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Abstract

Accurately predicting the popularity of a mu-
sic is a critical challenge in the music industry
given the potential benefits to artists, producers
and streaming platforms. Historically, research
on music success was focused on factors such
as audio features and extrinsic metadata (e.g.,
artist demographics, listener trends), or advanc-
ing prediction model architecture. This paper
addresses the under-explored area of exploiting
lyrical content to predict music popularity. We
present a novel automated pipeline that uses
LLMs to extract mathematical representations
from lyrics, capturing their semantic and syn-
tactic structure, while preserving sequential in-
formation. These features are then integrated
into a novel multimodal architecture, HitMu-
sicLyricNet, combining audio, lyrics, and so-
cial metadata for predicting popularity score.
Our method outperforms the available baseline
in end-to-end deep learning architecture for mu-
sic popularity prediction on the SpotGenTrack
(SPD) dataset. We achieve an overall 9% and
20% improvement in prediction model perfor-
mance metrics MAE and MSE respectively. We
confirm that the improvements result from the
introduction of our lyrics feature engineering
pipeline (LyricsAENet) in our model architec-
ture, HitMusicLyricNet.

1 Introduction

In 2023, the global recorded music market gener-
ated $28.6 billion' in revenues. With the advent
of social media and streaming services, it has be-
come increasingly difficult to define mathematical
metrics for music success. Music popularity pre-
diction could help the music industry and artists
in maximizing future success of a newly released
song.

Research in music popularity prediction has been
driven by the advancements in machine learning
with researchers applying classical ML approaches
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to predict popularity using acoustic features, and
further with the growth of social networks, infor-
mation about music consumers’ tastes capturing
consumer response and their evolving music pref-
erences. Advancements in deep learning further
sharpen the prediction model capability of captur-
ing and learning complex patterns of evolving mu-
sic taste, and researchers have worked on incorpo-
rating multiple modalities such as audio, lyrics and
social metadata to predict song success (Zangerle
et al., 2019) (Martin-Gutiérrez et al., 2020). In all
these works, the popularity score is typically de-
fined as the time the song remains on the Billboard
Top charts, and the evaluation metrics used include
MAE, MSE, R? for regression, and accuracy, pre-
cision, recall, and F1 for classification. Recent
developments in large language models have led to
further research in music-related fields such as rec-
ommendation systems, sentiment/emotion analysis,
data augmentation, understanding and composing
song lyrics, using song lyrics text as the data source
(Rossetto et al., 2023), (Sable et al., 2024), (Ma
et al., 2024), (Ding et al., 2024). Music Popularity
Prediction research has still not fully exploited the
power of lyrics in the models, while recent research
have shown lyrics contributing significantly to song
popularity (Yu et al., 2023). Through our work, we
address the gap in the existing literature with the
following chief contributions:

* LyricsAENet: A novel automated lyric fea-
ture extraction pipeline that uses LLMs to en-
code music lyrics into rich, learned represen-
tations.

* HitMusicLyricNet: An end to end multi-
modal deep learning architecture which pre-
dicts the popularity score in range (1,100) and
outperformed current baseline by 9% and 20%
in MAE and MSE metrics respectively .

The next section reviews related work. This
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is followed by a discussion of our methods, the
dataset and our experiments.

2 Related Work

Music Popularity Prediction. Studied as a clas-
sification or regression problem in a supervised
learning fashion, where a model learns to predict
either binary class labels (hit or no-hit) or generate
a continuous popularity score. These predictions
are based on a comprehensive analysis of a song’s
features and associated social factors. Song popu-
larity is primarily measured using charts like Bill-
board 2, and UK Singles Charts®, which rank songs
based on sales, radio airplay, and streaming activity.
Researchers determine success metrics based on
these rankings. Other measures include economic
metrics like merchandise sales, and engagement
metrics such as interactions on social media and
streaming services (Seufitelli et al., 2023).

