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ABSTRACT

A central challenge in reinforcement learning (RL) is defining reward signals that
reliably capture human values and intentions. Recent advances in vision–language
models (VLMs) suggest they can serve as a powerful source of semantic rewards,
offering a flexible alternative to environment-defined objectives. Unlike hand-
crafted signals, VLM-based feedback can reflect high-level human goals such as
safety, efficiency, and comfort. We first analyze the conditions under which VLM-
based rewards enable effective learning. In particular, we highlight the importance
of monotonicity with respect to true task performance and the satisfaction of the
Markov property. When these conditions hold, VLMs provide a viable basis for
reward inference. On the algorithmic side, we identify what learning strategies are
best suited for such rewards. Trajectory-based methods such as policy gradient
(e.g., PPO) are naturally aligned with inferred returns, whereas Q-learning style al-
gorithms are more fragile because they operate on step-wise Bellman updates (e.g.,
DQN) and implicitly assume the Markov property of rewards. This perspective
reframes RL around reward inference rather than reward specification, highlight-
ing both the promise of VLM-based alignment and the theoretical and practical
boundaries of when such methods are effective. Experiments across control do-
mains provide supporting evidence for these insights. In particular, monotonicity
appears to align with learning outcomes, PPO shows greater robustness than DQN
when trained with inferred rewards, and natural language prompts can guide the
emergence of instruction-driven behaviors.

1 INTRODUCTION

Reinforcement learning (RL) has delivered striking successes in games, robotics, and control, but
its practical use continues to be constrained by a fundamental problem: reward design. Standard
formulations assume that the designer can specify a reward function that faithfully encodes the
intended task. In practice, this assumption rarely holds. Many desirable goals, such as safety,
efficiency, or comfort, are difficult to quantify numerically. Even small mismatches between the
intended objective and the coded reward can lead to unsafe or unintended behavior (Rusu et al., 2017;
Levine et al., 2018; Pinto & Gupta, 2016). The reward specification problem remains one of the main
barriers to scaling RL to real-world settings (He et al., 2024; Anderson et al., 2021; Kadian et al.,
2020; Chang et al., 2025; Hsu et al., 2023).

Recent advances in vision–language models (VLMs) suggest a promising alternative. Models such as
CLIP (Radford et al., 2021) embed images and text into a shared semantic space, enabling natural
language descriptions to act as reward signals. With the right prompt, an RL agent can be guided
toward behaviors without requiring manually engineered objectives. Unlike hand-crafted signals,
VLM-based feedback can be flexibly updated by changing the prompt and can capture high-level
semantic goals. Early results have demonstrated that such inferred rewards can support RL in a
variety of domains (Rocamonde et al., 2024; Baumli et al., 2023; Wang et al., 2024; Chan et al., 2023;
Du et al., 2023; Sontakke et al., 2023; Yang, 2024; Yu et al., 2023; Schoepp et al., 2025; Ye et al.,
2025), raising the possibility of scalable and language-driven alignment.

Yet, simply substituting environment-defined signals with VLM-based rewards does not guarantee
success. Inferred rewards are noisy and context-dependent, and their usefulness depends on structural
properties. We identify monotonicity as an important condition: inferred rewards should preserve
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the ordering of trajectories with respect to true performance. To support this claim, we introduce
evaluation metrics such as pairwise agreement and rank correlation (Kendall’s τ , Spearman’s ρ)
that allow monotonicity to be measured in benchmark settings where the true reward is available.
These metrics are not intended as standalone tools, but as a methodology for validating when inferred
rewards provide a reliable learning signal and for guiding prompt design to maximize alignment with
intended goals.

Our analysis further suggests that algorithmic families differ in their suitability for inferred rewards.
Policy gradient methods align naturally with trajectory-level signals, while value-based approaches
such as Q-learning rely on Bellman updates that assume step-wise Markovian rewards. When this
assumption is violated, value-based methods may propagate errors, offering a possible explanation
for instabilities observed in prior work with semantic reward models (Rocamonde et al., 2024;
Baumli et al., 2023). This perspective not only helps interpret past results but also opens new
directions: improving policy gradient methods to exploit trajectory-level structure more effectively,
and rethinking value-based updates to accommodate non-Markovian settings.

Empirically, we validate these insights across classic control and continuous control domains. Our
experiments show that trajectory-based methods such as PPO can successfully leverage inferred
rewards to achieve performance comparable to ground-truth rewards, while Q-learning methods such
as DQN struggle when monotonicity and Markov assumptions do not hold. We further demonstrate
that prompt choice directly affects monotonicity, highlighting the potential for systematic prompt
design to improve alignment. Together, these results provide both practical guidance and new
challenges for integrating language-driven rewards into reinforcement learning.

Our contributions are as follows:

• Conceptual framework and theoretical analysis establishes conditions under which inferred
rewards support effective learning by emphasizing monotonicity of trajectory returns as a
key property.

• Algorithmic analysis examines how different reinforcement learning families interact with
inferred rewards and shows that trajectory-based methods such as PPO are more robust than
step-wise value-based methods such as DQN.

• Practical monotonicity measure proposes metrics for quantifying monotonicity that validate
inferred rewards in benchmark settings and can guide prompt design.

• Empirical results demonstrate that inferred rewards can match ground-truth performance
in standard tasks, enable novel instructed behaviors, and reveal limitations in handling
semantically complex instructions.

