
Scaling Laws and Compute-Optimal Training
Beyond Fixed Training Durations

Alexander Hägele 1 Elie Bakouch 2 Atli Kosson 1 Loubna Ben Allal 2 Leandro Von Werra 2 Martin Jaggi 1

Abstract
Scale has become a crucial factor for obtaining
strong machine learning models. As a result,
understanding a model’s scaling properties is
key to designing new neural architectures and
training schemes effectively. In this work, we
argue that scale and training research has been
needlessly complicated by the reliance on the
cosine learning rate schedule, which requires a
separate run for each training duration of interest.
We investigate a direct alternative – constant
learning rate and cooldowns – that allows reusing
compute between runs of different lengths. We
analyze different recipes for the schedule and find
equivalent or improved performance to cosine,
all while scaling predictably and reliably similar
to cosine. Additionally, we show that stochastic
weight averaging yields strong performance im-
provements along the training trajectory, without
additional training costs, across different scales.
Importantly, with these findings, we demonstrate
that scaling experiments can be performed with
significantly fewer GPU hours and FLOPs. Our
code is available at https://github.com/
epfml/schedules-and-scaling/.

1. Introduction
Training large language models is expensive — in time, en-
ergy, and compute. Moreover, obtaining high-quality mod-
els requires a complex combination of architectural and data
choices. The workflow of training models therefore consists
of verification with small experiments before extrapolating
to larger scales. This is then done by computing specialized
scaling laws (OpenAI, 2023; Bi et al., 2024; Hu et al., 2024;
Team et al., 2023), relying on established laws (Hoffmann
et al., 2022; Anil et al., 2023) or training past compute-
optimality to save at inference (Touvron et al., 2023a;b).

1EPFL, Lausanne, Switzerland 2Hugging Face. Correspon-
dence to: Alexander Hägele <alexander.hagele@epfl.ch>.

Proceedings of the 2nd Workshop on Efficient Systems for Founda-
tion Models at the International Conference on Machine Learning,
Vienna, Austria. 2024. Copyright 2024 by the author(s).

Despite large advances across data and training recipes,
one aspect of large language model (LLM) pretraining has
remained surprisingly prevalent: the cosine learning rate
schedule (Loshchilov & Hutter, 2016; Radford et al., 2018;
Rae et al., 2021). This is strongly associated to the seminal
works of the GPT series (Radford et al., 2018; 2019; Brown
et al., 2020) and other models like Gopher (Rae et al., 2021)
that relied on cosine; today, this still holds even for novel
sequence architectures that are proposed as alternatives to
transformers (Gu & Dao, 2023; De et al., 2024).

Importantly, the Chinchilla project (Hoffmann et al., 2022)
showed that the cosine schedule achieves optimal loss only
when the cycle length matches the training duration, but
underestimates the model performance during training.
This means that when performing experiments — e.g., for
architectural changes or data mixtures — one must train
multiple models for different lengths, from scratch, to have
reliable estimates of the quality of training and the scaling
behavior. This is much more expensive than training a suite
of models just once. Moreover, it is restrictive to decide
the training length of the final model in advance.

Our goal is to revisit and question the necessity of the
cosine schedule for large model training. We demonstrate
how a simple alternative of performing a cooldown after
a constant learning rate — which was already suggested
in the literature (Zhai et al., 2022) and recently used by
released models (Hallström et al., 2024; Hu et al., 2024;
Shen et al., 2024) — matches the performance of cosine.
We expand on this and provide and analyze different recipes
for the decay form and length, which scale as reliably as
cosine, outperforming it for long cooldowns.

These findings suggest that research on training recipes
and scaling laws has been needlessly complex due to the
need to retrain models from scratch. We demonstrate
this empirically by performing small-scale scaling law
experiments using only a fraction of the baseline compute.
We discuss how this makes scaling research more accessible
and enables more frequent exploration of scaling laws
for new data mixtures (Bi et al., 2024; Goyal et al., 2024;
Aghajanyan et al., 2023) or novel architectures such as
Mamba (Gu & Dao, 2023) and Griffin (De et al., 2024).

1

https://github.com/epfml/schedules-and-scaling/
https://github.com/epfml/schedules-and-scaling/

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

0 200 400 600 800 1000
Steps

0.00

0.25

0.50

0.75

1.00

L
ea

rn
in

g
 r

at
e

10%

Cosine

Linear Cooldown

0 10000 20000 30000 40000
Steps

15

20

25

30

35

P
er

p
le

x
it
y

Validation (210M)

Cos 22k

Cos 33k

Cos 44k

Cooldown to 22k

Cooldown to 33k

Cooldown to 44k

0.0001 0.0002 0.0005 0.001 0.002
Learning Rate

18

20

22

24

P
er

p
le

x
it
y

LR Sensitivity (Cosine vs. Cooldown)

Cosine - 22k

Cosine - 33k

Cosine - 44k

Cooldown (20%) - 22k

Cooldown (20%) - 33k

Cooldown (20%) - 44k

Figure 1: A different schedule can match cosine. The cosine schedule is characterized by a slow annealing of learning
rate and currently is the de-facto standard for LLM training, but requires the total training steps to be predefined. The
constant LR does not require a predefined step count; the subsequent cooldown rapidly decreases the loss, matching a
well-tuned cosine. We find the LR sensitivity (right) to be similar for both schedules, albeit less for cooldown.

2. Replacing Cosine: Constant Learning Rate
with Cooldown

Why does the cosine schedule with a single cycle work
well for LLM training? Arguably, it provides a good
trade-off between a high learning rate and cooling down
the model sufficiently, which is expanded proportionally
to the training steps.

The alternative. The tradeoff of cosine can also be achieved
by a different schedule. Here, the learning rate is kept con-
stant for the majority of the training and only decreases in a
short final phase, known as the cooldown (or decay/anneal-
ing phase). This schedule has previously been referred to
as a trapezoidal (Zhai et al., 2022), and later as the warmup-
stable-decay schedule (WSD) (Hu et al., 2024). To avoid
overloading of terms (e.g., weight decay), we refer to this
approach as constant LR + cooldown.

The cooldown phase typically has the LR go to zero linearly,
mirroring the warmup phase, which gives rise to an overall
trapezoidal shape (see Figure 1). Formally, we can define
it as

η(n) =

n
NW

· ηmax n < NW

ηmax NW < n ≤ NT −NC

f(n,NT, NC) · ηmax n > NT −NC,

with a peak learning rate ηmax, total steps NT, warmup and
cooldown steps NW and NC, and a monotonically decreas-
ing cooldown function f(n,NT, NC), e.g., a linear function.

Conceptual advantages. The main advantage of this sched-
ule is that specifying the number of training steps in advance
is not required. This is particularly convenient for large
runs, as the cooldown can be initiated at any time to observe
model behavior and decide whether to stop. It also allows for
continual learning by default, for which training can be re-
sumed from a checkpoint prior to cooldown. Moreover, the
data mixture can be changed during the cooldown phase (Hu

et al., 2024) as a form of finetuning; while we focus on the
same mixture, understanding the curriculum aspect of the
separate phases is an important direction for future research.

Experimental comparison. We follow a simple setup
and train a 210M parameter model (LLaMa architecture,
Appx. A.1) on a 6B subset of SlimPajama (Soboleva et al.,
2023) with constant LR and the cooldown schedule defined
in (2). That is, we compare the same length of warmup and
training, but replace the cosine decay after warmup with
a constant LR and a cooldown for 20% of steps linearly
going to zero. We additionally sweep the learning rate for
both approaches. In the results shown in Figure 1, perhaps
suprisingly, we observe an almost perfect match between
the performance of the best cosine and cooldown schedule
even for different training durations, all while exhibiting
slightly less sensitivity to variations in the LR. Finally,
we note that recent experiments by Hallström et al. (2024)
suggest similar schedules work well for new architectures
like Mamba (Gu & Dao, 2023).

