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Abstract

Accurately predicting the popularity of a mu-001
sic is a critical challenge in the music industry002
given the potential benefits to artists, producers003
and streaming platforms. Historically, research004
on music success was focused on factors such005
as audio features and extrinsic metadata (e.g.,006
artist demographics, listener trends), or advanc-007
ing prediction model architecture. This paper008
addresses the under-explored area of exploiting009
lyrical content to predict music popularity. We010
present a novel automated pipeline that uses011
LLMs to extract mathematical representations012
from lyrics, capturing their semantic and syn-013
tactic structure, while preserving sequential in-014
formation. These features are then integrated015
into a novel multimodal architecture, HitMu-016
sicLyricNet, combining audio, lyrics, and so-017
cial metadata for predicting popularity score.018
Our method outperforms the available baseline019
in end-to-end deep learning architecture for mu-020
sic popularity prediction on the SpotGenTrack021
(SPD) dataset. We achieve an overall 9% and022
20% improvement in prediction model perfor-023
mance metrics MAE and MSE respectively. We024
confirm that the improvements result from the025
introduction of our lyrics feature engineering026
pipeline (LyricsAENet) in our model architec-027
ture, HitMusicLyricNet.028

1 Introduction029

In 2023, the global recorded music market gener-030

ated $28.6 billion1 in revenues. With the advent031

of social media and streaming services, it has be-032

come increasingly difficult to define mathematical033

metrics for music success. Music popularity pre-034

diction could help the music industry and artists035

in maximizing future success of a newly released036

song.037

Research in music popularity prediction has been038

driven by the advancements in machine learning039

with researchers applying classical ML approaches040
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to predict popularity using acoustic features, and 041

further with the growth of social networks, infor- 042

mation about music consumers’ tastes capturing 043

consumer response and their evolving music pref- 044

erences. Advancements in deep learning further 045

sharpen the prediction model capability of captur- 046

ing and learning complex patterns of evolving mu- 047

sic taste, and researchers have worked on incorpo- 048

rating multiple modalities such as audio, lyrics and 049

social metadata to predict song success (Zangerle 050

et al., 2019) (Martín-Gutiérrez et al., 2020). In all 051

these works, the popularity score is typically de- 052

fined as the time the song remains on the Billboard 053

Top charts, and the evaluation metrics used include 054

MAE, MSE, R2 for regression, and accuracy, pre- 055

cision, recall, and F1 for classification. Recent 056

developments in large language models have led to 057

further research in music-related fields such as rec- 058

ommendation systems, sentiment/emotion analysis, 059

data augmentation, understanding and composing 060

song lyrics, using song lyrics text as the data source 061

(Rossetto et al., 2023), (Sable et al., 2024), (Ma 062

et al., 2024), (Ding et al., 2024). Music Popularity 063

Prediction research has still not fully exploited the 064

power of lyrics in the models, while recent research 065

have shown lyrics contributing significantly to song 066

popularity (Yu et al., 2023). Through our work, we 067

address the gap in the existing literature with the 068

following chief contributions: 069

• LyricsAENet: A novel automated lyric fea- 070

ture extraction pipeline that uses LLMs to en- 071

code music lyrics into rich, learned represen- 072

tations. 073

• HitMusicLyricNet: An end to end multi- 074

modal deep learning architecture which pre- 075

dicts the popularity score in range (1,100) and 076

outperformed current baseline by 9% and 20% 077

in MAE and MSE metrics respectively . 078

The next section reviews related work. This 079
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is followed by a discussion of our methods, the080

