Under review as a conference paper at ICLR 2026

TEACHING LANGUAGE MODEL TO ACT EFFICIENTLY

Anonymous authors
Paper under double-blind review

ABSTRACT

Tool-integrated reasoning (TIR) augments large language models (LLMs) with
the ability to invoke external tools during long-form reasoning, such as search en-
gines and code interpreters, to solve tasks beyond the capabilities of internal rea-
soning. While reinforcement learning (RL) has shown promise in training such
agents, most of existing approaches typically optimize only for final correctness
without considering the efficiency or necessity of external tool use. This often
leads to excessive tool calling, leading to increased computational costs and ad-
ditional latency, and may also shift reliance toward external tools rather than the
model’s own reasoning — a phenomenon referred to as cognitive offloading. To this
end, we propose Optimized Tool Call-controlled Policy Optimization (OTC-PO),
a simple yet effective RL-based framework that encourages models to produce
accurate answers with less tool calls. Our method introduces a tool-integrated
reward that jointly considers answer correctness and corresponding tool use be-
havior of model to reach that answer. To validate the effectiveness, we introduce
the additional metric of tool productivity, defined as the ratio between the number
of correct answers and the total number of tool calls across all test cases. This
metric reflects how efficiently and effectively tool usage contributes to successful
task completion, with higher values indicating more productive external tool calls
with the help of internal reasoning. We then instantiate this framework within both
Proximal Policy Optimization (PPO) and Group Relative Preference Optimization
(GRPO), resulting in OTC-PPO and OTC-GRPO. Experiments with Qwen-2.5
and Qwen-Math across multiple QA benchmarks show that our approach reduces
tool calls by up to 68.3% and improves tool productivity by up to 215.4%, while
maintaining comparable answer accuracy, especially for the larger models.

1 INTRODUCTION

Large language models (LLMs) have shown strong reasoning capabilities, particularly when trained
with reinforcement learning (RL) using simple outcome rule-based rewards (Team, [2024} [2025)).
Building on this progress, recent work on tool-integrated reasoning (TIR) (Gou et al., 2024} Wang
et al.| [2024a) enables LLMs to interact with external tools such as search engines (Jin et al., [2025))
and code interpreters (Li et al., [2025b) using similar reward design. By combining internal reason-
ing with access to various external tools, TIR substantially broadens the problem-solving scope of
LLMs, allowing them to tackle tasks that exceed the limitations of parametric knowledge alone.

However, most existing RL approaches for TIR focus solely on final answer correctness, without
explicitly accounting for the efficiency or necessity of tool use (Jin et al.| 2025} |Feng et al., [2025).
As a result, models often rely excessively on external calls (Qian et al., |2025b). This behavior
raises several concerns: (i) higher computational and infrastructure costs due to unnecessary tool
invocations (Figure [2]left); (ii) longer inference latency due to lengthy observation returned by the
tool (Figure[2) middle); and (iii) a tendency to rely on external tools instead of leveraging the model’s
own reasoning, a phenomenon known as cognitive offloading (Risko & Gilbert,|2016). For example,
recent baselines such as Search-R1 (Jin et al., 2025) frequently invoke tools even in cases where the
question could be answered directly, missing the opportunity to leverage internal reasoning ($[5.3).

Based on these observations, we argue that effective agentic LLMs should not only produce correct
answers but also use tools judiciously. In practice, different tasks and models may require different
levels of external assistance. For some questions, the best strategy involves no tool usage at all,
while others may benefit from one or more targeted interactions. This motivates the need for training

Under review as a conference paper at ICLR 2026

methods that optimize both effectiveness (i.e., answer correctness) and efficiency (i.e., appropriate
tool call). We aim to develop such model based on a foundational assumption: for each question and
each model, there exists an optimal number of tool calls, defined as the minimal number required
for the model to arrive at a correct answer (i.e., the minimum tool calls among correct trajectories
practically). Crucially, this optimal number can vary depending on both the capabilities of models
and the complexity of questions. Therefore, it is difficult to create supervised fine-tuning data or to
design a single prompting strategy that generalizes across diverse models and tasks. In contrast, RL
offers a promising alternative, as it allows models to adapt their tool-call behavior based on their
own experience or interactions (Silver & Sutton, [2025)).

We then propose Optimized Tool Calls controlled Policy Optimization (OTC-PO), a simple yet ef-
fective RL-based method that enforces models to minimize the number of tool calls required to reach
a correct solution. Specifically, we introduce a tool-integrated reward that modulates traditional out-
come reward signals, such as correctness, with a scaling coefficient reflecting tool efficiency. This
encourages the model to prefer trajectories that reach correct answers with fewer tool calls. There-
fore, it shifts the optimization objective from correctness alone to tool productivity, defined as the
ratio between task benefit (e.g., answer accuracy) and tool usage cost (e.g., number of tool calls).
In addition, OTC-PO is lightweight and plug-and-play, requiring only minimal changes to standard
RL pipelines, making it easy to adopt in existing systems. We conduct comprehensive experiments
on two widely used tools: search and code based on several LLMs, Qwen-2.5-3B/7B-Base and
Qwen2.5-Math-1.5B/7B-Base (Qwen et al., |2025), and derive models with a substantial tool calls
reduction in trajectory while approximately maintaining accuracy with strong baselines. In sum-
mary, the key contributions are as follows.

* We re-frame tool-integrated reasoning as jointly optimizing correctness and efficiency, and intro-
duce tool productivity, the number of correct answers per tool call, as a metric to capture this
trade-off. We additionally identify the cognitive offloading phenomenon in TIR.

* We propose a simple, faster, and generalizable OTC-PO algorithm to encourage the model to use
fewer tool calls to solve the problem and therefore maximize tool productivity. We note that it is
compatible with various RL algorithms and can be easily implemented.

* We implement OTC-PPO and OTC-GRPO as two typical methods without losing the adaptability
and generalization based on PPO (Schulman et al.l 2017) and GRPO (Shao et al., 2024) algo-
rithms, and the experimental results on several benchmarks and baselines demonstrate significant
reductions in tool call cost while preserving most of the accuracy in both in-domain and out-of-
domain evaluation.

2 RELATED WORK

Tool Utilization for LLMs. Teaching LLMs to use tools enables them to interact with external
environments while overcoming several inherent limitations such as restricted access to up-to-date
or domain-specific knowledge and poor mathmatical operation capabilities. There are three major
methods which can achieve this goal: 1) prompting engineering (Qian et al. 2023} Wang et al.,
2024b}; |Qian et al.l [2024b; [Yuan et al., [2024; |Qian et al., [2024a; Wang et al.| [2025a), which guides
the model’s behavior through carefully designed input templates or few-shot examples without mod-
ifying model weights; 2) supervised finetuning on tool-integrated reasoning datasets (Schick et al.,
2023}, |Qin et al.l 2023} |Gou et al., 2024; [Qian et al., 2024c; [2025b)), where the model learns from
annotated trajectories that demonstrate when and how to use tools in context; and 3) reinforcement
learning (Jin et al., 2025} |Li et al., 2025b; [Feng et al. 2025} |Qian et al., 2025a), which allows
the model to directly learn tool-use strategies by interacting with an environment and optimizing
long-term rewards, enabling more adaptive and goal-directed behaviors. While prompting and su-
pervised fine-tuning have shown promising results, they rely heavily on expert-designed prompts
and tool-integrated annotations, which limits their scalability and generalization. As a result, recent
efforts have shifted toward reinforcement learning, which demonstrates improved performance and
generalization through simple rule-based rewards.