Traditional research focused on using vari-
ous machine learning techniques, including Lo-
gistic Regression, Decision Trees, Support Vec-
tor Machines (SVM), Bayesian Networks, Naive
Bayes, Random Forest Ensemble, XGBoost, and
K-Nearest Neighbors (KNN). These approaches ad-
vanced further to neural networks and deep learning
techniques, building much stronger predictive mod-
els. A significant number of studies (Bischoff et al.,
2009), (Dorien Herremans and Sorensen, 2014),
(Zangerle et al., 2019), (Silva et al., 2022) focused
on using acoustic characteristics of songs along
with metadata that includes factors such as social
influences. Other works such as (Dhanaraj and
Logan, 2005), (Singhi and Brown, 2015b), (Martin-
Gutiérrez et al., 2020) also emphasized the impor-
tance of song lyrics in determining song success
using handcrafted text-based features that captured
sentiment, emotions, and the syntactic structure of
lyrics. These studies were often limited by their
capabilities to capture central expressions of the
song’s lyrics.

Multiple datasets have been released to drive re-
search further and quench the thirst of data-heavy
deep learning models. This includes Million Song
Dataset®, SpotGenTrackS, and AcousticBrainz ©
sourced from different platforms like Spotify, Bill-
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board, Genius 7, Youtube, and others. These
datasets comprise a wide range of features, from
low-level features like Mel-Frequency Cepstral Co-
efficients (MFCCs), lyrics text, and temporal fea-
tures to high-level audio features such as dance-
ability and loudness. Additionally, they include
metadata on artists, albums, genres, demographics,
and other relevant information.

Learned Representations of Lyrics. Lyrics
form an integral part of music and carry a deep
emotional meaning, which can strongly influence
how listeners feel—sometimes even more than the
song’s acoustic features alone (Singhi and Brown,
2015a). Yet, lyrics have often been overlooked
as compared to acoustic attributes and social met-
rics of songs (Seufitelli et al., 2023). Earlier stud-
ies used methods like Probabilistic Latent Seman-
tic Analysis (PLSA) (Hofmann, 1999) to capture
the semantic content of lyrics, which helped re-
searchers understand their role in defining a “hit”
song (Dhanaraj and Logan, 2005). Later work
moved beyond basic semantic analysis, focusing
on more detailed features. For instance, (Hirjee
and Brown, 2010)and (Singhi and Brown, 2014)
relied on various rhyme and syllable characteristics
to predict hit songs using only their lyrics, while
other researchers applied Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) to discover thematic
topics within lyrics (Ren et al., 2016).

Progress of deep learning techniques advanced
the use of multimodal approaches that combine
lyrics with audio and metadata, using stylomet-
ric analysis to extract lyric text features (Martin-
Gutiérrez et al., 2020). Sentiment analysis also
emerged as a way to glean emotional insights
from lyrics when predicting popularity (Raza and
Nanath, 2020). More recent research has turned to
learned lyric representations, such as embeddings
(Kamal et al., 2021) (McVicar et al., 2022), which
offer a more robust way to capture lyrical mean-
ing. (Barman et al., 2019) demonstrated that these
distributed representations can effectively predict
both genre and popularity, reducing the need for
handcrafted features. Datasets such as Music4All-
Onion (Moscati et al., 2022) provide lyric embed-
dings that make it easier to study how lyrical con-
tent relates to a song’s success. Finally, a recent
study found that a song’s lyrical uniqueness has
a significant contribution towards its popularity
(Yu et al., 2023), using TF-IDF for lyric vector
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representation; however, this approach inherently
lacks the capacity to capture deeper sequential and
contextual nuances, emphasizing the growing im-
portance of learning robust, richer representations
of lyrics to better understand what makes certain
songs resonate with audiences.

To the best of our knowledge, there are limita-
tions in existing literature for efficient automated
lyrics feature extraction that are expressive and cap-
ture the underlying complexity of song lyrics. Thus,
we have built a novel pipeline to exploit the power
of Large Language Models. It has the potential to
provide rich lyric representations that encapsulate
both semantic and syntactic understanding, while
preserving the sequential structure of the lyrics.

3 Methodology

In this section, we provide the theoretical founda-
tion of our approach. We begin by defining the
problem of music popularity prediction in mathe-
matical equations. This is followed by explaining
the baseline approach and its implementation, in-
cluding details of the dataset. Finally, we present a
formal description of our proposed architecture.