2 BACKGROUND AND RELATED WORK

Reinforcement Learning and Reward Design. Reinforcement learning (RL) is commonly for-
mulated under the Markov Decision Process (MDP) framework, where an agent interacts with an
environment defined by the tuple (S,A, P, r, γ). At each timestep t, the agent observes a state st ∈ S ,
takes an action at ∈ A, and receives a scalar reward rt = r(st, at) from the environment. The agent
then learns a policy π(at|st) that maximizes the expected discounted return. While this formulation
has yielded many breakthroughs, it assumes that the environment can provide a meaningful and
consistent reward signal. In practice, this assumption rarely holds. Reward functions are often hand
crafted, encoding brittle heuristics or proxy objectives that agents can exploit in unexpected ways. As
a result, poorly designed rewards may encourage reward hacking or other unintended behaviors. In
real-world deployments such as robotics or interactive systems, the challenge is even more acute:
reward signals may be unavailable, delayed, or unobservable (He et al., 2024; Anderson et al., 2021;
Kadian et al., 2020; Chang et al., 2025; Hsu et al., 2023; Rusu et al., 2017; Peng et al., 2018; James
et al., 2017; Hsu et al., 2023; Levine et al., 2018; Pinto & Gupta, 2016).

Approaches Beyond Hand-Crafted Rewards. Recognizing this challenge, a variety of approaches
have been proposed. Inverse reinforcement learning (IRL) (Ng & Russell, 2000) infers reward
functions from expert demonstrations or preference data, providing a principled route toward human-
aligned objectives. However, IRL typically requires extensive curated data and repeated human input,
limiting its scalability. Intrinsic motivation methods such as curiosity driven exploration (Pathak et al.,
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2017; Burda et al., 2018) generate task-agnostic signals that encourage agents to seek novelty, but
by design they remain disconnected from external goals. Similarly, goal-conditioned reinforcement
learning (Andrychowicz et al., 2017) incorporates goal vectors into policies and has shown impressive
adaptability, yet it still depends on external rewards to ground those goals. Each of these directions
makes important progress, yet the fundamental issue of specifying rewards that capture high-level
objectives remains unresolved.

Vision-Language Models and Supervised Approaches. In parallel, large-scale supervised learning
has advanced rapidly. Vision-language-action (VLA) models (Zitkovich et al., 2023; Brohan et al.,
2022; Kim et al., 2024; O’Neill et al., 2024) leverage paired image, text, and action data to train
policies capable of following natural language instructions. These models illustrate the power
of multimodal training and achieve strong generalization across tasks. Yet they also highlight a
limitation: because they rely on large-scale labeled data and lack the trial-and-error dynamics of
reinforcement learning, they do not inherit the adaptability of reward-driven methods. Their strengths
therefore lie in supervised imitation rather than in autonomous discovery.

Recent developments in pretrained vision-language models (VLMs) such as CLIP (Radford et al.,
2021), VideoCLIP (Xu et al., 2021), Flamingo (Alayrac et al., 2022), GPT-4 (Achiam et al., 2023),
LLAVA (Liu et al., 2023; 2024), and Qwen (Yang et al., 2025) broaden the possibilities further. These
models encode rich semantics across vision and language, showing remarkable generalization to
novel inputs. They have been used effectively for perception, retrieval, and auxiliary scoring. Their
capacity to ground instructions in visual observations naturally suggests a role as reward providers,
bridging reinforcement learning with high-level semantic goals.

Reward Inference with VLMs. Several works have already begun exploring this potential. Roca-
monde et al. (Rocamonde et al., 2024) demonstrate that VLMs can act as zero-shot reward models,
allowing agents to learn from prompts without manually engineered signals. Baumli et al. (Baumli
et al., 2023) study how model capacity affects the fidelity of such rewards, and (Wang et al., 2024)
integrate VLM feedback into reinforcement learning pipelines to generate task-specific signals. These
contributions establish the feasibility of VLM-based rewards and provide valuable insight into their
strengths and limitations. At the same time, most of these works treat reward models as external
scorers, leaving open the question of what conditions make them effective learning signals and which
algorithms can best exploit them.

Reward-Free Frameworks. A complementary body of research has questioned the very necessity
of external rewards. Reward-free frameworks argue that agents can develop competence through
other principles, such as skill discovery or representation learning. For example, DIAYN (Eysenbach
et al., 2019) encourages agents to acquire diverse behaviors by maximizing discriminability, while
curiosity-driven exploration (Burda et al., 2018) motivates visiting novel states. These directions
elegantly bypass the brittleness of hand-designed rewards, though they stop short of offering explicit
alignment with semantic or task-specific objectives.

Position of This Work. Our work builds on these foundations and takes a step toward connecting
semantic models with reinforcement learning theory. Rather than assuming that environment-provided
signals are always available or reliable, we study when inferred semantic rewards can act as effective
surrogates. We identify structural properties, in particular monotonicity of trajectory returns, as central
to their reliability. We analyze which algorithmic families are most compatible with such signals, and
propose practical metrics to evaluate and guide reward inference in benchmark settings. In this way,
our study complements prior empirical demonstrations by providing a conceptual framework that
clarifies when semantic rewards succeed, when they fail, and how they might be improved.

3 INFERENCE-BASED RL FRAMEWORK (INFERL)

In standard reinforcement learning, an agent operates within a Markov Decision Process (MDP),
defined by the tuple (S,A, P, r, γ), where r is a scalar reward provided by the environment. The agent
aims to learn a policy π(a|s) that maximizes the expected cumulative reward: Eπ [

∑∞
t=0 γ

tr(st, at)] .