Tool-integrated Reasoning Efficiency. Only few of studies from prompting engineering and su-
pervised fine-tuning attention on tool-integrated reasoning efficiency issues in terms of the cost of
tool usages during the reasoning (Wang et al., 2025a; |Shen et al.| 2024; Qian et al., [2025b). In

Under review as a conference paper at ICLR 2026

detail, (Wang et al.| 2025a)) first propose a prompting-based framework: Self Divide-and-Conquer
(SelfDC) to leverage the self-aware confidence score of LLMs to decide whether or not need to
call tools during reasoning, achieving better trade-off between effectiveness and efficiency in the
context of RAG. Furthermore, several works follow this direction and explore more boarder appli-
cations and larger tool spaces (Qian et al.,[2025b; Shen et al.| 2024; [Li et al.l [20254). For example,
SMART (Qi1an et al.,[2025b)) collect the well-designed dataset to finetune the model to only call tools
when the knowledge is outside the inherent parametric knowledge of LLMs. Despite these advance-
ments, most existing approaches still rely on complex prompt engineering or annotated datasets,
which hinders their adaptability and scalability to new scenarios and benchmarks. In contrast, the
efficiency of tool-integrated reasoning within reinforcement learning frameworks remains largely
underexplored.

3 METHODOLOGY

In this section, we first provide a formal definition of task considering the both effectiveness and
efficiency of tool-integrated reasoning, followed by general RL framework and then our proposed
Optimized Tool Call-controlled Policy Optimization (OTC-PO).

3.1 TASK DEFINITION

Given a question ¢, and an environment & that provides access to a set of tools 7 = {tg, t1,...tn },
the language model M can optionally interact with the environment by calling specific tools in 7,
obtaining the corresponding tool results from &, and iteratively repeating this processing until the
final answer is driven. Without losing generalization, the tool-integrated reasoning trajectory 7 at
step k is defined as follows:

Tk = (Tlatcla 01)7 (T27t02702)7 ...(Tk,tCk, Ok)a (l)

where r;, tc;, o; denotes the reasoning, tool call and returned observation respectively. Importantly,
we also account for reasoning steps that do not involve tool usage. Suppose the step p does not need
to call tools, then the tc, and o0, become empty string, the reasoning content r,, can either be merged
with the subsequent reasoning step 7,11 to form the new 7, or, if p is the last step |'} be used
directly to derive the final answer. The objective of the task is to generate the correct answer a with
the minimal cost of the full trajectory 7 as follows:

argmin Cost(T) subjectto M(q,7) = a, (2)

Here the cost is measured as the number of tool calls within the trajectory 7 considering its simplicity
and generalization. Thus the model is encouraged to not only generate correct answer but also
minimize the cost. We emphasize that this revised objective highlights an overlooked dimension of
TIR to balance correctness with the tool use behavior of models.

3.2 TOOL-INTEGRATED REINFORCEMENT LEARNING

Inspired by recent success to use RL for better reasoning in LLMs, several efforts try to extend RL
to tool-integrated reasoning with the objective functions can be defined as follows:

H}T%XEqND,yN'rr@('\q;g) [r¢(Qa y)] - ﬂ]D)kl [7T9(y ‘ qvg) H Wref(y | q; 5)]) (3)

where 7y, 7,y stand for the policy model and reference model respectively, 14 is the reward function
and Dy, is the KL-divergence measure. ¢ is the question drawn from the dataset D and y is the
generate outputs consists of the tool-integrated reasoning trajectory 7 and the final answer a. To
optimize this goal, there are two well-established policy-gradient RL methods: Proximal Policy
Optimization (PPO) and Group Relative Policy Optimization (GRPO) in TIR. We provide detailed
optimization objective in Appendix [C|to save space.

"The last step is practically determined by the predefined maximal tool calls.

Under review as a conference paper at ICLR 2026

1
i 71, 1€y, 01, woe, T, ECp, Op Y1 Ttool Ty 4
& Policy 71, £Cq, 01, «vv, T, ECp, Op Y2 Tiool 5 42
Model J G
) ' |, roup
5% L Computation | = -
Input “+ Env
T ECTH 01 e LU Oy Yp rg:zoz Tg Ap

(3 Update Optimal
"2 Tool Calls k

Tool-use Answer

Tool-integrated Reasoning Answer Tool Calls Reward Reward

Advantage

Figure 1: An overview of OTC-GRPO Algorithm.

Following the success of DeepSeek-R1 (Team), [2025), most prior predominantly focuses on rule-
based outcome correctness rewards (Jin et al.|[2025; |Li et al.| [2025b; [Feng et al.,2025) to learn the
policy model during training, as illustrated below:

’I"¢(q, y) = Teorrect = 1if a = d else 0,)

where a is the extracted predicted answer from the response y and & is the ground truth answer.

3.3 OTC-PO: OPTIMIZED TOOL CALL-CONTROLLED POLICY OPTIMIZATION

In order to consider the tool call behavior, we propose Optimized Tool Call-controlled Policy Opti-
mization (OTC-PO), which can be easily integrated with existing RL algorithms, aiming to preserve
general accuracy while significantly reducing the cost of tool interactions. At the heart of OTC-PO
is a reward mechanism that ranks the current number of tool calls m relative to the optimal number
of tool calls n given the question and model. In most realistic settings, the true optimal number 7 is
unknown in advance. To address this, OTC-PO approximates n by tracking the minimal number of
tool calls observed across different trajectories to arrive the correct answer for the same question and
model. This approach enables the model to learn efficient tool use without requiring prior knowl-
edge of the optimal tool budget. Furthermore, the framework can be naturally extended to scenarios
where the optimal tool call number is known a priori (e.g., n = 0 for language-only reasoning). We
instantiate OTC-PO in two variants: OTC-PPO and OTC-GRPO, tailored to different underlying RL
algorithms.

OTC-PPO. Since there is no multiple trajectories for same question ¢ in single optimization step,
we design the tool reward according to the number of tool calls m in the current trajectory as follows:

m* T
2m +c

) o)

Ttool = COS(

The core idea is to map m to [0, 7/2) and c is the smooth constant that controls the reward decay
rate. The smaller the value, the faster the punishment and the more it encourages less use of tools;
the larger the value, the more tolerant it is. In this way, among trajectories, those requiring more tool
calls will receive lower rewards than those achieved with fewer tool calls. We note that any function
exhibiting such monotonicity is applicable, but we find sin/cos functions is more smooth and easy
to train, as also evidence by |Yeo et al.|(2025). Although we can track the m here for approximation
of n in later steps, we empirically find it requires much longer training steps due to poor sampling
efficiency in PPO, which is undesirable.

OTC-GRPO. We first identify the trajectories {71, 72, ..., 7P} leading to correct answer from the
group for the question g, and get the corresponding number of tool calls for each trajectory: C
= {c!,c?,...,cP}, and we can calculate the minimal tool calls & = min(C), serving as the local
approximation of optimal tool calls for g. Furthermore, we can update k& during multiple epochs to
approximate the global optimal tool calls if the policy model finds the better solution with less than
k calls in later iterations. We use n to indicate the approximation of optimal tool calls, and m the
number of tool calls in the current trajectory for gq. Therefore we design the reward as follows:

Under review as a conference paper at ICLR 2026

1 if f(m,n)=n=0 0, %fm:Oandn:O
Ttool = § COS(5) ifn=0 flm,n) = Trgnm ifn =20
sin(LUm Ty otherwise , otherwise
2n m+n .
(6)

where f(m,n) is the mapping function to re-map the m to the range from 0 to 2n. Briefly, the
key here is to assign the highest reward 1 (a.k.a, sin(7/2)) when the policy model achieves optimal
tool calls n, and when actual number of tool calls m deviates from n, either exceeding or falling
short, the model receives a comparatively lower reward. Thus, we can assign different rewards
dynamically according to the different n and m for the question q. We provide reward illustration to
better motivate our reward design in Appendix [E.T]

Tool-integrated Reward Design. Inspired by recent study (Arora & Zanettel [2025), we regard the
tool-integrated reward 7, as a coefficient of conventional reward function r4 (g, y), leading to the
final tool-integrated reward function:

tool

78 (q,y) = a * Trool ¥ 74(q,Y) (7)

where o is a hyperparameter that controls the scaling of the tool reward as 74 is usually same for
correct or wrong answer. Notably, this multiplicative structure ensures that tool efficiency is mainly
rewarded when the primary task objective (e.g., answer correctness) is satisfied. For example, when
the final answer is incorrect, 7y is 0, effectively disabling the influence of r,,;. This design helps
mitigate reward hacking by preventing the policy model from being incentivized to use tools without
ultimately producing a correct answer. If the answer is correct, ry is 1 and then r;,,; begins to
dominate the scale of the reward, thus encouraging less tool usage.