Takeaway 1: The constant LR + cooldown schedule of-
fers significant convenience by not requiring the number
of training steps to be specified in advance, and provides
similar performance compared to a well tuned cosine
schedule.

Detailed investigations. We perform thorough experiments
for the cooldown form, length, and effect in Appendix C.1.
Most notably, we identify a function (1-sqrt) which outper-
forms the standard linear decay in our experiments. For-
mally, we define it as:

f(n,NT, NC) =

(
1−

√
n−(NT−NC)

NC

)
(1-sqrt)

Moreover, our results suggest a plateau of improvement
with a cooldown length of roughly 20% and that for longer
training, the required duration of the cooldown to match
cosine decreases. We highlight these two results with a

2

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

0 50000 100000 150000 200000
Steps

16

18

20

22

24

P
er

p
le

x
it
y

10k decay steps (5%)

Cosine

Linear Cooldown

1 - Sqrt Cooldown

185000 190000 195000 200000 205000
Steps

16

18

20

22

P
er

p
le

x
it
y

10k decay steps (5%)

Cosine

Linear Cooldown

1 - Sqrt Cooldown

Figure 2: The impact of a different cooldown form and long training. We investigate the cooldown form and length in
detail in Appendix C.1. Notably, we find that the form of (1-sqrt) performs better than the linear decay. For the length, our
results suggest that the improvement through a longer cooldown plateaus around a fraction of 20% of training, and that the
required duration of cooldown to match the cosine loss decreases with longer training (Figures 10-11); we validate with a
long training run (200k steps), and find that just 10k cooldown steps almost perfectly match cosine in performance.

summary in Figure 2, where we perform a long run (200k
steps) and see that a cooldown of just 10k steps (5%) almost
perfectly matches cosine in loss.

Necessity of cooldown. We additionally investigate
stochastic weight averaging (SWA, Izmailov et al., 2018)
and a schedule-free optimizer (Defazio et al., 2024) in
Appendix D.1. We find that they give strong (but not
optimal) performance at any point during training and
can act as a replacement for the learning rate decay, if
the performance degradation is acceptable and avoiding
separate cooldowns is preferred.

Takeaways 3-6 (Appx.): 3) We identify a function
(1-sqrt) that outperforms the linear decay; 4) a cooldown
length of 10-20% of steps is sufficient; 5) the cooldown
is a smooth transition to a basin in the loss landscape; 6)
stochastic weight averaging (SWA) improves the perfor-
mance along training trajectory without overhead.

3. The Implications for Scaling Law Research
Importance of scaling laws. Scaling laws (Kaplan et al.,
2020; Hoffmann et al., 2022) serve a multitude of critical
purposes — from optimally spending a fixed amount of
compute (FLOPs) for achieving the lowest loss, to trading
off data-sources of different quality (Bi et al., 2024; Goyal
et al., 2024) or modalities (Aghajanyan et al., 2023), to
comparing the efficiency of different architectures such
as transformers and recent alternatives like Mamba (Gu &
Dao, 2023) and Griffin (De et al., 2024).

Crucially, Hoffmann et al. (2022) demonstrated that is nec-
essary to vary the number of training steps (tokens) for a
fixed family of models. At the time, their results suggested
that LLMs were over-sized, leading to a substantial increase
in data collection and training for much longer, beyond the

Chinchilla optimal point (N,D) (Touvron et al., 2023a;b),
where N is the parameter and D the token count.

Experimental setup. We mimic a small-scale experimental
setup for scaling laws: We train a range of model sizes
(33M-360M) across different token scales (0.3B-10B) on
the same SlimPajama 6B dataset. For each model, we
choose exactly three token counts (around the Chinchilla
optimal ratio of D/N = 20), specifically 10, 20, and 30
tokens per parameter. With the cosine schedule, each model
is trained from scratch three times. In contrast, we train
each model just once for the for the constant LR; then,
we take checkpoints along the constant LR trajectory and
perform three ad-hoc annealing periods (20%) to match the
token counts. More details are given in Appendix A.1.

Results. We show the validation loss envelopes as a
function of the training FLOPs in Fig. 3 (left) and compare
each obtained model (i.e., same parameter & tokens) with
cosine and its alternatives (right). We find that the cooldown
learning rate schedule scales reliably, much like cosine
and SWA, to achieve optimal losses with the recipe we
establish in previous sections. This is particularly visible
in Fig. 3 (right), where each model’s performance lies
almost perfectly on the diagonal, which signals that cosine
(y-axis) and cooldown (x-axis) reach the same loss after
the same amount of tokens. A similar result is visible for
SWA, though the reciprocal (y-offset) is negative, which
agrees with our findings from Sect. D.1 that the averaging
does not fully match the performance with a LR cooldown.

Compute savings. Crucially, the alternatives enable scaling
laws for just a fraction of the cost. In Fig. 4a, we report
FLOPs and GPU hours for all model runs for both methods,
showing a substantial reduction. In our experiments, it saves
half the time and FLOPs, enabling scaling laws for only a
fraction of the previous cost. We report the detailed savings
in Appendix C.3.

3

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

1016 1017 1018 1019

FLOPS

3.0

4.0

5.0

6.0

L
os

s

Cosine Schedule (Chinchilla)

360M

210M

151M

124M

93M

60M

53M

33M

1016 1017 1018 1019

FLOPS

3.0

4.0

5.0

6.0
Cooldown Schedule

360M

210M

151M

124M

93M

60M

53M

33M

20 30 40
PPLX Cooldown

20

30

40

C
os

in
e

P
er

p
le

x
it
y

Cooldown vs Cosine

Id

Linear Fit
y=0.99x+0.23

20 30 40
PPLX SWA Constant

20

30

40

SWA Constant LR vs Cosine

Id

Linear Fit
y=0.99x-0.30

1018

1019

F
L
O

P
S

Figure 3: Cooldown LR schedule + SWA scale reliably. We launch a range of model sizes (33M-360M), each for three
different cosine cycle lengths. For the other methods, we train each model just once for the longest cycle and take the
snapshots at the same token count as cosine (for SWA) or perform post-train cooldowns to the same length. Each final
models is represented by a dot. Left: The loss curve envelopes. Right: The perplexity of cosine (y-axis) vs. cooldowns and
SWA. We see alignment between both methods.

0

5× 1019

1× 1020

F
L
O

P
S

Total FLOPS spent
Cosine LR

Cooldown

0

100

200

G
P

U
 H

ou
rs

Total GPU Hours for all Models
Cosine LR

Cooldown

(a) FLOPs and GPU hours for our models.

FLOPs
Chinchilla 5.59× 1023

w/ Cooldown 2.36× 1023

(b) Estimated FLOPs savings for Chinchilla.

Figure 4: Scaling laws for a fraction of the cost. The reliable behavior of both the cooldown schedule and SWA allows
scaling experiments with a drastic reduce in both compute and GPU hours; in both our experiments (left) and the original
Chinchilla (right) a factor of 1

2 or less. The more training runs are performed per model size (e.g. 4 for Chinchilla), the
larger the difference becomes.

