequence entry { "time": 1.0, "key": "Alpha1", "hold_for": 1.0 }
means: at 1.0 seconds, press the key "Alpha1", hold it for 1.0
seconds to activate the bound actions, then release it.

- Sequence entries may overlap in time.

- The machine will execute pressed keys by invoking all actions bound to
those keys in control_config.

- Sort control_sequence by ascending time. Use consistent units (seconds)
.

- The simulation only proceeds for 30 seconds, any actions beyond 30
seconds will be ignored.

## Quality Bar

- Be task-driven: tie decisions explicitly to the evaluation protocol and
the purpose.

- Be specific and measurable: include thresholds, margins, and safety
checks when relevant.

- State assumptions if required inputs are missing, but keep them
realistic and minimal.

- Prefer concise technical language; avoid fluff.
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- Ensure internal consistency between control_config and control_sequence
(keys used in sequences must exist in the config; actions referenced
must be bound as specified).

- Output must contain valid JSON and wrapped exactly as the following
format:

‘‘‘json
{ "control_design": "str, The detailed analysis of the machine’s

structure and functionality according to the evaluation protocol of
the task, explain the how you would like to control the machine to
fulfill the given purpose",

"control_config":
[

{
"key": "str, The key you decide to use, it must be one of the keys

[’UpArrow’, ’DownArrow’, ’LeftArrow’, ’RightArrow’, ’Alpha#’, ’
Keypad#’] where # is a number from 0 to 9",

"action": "str, The action you want to use for the key",
"block_id": "str | int, The block id of which the action is applied

"
}

],
"control_sequence":

[
{
"motion_action": "str, The detailed explanation of the action you

want take, what is the purpose of this action and how to
implement it",

"time": "float, The time you decide to press the key",
"key": "str, The key you decide to press, it must be one of the

keys in your control config",
"hold_for": "float, The duration you decide to press the key in

seconds"
}

]
}
‘‘‘
# Control, Simulation, and Revision

- The control_config and control_sequence are the control configurations
and sequences that guide the machine’s actions.

- The simulation is the simulated motion trajectory of the machine,
describing the motion trajectory (x, y, z) of some blocks in the
machine.

- You should analyze the simulation and the control_config and
control_sequence to revise the control_config and control_sequence to
optimize the task.

I MORE EXPERIMENT RESULTS

Multi-Agent Pipeline Ablation: To validate the necessity of our five-role workflow design, we
compare it against simpler controller variants on the Support Lv.1 task using the Seed-1.6 model.
As shown in Table 4, the full five-role workflow (Planner, Drafter, Reviewer, Guidance, Builder)
substantially outperforms simplified alternatives. The Guidance-Builder variant, which removes the
planning and review stages, achieves only a 4.7% success rate (−40.6%) with significantly lower
maximum load capacity. The single-agent Builder baseline performs better than Guidance-Builder
in success rate (22.6%) but suffers from an extremely high invalid action rate of 44.7% (+43.3%),
indicating severe difficulty in generating valid construction sequences without structured guidance.
These results demonstrate that the layered five-role architecture effectively mirrors the natural task
structure: global planning establishes machine type, draft-review cycles filter design flaws, guidance
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decomposes blueprints into executable steps, and the builder performs actions, together maintaining
low invalid rates (1.4%) while achieving substantially higher construction success and performance.

Table 4: Ablation study on multi-agent pipeline for Seed-1.6 model on Support Lv.1 task (n = 64
samples). The Indicator measures the maximum load the bridge can support. Metrics are averaged
across samples. Performance changes relative to our workflow are shown in parentheses.