It is worth noting that this design offers several practical advantages: i) It is consistent with the
task objective, which prioritizes achieving correct solutions while reducing the number of tool calls,
with theoretical support provided in Appendix [E.2] ii) It helps reduce the risk of reward hacking
compared to simple additive reward formulations (e.g., 7001 + 7¢), Which in our experiments led to
unstable behaviors. For instance, we observed cases where the model could achieve higher reward by
minimizing tool usage without necessarily producing correct answers. iii) It remains flexible and can
be applied to different reward formulations of 74, such as 74 = rcorrect O T¢ = Tcorrect + T formats
depending on the task requirements, as discussed in Appendix

4 EXPERIMENTS

4.1 SETUP

Datasets and Baselines. We mainly follow the Search-R1 (Jin et al.| [2025) and ToRL (Li et al.,
2025b) setting and use same baselines and datasets for the fair and comprehensive evaluation.
Specifically, we use NQ and HotpotQA as training dataset for search, and we use the dataset pro-
vided in ToRL for code. We also directly compare our methods with several baselines such as SFT,
Base-RL, retrieval-augmented generation baselines (i.e., RAG, IRCoT) and more importantly the
Search-R1 and ToRL themselves.

Evaluation Metrics. Besides the exact match (EM) and the average tool calls (TC), we addition-
ally define a new metric, tool productivity (TP), which measures the effectiveness and efficiency of
tool calls during inference. Specifically, TP is defined as the number of correctly answered ques-
N i =i . o g . .
tions per unit of tool call: TP = W where I is the indicator function that equals 1 if
i=1tCi

the predicted answer ¢; matches the ground truth y;, and ¢c; denotes the number of tool calls used
in the 44, instance. This metric reflects how efficiently the model converts tool usage into correct
answers, capturing both utility and cost in a single measure. While EM provides a standard measure
of accuracy, it does not reflect the underlying reasoning cost. Therefore, we consider TP as more

2This can also be understood as the fraction between benefits and cost.

Under review as a conference paper at ICLR 2026

Table 1: The results of OTC-PO with different baselines in search. The results except Search-R1
are directly copied from original paper (Jin et al.l |2025). We highlight the relative improvement of
OTC-PO and OTC-GRPO compared with the corresponding variants of Search-R1.

NQ \ HotpotQA

Models EM TCO TP [BM _ TCO) TP (D)

Qwen2.5-3B(-Base) '

R1-Base 0.226 - - 0.201 -

SFT 0.249 - - 0.186 - -

RAG 0.348 1.0 0.348 0.255 1.0 0.255

IRCoT 0.111 10.0 0.011 0.164 10.0 0.016

Search-R1-PPO 0.403 1.738 0.232 0.279 1.716 0.163

Search-R1-GRPO | 0.404 1.426 0.283 0.312 1.802 0.173
“otcPPO | 0355 T010(7 777)" 0351 (a 5137)7 [02607 026 17 7Y T 0353 (4 55075

OTC-GRPO 0.444 1.008 () 0.440() 0.365 1.387() 0.263()

Qwen2.5-7B(-Base)

R1-Base 0.270 - - 0.242 -

SFT 0.318 - - 0.217 - -

RAG 0.349 1.0 0.349 0.299 1.0 0.299

IRCoT 0.224 9.999 0.022 0.133 9.982 0.013

Search-R1-PPO 0.449 3.282 0.136 0.380 3.741 0.102

Search-R1-GRPO | 0.399 1.697 0.235 0.341 2.109 0.162
“otePPO | 0446~ 1080 (v 7 T)" 0429 (4 31547 § [03837 " T464 (v 007y 0262 (h 156.9%)

OTC-GRPO 0.444 0.990 () 0.448() 0.366 1.005 () 0.364 ()

Table 2: The results of OTC-PO with different baselines in ToRL (Li et al., 2025b).

Models | AIME24 | AIME25
[EM (T) TC (1) TP (1) [EM () TC () TP (1)

Qwen2.5-Math-1.5B(-Base) ' ‘

Qwen2.5-Math-1.5B-Ins 10.0 - - 10.0 - -

Qwen2.5-Math-1.5B-Ins-TIR | 13.3 1.1 12.1 13.3 1.4 9.5

ToRL-GRPO 23.3 22 10.6 233 23 10.1
"OTC-GRPO ~~ T 7 200 T TI(v007 Y TI82(A 71777y | 72007 T LTI(vTIT) T182(A 802%) ©

Qwen2.5-Math-7B(-Base)

Qwen2.5-Math-7B-Ins 10.0 - - 16.7 - -

Qwen?2.5-Math-7B-Ins-TIR 26.7 1.6 16.4 16.7 1.4 12.2

Base-RL 33.3 - - 6.7 - -

ToRL-GRPO 36.7 2.1 17.5 26.7 2.1 12.7
"OTC-GRPO ~~~ T 77 367 07 (o0 TT) 524 (A 1004%) 7] "233° T08 (v o107) 20.1 (A 129.1%) "

informative indicators of agentic reasoning efficiency — highlighting not only whether the model can
provide correct answer, but how economically it arrives at that correctness.

Implementation Details. We re-use the same parameter in Search-R1 (Jin et al.l 2025) and
ToRL (Li et al.,2025b) respectively. There are only minor modification we make to suit our method:
i) We slightly change the template in Search-R1 to tell the model that it only need to call tools when
necessary (Appendix [D), and we do not change the template in ToRL; ii) We set the maximal num-
ber of tool calls C in ToRL to 3 to better study the effects of our methods when multiple tool calls
are allowed and keep it as 4 as in original Search-R1. Moreover, we set ¢ as corresponding max
turns or maximal tool limits, o as 1. We conduct our experiments on 8 A100-80G GPU and re-
produce the results of Search-R1 and ToRL independently. We implement OTC-GRPO using the
global approximation of minimal tool calls since it leads to more stable and better optimization.

4.2 MAIN RESULTS

Search as Tool. Table[T]shows the results for search-required tasks. There are several key insights
can be drawn: i) OTC-PPO achieves significant improvement in terms of TC and TP compared
with Search-R1-PPO, resulting in up to a 68.3% reduction in TC and a 215.4% increase in TP, and
OTC-GRPO can further reduce the absolute tool calls due to more accurate approximation; ii) It
is found that our method will not sacrifice the accuracy too much especially for larger LLMs, as
evidenced by our OTC-PO achieves comparable EM score with Search-R1 on Qwen2.5-7B model;
iii) Different models have different tool use behaviors on different datasets. If we look at the Search-
R1, we can find that 3B model tends to use less tool calls compared with 7B model. This reveals a
critical issue: as language models scale up, they may tend to over-rely on external tool calls unless
explicitly penalized for such behavior. This not only exacerbates the problem with larger models
but also leads to an underutilization of their inherent reasoning capabilities (See $[5.3). The number

Under review as a conference paper at ICLR 2026

35 1e5
— OTC-GRPO
2.5 —e— OTC-PPO

3.0 Search-R1-GRPO

—— OTC-PPO Search-R1-PPO
25 Search-R1-PPO 2.0 { —8— OTC-GRPO
2.0 Search-R1-GRPO

1750

—— OTC-GRPO
Search-R1-GRPO

—— OTC-PPO
Search-R1-PPO

1500
s

21250

rch Calls

1000
315

Run Time
n

se
Response Lei

S UL S T S I VR

<10 750

05 500

0.0 250

400 0

0 50 100 150 200 250 300 350 400
Step

200 250

Step

50 100 150 200 250 300 350 400
Step

Figure 2: Left: Changes of number of search calls during the training; Middle: Running time
analysis; and Right: Changes of response length during the training.