dataset and our experiments.081

2 Related Work082

Music Popularity Prediction. Studied as a clas-083

sification or regression problem in a supervised084

learning fashion, where a model learns to predict085

either binary class labels (hit or no-hit) or generate086

a continuous popularity score. These predictions087

are based on a comprehensive analysis of a song’s088

features and associated social factors. Song popu-089

larity is primarily measured using charts like Bill-090

board 2, and UK Singles Charts3, which rank songs091

based on sales, radio airplay, and streaming activity.092

Researchers determine success metrics based on093

these rankings. Other measures include economic094

metrics like merchandise sales, and engagement095

metrics such as interactions on social media and096

streaming services (Seufitelli et al., 2023).097

Traditional research focused on using vari-098

ous machine learning techniques, including Lo-099

gistic Regression, Decision Trees, Support Vec-100

tor Machines (SVM), Bayesian Networks, Naive101

Bayes, Random Forest Ensemble, XGBoost, and102

K-Nearest Neighbors (KNN). These approaches ad-103

vanced further to neural networks and deep learning104

techniques, building much stronger predictive mod-105

els. A significant number of studies (Bischoff et al.,106

2009), (Dorien Herremans and Sörensen, 2014),107

(Zangerle et al., 2019), (Silva et al., 2022) focused108

on using acoustic characteristics of songs along109

with metadata that includes factors such as social110

influences. Other works such as (Dhanaraj and111

Logan, 2005), (Singhi and Brown, 2015b), (Martín-112

Gutiérrez et al., 2020) also emphasized the impor-113

tance of song lyrics in determining song success114

using handcrafted text-based features that captured115

sentiment, emotions, and the syntactic structure of116

lyrics. These studies were often limited by their117

capabilities to capture central expressions of the118

song’s lyrics.119

Multiple datasets have been released to drive re-120

search further and quench the thirst of data-heavy121

deep learning models. This includes Million Song122

Dataset4, SpotGenTrack5, and AcousticBrainz 6123

sourced from different platforms like Spotify, Bill-124

2Billboard Hot 100
3Official Singles Chart Top 100
4Million Song Dataset
5SpotGenTrack
6AcousticBrainz

board, Genius 7, Youtube, and others. These 125

datasets comprise a wide range of features, from 126

low-level features like Mel-Frequency Cepstral Co- 127

efficients (MFCCs), lyrics text, and temporal fea- 128

tures to high-level audio features such as dance- 129

ability and loudness. Additionally, they include 130

metadata on artists, albums, genres, demographics, 131

and other relevant information. 132

Learned Representations of Lyrics. Lyrics 133

form an integral part of music and carry a deep 134

emotional meaning, which can strongly influence 135

how listeners feel—sometimes even more than the 136

song’s acoustic features alone (Singhi and Brown, 137

2015a). Yet, lyrics have often been overlooked 138

as compared to acoustic attributes and social met- 139

rics of songs (Seufitelli et al., 2023). Earlier stud- 140

ies used methods like Probabilistic Latent Seman- 141

tic Analysis (PLSA) (Hofmann, 1999) to capture 142

the semantic content of lyrics, which helped re- 143

searchers understand their role in defining a “hit” 144

song (Dhanaraj and Logan, 2005). Later work 145

moved beyond basic semantic analysis, focusing 146

on more detailed features. For instance, (Hirjee 147

and Brown, 2010)and (Singhi and Brown, 2014) 148

relied on various rhyme and syllable characteristics 149

to predict hit songs using only their lyrics, while 150

other researchers applied Latent Dirichlet Alloca- 151

tion (LDA) (Blei et al., 2003) to discover thematic 152

topics within lyrics (Ren et al., 2016). 153

Progress of deep learning techniques advanced 154

the use of multimodal approaches that combine 155

lyrics with audio and metadata, using stylomet- 156

ric analysis to extract lyric text features (Martín- 157

Gutiérrez et al., 2020). Sentiment analysis also 158

emerged as a way to glean emotional insights 159

from lyrics when predicting popularity (Raza and 160

Nanath, 2020). More recent research has turned to 161

learned lyric representations, such as embeddings 162

(Kamal et al., 2021) (McVicar et al., 2022), which 163

offer a more robust way to capture lyrical mean- 164

ing. (Barman et al., 2019) demonstrated that these 165

distributed representations can effectively predict 166

both genre and popularity, reducing the need for 167

handcrafted features. Datasets such as Music4All- 168

Onion (Moscati et al., 2022) provide lyric embed- 169

dings that make it easier to study how lyrical con- 170

tent relates to a song’s success. Finally, a recent 171

study found that a song’s lyrical uniqueness has 172

a significant contribution towards its popularity 173

(Yu et al., 2023), using TF–IDF for lyric vector 174

7Genius.com
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representation; however, this approach inherently175