This framework assumes that the environment provides a reliable and well-specified reward at each
step. In practice, however, reward signals are often incomplete, noisy, or misaligned with the intended
task, which can lead to undesirable behaviors even if the agent succeeds at maximizing the formal
objective. We introduce a framework in which the reward function is inferred by the agent itself
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Standard Reinforcement Learning (MDP)
Formalism:

M = (S,A, P, r, γ)

• S: state space
• A: action space
• P (s′|s, a): transition dynamics
• r(s, a): reward from environment
• γ: discount factor

Objective:

max
π

Eπ

[ ∞∑
t=0

γtr(st, at)

]
Reward: Environment-provided
Policy: π(at|st)

Inference-Based RL (InfeRL)
Formalism:

M′ = (S,A, P,G, finf, γ)

• S: state space
• A: action space
• P (s′|s, a): transition dynamics
• G: goal space (e.g., text)
• finf(τ, g): inferred reward
• γ: discount factor

Objective:

max
π

Eπ

[ ∞∑
t=0

γtfinf(τt, g)

]
Reward: Inferred by agent
Policy: π(at|st, ftext(g))

Figure 1: Inference-Based RL (InfeRL) replaces externally defined rewards with internally inferred
signals based on semantic alignment between behavior and goals.

(Figure 1). We refer to this formulation as Inference-Based Reinforcement Learning (InfeRL),
highlighting its central departure from standard RL: environment-provided rewards are replaced
with internally inferred signals. Throughout the paper, we use the term InfeRL to denote both the
framework and the accompanying analysis.

Reward Inference from Goals. The inference-based formulation augments the MDP by introducing
a goal space G and a reward inference function finf:

M′ = (S,A, P,G, finf, γ).

Here, G denotes high-level task goals (e.g., language prompts or images), and finf : (τ, g) → R
maps a trajectory prefix τ and a goal g to a scalar reward. In general, finf may take many forms
depending on how goals are represented and how behavior is evaluated, ranging from classifiers to
embedding-based similarity functions. This general structure captures the idea that the agent’s reward
is not provided by the environment but instead inferred through alignment with the specified goal.

It is important to note that in this formulation, the reward inference function finf is part of the
agent, not the environment. While in practice we instantiate finf with a pretrained perceptual model
(e.g., CLIP), conceptually this mechanism belongs to the agent’s design and policy learning process.
The environment does not provide inferred rewards; rather, the agent generates them internally by
evaluating its own behavior against the specified goal. This distinction is crucial, as it separates the
alignment challenge of reward inference from the external specification of the environment.

To make the discussion concrete, we adopt a commonly used instantiation that has appeared in prior
works and serves as the basis for our experiments. At the beginning of each episode, the agent
is assigned a fixed goal prompt g ∈ G. During interaction, it collects short trajectory segments
τt = [It−k+1, . . . , It] of observations, where k denotes the segment length. In the simplest case
k = 1, the inferred reward is based only on the most recent observation, while larger values of k
allow the reward to depend on a short history of frames. At every step, a pretrained perceptual model
(e.g., CLIP (Radford et al., 2021)) computes alignment as

rt = finf(τt, g) = α · cos
(
fvision(τt), ftext(g)

)
,

where α is a scaling parameter. The functions fvision and ftext embed short trajectories and goal
descriptions into a shared representation space, and their cosine similarity serves as the inferred
reward. This instantiation grounds the abstract framework in a concrete implementation while still
allowing us to analyze the broader theoretical properties of inference-based rewards. At the same
time, because the inferred reward depends on trajectory fragments rather than solely on the current
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state and action, it does not strictly satisfy the Markov property, a limitation we return to in the
theoretical analysis.

Goal-Conditioned Policies. We condition the policy on the embedding of the goal, u = ftext(g),
which allows a single agent to generalize across tasks and instructions: π(at | st, u). This enables the
agent to adapt to new instructions at test time without retraining, as new goals can be incorporated
directly through the reward inference mechanism.

Interpretation. Inference-Based RL (InfeRL) preserves the trial-and-error structure of reinforcement
learning but replaces externally specified rewards with semantically inferred signals. By grounding
reward in a goal specification, this framework provides a formal lens on recent attempts to use
pretrained models as reward providers. It also highlights the central question: under what conditions
do such inferred rewards behave like reliable substitutes for environment-defined objectives? The
rest of this paper develops theoretical criteria, algorithmic implications, and empirical evaluations to
answer this question.

Monotonicity and the Markov Property. A central requirement for inference-based rewards to
serve as effective surrogates is that they preserve the ordering of trajectories with respect to task
performance. Formally, if trajectory τ1 yields higher true return than τ2, then finf(τ1, g) ≥ finf(τ2, g).
This monotonicity condition ensures that optimizing with respect to the inferred signal leads to
policies that also improve true task outcomes. A related but distinct issue is whether the inferred
reward satisfies the Markov property, depending only on the current state and action rather than the
full trajectory. While this property often fails for inference-based signals, understanding its role
helps explain why some algorithmic families are more robust than others. Our subsequent analysis
examines when monotonicity holds, how to measure it in practice, and what algorithmic strategies
can mitigate the absence of these assumptions.

4 THEORETICAL ANALYSIS OF INFERENCE-BASED REWARDS

Inference-based reinforcement learning departs from the standard MDP formulation by replacing
externally defined rewards with signals inferred from a perceptual model. This modification raises
fundamental theoretical questions: under what conditions can such inferred rewards still support
effective learning, and what assumptions are required for different classes of algorithms? We identify
two key properties, monotonicity and the Markov assumption, that play distinct roles in determining
the reliability of learning under inferred rewards.

4.1 MONOTONICITY OF INFERRED REWARDS

Definition. A central requirement for inference-based rewards to serve as reliable surrogates is that
they preserve the ordering of trajectories with respect to true task performance. Let R(τ) denote the
true return of a trajectory τ , and R̂(τ) the inferred return produced by finf. We say that monotonicity
holds if for any two trajectories τ1, τ2,

R(τ1) > R(τ2) ⇒ R̂(τ1) > R̂(τ2).