Estimating savings for Chinchilla. We take our analysis
further and estimate how much cheaper the Chinchilla model
suite would have been if performed with 10% cooldowns
after a single run for each model size using the model con-
figurations as reported in Table A9 (Hoffmann et al., 2022).
Since the authors do not report exact training configurations,
we consider a sequence length of 1024, a batch size of 0.5M
tokens and token ratios M = D/N ∈ {10, 15, 20, 25} for
each model. With this, we arrive at roughly 5.59 × 1023

total FLOPs originally vs. 2.36 × 1023 (Figure 4b). This
means that less than half the compute could have been used.

Takeaway 2: Scaling experiments can be done with sig-
nificantly reduced compute and GPU hours by utilizing
fewer but reusable training runs with a constant learning
rate and ad-hoc cooldowns.

Additional results. We plot the training curves of all
models in Appx. C.2. In addition, we show that our
findings transfer to different datasets with experiments on
OpenWebText2 in Appx. C.4.

Related work and limitations. We discuss related work
and the limitations of our study in detail in Appendix E and
Appendix F, respectively.

4. Conclusion
We have demonstrated the reliability of an alternative learn-
ing rate schedule to replace cosine for LLM training, which
uses a constant rate with a cooldown phase. We believe the
results are of great importance to the present and future of
LLM training: the presented methods facilitate research for
the current post-Chinchilla era, where models are trained
much beyond compute-optimal, by allowing more flexibility
to continue training whenever needed. At the same time,
recent results that suggest data-dependency in scaling (Bi
et al., 2024; Goyal et al., 2024; Aghajanyan et al., 2023)
imply the need to frequently update scaling laws, which
is economically more feasible with reduced costs. We
therefore hope our work will make scaling research more ac-
cessible to researchers and practitioners alike, accelerating
research into novel training schemes and architectures.

4

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

References
Aghajanyan, A., Yu, L., Conneau, A., Hsu, W.-N., Ham-

bardzumyan, K., Zhang, S., Roller, S., Goyal, N., Levy,
O., and Zettlemoyer, L. Scaling laws for generative
mixed-modal language models. In International Confer-
ence on Machine Learning, pp. 265–279. PMLR, 2023.

Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin,
D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen,
Z., et al. Palm 2 technical report. arXiv preprint
arXiv:2305.10403, 2023.

Bi, X., Chen, D., Chen, G., Chen, S., Dai, D., Deng, C.,
Ding, H., Dong, K., Du, Q., Fu, Z., et al. Deepseek llm:
Scaling open-source language models with longtermism.
arXiv preprint arXiv:2401.02954, 2024.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

De, S., Smith, S. L., Fernando, A., Botev, A., Cristian-
Muraru, G., Gu, A., Haroun, R., Berrada, L., Chen, Y.,
Srinivasan, S., Desjardins, G., Doucet, A., Budden, D.,
Teh, Y. W., Pascanu, R., Freitas, N. D., and Gulcehre,
C. Griffin: Mixing gated linear recurrences with local
attention for efficient language models. Feb 2024. URL
http://arxiv.org/abs/2402.19427v1.

De Vries, H. Go smol or go home, 2023. URL
https://www.harmdevries.com/post/
model-size-vs-compute-overhead/.

Defazio, A., Cutkosky, A., Mehta, H., and Mishchenko,
K. When, why and how much? adaptive learning rate
scheduling by refinement. Oct 2023. URL http://
arxiv.org/abs/2310.07831v1.

Defazio, A., Yang, X., Mehta, H., Mishchenko, K., Khaled,
A., and Cutkosky, A. The Road Less Scheduled.
May 2024. URL http://arxiv.org/abs/2405.
15682v1.

Du, Z., Zeng, A., Dong, Y., and Tang, J. Understanding
emergent abilities of language models from the loss per-
spective. arXiv preprint arXiv:2403.15796, 2024.

Gadre, S. Y., Smyrnis, G., Shankar, V., Gururangan, S.,
Wortsman, M., Shao, R., Mercat, J., Fang, A., Li, J.,
Keh, S., Xin, R., Nezhurina, M., Vasiljevic, I., Jitsev, J.,
Dimakis, A. G., Ilharco, G., Song, S., Kollar, T., Carmon,
Y., Dave, A., Heckel, R., Muennighoff, N., and Schmidt,
L. Language models scale reliably with over-training
and on downstream tasks. Mar 2024. URL http://
arxiv.org/abs/2403.08540v1.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
Presser, S., and Leahy, C. The Pile: An 800GB Dataset
of Diverse Text for Language Modeling. arXiv preprint
arXiv:2101.00027, 2020.

Goyal, S., Maini, P., Lipton, Z. C., Raghunathan, A., and
Kolter, J. Z. Scaling Laws for Data Filtering–Data Cu-
ration cannot be Compute Agnostic. arXiv preprint
arXiv:2404.07177, 2024.

Gu, A. and Dao, T. Mamba: Linear-time sequence modeling
with selective state spaces. Dec 2023. URL http://
arxiv.org/abs/2312.00752v1.

Gupta, K., Thérien, B., Ibrahim, A., Richter, M. L., Anthony,
Q., Belilovsky, E., Rish, I., and Lesort, T. Continual pre-
training of large language models: How to (re)warm your
model? Aug 2023. URL http://arxiv.org/abs/
2308.04014v2.

Hallström, O., Taghadouini, S., Thiriet, C., and Chaffin,
A. Passing the torch: Training a mamba model
for smooth handover, 2024. URL https://
www.lighton.ai/blog/lighton-s-blog-4/
passing-the-torch-training-a-mamba-model-for-smooth-handover-54.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal
large language models. Advances in Neural Information
Processing Systems, 35:30016–30030, 2022.

Hu, S., Tu, Y., Han, X., He, C., Cui, G., Long, X., Zheng,
Z., Fang, Y., Huang, Y., Zhao, W., Zhang, X., Thai, Z. L.,
Zhang, K., Wang, C., Yao, Y., Zhao, C., Zhou, J., Cai,
J., Zhai, Z., Ding, N., Jia, C., Zeng, G., Li, D., Liu,
Z., and Sun, M. Minicpm: Unveiling the potential of
small language models with scalable training strategies.
Apr 2024. URL https://arxiv.org/abs/2404.
06395v2.

Ibrahim, A., Thérien, B., Gupta, K., Richter, M. L., An-
thony, Q., Lesort, T., Belilovsky, E., and Rish, I. Simple

5

http://arxiv.org/abs/2402.19427v1
https://www.harmdevries.com/post/model-size-vs-compute-overhead/
https://www.harmdevries.com/post/model-size-vs-compute-overhead/
http://arxiv.org/abs/2310.07831v1
http://arxiv.org/abs/2310.07831v1
http://arxiv.org/abs/2405.15682v1
http://arxiv.org/abs/2405.15682v1
http://arxiv.org/abs/2403.08540v1
http://arxiv.org/abs/2403.08540v1
http://arxiv.org/abs/2312.00752v1
http://arxiv.org/abs/2312.00752v1
http://arxiv.org/abs/2308.04014v2
http://arxiv.org/abs/2308.04014v2
https://www.lighton.ai/blog/lighton-s-blog-4/passing-the-torch-training-a-mamba-model-for-smooth-handover-54
https://www.lighton.ai/blog/lighton-s-blog-4/passing-the-torch-training-a-mamba-model-for-smooth-handover-54
https://www.lighton.ai/blog/lighton-s-blog-4/passing-the-torch-training-a-mamba-model-for-smooth-handover-54
https://arxiv.org/abs/2404.06395v2
https://arxiv.org/abs/2404.06395v2

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

and scalable strategies to continually pre-train large lan-
guage models. Mar 2024. URL https://arxiv.
org/abs/2403.08763v3.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and
Wilson, A. G. Averaging weights leads to wider optima
and better generalization. Mar 2018. URL http://
arxiv.org/abs/1803.05407v3.