Table 3: Tool behavioral advantage analysis of OTC-PO against Search-R1. ME, LE, MA, LA,
AE stands for more efficient, less efficient, more accurate, less accurate, and accurate and efficient,
respectively. We found that OTC-GRPO and Search-R1-PPO achieves same results with same tool
calls in 42.54% cases of HotpotQA on Qwen2.5-3B-Base model, leading to relatively lower ME.

Method \ NQ | HotpotQA

[ME(T) LE() MA(M) TA{J) AEM [ME({) LE({) MA{) LA{J) AE(M
Qwen2.5-3B(-Base) '
OTC-PPO 63.55 0.02 4.60 7.67 3.74 61.78 0.53 4.30 6.34 3.35
OTC-GRPO | 65.43 2.49 6.15 3.85 5.10 ‘ 35.54 5.96 11.89 4.07 3.47
Qwen2.5-7B(-Base) '
OTC-PPO 86.2 0.03 6.45 6.92 6.45 81.49 0.08 8.60 8.68 8.53
OTC-GRPO 82.0 0.00 7.26 10.69 7.26 ‘ 79.71 0.00 8.15 11.98 8.12

of TC is also various across the datasets, which relates to many factors such as inherent capabilities
of different models (i.e., self-awareness) and complexity of different datasets, leading to varying
minimal number of tool calls for each question and model; iv) As the model size increases, the TC
and TP get bigger boost no matter in OTC-PPO or OTC-GRPO. We highlight the ii) and iv) are very
important since they compose the great potential scalability for our methods as model scales.

Code as Tool. We mainly follow the same setting and only report the GRPO results to be consistent
with original ToRL (Li et al., [2025b) paper. Table [2[shows the results. We observe several similar
findings: i) our method does not sacrifice the accuracy too much and even brings some improvement
when the model gets larger. We attribute this to the development of internal reasoning capability
of models when it is enforced to minimizing external tool calls, as evidenced in our case study; ii)
our method can significantly boost the tool productivity, reducing the unnecessary tool calls; iii) As
model size increases, our method is more effective to improve the tool productivity.

5 ANALYSIS

We mainly conduct our analysis using search as a tool in this section and leave more analysis in the
Appendix [Fland [G] respectively.

5.1 TooL USE BEHAVIOR ANALYSIS

Training. Fig.[2|shows the training behaviors of different methods. It is clear that our method not
only achieves comparable results with fewer tool calls and shorter responses, but also enables faster
and more efficient training optimization. This is particularly important, as it significantly reduces the
time and cost associated with real-time tool interactions during training, both in terms of financial
expenses and computational overhead. We also find GRPO tends to achieve better performance than
PPO due to more accurate approximation of minimal tool call required, but it is less stable than
PPO, as also evidenced by several recent studies (Jin et al., 2025)). It is encouraging to find that our
method can delay the early collapse substantially with more training steps.

Inference. We identify several representative tool-use behavior types of our proposed method: i)
the answer is same with /ess tool calls compared with baseline (more efficient); ii) the answer is same
with more tool calls compared with baseline (less efficient); and iii) our method is able to produce
the correct answer whereas the baseline fails to answer correctly (more accurate); iv) the baseline

Under review as a conference paper at ICLR 2026

Table 4: The results of Out-of-Domain (OOD) evaluation of OTC against Search-R1 in EM and TC.

Models TriviaQA \ PopQA \ 2Wiki \ Musique | Bamboogle
EM®M TCQO [EM(®M) TCH [EM® TCQ [EM®M TCP [EM®D TCI)

Qwen2.5-3B(-Base) ' ' ' '

Search-R1-PPO 0.566 1.580 | 0.425 1.631 0.258 1.675 | 0.051 1.922 | 0.063 1.766

Search-R1-GRPO | 0.587 1.455 | 0.345 1.542 | 0.257 1.991 0.084 2263 | 0.203 1.859

Qwen2.5-7B(-Base)
Search-R1-PPO 0.596 3353 | 0420 3.315 0.326 4.116 | 0.135 4294 | 0375 3.641
Search-R1-GRPO | 0.578 1.704 | 0.411 1.754 | 0340 2.521 0.130 2.616 | 0.203 1.859

Table 5: The results of OTC-PO under Qwen2.5-7B-Base and Qwen2.5-7B-Instruct models.

\ NQ \ HotpotQA
Models — "gwrch —TC@) _TPCH | EM®M_ TC() _TP(D
Qwen2.5-7B(-Base) '

OTC-PPO 0.446 1.040 0.429 0.383 1.464 0.262
OTC-GRPO L 0.444 0.990 0.448 ‘ 0.366 1.005 0.364
Qwen2.5-7B(-Instruct)

OTC-PPO 0.389 1.404 0.277 0.381 1.880 0.203
OTC-GRPO ‘ 0.429 1.322 0.325 ‘ 0.386 1.956 0.197

can produce the correct answer whereas the our method fails to answer correctly (less accurate); and
v) our method is able to produce the correct answer using fewer tool calls whereas the baseline fails
to answer correctly (accurate and efficient). Table |3| shows the results compared with the baseline
Search-R1-PPO | On the efficiency side, it is clear to find that our method achieve same answers
with baseline using fewer tool calls in most cases, and more than 80% when the model becomes
larger. On the effectiveness side, we conclude that there is no significant loss when using same RL
algorithm, as evidenced by lower gap between MA and LA in OTC-PPO method. Moreover, among
all MA cases, it is observed that AE accounts for roughly 80% in 3B model (i.e., 3.74/4.60 =81%),
and exceeds 95% on 7B model. These results highlight the great strength of OTC-PO in promoting
efficiency while reserving effectiveness.

5.2 OUT-OF-DOMAIN EVALUATION

We run out-of-domain evaluation on more QA benchmarks. Fig. [6] shows the results of TP and Ta-
bled]shows the results of EM and TC. Generally, we find that our method achieves highest TP across
all the model and benchmark. More importantly, we observe that OTC-GRPO is better than OTC-
PPO on TP and as the model size increases, our method showcases bigger improvement, serving as
another evidence of great scalability of our method. Notably, we find that OTC-PPO outperforms
the Search-R1-PPO in terms of EM on all benchmarks with Qwen2.5-7B-Base model with much
less tool calls, demonstrating the better generalization capabilities of our methods.

5.3 MORE ANALYSIS

Base v.s. Instruct Model. We additionally compare the performance of OTC-PO using Qwen-
7B-Base and Qwen-7B-Instruct models. Table [5] shows the final results. It is observed that i) Base
models mostly lead to better performance, which is also consistent with results in the Search-R1
paper; ii) Instruct models tends to use more tools compared with base model while the TC still is
much lower than the Search-R1. We attribute this to the Instruct model tends to memorize specific
pattern during supervised fine-tuning and easily to be triggered to use tools even unnecessary.

Case Study Fig. [3|presents a case study to better illustrate the advantages of our proposed OTC-
PO. The analysis highlights several observations: (i) Search-R1 tends to issue multiple redundant
search calls, reflecting the absence of an explicit incentive to limit tool usage; (ii) both OTC-PPO
and OTC-GRPO substantially reduce unnecessary tool calls, but they do so in different ways. OTC-
PPO improves efficiency by generating more informative queries, while OTC-GRPO relies more on

3We use the same baseline to better distinguish OTC-PPO and OTC-GRPO.