This condition ensures that the inference function finf preserves the relative ranking of behaviors, even
if the inferred rewards differ in scale or contain noise. When monotonicity holds, optimizing with
respect to R̂(τ) will guide the agent toward trajectories that also improve the true return R(τ). By
contrast, violations of monotonicity can result in reward misalignment, where finf favors trajectories
that appear successful under the inferred signal but in fact degrade true task performance.

At the framework level, monotonicity formalizes when internally inferred signals can safely replace
environment-provided rewards. It highlights that the key property is not the absolute accuracy of the
reward values, but their ability to order trajectories consistently with the underlying task objective.
This makes monotonicity a central criterion for analyzing the effectiveness of inference-based
reinforcement learning.

Measuring Monotonicity. Monotonicity can be quantified by comparing the ordering of trajectories
under the true return R(τ) and the inferred return R̂(τ). Concretely, given a collection of trajectories
{τi}Ni=1, one may compute: (i) pairwise agreement, the fraction of trajectory pairs (τi, τj) for which
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the ordering induced by R(τ) and R̂(τ) is consistent; (ii) rank correlation measures such as Kendall’s
τ or Spearman’s ρ, which assess the correlation between the two induced rankings.

Together, these metrics provide a practical monotonicity score that can be monitored across tasks,
datasets, or inference models. In practice, such scores not only assess the reliability of finf but also
guide design choices, for example, selecting goal prompts, pretrained perceptual models, or trajectory
representations that yield higher monotonicity. This makes monotonicity measurement an essential
diagnostic tool for both theoretical analysis and empirical studies of inference-based reinforcement
learning.

4.2 MARKOV PROPERTY OF INFERRED REWARDS

Definition. In the standard MDP formulation, the reward function is assumed to satisfy the Markov
property, depending only on the current state and action. Formally, r(st, at) is determined solely by
(st, at), independent of the past trajectory. This assumption underlies many theoretical guarantees
in reinforcement learning, particularly for algorithms based on dynamic programming and Bellman
equations. In inference-based reinforcement learning, however, rewards are produced by an inference
function finf that often depends on trajectory fragments τt = [It−k+1, . . . , It] rather than a single
state-action pair. This design enables richer semantic evaluation, but it means that the inferred reward
generally does not satisfy the strict Markov property. As a result, standard assumptions used by
Q-learning style methods may break down, since the reward cannot be decomposed step by step
without introducing bias. To understand how Markovian structure may be approximated in practice,
we introduce the notion of temporal consistency.

Temporal Consistency. There exists k ≥ 1 such that for all (st, at), r̂(st, at) = f(r(st, at), st:t+k),
where st:t+k denotes a trajectory segment of length k, and f is a deterministic mapping. This assump-
tion states that the inferred reward r̂ becomes Markovian, or quasi-Markovian, when conditioned
on a bounded temporal window. A single state-action pair may be insufficient to determine reward
meaningfully, but a short segment can disambiguate states that appear similar locally yet differ
semantically. Without this property, the inferred reward may collapse distinct outcomes, creating
systematic misalignment between r̂ and the true reward r.

Quasi-Markov Rewards via Augmented MDPs. If the inferred reward depends on a finite trajectory
window, one can define an augmented MDP where the same reward is Markovian, allowing standard
RL guarantees to apply.

Past-window form. An inferred reward is k-quasi-Markov if there exists a function g : Sk×A×U →
R such that r̂t = g

(
(st−k+1, . . . , st), at, u

)
, where u ∈ U is a fixed goal or condition (e.g., a

language embedding).

Future-window form. An inferred reward is k-quasi-Markov if there exists a function h : Sk+1 ×
A× U → R such that r̂t = h

(
(st, . . . , st+k), at, u

)
.

Practical Implications. The past-window form computes rewards from a short history (e.g., a clip
ending at t). The future-window form uses a short look-ahead (e.g., verifying stability over the next
k frames), which can be made causal by delaying the reward by k steps. Quasi-Markov structure
provides a practical way to reconcile inference-based rewards with RL theory.

4.3 ALGORITHMIC IMPLICATIONS

A central question in reinforcement learning with inferred rewards is whether existing algorithms can
still guarantee policy improvement when the reward function is imperfect. We focus on two widely
used families: trajectory-based policy gradient methods and step-wise value-based methods.

Policy Gradient Methods. Policy gradient algorithms optimize the expected return

J(π) = Eτ∼π [R(τ)] = Eτ∼π

[
T∑

t=0

rt

]
,

where τ = (s0, a0, . . . , sT , aT ) denotes a trajectory. The policy gradient theorem gives

∇θJ(πθ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st) R̂(τ)

]
,
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where R̂(τ) may be an inferred return. If the inferred return R̂(τ) preserves the ordering of true
returns R(τ) (i.e., monotonicity holds), then the gradient direction remains positively correlated with
improvements in R(τ). Thus, even if R̂(τ) is noisy or non-Markovian, trajectory-level monotonicity
suffices for consistent improvement under policy gradient updates.

Q-Learning and Bellman Updates. Q-learning algorithms, by contrast, rely on the Bellman equation

Qπ(s, a) = E
[
r(s, a) + γmax

a′
Qπ(s′, a′)

∣∣∣ s, a] ,
which assumes that the reward r(s, a) is a Markovian function of the current state-action pair. If
rewards are inferred from trajectory fragments, i.e., r̂t = finf(τt, g), with τt = (st−k+1, . . . , st)
or (st, . . . , st+k), then r̂t may depend on history or future context. In such cases, two identical
state-action pairs (st, at) may yield different inferred rewards depending on surrounding context,
violating the Markov property. This breaks the Bellman recursion and leads to biased targets even
when trajectory-level monotonicity holds. Consequently, value propagation may mis-rank state-action
pairs and destabilize learning.