Kaddour, J. Stop wasting my time! saving days of imagenet
and bert training with latest weight averaging. Sep 2022.
URL http://arxiv.org/abs/2209.14981v2.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
Jan 2020. URL http://arxiv.org/abs/2001.
08361v1.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., et al. Mixed precision training. arXiv
preprint arXiv:1710.03740, 2017.

Morales-Brotons, D., Vogels, T., and Hendrikx, H. Ex-
ponential moving average of weights in deep learning:
Dynamics and benefits. Transactions on Machine Learn-
ing Research, 2024.

Muennighoff, N., Rush, A. M., Barak, B., Scao, T. L., Piktus,
A., Tazi, N., Pyysalo, S., Wolf, T., and Raffel, C. Scaling
data-constrained language models. May 2023. URL
http://arxiv.org/abs/2305.16264v4.

Nesterov, Y. A method of solving a convex programming
problem with convergence rate o (1/k** 2). volume 269,
pp. 543. Russian Academy of Sciences, 1983.

OpenAI. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, abs/2303.08774, 2023. URL https:
//arxiv.org/abs/2303.08774.

Ormazabal, A., Zheng, C., d’Autume, C. d. M., Yogatama,
D., Fu, D., Ong, D., Chen, E., Lamprecht, E., Pham, H.,
Ong, I., et al. Reka core, flash, and edge: A series of
powerful multimodal language models. arXiv preprint
arXiv:2404.12387, 2024.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Polyak, B. T. and Juditsky, A. B. Acceleration of stochastic
approximation by averaging. SIAM Journal on Control
and Optimization, 30(4):838–855, 1992. doi: 10.1137/
0330046.

Radford, A., Narasimhan, K., Salimans, T.,
Sutskever, I., et al. Improving language un-
derstanding by generative pre-training. 2018.
URL https://s3-us-west-2.amazonaws.
com/openai-assets/research-%covers/
language-unsupervised/language_
understanding_paper.pdf.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann,
J., Song, F., Aslanides, J., Henderson, S., Ring, R.,
Young, S., et al. Scaling language models: Methods,
analysis & insights from training gopher. arXiv preprint
arXiv:2112.11446, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020. URL http://arxiv.org/abs/
1910.10683v4.

Sandler, M., Zhmoginov, A., Vladymyrov, M., and Miller, N.
Training trajectories, mini-batch losses and the curious
role of the learning rate. Jan 2023. URL http://
arxiv.org/abs/2301.02312v2.

Sanyal, S., Neerkaje, A., Kaddour, J., Kumar, A., and
Sanghavi, S. Early weight averaging meets high learn-
ing rates for llm pre-training. Jun 2023. URL http:
//arxiv.org/abs/2306.03241v2.

Sardana, N. and Frankle, J. Beyond chinchilla-optimal:
Accounting for inference in language model scaling laws.
arXiv preprint arXiv:2401.00448, 2023. URL https:
//arxiv.org/abs/2401.00448.

Shazeer, N. Glu variants improve transformer. Feb 2020.
URL http://arxiv.org/abs/2002.05202v1.

Shen, Y., Guo, Z., Cai, T., and Qin, Z. Jetmoe: Reaching
llama2 performance with 0.1m dollars. Apr 2024. URL
http://arxiv.org/abs/2404.07413v1.

Smith, S. L., Kindermans, P.-J., Ying, C., and Le, Q. V.
Don’t decay the learning rate, increase the batch size.
arXiv preprint arXiv:1711.00489, 2017.

6

https://arxiv.org/abs/2403.08763v3
https://arxiv.org/abs/2403.08763v3
http://arxiv.org/abs/1803.05407v3
http://arxiv.org/abs/1803.05407v3
http://arxiv.org/abs/2209.14981v2
http://arxiv.org/abs/2001.08361v1
http://arxiv.org/abs/2001.08361v1
http://arxiv.org/abs/2305.16264v4
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://s3-us-west-2.amazonaws.com/openai-assets/research-%covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-%covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-%covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-%covers/language-unsupervised/language_understanding_paper.pdf
http://arxiv.org/abs/1910.10683v4
http://arxiv.org/abs/1910.10683v4
http://arxiv.org/abs/2301.02312v2
http://arxiv.org/abs/2301.02312v2
http://arxiv.org/abs/2306.03241v2
http://arxiv.org/abs/2306.03241v2
https://arxiv.org/abs/2401.00448
https://arxiv.org/abs/2401.00448
http://arxiv.org/abs/2002.05202v1
http://arxiv.org/abs/2404.07413v1

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

Soboleva, D., Al-Khateeb, F., Myers, R., Steeves, J. R.,
Hestness, J., and Dey, N. SlimPajama: A 627B
token cleaned and deduplicated version of Red-
Pajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
June 2023. URL https://huggingface.co/
datasets/cerebras/SlimPajama-627B.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Tay, Y., Dehghani, M., Rao, J., Fedus, W., Abnar, S.,
Chung, H. W., Narang, S., Yogatama, D., Vaswani, A.,
and Metzler, D. Scale efficiently: Insights from pre-
training and fine-tuning transformers. Sep 2021. URL
http://arxiv.org/abs/2109.10686v2.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D.,
Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O.,
Liang, P., Dean, J., and Fedus, W. Emergent abili-
ties of large language models. Jun 2022. URL http:
//arxiv.org/abs/2206.07682v2.

Wortsman, M., Liu, P. J., Xiao, L., Everett, K., Alemi, A.,
Adlam, B., Co-Reyes, J. D., Gur, I., Kumar, A., Novak,
R., Pennington, J., Sohl-dickstein, J., Xu, K., Lee, J.,
Gilmer, J., and Kornblith, S. Small-scale proxies for
large-scale transformer training instabilities. Sep 2023.
URL http://arxiv.org/abs/2309.14322v2.

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. Scal-
ing vision transformers. pp. 12104–12113, 2022. URL
http://arxiv.org/abs/2106.04560v2.

Zhang, B. and Sennrich, R. Root mean square layer nor-
malization. Advances in Neural Information Processing
Systems, 32, 2019.

7

https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
http://arxiv.org/abs/2109.10686v2
http://arxiv.org/abs/2206.07682v2
http://arxiv.org/abs/2206.07682v2
http://arxiv.org/abs/2309.14322v2
http://arxiv.org/abs/2106.04560v2

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

A. Experimental Details
A.1. Overview

Architecture and Training Parameters. We implement the most commonly used decoder-only architecture with SwiGLU
activations (Shazeer, 2020), RoPE embeddings (Su et al., 2024), RMSNorm (Zhang & Sennrich, 2019) and alternating
attention and MLP blocks. Unless otherwise noted, we follow standard-practices in LLM training and use the AdamW
optimizer with beta parameters (β1, β2) = (0.9, 0.95) and decoupled weight decay of 0.1 (Kingma & Ba, 2014; Loshchilov
& Hutter, 2017). For warmup steps, we use a short warmup of 300 steps for the majority of runs and 1000− 3000 for longer
runs (above 100k total steps). The cosine schedule decays the learning rate to 10% of the maximum learning rate. For most
of our experiments, we use a batch size of 200, i.e., roughly 0.1M tokens for a sequence length of 512. The vocabulary is
based on the GPT-2 tokenizer (Radford et al., 2019) and contains 50304 tokens.