3.1 Problem Formulation

Given a song S, its features are represented in
a multi-dimensional space X € R¢, which com-
prises three key modalities: audio waveform w €
R, lyrical text [ € R™, and metadata attributes
m € RP, where d = k + m 4 p represents the total
dimensionality of our feature space. Our primary
objective is to extract meaningful features from the
song lyrics to effectively encode each song into a
unique vector representation. Next, the prediction
task is formulated as learning a mapping function
f X — Y, where we minimize the expected pre-
diction error: E[(f(X) — Y)?] across the training
distribution. Here, Y € R represents the continu-
ous popularity score.

3.2 Baseline Methodology

We trained HitMusicNet, a multimodal end-to-end
Deep Learning architecture as proposed by (Martin-
Gutiérrez et al., 2020) and validated the results us-
ing the SpotGenTrack Popularity Dataset (SPD).
The model outputs a popularity score between 1
and 100, using audio features, text features, and
metadata containing artist and demographic infor-
mation as inputs. A complete description of the
feature set used is provided in Table 1.
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Figure 1: Diagram of the HitMusicNet pipeline outlin-
ing the principal functionalities and data components.
Image src (Martin-Gutiérrez et al., 2020).
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Sentence count, Avg words,
Word count, Avg syllables/word,
Sentence similarity, Vocabulary
wealth

Danceability, Energy, Key, Loud-
ness, Mode, Speechiness, Acous-
ticness, Instrumentalness, Live-
ness, Valence, Tempo, Duration,
Time Signature
Mel-spectrogram, MFCCs, Ton-
netz, Chromagram, Spectral Con-
trast, Centroid, Bandwidth, Zero-
Crossing Rate

Artist followers, Artist popularity,
Available markets

Feature Type
Text Features

High-Level Audio

Low-Level Audio

Meta-Data Features

Table 1: Summary of features used in the HitMusicNet
architecture (Martin-Gutiérrez et al., 2020).

HitMusicNet architecture as shown in Fig 1,
employs an autoencoder for feature compression
through two encoder layers with dimensions d/2
and d/3, followed by a bottleneck layer of d/5.
Each layer uses ReLLU activation, and the output
layer employs a sigmoid activation for reconstruc-
tion. The autoencoder was trained using the Adam
optimizer and an MSE loss function. The com-
pressed features are then passed through a fully
connected neural network with four layers, where
the number of neurons in each layer is scaled by
factors « = 1, § = 1/2, and v = 1/4. The
model is trained using an 80%-20% train-test split
with stratified cross-validation (SCV) using k£ = 5.
These settings helped us in effectively replicating
the baseline results on the SPD dataset.

3.3 Dataset

The SpotGenTrack Popularity Dataset (SPD) pro-
posed by (Martin-Gutiérrez et al., 2020) and used
in this research contains 101,939 tracks, 56,129
artists, and 75,511 albums sourced using Spotify
and Genius APIs. The data was gathered from
26 countries where Spotify is available, including
the top 50 playlists per category for each country.



Popularity scores for tracks range between 1 and
100 and are provided by Spotify based on internal
metrics. The scores follow a Gaussian distribu-
tion with ¢ = 40.02 and a standard deviation of
o = 16.79. The dataset contains low-level audio
features extracted using audio waveform, text fea-
tures extracted using stylometric analysis of lyrics.
High-level audio features and metadata are sourced
from Spotify. The lyrics in the SPD dataset had
to be cleaned and pre-processed to align with the
objectives of this research. We inspected long tails
of lyrics length distribution and observed that ex-
tremely short or long entries typically contained
irrelevant content such as random numbers, out-
of-context text, or placeholder text. Based on this
analysis, we retained songs with lyrics lengths be-
tween 100 and 7000 characters. Furthermore, we
filtered the dataset to include only English lyrics,
which comprised approximately 60% of the total
data. These steps resulted in a clean dataset com-
prising 51,319 tracks, 30,024 unique artists, and
39,371 unique albums. The resulting popularity
distribution, as shown in Fig 2, had p = 41.11
and a standard deviation of 0 = 17.51, retaining
original data characteristics.