Implications. This analysis highlights an asymmetry. Policy gradient methods require only trajectory-
level monotonicity, making them robust to non-Markovian or noisy inferred rewards. Q-learning
methods, however, require both monotonicity and strict (or quasi-) Markovianity of per-step rewards
to ensure stability. This explains why trajectory-based methods tend to perform better in practice
under inferred rewards, while Q-learning style algorithms are more fragile.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate InfeRL across classic control and MuJoCo environments, including variants of CartPole
with symbolic visual cues, as well as Ant and Walker2D tasks that require more complex motor
coordination. At each timestep, a pretrained VLM (e.g., CLIP) provides inferred rewards by aligning
short trajectory windows with natural language goals, replacing environment-supplied signals. We
compare PPO and DQN under this setup to probe the algorithmic asymmetries identified in our
theory, and evaluate both monotonicity of inferred rewards and policy performance. Full details of
environments, prompts, reward inference, and evaluation protocols are provided in the Appendix A.

5.2 MEASURING MONOTONICITY OF INFERRED REWARDS

To quantify the reliability of inferred rewards, we compute pairwise agreement, Kendall’s τ , and
Spearman’s ρ (Virtanen et al., 2020) between rankings induced by inferred returns R̂(τ) and true
returns R(τ). Ground-truth returns are estimated from trajectories generated by a random policy,
ensuring a diverse set of behaviors for evaluation. Table 1 reports monotonicity scores across four
environments, each tested with three different natural language prompts. These prompts were chosen
to represent both aligned goals (e.g., “upright walking”) and misaligned ones (e.g., “collapsed robot”),
allowing us to assess whether monotonicity can distinguish suitable reward specifications from poor
ones.

Analysis. In the CartPole and InvertedPendulum domains, all prompts exhibit near-perfect mono-
tonicity, with Kendall’s τ > 0.92 and Spearman’s ρ > 0.98. This reflects the simplicity of these
tasks, where semantic descriptions align cleanly with environment dynamics. Even “fallen pole” or
“downward pole” prompts produce consistent rankings, showing that monotonicity is easy to satisfy
in well-structured environments.

In Walker2D, results are weaker but still meaningful, with τ ≈ 0.33–0.35. Despite the complexity
of bipedal locomotion, the inferred rewards distinguish between successful walking and collapsed
robots, indicating that monotonicity analysis can highlight misaligned prompts even when absolute
correlations are modest.

In Ant, the most challenging domain, all prompts yield negative correlations (τ ∈ [−0.46,−0.33]).
Nevertheless, the relative ordering remains informative: collapsed behaviors are consistently ranked
worse than walking-related ones. This underscores both the difficulty of designing suitable reward
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Table 1: Monotonicity results across environments and prompts. Values report pairwise agreement,
Kendall’s τ , and Spearman’s ρ between rankings induced by true and inferred returns.

Environment Prompt Pairwise Agr. Kendall’s τ Spearman’s ρ

CartPole keep the pole upright. 1.000 0.981 0.999
The pole is nearly vertical (upright), and the cart is near the center. 1.000 0.983 0.999
The pole has fallen over, lying flat instead of upright. 1.000 0.979 0.998

InvPendulum keep the pole upright. 1.000 0.939 0.990
The pole is nearly vertical (upright), and the cart is near the center. 1.000 0.930 0.987
keep the pole downward. 1.000 0.925 0.984

Walker2d A robot walking upright steadily. 0.668 0.337 0.474
A two-legged robot walking steadily to the right in an upright
posture.

0.669 0.339 0.473

A two-legged robot collapsed on the ground, lying sideways and
not walking.

0.675 0.351 0.489

Ant A four-legged robot walking and balanced. 0.306 -0.388 -0.556
An ant robot walking steadily forward, with coordinated motion. 0.336 -0.328 -0.469
A four-legged robot collapsed on the ground, lying flat and not
walking.

0.271 -0.459 -0.657

functions in complex environments and the value of monotonicity as a diagnostic tool for identifying
when instructions fail to align with meaningful task outcomes.

Overall, these results suggest that monotonicity analysis can provide a useful lens for assessing
whether inferred rewards are suitable for learning in specific settings. It helps distinguish between
prompts that yield reliable signals and those likely to mislead the agent.

5.3 POLICY LEARNING UNDER INFERRED REWARDS

Comparison of Algorithms We compare policy gradient (PPO) and value-based (DQN) algo-
rithms trained directly on inferred rewards across three variants of the CartPole environment.
The results are summarized in Table 2. In the CartPole-Base setting, both PPO and DQN
achieve stable learning, consistent with the observation that this environment admits a well-defined
ground-truth reward and the inferred signal exhibits strong monotonicity with true returns. This
case highlights conditions under which both algorithmic families remain reliable, likely due to
the inferred reward being nearly Markovian in addition to monotonic at the trajectory level.

Table 2: Episodes and timesteps required for PPO and
DQN to solve tasks across CartPole variants. PPO con-
sistently achieves faster convergence under inferred re-
wards, while DQN struggles in settings with weaker
Markov properties.

Environment PPO DQN

Episodes Steps Episodes Steps

CartPole-FireWater 300 14K 2800 42K
CartPole-MultiCue 360 25K 3100 60K

In the CartPole-FireWater variant, PPO suc-
cessfully solves the task within roughly 300
episodes (14K environment steps), whereas
DQN requires almost an order of mag-
nitude more interaction (2800 episodes,
42K steps). Similarly, in the CartPole-
MultiCue setting, PPO converges in 360
episodes (25K steps), while DQN needs
3100 episodes (60K steps). These results
align with our theoretical analysis: PPO,
which relies only on trajectory-level mono-
tonicity, remains robust, while DQN strug-
gles under violations of the Markov property inherent in the inferred reward structure.