Under review as a conference paper at ICLR 2026

Answer: Yes

Search-R1-PPO: <think> | need to determine if Giuseppe Verdi
and Ambroise Thomas are both opera composers. </think>
<search> Giuseppe Verdi </search>
<observation> ... </observation>
<search> Ambroise Thomas </search>
<observation> ... </observation>
<search> Are Giuseppe Verdi and Ambroise Thomas both
Opera composers? </search>

<observation> ... </observation>

<think> Based on the observations, both Giuseppe Verdi and
Ambroise Thomas are described as composers, specifically
opera composers. </think>

<answer> yes </answer> (Tool Calls = 3)

Undesirable tool
use behavior

=% Cognitive Offloading fosters dependency on external
%)?;Z ¥ tools, causes memory capabilities to diminish, and
v I inhibits the development of internal reasoning..

OTC-PPO: <think> First, | need to determine if Giuseppe Verdi
and Ambroise Thomas are both opera composers. </think>
<search> Giuseppe Verdi and Ambroise Thomas both Opera
composers </search>

<observation> ... </observation>

<think> Based on the search results, Giuseppe Verdi and
Ambroise Thomas are both known as opera composers.
</think>

<answer> yes </answer> (Tool Calls = 1)

1 Question: Are Giuseppe Verdi and Ambroise Thomas both Opera composers ?

e <think> To answer this question, | need to check if both
Giuseppe Verdi and Ambroise Thomas are composers of opera. | don\'t
have immediate access to this knowledge, but | can conduct a search to
find out. </think>

<search> who are Giuseppe Verdi and Ambroise Thomas and their works
</search>

<observation>...</observation>

<think>From the information gathered, ... This confirms Thomas as an
opera composer. Next, | will search on Giuseppe Verdi. </think>
<search>who is Giuseppe Verdi </search> Undesirable tool
<observation>...</observation> use behavior
<think>Giuseppe Verdi is named as an ltalian opera composer of
prominent stature. This confirms Verdi as an opera composer. Answering
the initial question: Question: Are Giuseppe Verdi and Ambroise Thomas
both Opera composers? </think>

<answer> yes </answer> (Tool Calls = 2)

OTC-GRPO: To answer the question of whether Giuseppe Verdi and
Ambroise Thomas are both Opera composers, let's first reason through the
information:

1. Giuseppe Verdi is a well-known Italian opera composer. He is famous for
his numerous operas, including "Rigoletto," "La Traviata," and "Aida."

2. Ambroise Thomas is a French opera composer. He is known for his
operas such as "Mignon" and "Hamlet."

Based on this reasoning, both Giuseppe Verdi and Ambroise Thomas are
indeed Opera composers.

L <answer> yes </answer> (Tool Calls = 0))

Figure 3: A case study using search as a tool on Qwen-7B-Base model, where all four methods
arrive at the correct answer but exhibit distinct behaviors in internal reasoning and external tool
usage. OTC-GRPO does not rely on external tools while Search-R1-PPO uses extensive tool calls.

internal reasoning when the problem can be solved without external tools. Overall, the case study
suggests that without guidance, models may overuse external tools, whereas encouraging minimal
tool calls while preserving correctness promotes more balanced and deliberate tool use.

Reasoning v.s. Acting. We further examine the rela- 100
tionship between reasoning and tool use when models
are encouraged to reduce external calls. Specifically, we
compare OTC-PPO with Search-R1-PPO by recording,
for each correctly answered sample, both the number of
tool calls and the number of reasoning tokens (excluding
search and observation tokens in response). As shown
in Figure f] OTC-PPO generally makes fewer tool calls
while producing longer reasoning traces. Moreover, this
difference becomes more pronounced as model size in-
creases, suggesting that larger models are better able to
leverage internal reasoning for external tool use under our
framework [1]

I Acting Less + Reasoning More
[Acting Less + Reasoning Less

69.7%

30.3%

Percentage of Samples (%)

3B 7B

Figure 4: Comparison of reasoning
(number of reasoning tokens) and acting
(number of tool calls) between Search-

R1-PPO and OTC-PPO on the NQ.
6 CONCLUSION AND FUTURE WORK

In this work, we redefine the objective of task for agentic RL not only provide the final correct
answer, but also optimize the tool use behavior of model to achieve such goal. We then introduce
OTC-PO, a simple yet effective RL framework that explicitly encourages LLMs to generate correct
answers with fewer tool calls. Unlike prior work that primarily focuses on final answer correctness,
our approach incorporates a tool-integrated reward that accounts for both effectiveness and efficiency
of tool usage, thereby promoting tool productivity without sacrificing the accuracy a lot in several
benchmarks with different tools. We also find that extensively rely on external tools hinder the
development and utilization of internal reasoning capabilities of the model, and minimizing external
tool calls alternatively foster the development of internal reasoning capabilities. Finally, in future
work, we aim to extend our framework to more complex agentic tasks involving a broader set of
tools and longer-horizon reasoning.

“More case studies, hyper-parameter analysis can be found in Appendix.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We strictly follow the same setting of two popular open-sourced codebases: Search-R1 (https:
//github.com/PeterGriffindin/Search—-R1) and ToRL (https://github.com/
GAIR-NLP/ToRL), and use same hyper-parameters and data to conduct our main experiments. We
attach our reward design code in the supplementary for reproduction. The details for reproducing
results are also mentioned in Sections [4.T] of the main paper.

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.04697.

Daman Arora and Andrea Zanette. Training language models to reason efficiently, 2025. URL
https://arxiv.org/abs/2502.04463.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in 1lms,
2025. URL https://arxiv.org/abs/2504.11536l

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Minlie Huang, Nan Duan,
and Weizhu Chen. ToRA: A tool-integrated reasoning agent for mathematical problem solv-
ing. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=EpO0Tt jVoaph

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of 1lms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2504.01296.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-rl:
Training llms to reason and leverage search engines with reinforcement learning, 2025. URL
https://arxiv.org/abs/2503.09516.

Adam Daniel Laud. Theory and application of reward shaping in reinforcement learning. University
of Illinois at Urbana-Champaign, 2004.

Wenjun Li, Dexun Li, Kuicai Dong, Cong Zhang, Hao Zhang, Weiwen Liu, Yasheng Wang, Ruiming
Tang, and Yong Liu. Adaptive tool use in large language models with meta-cognition trigger,
2025a. URL https://arxiv.org/abs/2502.12961l

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl, 2025b. URL https:
//arxiv.org/abs/2503.23383l

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URLhttps://arxiv.org/abs/2203.02155.

Cheng Qian, Chi Han, Yi Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. CREATOR: Tool creation for
disentangling abstract and concrete reasoning of large language models. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 6922-6939, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.462. URL https://aclanthology.org/2023.
findings-emnlp.462/.

Cheng Qian, Peixuan Han, Qinyu Luo, Bingxiang He, Xiusi Chen, Yuji Zhang, Hongyi Du, Jiarui
Yao, Xiaocheng Yang, Denghui Zhang, et al. Escapebench: Pushing language models to think
outside the box. arXiv preprint arXiv:2412.13549, 2024a.

Cheng Qian, Shihao Liang, Yujia Qin, Yining Ye, Xin Cong, Yankai Lin, Yesai Wu, Zhiyuan Liu,
and Maosong Sun. Investigate-consolidate-exploit: A general strategy for inter-task agent self-
evolution. arXiv preprint arXiv:2401.13996, 2024b.

10

https://github.com/PeterGriffinJin/Search-R1
https://github.com/PeterGriffinJin/Search-R1
https://github.com/GAIR-NLP/ToRL
https://github.com/GAIR-NLP/ToRL
https://arxiv.org/abs/2503.04697
https://arxiv.org/abs/2502.04463
https://arxiv.org/abs/2504.11536
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://arxiv.org/abs/2504.01296
https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2502.12961
https://arxiv.org/abs/2503.23383
https://arxiv.org/abs/2503.23383
https://arxiv.org/abs/2203.02155
https://aclanthology.org/2023.findings-emnlp.462/
https://aclanthology.org/2023.findings-emnlp.462/

Under review as a conference paper at ICLR 2026

Cheng Qian, Chenyan Xiong, Zhenghao Liu, and Zhiyuan Liu. Toolink: Linking toolkit creation and
using through chain-of-solving on open-source model. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 831-854, 2024c.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tiir, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. arXiv preprint, 2025a.