lacks the capacity to capture deeper sequential and176

contextual nuances, emphasizing the growing im-177

portance of learning robust, richer representations178

of lyrics to better understand what makes certain179

songs resonate with audiences.180

To the best of our knowledge, there are limita-181

tions in existing literature for efficient automated182

lyrics feature extraction that are expressive and cap-183

ture the underlying complexity of song lyrics. Thus,184

we have built a novel pipeline to exploit the power185

of Large Language Models. It has the potential to186

provide rich lyric representations that encapsulate187

both semantic and syntactic understanding, while188

preserving the sequential structure of the lyrics.189

3 Methodology190

In this section, we provide the theoretical founda-191

tion of our approach. We begin by defining the192

problem of music popularity prediction in mathe-193

matical equations. This is followed by explaining194

the baseline approach and its implementation, in-195

cluding details of the dataset. Finally, we present a196

formal description of our proposed architecture.197

3.1 Problem Formulation198

Given a song S, its features are represented in199

a multi-dimensional space X ∈ Rd, which com-200

prises three key modalities: audio waveform w ∈201

Rk, lyrical text l ∈ Rm, and metadata attributes202

m ∈ Rp, where d = k+m+ p represents the total203

dimensionality of our feature space. Our primary204

objective is to extract meaningful features from the205

song lyrics to effectively encode each song into a206

unique vector representation. Next, the prediction207

task is formulated as learning a mapping function208

f : X → Y, where we minimize the expected pre-209

diction error: E[(f(X)− Y )2] across the training210

distribution. Here, Y ∈ R represents the continu-211

ous popularity score.212

3.2 Baseline Methodology213

We trained HitMusicNet, a multimodal end-to-end214

Deep Learning architecture as proposed by (Martín-215

Gutiérrez et al., 2020) and validated the results us-216

ing the SpotGenTrack Popularity Dataset (SPD).217

The model outputs a popularity score between 1218

and 100, using audio features, text features, and219

metadata containing artist and demographic infor-220

mation as inputs. A complete description of the221

feature set used is provided in Table 1.222

Figure 1: Diagram of the HitMusicNet pipeline outlin-
ing the principal functionalities and data components.
Image src (Martín-Gutiérrez et al., 2020).

Feature Type Features
Text Features Sentence count, Avg words,

Word count, Avg syllables/word,
Sentence similarity, Vocabulary
wealth

High-Level Audio Danceability, Energy, Key, Loud-
ness, Mode, Speechiness, Acous-
ticness, Instrumentalness, Live-
ness, Valence, Tempo, Duration,
Time Signature

Low-Level Audio Mel-spectrogram, MFCCs, Ton-
netz, Chromagram, Spectral Con-
trast, Centroid, Bandwidth, Zero-
Crossing Rate

Meta-Data Features Artist followers, Artist popularity,
Available markets

Table 1: Summary of features used in the HitMusicNet
architecture (Martín-Gutiérrez et al., 2020).

HitMusicNet architecture as shown in Fig 1, 223

employs an autoencoder for feature compression 224

through two encoder layers with dimensions d/2 225

and d/3, followed by a bottleneck layer of d/5. 226

Each layer uses ReLU activation, and the output 227

layer employs a sigmoid activation for reconstruc- 228

tion. The autoencoder was trained using the Adam 229

optimizer and an MSE loss function. The com- 230

pressed features are then passed through a fully 231

connected neural network with four layers, where 232

the number of neurons in each layer is scaled by 233

factors α = 1, β = 1/2, and γ = 1/4. The 234

model is trained using an 80%-20% train-test split 235

with stratified cross-validation (SCV) using k = 5. 236

These settings helped us in effectively replicating 237

the baseline results on the SPD dataset. 238

3.3 Dataset 239

The SpotGenTrack Popularity Dataset (SPD) pro- 240

posed by (Martín-Gutiérrez et al., 2020) and used 241

in this research contains 101,939 tracks, 56,129 242

artists, and 75,511 albums sourced using Spotify 243

and Genius APIs. The data was gathered from 244

26 countries where Spotify is available, including 245

the top 50 playlists per category for each country. 246
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Popularity scores for tracks range between 1 and247

100 and are provided by Spotify based on internal248

metrics. The scores follow a Gaussian distribu-249

tion with µ = 40.02 and a standard deviation of250

σ = 16.79. The dataset contains low-level audio251

features extracted using audio waveform, text fea-252

tures extracted using stylometric analysis of lyrics.253

High-level audio features and metadata are sourced254

from Spotify. The lyrics in the SPD dataset had255

to be cleaned and pre-processed to align with the256

objectives of this research. We inspected long tails257

of lyrics length distribution and observed that ex-258

tremely short or long entries typically contained259

irrelevant content such as random numbers, out-260

of-context text, or placeholder text. Based on this261

analysis, we retained songs with lyrics lengths be-262

tween 100 and 7000 characters. Furthermore, we263

filtered the dataset to include only English lyrics,264

which comprised approximately 60% of the total265

data. These steps resulted in a clean dataset com-266

prising 51,319 tracks, 30,024 unique artists, and267

39,371 unique albums. The resulting popularity268

distribution, as shown in Fig 2, had µ = 41.11269

and a standard deviation of σ = 17.51, retaining270

original data characteristics.