Distribution of Track Popularity Scores in Dataset
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Figure 2: Popularity Distribution in cleaned SpotGen-
Track(SPD) with ;x = 41.11 and a standard deviation of
o =17.51.
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3.4 HitMusicLyricNet

This section details our proposed HitMusicLyric-
Net, an end-to-end multimodal deep learning ar-
chitecture built upon the foundation of HitMusic-
Net. HitMusicLyricNet comprises of three key
components: AudioAENet, LyricsAENet, and Mu-
sicFuseNet. AudioAENet compresses the low-level
audio features. LyricsAENet compresses the lyric
embeddings into a fixed-size representation us-
ing an Autoencoder, thereby encoding information
while reducing noise. MusicFuseNet then com-
bines these compressed audio and lyric representa-

tions with metadata and high-level audio features
as described in Table 1.

In the HitMusicNet architecture, a single auto-
encoder compressed the combined feature vector
of audio, lyrics, and metadata. We hypothesize that
this can lead to information loss, particularly for
the less abundant lyrics and metadata features. We
believe that lyrics and metadata features should be
fed directly into the popularity prediction network
to retain their predictive power for song popular-
ity. Furthermore, our reasoning behind the new
approach of introducing distinct Autoencoders for
audio and lyrics is based on the bipolar and di-
rectional nature of lyrics embeddings, requiring a
different architecture for compression(Batazy et al.,
2021).

3.4.1 AudioAENet

The Autoencoder used for compression has a sim-
ilar architecture to that of MusicAENet, but takes
in only low-level audio features as described in Ta-
ble 1 for compression. For input dimension d = 209,
it gradually compresses the data to dimension d/2,
d/3, and d/5. The output layer employs a sigmoid
activation for reconstruction, whereas all remaining
layers use ReLLU activation functions. The model
is trained using the Adam optimizer with a MSE
loss function, achieving a loss value in the range of
le-5, indicating negligible loss in compression.

3.4.2 LyricsAENet

LyricsAENet implements a tied-weights autoen-
coder architecture (Li and Nguyen, 2019) designed
to reduce parameter size and risk of overfitting.
Compressing lyric embeddings is susceptible to
overfitting due to high dimensionality. The encoder
follows a progressive compression with the follow-
ing dimensions (d/2, d/4, d/8), followed by bottle-
neck layers (d/12 or d/16). The decoder mirrors the
structure in reverse order, utilizing the tranpose of
the encoder weight. The progressive dimensional
reduction is designed to minimize reconstruction
losses in compressed embeddings extracted out of
language models and LLMs such as BERT (De-
vlin et al., 2019), LLaMA 3 Herd (Grattafiori et al.,
2024), and OpenAI’s embedding models®.

We use Scaled Exponential Linear Unit (SELU)
(Klambauer et al., 2017) as the activation func-
tion for its self-normalizing characteristics and the
ability to handle the bipolar nature of embeddings.
Comparative analyses include alternate activation
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Figure 3: Block-Schema of the HitMusicLyricNet architecture comprising of two Autoencoders and a Fully
Connected NN predicting popularity score. "HL’ stands for high-level and "LL’ stands for low-level.

functions such as the Sigmoid Linear Unit (SiLU)
(Elfwing et al., 2018) and the Gaussian Error Lin-
ear Unit (GELU) (Hendrycks and Gimpel, 2016).
LyricsAENet was trained using the Adam optimizer
with a MSE loss function, achieving loss values of
approximately le-5. To further refine the training
process, we incorporated a directional loss func-
tion inspired by (Balazy et al., 2021) to preserve
the directional characteristics of the embeddings
during compression. This combined loss function
is defined as:

L(Y,Y) = a;-MSE(Y,Y) +ay-CD(Y,Y), (1)

where MSE(Y, Y) represents the Mean Squared
Error. C'D(Y,Y) denotes the Cosine Distance,
which captures the angular similarity between the
vectors Y and Y. The constants a; and ae control
the relative importance of the two loss terms.