Dataset and Evaluation. We focus on results using SlimPajama (Soboleva et al., 2023), a cleaned and deduplicated corpus
that includes webcrawl, code, papers and other sources, which is commonly used for pretraining LLMs. We use a subset
of the full corpus that comprises roughly 6B tokens and randomly sample a validation set of roughly 3M tokens. During
training, we evaluate the models with a fixed set of 32 batches of sequence length 512 (the same context length as training)
to establish validation loss curves. At the end of training, we compute the full validation set perplexity. We perform further
experiments that verify our main findings with OpenWebText2 (Gao et al., 2020) in Appx. C.4.

Implementation and Infrastructure. Our code is based on an extension of NanoGPT1 and uses PyTorch (Paszke et al.,
2017) as well as FlashAttention (Dao et al., 2022). We incorporate the bfloat16 for memory and throughput, trained with
mixed precision float32 parameters and bfloat16 activations (Micikevicius et al., 2017). All our experiments were performed
using a cluster of A100 GPUs (both 40GB/80GB RAM) with 2 data-parallel (i.e., 2 GPUs per run). A few selected runs used
a single node of 8 H100s. We estimate that the full cost of all experiments for this project (including prototyping) amounts
to roughly 2500 GPU hours.

Model Configurations. We provide an overview of the model sizes and configurations in Table 1 and the parameters for
training and length in Table 2. All models are trained with 300 warmup steps and a sequence length of 512.

Model Size d model n layers ffw size kv size n heads

33M 384 8 1024 64 6
53M 512 8 1536 64 8
60M 512 10 1536 64 8
93M 640 12 1792 64 10

124M 768 12 2048 64 12
151M 768 16 2048 64 12
210M 768 24 2048 64 12
360M 1024 24 2816 64 16

Table 1: Model configurations. We provide an overview of the model sizes and hyperparameters for the different models in
the scaling experiments.

A.2. FLOPs computation

We do not rely on the heuristic of 6=ND for computing the FLOPs of a Transformer model, but use a more thorough
computation that involves the embeddings, attention and MLP operations directly. For reproducibility and other researchers
to use, we provide our Python code in Figure 5.

1https://github.com/karpathy/nanoGPT

8

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

Model LR (Cos/Const) Batch Size Steps Tokens Token/Params Ratio

33M (2e-3, 1e-3) 0.1M [3k, 7k, 10k] [0.3B, 0.7B, 1.0B] [9.2, 21.4, 30.6]
53M (2e-3, 1e-3) 0.1M [3.7K, 7.5K, 11.2K] [0.4B, 0.8B, 1.2B] [7.2, 14.5, 21.7]
60M (2e-3, 1e-3) 0.1M [7.5K, 12.5K, 17.5K] [0.8B, 1.3B, 1.8B] [12.8, 21.4, 30.0]
93M (2e-3, 1e-3) 0.1M [10K, 17.5K, 25K] [1.0B, 1.8B, 2.6B] [11.0, 19.2, 27.5]

124M (1e-3, 5e-4) 0.1M [15K, 25K, 35K] [1.5B, 2.6B, 3.6B] [12.4, 20.7, 29.0]
151M (1e-3, 5e-4) 0.1M [25K, 37.5K, 50K] [2.6B, 3.8B, 5.1B] [16.9, 25.3, 33.7]
210M (1e-3, 5e-4) 0.1M [37.5K, 50K, 62.5K] [3.8B, 5.1B, 6.4B] [18.4, 24.6, 30.7]
360M (1e-3, 5e-4) 0.2M [25K, 37.5K, 50K] [5.1B, 7.7B, 10.2B] [14.2, 21.3, 28.5]

Table 2: Training parameters for scaling experiments. We describe the learning rates, training lengths and ratios for the
different models in the scaling experiments.

1 def embedding(seq_len, vocab_size, d_model):
2 return 2 * seq_len * vocab_size * d_model
3

4 def attention(seq_len, d_model, key_size, num_heads):
5 projections = 2 * 3 * seq_len * d_model * (key_size * num_heads)
6 logits = 2 * seq_len * seq_len * (key_size * num_heads)
7 softmax = 3 * num_heads * seq_len * seq_len
8 softmax_query_reduction = 2 * seq_len * seq_len * (key_size * num_heads)
9 final_layer = 2 * seq_len * (key_size * num_heads) * d_model

10 return projections + logits + softmax + softmax_query_reduction + final_layer
11

12 def dense(seq_len, d_model, ffw_size, swiglu=False):
13 if swiglu:
14 return 2 * seq_len * (3 * d_model * ffw_size)
15 else:
16 return 2 * seq_len * (2 * d_model * ffw_size)
17

18 def final_logits(seq_len, d_model, vocab_size):
19 return 2 * seq_len * d_model * vocab_size
20

21 def flops(
22 n_layers,
23 seq_len,
24 vocab_size,
25 d_model,
26 key_size,
27 num_heads,
28 ffw_size,
29 swiglu=True,
30):
31 flops_single = (
32 embedding(seq_len, vocab_size, d_model)
33 + n_layers
34 * (
35 attention(seq_len, d_model, key_size, num_heads)
36 + dense(seq_len, d_model, ffw_size, swiglu=swiglu)
37)
38 + final_logits(seq_len, d_model, vocab_size)
39)
40 # assume backward pass has twice the FLOPs of the forward pass
41 return 3 * flops_single

Figure 5: FLOPs computation. Instead of the common approximation of 6=ND, we use more detailed calculations for the
FLOPs estimation based on the Transformer model configuration. We provide the Python code above.

9

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

Alexander Hägele | @haeggee 18

optimality

Figure 6: Revisiting cosine optimality for language models. We revisit the observation from Chinchilla (Hoffmann et al.,
2022) that in order to achieve the best model after a certain training length (tokens), the cosine schedule must match the
total duration of training. This comes at the cost of neither being able to stop before or going beyond the cycle — an issue
we show how to alleviate in Section 2.

B. Background: Cosine Learning Rate Schedule for LLMs
Revisiting the optimality of the cosine schedule. We revisit the use of the cosine schedule in large language model (LLM)
training. For any machine learning model, the learning rate value (LR) and schedule both are crucial choices for training.
From optimization theory, our understanding is that a slow annealing of the learning rate is essential to find good minima
in the loss landscape particularly for deep networks, whereas higher values help exploration (Smith et al., 2017; Loshchilov
& Hutter, 2016).

In the context of LLMs, the most commonly used cosine strategy presents a particular trade-off by which the LR reaches its
maximum early after the warm-up stage and then gradually decreases, typically to 10% of the maximum LR (see Figure 6,
right).

Experimental visualization. Our first goal is to understand the importance of the length of the schedule for performance of
the model. To this end, we implement the common decoder-only transformer (Vaswani et al., 2017) identical to the LLaMa
(Touvron et al., 2023a;b) or Noam architecture (Ormazabal et al., 2024). Throughout this paper, we use the AdamW optimizer
with weight decay (Kingma & Ba, 2014; Loshchilov & Hutter, 2017) with common LLM training parameters. We train on a
subset of SlimPajama (Soboleva et al., 2023) with 6B tokens, 2 a cleaned and deduplicated corpus for LLM pretraining, which
we split into train and validation sequences and report validation loss (perplexity). We provide all details in Appendix A.1.