Together, these experiments provide empirical validation of the theoretical claims. Trajectory-based
policy gradient methods can reliably exploit monotonic but non-Markovian rewards, whereas step-
wise Bellman-based methods become unstable, requiring substantially more samples or failing
to converge. The consistency between the monotonicity analysis and observed learning behavior
supports the view that monotonicity serves as a useful diagnostic for algorithmic choice under
inference-based reinforcement learning.

Comparison with Ground-Truth Rewards To further validate the effectiveness of InfeRL, we
compare PPO trained on inferred rewards with PPO trained on environment-provided ground-truth
rewards. For the CartPole-Base environment, results show that PPO with inferred rewards achieves

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

nearly identical performance to training with ground-truth rewards, confirming that semantic align-
ment from the vision–language model is sufficient to replicate the standard reward. Similar findings
hold for the InvertedPendulum-v4 (the MuJoCo equivalent of CartPole), where episode length serves
as the ground-truth reward signal. Learning curves for CartPole are presented in Figure 6, showing
the close correspondence between ground-truth and inferred-reward training.

5.4 WALKER2D WITH INFERRED REWARDS

Figure 2: MuJoCo Walker2D behavior under
inferred reward. A sequence of frames showing
the agent walking upright steadily in the backward
direction. The agent learns to maintain balance
and upright posture but chooses to walk in reverse,
highlighting a partial success and the impact of
ambiguous language instructions.

A more interesting pattern emerges in Walker2D.
Here, PPO with CLIP-based inferred rewards
demonstrates faster early-stage learning com-
pared to training with ground-truth rewards.
Since the environment’s ground-truth reward
is unavailable in our setup, we report episode
length as a proxy metric, which still provides a
reasonable indication of task success. PPO with
inferred rewards achieves an average episode
length of 715 within 500K timesteps, compared
to 476 under ground-truth rewards.

One possible explanation for this difference is
the prior knowledge embedded in CLIP, which
may accelerate alignment by providing seman-
tically meaningful reward shaping early in train-
ing. While this effect requires further investigation, it suggests that inference-based rewards can, in
some cases, bootstrap learning more effectively than raw task signals. The corresponding learning
curves are illustrated in Figure 2, highlighting the faster rise in episode length under inferred rewards.

Additional Results. To further probe the flexibility of InfeRL, we examine its ability to induce novel
and compositional behaviors (see Appendix B.1 and B.2 for details). In the MuJoCo Ant domain,
natural language prompts such as “spin in place while staying balanced” lead to qualitatively new
locomotion strategies that differ from the default forward gait, while in Walker2D, vague instructions
like “walk upright steadily” produce plausible but unintended backward walking. These case studies
highlight both the promise of natural language rewards in guiding complex behaviors and the risks
posed by underspecified prompts.

We also evaluate multi-objective and compositional instructions in modified CartPole environments.
In FireWater, agents must balance the pole while positioning near fire and away from water, whereas
in MultiCue they must additionally consider umbrellas and rain. PPO agents show partial to strong
alignment with these goals, with success depending on the salience of visual cues, while DQN reliably
solves the simpler base CartPole task. Together, these findings demonstrate that InfeRL generalizes
beyond standard control to instruction-driven, multi-objective scenarios, but also underscore the
importance of prompt clarity and cue distinctiveness.

Overall, our experiments indicate that monotonicity offers a useful diagnostic for evaluating reward
reliability, that trajectory-based methods such as PPO align better with inferred rewards than step-wise
methods like DQN, and that instruction-driven behaviors showcase both the promise of semantic
rewards and the limitations arising from ambiguity and non-Markov dependencies. Further details
are provided in Appendix B.3.

6 CONCLUSION

We studied InfeRL, a framework that replaces environment-provided rewards with semantic signals in-
ferred from vision–language models. Our analysis highlighted monotonicity and (quasi-)Markovianity
as key properties shaping when such rewards support effective learning. Experiments across control
domains showed that monotonicity correlates with learning outcomes, policy gradient methods such
as PPO are more robust than value-based methods such as DQN, and natural language prompts can
guide both standard and novel behaviors. These results suggest that viewing reinforcement learning
through the lens of reward inference provides a principled path toward aligning agents with high-level
goals while underscoring the need for careful prompt design and robust inference mechanisms.
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A EXPERIMENT SETUP

To empirically validate our theoretical analysis, we design experiments that evaluate how inference-
based rewards enable agents to acquire meaningful behaviors from natural language prompts and
visual feedback, without relying on environment-supplied rewards. Our objectives are threefold: to
measure whether inferred rewards preserve monotonicity with ground-truth returns, to compare the
robustness of trajectory-based and step-wise algorithms under inferred rewards, and to test whether
semantic prompts support novel instructed behaviors that are difficult to specify with handcrafted
reward functions.

Environments We conduct experiments in three control domains of increasing complexity: CartPole,
MuJoCo Ant, and MuJoCo Walker2D. The CartPole domain serves as a controlled setting where we
introduce progressively richer variants (see Figure 3). In CartPole-Base, the agent balances a pole on
a moving cart. CartPole-FireWater augments the background with symbolic cues, a fire icon on the
left and a water droplet on the right, enabling instructions such as “move toward water” or “avoid
fire.” CartPole-MultiCue extends this idea further, adding multiple cues such as umbrellas and clouds
to support more abstract and context-dependent prompts like “stay under the umbrella while avoiding
hazards.”

Figure 3: Variants of the CartPole environment used in our experiments. From left to right: (1)
CartPole-Base: the standard task where the agent balances a pole on a cart. (2) CartPole-FireWater:
background includes a fire icon on the left and a water droplet on the right, enabling directional
prompts. (3) CartPole-MultiCue: background includes fire, water droplets, umbrellas, and clouds,
supporting more complex instructions such as “stay under the umbrella” or “avoid fire.” These
variations preserve the original task dynamics while introducing symbolic visual cues that enable
natural language instruction grounding. They are designed to evaluate the agent’s ability to infer
rewards from semantics, generalize across goal specifications, and follow increasingly abstract or
context-dependent instructions.