Cheng Qian, Emre Can Acikgoz, Hongru Wang, Xiusi Chen, Avirup Sil, Dilek Hakkani-Tiir,
Gokhan Tur, and Heng Ji. Smart: Self-aware agent for tool overuse mitigation. arXiv preprint
arXiv:2502.11435, 2025b.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis, 2023. URL https://arxiv.org/abs/2307.16789,

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen?2.5 technical report, 2025.
URLhttps://arxiv.org/abs/2412.15115.

Evan F Risko and Sam J Gilbert. Cognitive offloading. Trends in cognitive sciences, 20(9):676—688,
2016.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539—
68551, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Yuanhao Shen, Xiaodan Zhu, and Lei Chen. SMARTCAL: An approach to self-aware tool-
use evaluation and calibration. In Franck Dernoncourt, Daniel Preotiuc-Pietro, and Anasta-
sia Shimorina (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing: Industry Track, pp. 774-789, Miami, Florida, US, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-industry.59. URL
https://aclanthology.org/2024.emnlp-industry.59/l

David Silver and Richard S Sutton. Welcome to the era of experience. Google Al, 1, 2025.

DeepSeek-Al Team. Deepseek-rl: Incentivizing reasoning capability in 1lms via reinforcement
learning, 2025. URL https://arxiv.org/abs/2501.12948\

OpenAl Team. Openai ol system card, 2024. URL https://arxiv.org/abs/2412.16720.

Hongru Wang, Huimin Wang, Zezhong Wang, and Kam-Fai Wong. Integrating pretrained language
model for dialogue policy evaluation. In ICASSP 2022 - 2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 6692-6696, 2022. doi: 10.1109/
ICASSP43922.2022.9747593.

Hongru Wang, Yujia Qin, Yankai Lin, Jeff Z. Pan, and Kam-Fai Wong. Empowering large lan-
guage models: Tool learning for real-world interaction. In Proceedings of the 47th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
24, pp. 2983-2986, New York, NY, USA, 2024a. Association for Computing Machinery. ISBN
9798400704314. doi: 10.1145/3626772.3661381. URL https://doi.org/10.1145/
3626772.3661381.

11

https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2412.15115
https://aclanthology.org/2024.emnlp-industry.59/
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.16720
https://doi.org/10.1145/3626772.3661381
https://doi.org/10.1145/3626772.3661381

Under review as a conference paper at ICLR 2026

Hongru Wang, Rui Wang, Boyang Xue, Heming Xia, Jingtao Cao, Zeming Liu, Jeff Z. Pan,
and Kam-Fai Wong. AppBench: Planning of multiple APIs from various APPs for com-
plex user instruction. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
15322-15336, Miami, Florida, USA, November 2024b. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.856. URL https://aclanthology.org/2024.
emnlp-main.856/.

Hongru Wang, Boyang Xue, Baohang Zhou, Tianhua Zhang, Cunxiang Wang, Huimin Wang, Guan-
hua Chen, and Kam fai Wong. Self-dc: When to reason and when to act? self divide-and-
conquer for compositional unknown questions, 2025a. URL https://arxiv.org/abs/
2402.13514.

Rui Wang, Hongru Wang, Boyang Xue, Jianhui Pang, Shudong Liu, Yi Chen, Jiahao Qiu, Derek Fai
Wong, Heng Ji, and Kam-Fai Wong. Harnessing the reasoning economy: A survey of efficient rea-
soning for large language models, 2025b. URL https://arxiv.org/abs/2503.24377.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
of-thought reasoning in llms, 2025. URL https://arxiv.org/abs/2502.03373|

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R. Fung, Hao Peng, and Heng Ji. Craft: Customizing
Ilms by creating and retrieving from specialized toolsets, 2024. URL https://arxiv.org/
abs/2309.17428.

12

https://aclanthology.org/2024.emnlp-main.856/
https://aclanthology.org/2024.emnlp-main.856/
https://arxiv.org/abs/2402.13514
https://arxiv.org/abs/2402.13514
https://arxiv.org/abs/2503.24377
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2309.17428
https://arxiv.org/abs/2309.17428

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs did not play significant roles in this paper’s research ideation and/or writing to the extent
that they could be regarded as a contributor. In the experiments, LLMs are treated as the main
experimental object.

B RELATED WORK

Reward Shaping in RL. Reward shaping plays a critical role in reinforcement learning, as it di-
rectly shapes the behavior the model learns to optimize (Laud, 2004; Wang et al.l 2022). Recent
advances have introduced several reward signals for LLMs to consider the correctness and the in-
ternal knowledge-only reasoning efficiency together such as the length of responses and difficulty
of the questions (Aggarwal & Welleckl 2025} |Arora & Zanettel 20255 |Wang et al.| [2025b). For in-
stances, Length Controlled Policy Optimization (LCPO) (Aggarwal & Welleck, [2025)) is proposed
to satisfy the length constraints while optimizing reasoning performance and some efforts try to dy-
namically allocate inference time compute based on task complexity (Arora & Zanette, 2025 |[Hou
et al.,[2025).

C TOOL-INTEGRATED REINFORCEMENT LEARNING

PPO in TRL. Proximal Policy Optimization (PPO) is a widely used policy-gradient method in lots
of tasks (Ouyang et al.| [2022). Given our formulation, PPO updates the policy, using trajectories
sampled from the previous policy, and maximizes the following objective:

[y

1
Foro(0) = B,y > 1(p0) - min <ptAt7chp(pt7 e,1+e>At>7

(3
Zlu\ I(y)

where g and 7,4 are current and previous policy models, and pF%. Here, T(y;)
o 9 b

is an indicator function marking whether token y, is generated by the model (i.e., r; and tc;) or
returned from the environment £ (i.e., 0;). The advantage estimate A; is computed via Generalized
Advantage Estimation (GAE) and e a PPO clipping threshold to constrain the policy update.

GRPO in TRL. To improve the stability of policy optimization in language models and avoid re-
liance on an additional value function approximation, Group Relative Policy Optimization (GRPO)
is introduced which uses the relative ranking of multiple sampled outputs as a baseline for comput-
ing advantages, rather than fitting a value function. For each input question g, GRPO samples a
group of G response {y1, Y2, ..., y¢ | from the reference policy ;. The trained policy 7y is then
updated by maximizing the following objective:

G Yi
1 il

1
Jareo(0) = Eqp, {yi ¥y ~mou(-14:€) {G Z W() Z)
i=1 2ut=14Vit) =1 9

- min (ptAi,h clip (Pm 1—¢ 1+ 6) Avt)] - ﬁDKL[M H 7TrefL

o (yi,elT,yi,<t;R) 4
Here, p; = Tl SR A;+ denotes the advantage at token ¢ in response y;, computed based

on the relative ranking of rewards within the group, 3 controlling the KL-regularization strength.
The clipping threshold e ensures stable updates.

13

Under review as a conference paper at ICLR 2026

D SEARCH TEMPLATE

Answer the given question. You must conduct reasoning inside <think> and </think> first
every time you get new information. After reasoning, if you find you lack some knowledge,
you can call a search engine tool by <search> query </search>, and it will return the top
searched results between <observation> and </observation>. You need to make every search
call count and gain helpful results. If you find no further external knowledge needed, you can
directly provide the answer inside <answer> and </answer> without detailed illustrations.
For example, <answer> xxx </answer>. Question: question.