The pitfalls of cosine. In the results of Figure 6, we see that the key parameter for the cosine schedule is the length of
training: At specific step counts, the best perplexity is always achieved by the cosine schedule that matches the length.
This is the main observation of Hoffmann et al. (2022) — in order to achieve the best model for a specific token count,
the training duration must be known in advance and match the cosine length. However, this brings particular issues. First,
cosine is suboptimal during training and underestimates the model’s performance for the same token count. At the same
time, cosine strongly complicates continuation of training. For example, one could easily be mistaken to extrapolate a loss
curve of a cosine schedule beyond the end of the cycle. The improvement in loss precisely happens because of the LR decay;
afterwards, the final learning rate will generally be too low to continue making large progress. In contrast, rewarming leads to
spikes of which the training only slowly recovers, similarly reported in the continual learning literature (Ibrahim et al., 2024).

C. Ablations and Additional Results
C.1. Cooldown

Different cooldown schedules. We investigate various functions describing the cooldown shape to investigate their effect.
For simplicity, we only cooldown to 50K steps here, but we found these results hold regardless of the step at which we decay.
In Fig. 7 and Fig. 8, we test different functions for the cooldown phase:

• Standard linear decay.

• 1 - Sqrt: Defined in Eq. (1-sqrt).

2https://huggingface.co/datasets/DKYoon/SlimPajama-6B

10

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

40000 42500 45000 47500 50000
Steps

16

18

20

22

P
er

p
le

x
it
y

Validation with different cooldown function

1 - Square

Mirror Cos

Cos

Linear

1 - Sqrt

40000 42500 45000 47500 50000
Steps

0.00

0.25

0.50

0.75

1.00

L
ea

rn
in

g
ra

te

×10−3
LR with different cooldown function

1 - Square

Mirror Cos

Cos

Linear

1 - Sqrt

Figure 7: Different cooldown functions. We test various cooldown schedule functions and consistently observe the same
order of performance (left), with (1-sqrt) being the most effective. Remarkably, the drop in loss closely follows the learning
rate (right) even for different functions.

40000 42500 45000 47500 50000
Steps

16

18

20

22

P
er

p
le

x
it
y

Cooldown functions for η= 5e−4

1 - Square

Mirror Cos

Cos

Linear

1 - Sqrt

46000 48000 50000
Steps

16

18

20

22

P
er

p
le

x
it
y

Cooldown functions 10% decay steps
1 - Square

Mirror Cos

Cos

Linear

1 - Sqrt

Figure 8: The order and results of different cooldowns hold across settings. Left: We change the learning rate to 5e−4

instead of 1e−3 as in previous experiments. Right: The performance for 10% cooldown steps instead of 20%.

• Cosine: Similar to the classical cosine decay, but applied only during the decay phase.

• Mirror Cosine: The symmetric counterpart of the cosine function with respect to the linear decay.

• 1 - Square: The square root function in Eq. (1-sqrt) is replaced by a square function.

Notably, we identify the function (1-sqrt) to outperform the linear cooldown:

f(n,NT, NC) =

(
1−

√
n−(NT−NC)

NC

)
(1-sqrt)

This improvement is maintained in a smaller number of decay steps, different learning rates, and various timestamps. In
Figure 9, we train a model for 200K steps (approximately 20B tokens), applying cooldown every 20K steps for 20%. The
results indicate that the longer the training duration, the more the linear cooldown is outperformed by the (1-sqrt) cooldown,
which we define as:

Takeaway 3: We introduce a cooldown form (1-sqrt) that consistently outperforms the linear decay.

How long do you need to cooldown? To effectively utilize the schedule, it is essential to determine the optimal number
of decay steps. Our study on the relative number of cooldown steps, as shown in Fig. 10 (fractional x-axis) and Fig. 11
(with the absolute number of steps) reveals that the benefits of extended cooldown periods plateau at around 20%. We
select this percentage for our experiments as the model size and the number of tokens are relatively small. Additionally,
in Fig. 2 we demonstrate that using only 5% decay with the (1-sqrt) cooldown can nearly match the performance of the
cosine schedule on a 20B token run (much beyond Chinchilla optimal).

11

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

0 50000 100000 150000 200000
Steps

16

18

20

22

24

P
er

p
le

x
it
y

(1 - Sqrt) vs Linear decay

Linear

1 - Sqrt

140000 160000 180000 200000
Steps

16

18

20

22

P
er

p
le

x
it
y

Cosine vs (1 - Sqrt) & Linear decay
Cosine

Linear Cooldown

1 - Sqrt Cooldown

Figure 9: A different cooldown schedule can improve performance. We find that a different decay phase in the functional
form of (1-sqrt) consistently outperforms the standard linear decay, where both are significantly better than a well-tuned
cosine for long lengths.

0.00 0.05 0.10 0.15 0.20 0.25
Fraction of Cooldown Steps

18

20

22

P
er

p
le

x
it
y

Fraction Cooldown Length (210M)

22k Steps

33k Steps

44k Steps

56k Steps

67k Steps

Cosine

0.0 0.2 0.4 0.6 0.8
Fraction of Cooldown Steps

18

20

22

P
er

p
le

x
it
y

Fraction Cooldown Length (210M)

22k Steps

33k Steps

44k Steps

56k Steps

67k Steps

Cosine

0.0 0.2 0.4 0.6 0.8
Fraction of Cooldown Steps

26

28

30

32

P
er

p
le

x
it
y

Cooldown Length (60M, Steps: 17500)

LR: 0.001

LR: 0.005

LR: 0.002

Cosine

Figure 10: Longer cooldown helps to achieve lower loss. We investigate the effect of the cooldown length as a fraction
of the total steps for both the 210M model (left) and 60M (right). For a well-tuned learning rate of cosine, we find that
the cooldown surpasses cosine between 10-20% of steps (left), but stops improving when done over a majority of training
(middle). This also holds when sweeping the learning rate (right). Additional ablations are provided in Appendix C.1.

0 5000 10000 15000
Number of Cooldown Steps

18

20

22

P
er

p
le

x
it
y

Cooldown (210M, Absolute Steps)

22k Steps

33k Steps

44k Steps

56k Steps

67k Steps

Cosine

0 10000 20000 30000 40000
Number of Cooldown Steps

18

20

22

P
er

p
le

x
it
y

Cooldown (210M, Absolute Steps)

22k Steps

33k Steps

44k Steps

56k Steps

67k Steps

Cosine

Figure 11: The effect of the cooldown length in terms of absolute steps. We repeat the plots from Fig. 10 with the
absolute number of steps on the x-axis.

12

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

0 10000 20000 30000 40000
Steps

15

20

25

30

35

P
er

p
le

x
it
y

Train (210M)

Cos 22k

Cos 33k

Cos 44k

Cooldown to 22k

Cooldown to 33k

Cooldown to 44k

0 10000 20000 30000 40000
Steps

15

20

25

30

35

P
er

p
le

x
it
y

Validation (210M)

Cos 22k

Cos 33k

Cos 44k

Cooldown to 22k

Cooldown to 33k

Cooldown to 44k

Figure 12: The same behavior for training and validation loss. The cooldown phase initiates a sharp decrease in loss for
both training (left) and validation (right). The training perplexity is averaged out over a window to achieve a smoother curve.
For validation, we use a fixed set of 32 validation batches to report the loss each step, which creates a smooth curve by design.

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation Weight

18

20

22

24

P
er

p
le

x
it
y

Train Loss Connectivity (100 batches)

22k iter

33k iter

44k iter

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation Weight

18

20

22

24
P

er
p
le

x
it
y

Val Loss Connectivity

22k iter

33k iter

44k iter

Figure 13: The smooth drop in loss also occurs when moving linearly in weight space between checkpoints before and
after the cooldown. This suggests that in the cooldown phase, the model directly moves within a connected basin in the
loss landscape.