3.4.3 MusicFuseNet

We employ a similar architecture configuration as
MusicPopNet by (Martin-Gutiérrez et al., 2020) for
our MusicFuseNet. It uses a concatenation of com-
pressed audio feature vectors from AudioAENet,
compressed lyrics embeddings vectors from Lyric-
sAENet, high-level audio features and metadata as
mentioned in Table 1. The output of this neural

net is a popularity score in the range [0, 1]. The
architecture consists of a fully connected network
with scaling parameters of (1, 1/2, 1/3) and ReLU
activation functions, followed by a Sigmoid acti-
vation in the final layer, as empirically validated
by (Martin-Gutiérrez et al., 2020). To train the
model, we used the Adam optimizer with an MSE
loss function and applied dropout regularization to
mitigate overfitting.

4 Experiments and Results

Using the Code’ to implement HitMusicNet and
selecting the configuration details described in
Section 3.2, we trained HitMusicNet on the SPD
dataset with an 80-20 split. To replicate the results
obtained by (Martin-Gutiérrez et al., 2020), we em-
ployed Stratified Cross-Validation (SCV) with k=5
folds and used MAE and MSE as performance met-
rics. As Table 4 shows, we achieved similar results
on all performance metrics, validating our training
and testing strategy. Further, removing the lyrics
text features proposed by (Martin-Gutiérrez et al.,
2020) did not degrade the metrics, so we dropped
those features for further experiments.

To train HitMusicLyricNet, we extracted lyric
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LyricsAENet MAE MAE MAE
Config (Train) (Val) (Test)
SELU, MSE 0.0769 0.0746 0.0775
SiLU, MSE 0.0736 0.0731 0.0790
GELU, MSE 0.0740 0.0731 0.0792
SELU, Dir. 0.0741 0.0740 0.0799

Table 2: Results of training and testing HitMusicLyric-
Net on cleaned SPD data with various LyricAENet con-
figurations (activation function, loss function), using
BERT Large embeddings throughout. ‘Dir’ indicates
directional loss 1.

Embeddings MAE MAE MAE
Model (Train) (Val) (Test)
BERT large 0.0793 0.0784 0.0786
Llama 3.1 8B 0.0774 0.0759 0.0795
Llama 3.2 IB 0.0775 0.0754 0.0800
Llama 3.2 3B 0.0781 0.0766 0.0798
OpenAl Small 0.0746 0.0738 0.0788
OpenAl Large 0.0761 0.0743 0.0772

Table 3: Results of training and testing HitMusicLyric-
Net on cleaned SPD data with different lyric embed-
dings sent to LyricAENet (Selu activation, MSE loss).

Model Config Dataset MSE MSE MAE MAE MAE
Config (Train) (Val) (Train) (Val) (Test)

HitMusicNet SPD 0.0116 0.0115 0.0836 0.0851 0.0862
HitMusicNet w/o lyrics SPD 0.0114 0.0116 0.0843 0.0859 0.0870
HitMusicLyricNet *SPD 0.0095 0.0091 0.0761 0.0743 0.0772
HitMusicLyricNet w/o lyrics *SPD 0.0109 0.0113 0.0818 0.0841 0.0852

Table 4: Performance comparisons with the baseline (HitMusicNet) on SPD and SPD* data respectively, where
SPD* denotes cleaned SPD data. Here, we report the best results from Table 3.

embeddings from language models. For open-
source models (BERT, Llama), we downloaded
vanilla weights from Hugging Face'® and loaded
its vanilla configuration. We used Nvidia A100
GPU for compute requirements. After tokeniz-
ing lyrics, we forward-passed them through each
model, extracted the last hidden-layer states, and
applied max/mean pooling to obtain fixed-size vec-
tors for our Autoencoder. Specifically for BERT,
we considered mean pooling and concat (max +
CLS token). To get embeddings from OpenAl text
models, we used the API endpoint, costing $3 for
the small model and $6 for the large. We then stud-
ied LLM model architecture and its training corpus
effects on music popularity prediction with BERT,
BERT Large, Llama 3.1 8B, Llama 3.2 1B, Llama
3.2 3B, and OpenAl text embeddings (small and
large).