E REWARD FUNCTION

E.1 FIGURE ILLUSTRATION

We draw the two types of 740, defined in the main content for better understanding. Fig. [5] shows
the illustration of these reward functions for OTC-PPO and OTC-GRPO respectively. It is very clear
that: 1) Left: as the number of tool calls increases, the .., decreases accordingly. Thus when
multiple trajectories leads to correct answer, the one that use less tools will get higher reward and
the one that do not use tool will get the highest reward; 2) Right: It is obvious that the diagonal
achieves the highest reward as the number of tool calls is the less one, and as the m increases, the
color brightness becomes larger since multiple tool calls are involved.

Fios = €OS (52) under different ¢ values Fioi(m, n) Heatmap Comparison for ¢ =2,4,8
o0 = €05 (8¢ c=4

c= c=8
19 19 19
10
Y u v
15 15 15
08
13 13 13
n n n 062
9 9 9 3
04 %
7 7 7
s s s
02
3 3 3
1 1 1 00
0 2 a4 6 8 10 12 18 16 18 0 z 4 6 8 10 12 14 16 18 0 z 4 6 8 10 12 14 16 18

Figure 5: Left: the illustration of tool-use reward functions in OTC-PPO; and Right: the illustration
of tool-use reward functions in OTC-GRPO.

E.2 THEORETICAL JUSTIFICATION

We mainly follow the justification (Section 4.2) in the paper (Arora & Zanette, [2025)) to showcase
our proposed reward design leads to reducing the tool calls without compromising accuracy. We
strongly encourage readers to refer to the previous paper for complete details. All assumptions
made in that work still hold in our setting, with the only difference being that our response is defined
as y = (7, a), which includes both the tool-integrated reasoning trajectory and the final answer, rather
than language-only reasoning.

Let 6 ; ; denote the population-level parameters of the policy models obtained by maximizing Equa-
tion[7] i.e.,
G:ff = arg mgx {Ea:N;DEprg(z) [(a * Ttool)]} (10)

as ry(q,y) is mainly the indicator function about the correctness and format. Therefore, the
population-level maximizer Poz,, is as accurate as the population-level maximizer p; and Acc

* _

(p9eff) =1.

E.3 GENERALIZATION OF REWARD

We use two major forms of 74: 1) ré = Teorrect; and ii) ri = Teorrect + T format 10 illustrate the

generalization of our proposed tool-integrated reward design rfif"l = QU * Tyool * T

14

Under review as a conference paper at ICLR 2026

Search-R1-PPO (3B) OTC-PPO (3B) ® Search-R1-GRPO (3B) OTC-GRPO (3B)
TriviaQA PopQA 2Wiki Muslque Bamboogle

0.6 0.075
a 0.4 0 050
=4

0.2 0.025

0.0 0.000

(a) Qwen2.5-3B-Base

Search-R1-PPO (7B) ® OTC-PPO (7B) ® Search-R1-GRPO (7B) ® OTC-GRPO (7B)
TriviaQA PopQA 2Wiki Musique Bamboogle

15 0.6
03
10 Q04 & 02 & 0.2
05 02 01
0.0 0.0 0.0

(b) Qwen2.5-7B-Base

TP
T

Figure 6: The Out-of-domain performance of OTC-PO and Search-R1 in TP.

Table 6: The results of OTC-PO with different o on Qwen2.5-7B-Base model

NQ \ HotpotQA

Models ey Ty TP [EMM TC) TP
a=1 0.446 1.040 0.429 0.383 1.464 0.262
a=2 0.354 1.571 0.225 0.320 2.062 0.155
a=3 0.389 1.530 0.254 0.340 1.948 0.175

If the answer is correct, the ri and ri are both positive and fixed for all questions, therefore the °°!
is only determined by the number of « and ry,,;. Thus it can assign higher score for less tools and
lower score for more tools by definition of 7444;.

If the answer is wrong, the ré will be 0, and therefore disables the influence of 7,,;, reducing the

reward hacking issue. The ri will be 7 ¢orma: and then be‘ml becomes * T'yo0l * T format Which
is acceptable. Considering two cases of 7 tormat» if 7format i 0, then the final reward is also 0;
and if 7 fo,mat 1S a positive, the rtool still holds as less tools will be assigned more rewards. This is
reasonable since less tool calls means less cost especially when the answer is wrong. We note that the
reward gap here between wrong answer (i.€., 7" formaqs) and correct answer (i.e., Tcorrect + 7 format)
is significant for the policy model to learn the desirable behavior.

F ANALYSIS OF SEARCH AS TOOL

F.1 THE EFFECTS OF «

Table [6] shows the performance of OTC-PO with different c. It can be found that increasing o can
not leads to better results. We further check the reward changes during the training and find that it
becomes harder for the model to learn the desired behavior when using a larger a;, because a single
tool call can cause large fluctuations in the reward, especially considering the relatively lower C'.
We suspect the o will be more important in much longer tool-integrated reasoning trajectories.

G ANALYSIS OF CODE AS ToOL

G.1 THE EFFECTS OF '

Table[7] shows the effects of C' in ToRL. It is observed that i) the larger C' always leads to more tool
calls on ToORL-GRPO if we only consider the final correctness as the reward and do not penalize
the tool use behaviors of LLMs; ii) OTC-GRPO achieves more stable tool calls which is more
reasonable as the optimal number of tool calls should not be affected by C, and leads to bigger TP

15

Under review as a conference paper at ICLR 2026

Table 7: The effects of C' on Qwen2.5-Math-7B Base model.

Models AIME24 | AIME25
EM () TC{) TP (1) [EM(®) TC{) TP (1)
C=1 ‘

ToRL-GRPO | 30.0 09 33.3 26.7 0.9 29.7
OTC-GRPO | 35.8 0.8 44.8(A345%) | 267 0.8 334(A11.1%)
c=2 T oToTTTTTTToormTTTTmm T m T m T

ToRL-GRPO | 333 1.4 23.8 25.8 1.4 18.4
OTC-GRPO | 333 1.0 333(A399%) | 233 0.7 333 (A81.0%)
c=3 T ToT oo ToormmT T m T m T

ToRL-GRPO | 36.7 2.1 175 26.7 2.1 127
OTC-GRPO | 36.7 0.7 524 (A1994%) | 233 0.8 29.1 (A 129.1%)

0.00 -
—0.25 1

ward

2 -0.50 1

—0.75 A

ining

—1.00 -

Tra

—1.25 1

—1.50 1

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Step Step

Figure 7: Left: Training reward changes of TORL-GRPO; and Right: Training reward changes of
OTC-GRPO.

Table 8: The results of OTC-PO on MATH when C = 3.

MATH

Models EM{ TC() TP ()
Qwen2.5-Math-1.5B(-Base)
ToRL-GRPO 52.2 1.8 29.0
OTC-GRPO | 537 1.1() 48.8 (A 68.28%)

" Qwen2.5-Math7B(Base) -~~~ "~~~ """ °
ToRL-GRPO 59.7 1.49 40.07
OTC-GRPO 61.9 0.68 () 91.03 (A 127.2%)

improvement as C' increases. Further, Fig.[7]shows the rewards changes with different C.. It can be
found that GRPO tends to collapse earlier with bigger C' and our OTC-PO can delay this, as also
observed using search as tool.

G.2 ADDITIONAL RESULTS

We additionally run the evaluation on MATH dataset following ToRL (Li et al.| 2025b), and Tableg]
shows the final results. The conclusion also holds as analyzed in the main experiments, revealing
the great generalization capability of our method.

16

Under review as a conference paper at ICLR 2026

H CASE STUDY

H.1 MORE EXAMPLES

Fig. [§] and Fig. [0 show more examples between Search-R1 and OTC-PO methods. Fig. [0 and
Fig. [LT] show more examples between TORL-GRPO and OTC-GRPO. It is clear that OTC-PO can

leverage more reasoning capabilities while minimizing external tool calls.