Figure 2: Popularity Distribution in cleaned SpotGen-
Track(SPD) with µ = 41.11 and a standard deviation of
σ = 17.51.

271

3.4 HitMusicLyricNet272

This section details our proposed HitMusicLyric-273

Net, an end-to-end multimodal deep learning ar-274

chitecture built upon the foundation of HitMusic-275

Net. HitMusicLyricNet comprises of three key276

components: AudioAENet, LyricsAENet, and Mu-277

sicFuseNet. AudioAENet compresses the low-level278

audio features. LyricsAENet compresses the lyric279

embeddings into a fixed-size representation us-280

ing an Autoencoder, thereby encoding information281

while reducing noise. MusicFuseNet then com-282

bines these compressed audio and lyric representa-283

tions with metadata and high-level audio features 284

as described in Table 1. 285

In the HitMusicNet architecture, a single auto- 286

encoder compressed the combined feature vector 287

of audio, lyrics, and metadata. We hypothesize that 288

this can lead to information loss, particularly for 289

the less abundant lyrics and metadata features. We 290

believe that lyrics and metadata features should be 291

fed directly into the popularity prediction network 292

to retain their predictive power for song popular- 293

ity. Furthermore, our reasoning behind the new 294

approach of introducing distinct Autoencoders for 295

audio and lyrics is based on the bipolar and di- 296

rectional nature of lyrics embeddings, requiring a 297

different architecture for compression(Bałazy et al., 298

2021). 299

3.4.1 AudioAENet 300

The Autoencoder used for compression has a sim- 301

ilar architecture to that of MusicAENet, but takes 302

in only low-level audio features as described in Ta- 303

ble 1 for compression. For input dimension d = 209, 304

it gradually compresses the data to dimension d/2, 305

d/3, and d/5. The output layer employs a sigmoid 306

activation for reconstruction, whereas all remaining 307

layers use ReLU activation functions. The model 308

is trained using the Adam optimizer with a MSE 309

loss function, achieving a loss value in the range of 310

1e-5, indicating negligible loss in compression. 311

3.4.2 LyricsAENet 312

LyricsAENet implements a tied-weights autoen- 313

coder architecture (Li and Nguyen, 2019) designed 314

to reduce parameter size and risk of overfitting. 315

Compressing lyric embeddings is susceptible to 316

overfitting due to high dimensionality. The encoder 317

follows a progressive compression with the follow- 318

ing dimensions (d/2, d/4, d/8), followed by bottle- 319

neck layers (d/12 or d/16). The decoder mirrors the 320

structure in reverse order, utilizing the tranpose of 321

the encoder weight. The progressive dimensional 322

reduction is designed to minimize reconstruction 323

losses in compressed embeddings extracted out of 324

language models and LLMs such as BERT (De- 325

vlin et al., 2019), LLaMA 3 Herd (Grattafiori et al., 326

2024), and OpenAI’s embedding models8. 327

We use Scaled Exponential Linear Unit (SELU) 328

(Klambauer et al., 2017) as the activation func- 329

tion for its self-normalizing characteristics and the 330

ability to handle the bipolar nature of embeddings. 331

Comparative analyses include alternate activation 332

8Open AI text Embedding Model
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Figure 3: Block-Schema of the HitMusicLyricNet architecture comprising of two Autoencoders and a Fully
Connected NN predicting popularity score. ’HL’ stands for high-level and ’LL’ stands for low-level.