The Ant environment offers a substantially more complex control challenge with high-dimensional
action and observation spaces. We consider two tasks: Ant-Balance, in which the agent must rotate
in place while maintaining stability, and Ant-Rotate, where the goal is to spin rapidly in place
without forward locomotion. The latter illustrates how simple natural language prompts can express
behaviors that are difficult to encode via handcrafted rewards. Finally, Walker2D provides another
high-dimensional setting where the agent is instructed to “walk while remaining upright.”

These domains preserve the underlying dynamics of their respective environments while enabling
more expressive, interpretable goals. This makes them ideal testbeds for examining how well
inference-based rewards capture task intent.

Goal Prompts Each environment is paired with natural language goal specifications that describe
the desired behavior (Table 3). Prompts are designed to be semantically meaningful yet sufficiently
underspecified to highlight potential ambiguities. For example, CartPole-Base is defined by “the pole
remains upright and the cart stays near the center,” while Ant-Rotate uses “a four-legged ant robot
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spins in place while staying balanced.” We also test robustness to prompt variations by rephrasing
instructions or altering emphasis.

Table 3: Natural language goal specifications used for reward inference across different environment
settings.

Environment Setting Task Type Goal Specification

CartPole Base Single-objective The pole is nearly vertical (upright), and the cart is near the
center of the track.

CartPole FireWater Multi-objective A cart with an upright pole is positioned directly under a red
and yellow fire icon, far away from the blue water droplet.

CartPole MultiCue Multi-objective + Complex A cart with an upright pole is positioned directly under a red
and yellow fire icon, far away from the blue water droplet.

Multi-objective + Complex The pole is upright and stable, with both the cart and pole
positioned under
the right umbrella, far from the fire and out of the rain.

MuJoCo Ant Balance Single-objective A four-legged robot walking and balanced.
MuJoCo Ant Rotate Novel behavior A four-legged ant robot spinning rapidly in place, staying

centered and balanced.
MuJoCo Walker2D Walk Single-objective + Ambiguous A robot walking upright steadily.

Reward Inference Mechanism At each timestep, a pretrained vision–language model such as
CLIP (Radford et al., 2021) encodes a short trajectory window into an embedding. This embedding
is compared with that of the goal prompt, and their cosine similarity defines the inferred reward.
The environment’s native reward function is ignored during training. Importantly, the inference
mechanism is part of the agent’s design rather than the environment specification, reinforcing the
conceptual distinction at the heart of InfeRL: rewards are inferred internally rather than externally
supplied.

Reinforcement Learning Algorithms We compare two widely used algorithmic families that
embody the asymmetry highlighted in our theoretical analysis. Proximal Policy Optimization
(PPO) (Schulman et al., 2017) serves as a trajectory-based policy gradient method, which can
tolerate non-Markov rewards as long as monotonicity is preserved at the trajectory level. Deep
Q-Networks (DQN) (Mnih et al., 2015) represent step-wise value-based methods, which require both
monotonicity and Markovian structure in per-step rewards. Implementations are based on Stable-
Baselines3 (Raffin et al., 2021) and CleanRL (Huang et al., 2022), with no algorithmic modifications.
The cosine similarity produced by the vision–language model is passed directly as the per-step reward,
demonstrating that InfeRL integrates seamlessly with standard RL pipelines.

Evaluation Metrics We evaluate agents along two complementary axes. First, we measure mono-
tonicity by comparing the ordering of trajectories under inferred and ground-truth rewards, reporting
pairwise agreement and rank correlation (Kendall’s τ , Spearman’s ρ). Second, we assess learning
performance both quantitatively, via episode returns under PPO and DQN, and qualitatively, through
manual inspection of trained policies across multiple rollouts to determine whether behaviors align
with the intended natural language goals. Each experiment is repeated across five random seeds, with
ten rollouts per trained policy. This dual evaluation allows us to probe both alignment fidelity and
algorithmic robustness.

B ADDITIONAL RESULTS

B.1 INSTRUCTION-DRIVEN BEHAVIORS

We first evaluate whether InfeRL can induce a novel behavior in the MuJoCo Ant environment. The
agent receives the goal description: “a four-legged ant robot spinning in place while staying balanced.”
This objective requires a significant departure from the default locomotion typically observed in Ant
tasks, instead demanding symmetric leg movements that achieve rotation without translation.

As shown in Figure 4, the agent successfully learns to rotate in place while maintaining balance.
Frame sequences illustrate consistent angular displacement, with leg markers and arrows confirming
stable counterclockwise spinning. Importantly, this outcome is achieved without handcrafted reward
shaping or explicit motion specification, relying solely on the inferred reward signal derived from a
pretrained vision–language model.
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Figure 4: Ant-Rotate behavior guided by a language-specified goal. A sequence of frames showing
the Ant agent rotating counterclockwise in place. Red circles mark a front leg for orientation; yellow
arrows indicate the direction of rotation. The behavior is learned solely from natural language-
based reward inference, without handcrafted shaping or environment-provided rewards (video in
supplementary).

Figure 5: CartPole instruction following with PPO and DQN. Visualizations of final agent
behaviors under different prompt types and environments. Left to Right: (1) PPO-trained agent
in the FireWater setting learns to position itself near the fire icon, consistent with the provided
instruction. (2) In the MultiCue environment, the PPO agent successfully navigates to the rightmost
umbrella, avoiding fire and rain, as specified by the goal. (3) A partial success in the MultiCue
environment, where the agent stops near the left umbrella, satisfying some but not all constraints.
(4) DQN agent, operating with a discrete action space, is evaluated on the base CartPole setup and
learns to stay upright and centered in accordance with the instruction. These results illustrate InfeRL’s
ability to support multi-objective goals under both continuous (PPO) and discrete (DQN) control
regimes (video in supplementary).