Takeaway 4: The constant learning rate with a short cooldown (< 20% of total training steps) achieves the same final loss
as a well-tuned cosine schedule, and only outperforms for a longer fraction of cooldown steps. For long training runs, our
results suggest that the cooldown length can be less than 20% to match cosine if enough in absolute steps — see Figure 2.

What happens during the cooldown? It is remarkable how the sudden drop in loss is consistent for both train and
validation loss and aligns closely with the decay in learning rate (Figure 12). Hu et al. (2024) investigate the cooldown
phase and find that the first-order directional derivative diminishes with each step, whereas the curvature of the loss function
increases; they attribute this to proximity to a local optimum.

We expand upon these results and aim to understand the optimization landscape around the trajectory of the cooldown. For
that, we evaluate the loss along the straight line trajectory when moving between a checkpoint before and after cooldown,
i.e., a linear interpolation of the two models’ weights. Perhaps surprisingly, we find that the smooth drop in loss also occurs
for this interpolation, as visualized in Figure 13. This aligns with the findings of Hu et al. (2024). These results suggest
that upon decaying the learning rate, the model immediately descends into a connected minimum of the loss.

Takeaway 5: The cooldown phase is a smooth transition to a basin in the loss landscape.

LR sensitivity. The optimal learning rate also transfers to different cooldown lengths in our experiments, see the results in
Figure 14.

13

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

0.0001 0.0002 0.0005 0.001 0.002
Learning Rate

18

20

22

24

P
er

p
le

x
it
y

LR Sensitivity (Cosine vs. Cooldown)

Cosine - 22k

Cosine - 33k

Cosine - 44k

Cooldown (20%) - 22k

Cooldown (20%) - 33k

Cooldown (20%) - 44k

0.0001 0.0002 0.0005 0.001 0.002
Learning Rate

18

19

20

21

22

P
er

p
le

x
it
y

LR Sensitivity (Cooldown Length)

Cooldown (10%) - 22k

Cooldown (10%) - 33k

Cooldown (10%) - 44k

Cooldown (20%) - 22k

Cooldown (20%) - 33k

Cooldown (20%) - 44k

Figure 14: Learning rate sensitivity for cosine and cooldown with different lengths. The optimal learning rate also
transfers to different cooldown lengths.

C.2. Learning Curves for All Models of Scaling Experiments

We provide the learning curves for all models in the scaling experiments in Figure 15. The final validation perplexity for all
models and methods is given in Figure 16.

C.3. Additional Results and Compute Savings.

We give the savings for all models used in the scaling experiments in terms of FLOPs in Figure 17 and GPU hours in
Figure 18.

C.4. Additional Experiments on OpenWebText2

In addition to all results on SlimPajama, we perform experiments on the commonly used benchmark of OpenWebText2 (Gao
et al., 2020) with models of sizes 60M, 93M and 166M. As shown in Figure 19, our findings from previous experiments
succesfully transfer, where the cooldown recipe matches the performance of cosine and SWA boosts performance during
training.

14

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

0 2500 5000 7500 10000
Steps

30

40

50

P
er

p
le

x
it
y

33M

33M Cosine LR

33M Stable LR

33M SWA Cosine LR

33M SWA Stable LR

0 2500 5000 7500 10000
Steps

25

30

35

40

45

50

P
er

p
le

x
it
y

53M

53M Cosine LR

53M Stable LR

53M SWA Cosine LR

53M SWA Stable LR

0 5000 10000 15000
Steps

25

30

35

40

P
er

p
le

x
it
y

60M

60M Cosine LR

60M Stable LR

60M SWA Cosine LR

60M SWA Stable LR

0 10000 20000
Steps

20

25

30

35

40

P
er

p
le

x
it
y

93M

93M Cosine LR

93M Stable LR

93M SWA Cosine LR

93M SWA Stable LR

0 10000 20000 30000
Steps

20

25

30

35

P
er

p
le

x
it
y

124M

124M Cosine LR

124M Stable LR

124M SWA Cosine LR

124M SWA Stable LR

0 20000 40000
Steps

20

25

30

P
er

p
le

x
it
y

151M

151M Cosine LR

151M Stable LR

151M SWA Cosine LR

151M SWA Stable LR

0 20000 40000 60000
Steps

15

20

25

30

P
er

p
le

x
it
y

210M

210M Cosine LR

210M Stable LR

210M SWA Cosine LR

210M SWA Stable LR

0 20000 40000
Steps

15

20

25

P
er

p
le

x
it
y

360M

360M Cosine LR

360M Constant LR

360M SWA Cosine LR

360M SWA Constant LR

Figure 15: Validation Loss Curves (Perplexity) of all Models in Scaling Experiments. We visualize all training runs for
the models used in the scaling experiments in Section 3.

33M 53M 60M 93M 124M 151M 210M 360M
Model sizes

0

10

20

30

40

V
al

 P
er

p
le

x
it
y

Equality Across Model Sizes and Training Scales

Cosine LR Cooldown SWA Cosine SWA Constant

Figure 16: Final Validation Perplexity of all Models in Scaling Experiments across different Runs.

15

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

33M 53M 60M 93M 124M 151M 210M 360M
Model sizes

1018

1019

F
L
O

P
S

FLOP Savings for Model Sweeps

Cosine LR Cooldown SWA Cosine SWA Constant

Figure 17: FLOPs Savings for all Models in Scaling Experiments across different Runs (Log Scale). The FLOPs
savings amount to a factor of 1

2 across all models.

33M 53M 60M 93M 124M 151M 210M 360M
Model sizes

0

25

50

75

100

G
P

U
 H

ou
rs

GPU Hour Savings for Model Sweeps

Cosine LR Cooldown SWA Cosine SWA Constant

Figure 18: GPU Hours Savings for all Models in Scaling Experiments across different Runs. We report the actual
runtimes summed up over the sweeps for all models. The savings in terms of runtime become especially more prominent for
bigger models and longer training runs. Please note that the hours for SWA of the 360M model are slightly off because of
congestion in our cluster during the runs.

16

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

0 5000 10000 15000
Steps

25

30

35

40

45

P
er

p
le

x
it
y

60M OWT2

60M Cosine LR

60M Stable LR

60M SWA Cosine LR

60M SWA Stable LR

0 10000 20000
Steps

20

25

30

35

40

P
er

p
le

x
it
y

93M OWT2

93M Cosine LR

93M Stable LR

93M SWA Cosine LR

93M SWA Stable LR

0 10000 20000 30000
Steps

20

25

30

35

P
er

p
le

x
it
y

166M OWT2

166M Cosine LR

166M Stable LR

166M SWA Cosine LR

166M SWA Stable LR

Figure 19: Results Transfer to OpenWebText2. We see the same behavior for cooldown schedules and SWA, verifying the
reliability of the alternative training methods.

D. Do We Even Need to Cooldown?
In Section 2, we showed that a constant LR with a short cooldown phase can replace the cosine decay. Ideally, however,
we would not need a decay at all, but aim to obtain an optimal model at any point in training even when prolonged. This
would save even more computational resources and time. In this section, we investigate two potential approaches: weight
averaging and a schedule-free optimizer.

D.1. Stochastic Weight Averaging (SWA)

Motivation. While slow annealing of the learning rate can be essential to find good minima (Smith et al., 2017; Loshchilov
& Hutter, 2016), Sandler et al. (2023) show theoretical and empirical equivalence between stochastic weight averaging
(SWA) and cooldown schedules in training vision models. There, averaging intuivitely and naturally reduces noise and
thereby improves generalization. Motivated by these results, we aim to answer the same question in LLM training: Can
weight averaging replace the cooldown phase?