functions such as the Sigmoid Linear Unit (SiLU)333

(Elfwing et al., 2018) and the Gaussian Error Lin-334

ear Unit (GELU) (Hendrycks and Gimpel, 2016).335

LyricsAENet was trained using the Adam optimizer336

with a MSE loss function, achieving loss values of337

approximately 1e-5. To further refine the training338

process, we incorporated a directional loss func-339

tion inspired by (Bałazy et al., 2021) to preserve340

the directional characteristics of the embeddings341

during compression. This combined loss function342

is defined as:343

L(Y, Ȳ ) = α1 ·MSE(Y, Ȳ )+α2 ·CD(Y, Ȳ ), (1)344

where MSE(Y, Ȳ ) represents the Mean Squared345

Error. CD(Y, Ȳ ) denotes the Cosine Distance,346

which captures the angular similarity between the347

vectors Y and Ȳ . The constants α1 and α2 control348

the relative importance of the two loss terms.349

3.4.3 MusicFuseNet350

We employ a similar architecture configuration as351

MusicPopNet by (Martín-Gutiérrez et al., 2020) for352

our MusicFuseNet. It uses a concatenation of com-353

pressed audio feature vectors from AudioAENet,354

compressed lyrics embeddings vectors from Lyric-355

sAENet, high-level audio features and metadata as356

mentioned in Table 1. The output of this neural357

net is a popularity score in the range [0, 1]. The 358

architecture consists of a fully connected network 359

with scaling parameters of (1, 1/2, 1/3) and ReLU 360

activation functions, followed by a Sigmoid acti- 361

vation in the final layer, as empirically validated 362

by (Martín-Gutiérrez et al., 2020). To train the 363

model, we used the Adam optimizer with an MSE 364

loss function and applied dropout regularization to 365

mitigate overfitting. 366

4 Experiments and Results 367

Using the Code9 to implement HitMusicNet and 368

selecting the configuration details described in 369

Section 3.2, we trained HitMusicNet on the SPD 370

dataset with an 80-20 split. To replicate the results 371

obtained by (Martín-Gutiérrez et al., 2020), we em- 372

ployed Stratified Cross-Validation (SCV) with k=5 373

folds and used MAE and MSE as performance met- 374

rics. As Table 4 shows, we achieved similar results 375

on all performance metrics, validating our training 376

and testing strategy. Further, removing the lyrics 377

text features proposed by (Martín-Gutiérrez et al., 378

2020) did not degrade the metrics, so we dropped 379

those features for further experiments. 380

To train HitMusicLyricNet, we extracted lyric 381

9Github: HitMusicNet
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LyricsAENet
Config

MAE
(Train)

MAE
(Val)

MAE
(Test)

SELU, MSE 0.0769 0.0746 0.0775
SiLU, MSE 0.0736 0.0731 0.0790

GELU, MSE 0.0740 0.0731 0.0792
SELU, Dir. 0.0741 0.0740 0.0799

Table 2: Results of training and testing HitMusicLyric-
Net on cleaned SPD data with various LyricAENet con-
figurations (activation function, loss function), using
BERT Large embeddings throughout. ‘Dir’ indicates
directional loss 1.

Embeddings
Model

MAE
(Train)

MAE
(Val)

MAE
(Test)

BERT large 0.0793 0.0784 0.0786
Llama 3.1 8B 0.0774 0.0759 0.0795
Llama 3.2 1B 0.0775 0.0754 0.0800
Llama 3.2 3B 0.0781 0.0766 0.0798
OpenAI Small 0.0746 0.0738 0.0788
OpenAI Large 0.0761 0.0743 0.0772

Table 3: Results of training and testing HitMusicLyric-
Net on cleaned SPD data with different lyric embed-
dings sent to LyricAENet (Selu activation, MSE loss).

Model Config Dataset
Config

MSE
(Train)

MSE
(Val)

MAE
(Train)

MAE
(Val)

MAE
(Test)

HitMusicNet SPD 0.0116 0.0115 0.0836 0.0851 0.0862
HitMusicNet w/o lyrics SPD 0.0114 0.0116 0.0843 0.0859 0.0870

HitMusicLyricNet *SPD 0.0095 0.0091 0.0761 0.0743 0.0772
HitMusicLyricNet w/o lyrics *SPD 0.0109 0.0113 0.0818 0.0841 0.0852

Table 4: Performance comparisons with the baseline (HitMusicNet) on SPD and SPD* data respectively, where
SPD* denotes cleaned SPD data. Here, we report the best results from Table 3.