This result demonstrates that inference-based rewards can support the acquisition of non-default,
instruction-driven behaviors that are difficult to express through standard environment rewards. It
highlights the flexibility of InfeRL in aligning agent behavior with semantically specified goals.

We further test generalization in the MuJoCo Walker2D environment, where the agent is instructed
with the prompt: “a robot walking upright steadily.” As illustrated in Figure 2, the agent learns a
stable gait that preserves balance and posture but consistently moves backward.

This outcome underscores both the promise and the limitations of natural language reward inference.
On one hand, the instruction successfully drives upright walking without task-specific reward en-
gineering. On the other hand, the absence of explicit directional cues allows the agent to adopt a
behavior that is semantically consistent with the language model’s interpretation but misaligned with
human expectations. Such cases emphasize the importance of precise goal specification and connect
directly to our theoretical analysis: vague or underspecified prompts risk violating monotonicity and
producing behaviors that, while interpretable, diverge from intended outcomes.

B.2 GENERALIZATION TO MULTI-OBJECTIVE AND COMPOSITIONAL GOALS

Beyond reproducing ground-truth rewards in standard control settings, we evaluate whether InfeRL
can generalize to tasks requiring multi-objective and compositional reasoning. To this end, we
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consider two modified versions of the CartPole environment: CartPole-FireWater and CartPole-
MultiCue. Both variants introduce symbolic visual cues that must be interpreted in conjunction with
the pole-balancing objective, yielding natural language prompts that combine multiple constraints
(see Table 3).

In CartPole-FireWater, the agent is instructed to position the cart near the fire icon and away from the
water droplet, while also keeping the pole upright. In practice, PPO agents often succeed in moving
toward the fire region, suggesting that the vision–language model correctly associates the fire symbol
with the prompt. However, the need to maintain balance can conflict with positional goals, occasion-
ally leading to instability or divergence when multiple constraints must be satisfied simultaneously.

Figure 6: CartPole PPO training results. In-
feRL PPO achieves performance comparable to
a ground-truth reward agent, demonstrating that
inferred rewards based on natural language goals
can effectively guide policy learning. Performance
is measured by episode length, corresponding to
the agent’s ability to maintain balance before ter-
mination.

In CartPole-MultiCue, the instruction specifies
a richer objective involving fire, umbrellas, and
rain. Here, we observe more consistent align-
ment with the intended goals: PPO agents fre-
quently navigate toward the rightmost umbrella
while avoiding fire and rain. Interestingly, par-
tial successes also emerge, with the agent stop-
ping under the left umbrella. This indicates that
semantic similarity captures some but not all
aspects of spatial relations among objects. One
explanation is that umbrella and rain cues in this
variant are visually distinct and semantically
well-grounded in pretrained vision–language
models, whereas the stylized water droplet in
FireWater is less prototypical.

Figure 5 illustrates these qualitative outcomes.
In both FireWater and MultiCue, PPO agents
demonstrate the ability to follow composite in-
structions, though with varying levels of preci-
sion depending on the distinctiveness of visual
cues.

Finally, to verify the framework’s applicabil-
ity beyond continuous control, we train a DQN
Mnih et al. (2015) agent on the standard Cart-
Pole setting. The DQN agent successfully learns
to keep the pole upright and the cart near the cen-
ter, consistent with the prompt. This result indicates that InfeRL can operate in both continuous and
discrete action spaces, while still supporting multi-objective goals when visual and linguistic cues are
sufficiently clear.

B.3 SUMMARY OF FINDINGS

Our experiments yield several insights into the effectiveness and limitations of inference-based
reinforcement learning.

First, we find that monotonicity provides a useful diagnostic for evaluating the reliability of inferred
rewards. In simple domains such as CartPole and InvertedPendulum, monotonicity scores approach
unity (Kendall’s τ > 0.92, Spearman’s ρ > 0.98), reflecting strong agreement between inferred and
true returns. In more complex domains such as Ant and Walker2D, monotonicity remains informative:
well-chosen prompts yield higher agreement with ground-truth returns, while ambiguous or poorly
designed prompts break the property. This suggests that monotonicity analysis can guide the design
and selection of prompts, offering a principled alternative to ad-hoc specification.

Second, the algorithmic comparison between PPO and DQN validates our theoretical predictions. PPO
achieves stable learning whenever trajectory-level monotonicity is preserved, performing comparably
under inferred and true rewards in CartPole and InvertedPendulum. In contrast, DQN exhibits slower
convergence and reduced robustness in settings where the Markov property is violated, such as
CartPole-FireWater and CartPole-MultiCue. These results demonstrate that policy gradient methods
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are better aligned with the properties of inferred rewards, while step-wise value-based methods
remain fragile.

Third, our case studies illustrate both the promise and limitations of instruction-driven behaviors. In
Ant, the agent successfully learns to rotate in place under a natural language prompt, demonstrating
that novel, non-default behaviors can emerge without hand-engineered rewards. In Walker2D,
however, ambiguous instructions result in backward walking, a behavior consistent with the inferred
reward but misaligned with implicit expectations. These outcomes highlight both the flexibility of
semantic rewards and the importance of addressing non-Markov dependencies and prompt ambiguity.

Taken together, these findings suggest that monotonicity provides a unifying principle for diagnosing
reward reliability, that trajectory-based methods are particularly well-suited to inference-based
settings, and that careful prompt design remains essential for realizing the full potential of natural
language reward specification.
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