After extracting these embeddings, we examined
different activation layers (Selu, Silu, Gelu) for em-
bedding compression using LyricsAENet and in-
troduced a directional loss function with a; = 0.5
and ap = % as suggested by (Batazy et al., 2021),
alongside our standard MSE loss for LyricsAENet,
to see their impact on the HitMusicLyricNet perfor-
mance metric MAE. As reported in Table 2, using
SELU with the MSE loss function in LyricsAENet
yielded the least MAE error while training HitMu-
sicLyricNet on popularity prediction. Directional
loss produced comparable metrics but not enough
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improvement to be included further. Other activa-
tion functions performed closely, but for simplicity
and observing 1-2% randomness error, we pro-
ceeded with SELU and MSE.

Next, we compressed embeddings for different
LLM models. While we experimented with two
variants of BERT (small and large) and considered
mean embeddings and concat (max + CLS token)
embeddings, here we only report results for BERT
large with mean embeddings, as it yielded the best
results as seen in Table 3. All the Llama variants
had very close performance metrics, whereas the
OpenAl large text embedding model surpassed all
of them. We attribute these small differences (~
2% variation) in HitMusicLyricNet’s performance
to variations in each model’s training data and ar-
chitecture, since none was specifically trained for
our downstream task, leading to large differences
in rich embedding representation.

Hence with HitMusicLyricNet used the OpenAl
large text embeddings and the SELU activation
with MSE loss function in lyricsAENet. Overall,
we achieved close to a 9% improvement compared
to the SOTA architecture, despite training on 40%
less data. Dropping the lyrics feature pipeline and
retraining and testing HitMusicLyricNet led to per-
formance metrics comparable to that of HitMusic-
Net, validating the effectiveness of our proposed
lyric feature extraction pipeline using LLMs and
the overall advancements in music popularity pre-
diction pipeline.
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5 Conclusion and Future Work

The work presented in this paper showcases the
power of leveraging lyrics to predict the popular-
ity of a song, with the help of LLMs with capa-
bilities of capturing the deeper meaning of sen-
tences using embeddings. We believe that ad-
vancements in music-aware language models will
lead to more explainable and expressive lyric fea-
tures based on domain-specific knowledge. This
research presented a novel architecture, HitMu-
sicLyricNet, along with an ablation study. Hit-
MusicLyricNet beats the SOTA by 9% by incorpo-
rating lyric embeddings and improving upon the
SOTA architecture. With advancements in com-
pression techniques and multimodal learning archi-
tecture, we believe accuracy and commercial use
can be improved. Furthermore, with advancements
in audio representation learning using neural audio
codecs, richer music audio representations can be
scoped into the study. Current research aggregates
features over an entire song. However, contem-
porary phenomena of virality suggest that local
features within different musical segments need
to be studied deeply and cannot be ignored given
the micro-content consumption driven by platforms
like Instagram and SnapChat.

6 Limitation

Our research results are potentially limited to the
music genres represented in our dataset and may
not generalize across genres, demographics, and
cultural contexts. Some limitations arise as a result
of the choice of dataset used in our study, SpotGen-
Track. The findings are highly dependent on the
quality and size of the SpotGenTrack dataset. The
dataset has been cleaned to filter out lyrics that are
not in the English language. Though this reduced
the size of the raw dataset by 40%, it limits the
model’s ability to be generalized across different
languages and associated cultural contexts. The
use of LLMs such as BERT and Llama 3 in our
model will lead to a lack of domain-specific con-
text, as horizontal LLMs are not typically trained
or fine-tuned on music-focused data. While ade-
quate measures have been made to address the risk
of overfitting, the risk cannot be completely elim-
inated due to the high dimensionality of the data.
The lyric embedding vectors are flowing down-
stream and are used to predict the popularity of a
song. Finally, since we are assessing the quality
of lyric embeddings using the performance metrics

of downstream tasks (music popularity prediction),
this requires a further examination to evaluate the
intrinsic qualities of lyric embeddings vector in
capturing rich representation. We are limited by
the explanability of our lyrics feature vector which
can be further improved by using fine-tuned LLMs
for music lyric analysis and explainable feature
extraction.
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