embeddings from language models. For open-382

source models (BERT, Llama), we downloaded383

vanilla weights from Hugging Face10 and loaded384

its vanilla configuration. We used Nvidia A100385

GPU for compute requirements. After tokeniz-386

ing lyrics, we forward-passed them through each387

model, extracted the last hidden-layer states, and388

applied max/mean pooling to obtain fixed-size vec-389

tors for our Autoencoder. Specifically for BERT,390

we considered mean pooling and concat (max +391

CLS token). To get embeddings from OpenAI text392

models, we used the API endpoint, costing $3 for393

the small model and $6 for the large. We then stud-394

ied LLM model architecture and its training corpus395

effects on music popularity prediction with BERT,396

BERT Large, Llama 3.1 8B, Llama 3.2 1B, Llama397

3.2 3B, and OpenAI text embeddings (small and398

large).399

After extracting these embeddings, we examined400

different activation layers (Selu, Silu, Gelu) for em-401

bedding compression using LyricsAENet and in-402

troduced a directional loss function with α1 = 0.5403

and α2 =
0.5
5 as suggested by (Bałazy et al., 2021),404

alongside our standard MSE loss for LyricsAENet,405

to see their impact on the HitMusicLyricNet perfor-406

mance metric MAE. As reported in Table 2, using407

SELU with the MSE loss function in LyricsAENet408

yielded the least MAE error while training HitMu-409

sicLyricNet on popularity prediction. Directional410

loss produced comparable metrics but not enough411

10Hugging Face

improvement to be included further. Other activa- 412

tion functions performed closely, but for simplicity 413

and observing 1–2% randomness error, we pro- 414

ceeded with SELU and MSE. 415

Next, we compressed embeddings for different 416

LLM models. While we experimented with two 417

variants of BERT (small and large) and considered 418

mean embeddings and concat (max + CLS token) 419

embeddings, here we only report results for BERT 420

large with mean embeddings, as it yielded the best 421

results as seen in Table 3. All the Llama variants 422

had very close performance metrics, whereas the 423

OpenAI large text embedding model surpassed all 424

of them. We attribute these small differences (∼ 425

2% variation) in HitMusicLyricNet’s performance 426

to variations in each model’s training data and ar- 427

chitecture, since none was specifically trained for 428

our downstream task, leading to large differences 429

in rich embedding representation. 430

Hence with HitMusicLyricNet used the OpenAI 431

large text embeddings and the SELU activation 432

with MSE loss function in lyricsAENet. Overall, 433

we achieved close to a 9% improvement compared 434

to the SOTA architecture, despite training on 40% 435

less data. Dropping the lyrics feature pipeline and 436

retraining and testing HitMusicLyricNet led to per- 437

formance metrics comparable to that of HitMusic- 438

Net, validating the effectiveness of our proposed 439

lyric feature extraction pipeline using LLMs and 440

the overall advancements in music popularity pre- 441

diction pipeline. 442
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5 Conclusion and Future Work443

The work presented in this paper showcases the444

power of leveraging lyrics to predict the popular-445

ity of a song, with the help of LLMs with capa-446

bilities of capturing the deeper meaning of sen-447

tences using embeddings. We believe that ad-448

vancements in music-aware language models will449

lead to more explainable and expressive lyric fea-450

tures based on domain-specific knowledge. This451

research presented a novel architecture, HitMu-452

sicLyricNet, along with an ablation study. Hit-453

MusicLyricNet beats the SOTA by 9% by incorpo-454

rating lyric embeddings and improving upon the455

SOTA architecture. With advancements in com-456

pression techniques and multimodal learning archi-457

tecture, we believe accuracy and commercial use458

can be improved. Furthermore, with advancements459

in audio representation learning using neural audio460

codecs, richer music audio representations can be461

scoped into the study. Current research aggregates462

features over an entire song. However, contem-463

porary phenomena of virality suggest that local464

features within different musical segments need465

to be studied deeply and cannot be ignored given466

the micro-content consumption driven by platforms467

like Instagram and SnapChat.468

6 Limitation469

Our research results are potentially limited to the470

music genres represented in our dataset and may471

not generalize across genres, demographics, and472

cultural contexts. Some limitations arise as a result473

of the choice of dataset used in our study, SpotGen-474

Track. The findings are highly dependent on the475

quality and size of the SpotGenTrack dataset. The476

dataset has been cleaned to filter out lyrics that are477

not in the English language. Though this reduced478

the size of the raw dataset by 40%, it limits the479

model’s ability to be generalized across different480

languages and associated cultural contexts. The481

use of LLMs such as BERT and Llama 3 in our482

model will lead to a lack of domain-specific con-483

text, as horizontal LLMs are not typically trained484

or fine-tuned on music-focused data. While ade-485

quate measures have been made to address the risk486

of overfitting, the risk cannot be completely elim-487

inated due to the high dimensionality of the data.488

The lyric embedding vectors are flowing down-489

stream and are used to predict the popularity of a490

song. Finally, since we are assessing the quality491

of lyric embeddings using the performance metrics492

of downstream tasks (music popularity prediction), 493

this requires a further examination to evaluate the 494

intrinsic qualities of lyric embeddings vector in 495

capturing rich representation. We are limited by 496

the explanability of our lyrics feature vector which 497

can be further improved by using fine-tuned LLMs 498

for music lyric analysis and explainable feature 499

extraction. 500
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