Method. We opt for a form of SWA (Izmailov et al., 2018) that splits the training in fixed windows and averages within
a window, which allows to keep the average as a single additional copy of the model parameters. In our experiments,
we set the window to h = 500 steps and save checkpoints every h steps, which allows evaluating longer windows ad-hoc
to see potential improvements akin to latest weight averaging (LAWA, Kaddour, 2022; Sanyal et al., 2023). For all our
experiments, we find that windows below or at 2500 steps (256M tokens) are optimal. We also experimented with an
exponential moving average (EMA), which performed worse than SWA, and therefore do not report EMA.

Experimental results. We evaluate SWA in the same setup of the 210M model and show the results in Fig. 20 for both
a constant LR (left) and cosine (right). Notably, we find a significant performance boost for SWA on top of a constant
LR. Yet, it does not reach the loss values of cooldowns at intermediate steps. On the other hand, in line with previous work
(Kaddour, 2022; Sanyal et al., 2023), we see a similar boost for SWA on top of a cosine schedule. This suggests that SWA,
regardless of schedule, provides a compelling approach to achieving strong models along the data-scale axis that can serve
as a replacement for models trained with less steps, if the performance gap is acceptable and one wishes to avoid cooldowns.
This is particularly advantageous as it can arguably be done for free on top of existing and well-tuned optimizers.

Takeaway 6: Irrespective of the schedule and without additional overhead, SWA improves performance along the
training trajectory and provides better models during training. While it does not match the cooldown, it reduces the gap
without the need for a separate decay phase.

D.2. Schedule-Free Optimizer (SFO)

Very recently, Defazio et al. (2024) introduced a schedule-free optimizer (SFO) which uses an interpolation between
standard averaging and Polyak-Ruppert averaging, inspired by Nesterov’s accelerated method (Nesterov, 1983). As such,
the optimizer does not require a decreasing learning rate schedule, making it relevant for continual training. We seek to
investigate if it can outperform the presented cooldown schedule and provide a comparison in the same LLM setting.

Results. We compare the results of a long 210M model run with cooldown vs. SFO with AdamW in Figure 21. While

17

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

0 20000 40000 60000
Steps

20

25

30

P
er

p
le

x
it
y

SWA of Long Constant LR (210M)

Constant LR

SWA Constant LR

0 20000 40000 60000
Steps

20

25

30

P
er

p
le

x
it
y

SWA of Long Cosine LR (210M)

Cosine LR

SWA of Longest Cosine LR

Figure 20: SWA improves generalization and simulates decayed learning rates. Using SWA for the constant LR phase
(left) strongly boosts the loss, but a gap to the cooldown remains. SWA also improves the generalization of a cosine schedule
(right), where the intermediate checkpoints of SWA largely overlap with optimal loss trajectory of shorter cosine runs.

the optimizer does not require a learning rate schedule, the authors point out that training is more sensitive to the choice
of the (β1, β2) momentum parameters (which are not identical to the momentum in Adam). They note that the optimal
parameters may depend on the length of training, making it not fully schedule free. We observe this sensitivity in our
experiments, where the choice of (0.9, 0.95) performs notably worse and even increases loss towards the end of training.
For (β1 = 0.95, β2 = 0.99), SFO performs remarkably well. Nonetheless, both settings are matched or outperformed by
the cooldown schedule, in particular when comparing the same configuration of momentum. We did not perform further
hyperparameter tuning for either method.

0 25000 50000 75000 100000
Steps

16

18

20

22

24

P
er

p
le

x
it
y

SFO vs Linear Cooldown
Cooldown (β1 = 0.90,β2 = 0.95)

SFO (β1 = 0.90,β2 = 0.95)

Cooldown (β1 = 0.95,β2 = 0.99)

SFO (β1 = 0.95,β2 = 0.99)

Figure 21: The cooldown schedule outperforms SFO even when tuning momentum parameters. We find that SFO is
sensitive to the choice of (β1, β2) momentum parameters. It gives strong performance for well-tuned momentum, but falls
short of cooldown.

E. Related work
Cosine Schedules and Alternatives for Transformers. The cosine decay was originally introduced by Loshchilov &
Hutter (2016) for cyclic schedules in vision tasks, where it is common practice to have stepwise or cyclic LRs to escape
bad minima when training multiple epochs (Smith et al., 2017). For language models where data is more vast, the cosine
schedule with a single cycle is currently the de-facto standard for training, with few exceptions of T5 (Raffel et al., 2020)
and PaLM1 (Chowdhery et al., 2023) that used a form of inverse square root. In line with our work, recently released models
opt for alternatives such as stepwise schedules (Bi et al., 2024) or the presented constant + cooldown (Shen et al., 2024;
Hu et al., 2024). These alternatives were previously also explored for vision transformers by Zhai et al. (2022), who find
reciprocal square-root with cooldown to perform best, and in the context of continual learning (Ibrahim et al., 2024; Gupta

18

Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations

et al., 2023). Defazio et al. (2023) investigate the gap between theory and practice of learning rate schedules and suggest that
a linear decay is optimal, also for LLM training. We similarly find that a long linear decay can slightly outperform cosine.

Weight Averaging. Weight averaging over past iterates (Polyak & Juditsky, 1992) has long been known to be beneficial for
convergence. Izmailov et al. (2018) introduce stochastic weight averaging for better generalization in deep learning models.
Similarly, exponential moving average is commonly used in vision (Morales-Brotons et al., 2024). Importantly, Sandler et al.
(2023) show equivalency of WA to decaying learning rate schedules. In the context of LLM training, close to our work is
Sanyal et al. (2023) which showed that a form of latest averaging (Kaddour, 2022) can be used to improve the performance
of models early in training. However, they did not investigate the relation of weight averaging to compute optimality and its
implications for scaling experiments.

Scaling Law Experiments for Neural Language Models. Kaplan et al. (2020) were the first to establish scaling laws
for language models by training a suite of models for a fixed token count. Important to our work, Hoffmann et al. (2022)
revise their laws and demonstrate specific methods to establish laws, notably training a family of models for different cosine
lengths. The subsequent models like LLama and LLama2 (Touvron et al., 2023a;b) further improve performance of smaller
models by training beyond the Chinchilla optimal point, motivated by lower inference costs (Gadre et al., 2024; De Vries,
2023; Sardana & Frankle, 2023). Recent works (Muennighoff et al., 2023; Bi et al., 2024; Goyal et al., 2024) highlight how
data repetition and quality affect the scaling behavior, which suggests that scaling laws should be updated more frequently.
However, these works do not consider efficient experiments for scaling laws, which is the focus of our work.

F. Limitations
We conduct our experiments on models of up to 360M, training on up to 10B tokens. The trends we find are consistent across
all scales, but the behavior may change at modern scales (Wei et al., 2022; Tay et al., 2021). Nonetheless, the approach
of a constant learning rate followed by a cooldown has already proven successful at larger scales for released models (Hu
et al., 2024; Shen et al., 2024; Zhai et al., 2022). Similarly, instabilities arising from a high learning rate for a long part
of training can be alleviated (Wortsman et al., 2023). We therefore do not see any intrinsic barriers to the method at scale.

Secondly, we exclusively focus on the training or validation loss, though downstream tasks are ultimately the main metric
of interest. While they often scale reliably with the loss (Du et al., 2024; Gadre et al., 2024), this remains an important
question for further research; in particular, when coupled with different data-mixtures during the cooldown phase, as is
the focus of (Hu et al., 2024; Shen et al., 2024) and out of the scope of our work.

19