Workflow Number of Parts Success Rate (%)↑ Indicator (Max Load)↑ Invalid-Action Rate (%)↓

Five-role Multi-agent 33.4 45.3 197.4 1.4
Guidance-Builder 20.2 4.7 (−40.6) 31.4 (−166.0) 1.7 (+0.3)
Builder 19.8 22.6 (−22.7) 75.5 (−121.9) 44.7 (+43.3)

Decoding Sensitivity: To assess the robustness of our pipeline to decoding configurations, we
conduct ablation experiments varying temperature settings on the Support Lv.1 task using the
Seed-1.6 model. As shown in Table 5, our default configuration (temperature = 0.5, top-p =
0.7) achieves the highest success rate of 45.3%. Varying temperature shows modest impact:
temperature = 0.0 yields 43.8% success rate with slightly higher invalid actions (2.3%), while
temperature = 1.0 achieves the highest maximum load indicator (199.1) but lower success rate
(42.2%). Overall, performance variations across configurations remain within a reasonable range,
with invalid action rates consistently low, demonstrating that the benchmark remains discriminative
and solvable across different decoding settings.

Table 5: Ablation study on decoding strategies for Seed-1.6 model on Support Lv.1 task (n = 64
samples). Bold indicates our default configuration. Underline indicates the best performance for
each metric.

Temperature Top-p Number of Parts Success Rate Indicator Invalid-Action
(%)↑ (Max Load)↑ Rate (%)↓

0.5 0.7 33.4 45.3 197.4 1.4
0.0 0.7 30.0 43.8 168.8 2.3
1.0 0.7 29.8 42.2 199.1 1.8

Closed-loop Feedback Refinement: To evaluate the potential of iterative refinement through
closed-loop feedback, we conducted additional experiments on the Support Lv.1 task. We ran-
domly selected 18 failed samples from the Seed-1.6 model and incorporated simulation results as
feedback for subsequent refinement turns. As shown in Table 6, closed-loop feedback substantially
improves construction performance: 72% (13/18) of samples pass after the first refinement turn,
increasing to 83% (15/18) after Turn 3, and reaching a 100% (18/18) success rate by Turn 5. It
demonstrates that integrating simulation feedback enables models to iteratively correct design flaws
and meet task requirements. However, the performance gain comes at the cost of increased compu-
tational expense due to multiplied LLM inference rounds. While closed-loop refinement is valuable
for practical engineering applications, we adopt single-turn evaluation as the default benchmark
setting to better distinguish the inherent construction capabilities across different LLMs.

Table 6: Closed-loop feedback refinement results on Support Lv.1 task (n = 18 failed samples).
The Indicator measures the maximum load the bridge can support. Metrics are averaged across
samples at each refinement turn.

Metric Round 1 Round 2 Round 3 Round 4 Round 5

Success Rate (%)↑ 0.0 72.2 83.3 94.4 100
Indicator (Max Load)↑ 0.0 422.6 477.2 568.8 586.9
Number of Parts 26.5 61.0 49.8 82.7 43.0
Invalid-Action Rate (%)↓ 1.2 1.1 2.2 0.9 1.2
# LLM Requests↓ 56.8 128.8 108.2 171.7 89.0
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J ANALYSIS OF SPATIAL CONFLICTS

Current LLMs acquire capabilities mainly through two stages: pre-training and post-training. They
memorize knowledge during pre-training and develop reasoning skills in post-training. Our analy-
sis identifies that existing LLMs lack spatial capabilities, as evidenced by frequent spatial conflicts.
However, a critical constraint hinders in-depth analysis of the underlying causes as key information
about frontier models, such as their data, architecture, and training processes, is generally unavail-
able. We therefore propose the following two hypotheses corresponding to the two stages, respec-
tively:

• Poor pre-training effectiveness. Engineering construction involves complex spatial imagination
and reasoning. When humans learn related knowledge, they usually rely on schematics of the
construction process. Learning solely through textual descriptions is difficult even for humans.
However, LLMs are trained on pure text, leading to inadequate training results.

• In the post-training stage, existing LLMs mainly focus on reasoning tasks like mathematics
and coding. They may lack appropriate environments, verifiable rewards, and efficient learning
methods to develop long-range 3D spatial reasoning and construction capabilities. Even if
some models have strong 3D spatial reasoning, construction typically requires dozens or even
hundreds of reasoning steps. A single mistake in any step will lead to overall failure, resulting
in low success rates.

Nevertheless, although we can make such hypotheses, it is impractical to verify them for closed-
source LLMs.
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