Case Study: No Tool Call Required

Question: The Bellagio resort owned by MGM Resorts international is located in which US
city?
Answer: Las Vegas

Search-R1-PPO: <think> I need to find the US city where the Bellagio resort owned by
MGM Resorts International is located. </think>

<search> Bellagio resort owned by MGM Resorts International </search>

<observation> ... </observation>

<search> Bellagio resort city </search>

<observation> ... </observation>

<think> Based on the observations, the Bellagio resort owned by MGM Resorts Interna-
tional is located in Las Vegas, Nevada. </think>

<answer> Las Vegas </answer> (Tool Calls = 2)

OTC-GRPO: To answer this question, let’s first reason through the information provided:
1. We need to find the US city where the Bellagio resort, owned by MGM Resorts Interna-
tional, is located.

2. The Bellagio resort is a well-known hotel and casino located in Las Vegas, Nevada.

3. Therefore, the US city where the Bellagio resort is located is Las Vegas.

<answer> Las Vegas </answer> (Tool Calls = 0)

Figure 8: An example that OTC-GRPO provide correct answer solely rely on its own internal rea-

soning without any external tool calls while Search-R1 extensively call unnecessary tools.

17

Under review as a conference paper at ICLR 2026

Case Study: Less Tool Calls with Accurate Search

Question: What science fantasy young adult series, told in first person, has a set of
companion books narrating the stories of enslaved worlds and alien species?
Answer: Animorphs

Search-R1-PPO: <think> I need to find a science fantasy young adult series that is told in
first person and has a set of companion books narrating the stories of enslaved worlds and
alien species. </think>

<search> science fantasy young adult series told in first person </search>

<observation> ... <observation>

<search> companion books animorphs enslaved worlds alien species </search>
<observation> ... </observation>

<search> science fantasy young adult series told in first person enslaved worlds alien
species companion books </search>

<observation> ... </observation>

<think> Based on the observations, the science fantasy young adult series told in first person
and has a set of companion books narrating the stories of enslaved worlds and alien species
is “Animorphs”. </think>

<answer> Animorphs </answer> (Tool Calls = 3)

OTC-GRPO: To answer this question, let’s first reason through the information provided:
1. We need to find a science fantasy young adult series.

2. The series is told in first person.

3. It has a set of companion books narrating the stories of enslaved worlds and alien species.
Let’s search for this information:

<search> What science fantasy young adult series, told in first person, has a set of companion
books narrating the stories of enslaved worlds and alien species? </search>

<observation> ... </observation>

Based on the search results, the science fantasy young adult series that fits the description is
"Animorphs".

<answer> Animorphs </answer> (Tool Calls = 1)

Figure 9: An example that OTC-GRPO uses less tool calls but with more accurate search to arrive a
correct answer.

18

Under review as a conference paper at ICLR 2026

ToRL-GRPO: To solve this problem, we need to determine ...

“python

from sympy import symbols, Eq, solve
s = symbols('s')

equation = Eq(4 - 9/s, 2.4 - 9/(s+2))
s_solution = solve(equation, s)
Rl:int(s_solution)

“output

[-4.50000000000000, 2.50000000000000]

The solutions for \\(s\\) are \\(-4.5\\) and \\(2.5\\) ... Let’s confirm
the solution...

“python

time_spent_walking = 9 / new_speed
total_time_minutes = (time_spent_walking * 60) + t_value
print(total_time_minutes)

" output
204.0
The total time it takes for Aya to walk at a speed of \\(3\\) km/h,

including the \\(24\\) minutes spent in the coffee shop, is

\\boxed{204}\\) (Tool Calls =2)

(Question: Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards. When she walks at a constant speed)
of s kilometers per hour, the walk takes her 4 hours, including t minutes spent in the coffee shop. When she walks $s+2$ kilometers per
hour, the walk takes her 2 hours and 24 minutes, including t minutes spent in the coffee shop. Suppose Aya walks at $s+\\frac{1}{2}$
kilometers per hour. Find the number of minutes the walk takes her, including the t minutes spent in the coffee shop. Answer: 204

OTC-GRPO: To solve this problem, we need to determine ...

" python

import math

a=16,b=32c=-18

discriminant = b**2 - 4*a*c

s1 = (-b + math.sqrt(discriminant)) / (2*a)
s2 = (-b - math.sqrt(discriminant)) / (2*a)
print((s1, s2))

“output
(2.4999999999999996, -4.499999999999999)

Since speed cannot be neg\ative, we have \\(s = 2.5\\) km/h.\n\nNow
we can substitute \\(s = 2.5\\) back into one of the original equations to
find \\(t\\). Using the first equation:\n\\\n\\frac{9}{2.5} + \\frac{t}{60} =
4\n\\%\n\\[\n3A6 + \\frac t)qsog = An\\n\\\n\\frac{t}{60} = 0.4\n\\\n\\[\nt =
0.4 \ltimes 60 = 24\n\\|\n\nSo, \\(t = 24\\) minutes. Now we need to find
the total time when Aya walks at \\(s + \\frac{1}{2} = 2.5 + 0.5 = 3\\)
km/h. The time spent walking is \\(\frac{9X3} = 3\\) hours, and the
total time including the time spent in the coffee shop is \\(3 +
\\frac{24}{60} = 3 + 0.4 = 3.4\\) hours, which is 3 hours and 24
minutes.\n\nThus, the number of minutes the walk takes her, including
the \\(t\\) minutes spent in the coffee shop, is \\(3 \\times 60 + 24 =
204\\) minutes. The final answer is: \\boxed{204}

(Tool Calls = 1)

Figure 10: An example of OTC-GRPO use less fool calls to get the correct answer.

Answer: 5

ToRL-GRPO: To solve the equation \\(x = \\sqrt{11 - 2x} + 4\\),
we can follow these steps

“python

import sympy as sp

X = sp.symbols('x')

equation = x - (sp.sqrt(11 - 2*x) + 4)

isolated_sqrt = sp.Eq(x - 4, sp.sqrt(11 - 2*x))
squared_equation = sp.Eq((x - 4)**2, 11 - 2*x)
simplified_equation = sp.simplify(squared_equation)
solutions = sp.solve(simplified_equation, x)

valid_solutions = [sol for sol in solutions if equation.subs(x, sol)

print(valid_solutions)

“output
5]

The solution to the equation \\(x = \\sqrt{11 - 2x} + 4\\) is \\(x =
5\\). Therefore, the final answer is \\(\\boxed{5}\).

(Tool Calls = 1)

1
I
I
I
I
I
I
I
I
|
| [x2-6x+5=0\]
I
I
I
|
I
I
I
I
I
|

Question: Find all values of x that satisfy the equation $x = \\\sqrt{11-2x} + 4$.

OTC-GRPO: To solve the equation \\(x =\\sqrt{11 - 2x} + 4\\), we can
follow these steps:

1. Isolate the square root term.

2. Square both sides to eliminate the square root.

3. Solve the resulting equation.

4. Verify the solutions by substituting back into the original equation to
ensure they satisfy it.

Let's go through these steps systematically.

1. Isolate the square root term:\n\\[x - 4 =\\sqrt{11 - 2x} \\]
2. Square both sides:\n\\[(x - 4)A2 = 11 - 2x \\]
3. Expand and simplify the equation:\n\\[X2 - 8x + 16 = 11 - 2x \\]

4. Solve the quadratic equation:\n\[(x - 5)(x - 1) =0\\]
So, the solutions are \\(x = 5\\) and \\(x = 1\\).

5. Verify the solutions by substituting back into the original equation.
For \\(x = 5\\):\n\\5 5 =\sqrt{11 - 2 \\cdot 5} + 4 W\n\\[5 = \\sqrt{1} + 4
W[5 =1+ 4 \\n\\[5 = 5 \\[\nThis is true, so \\(x = 5\\) is a valid
solution.\n\nFor \\(x = 1\):\n\\[1 = \\sqrt{11 - 2 \\cdot 1} + 4 \\n\\[1 =
\sqrt{9} + 4 W\n\\[1 =3 + 4 \\n\\[1 = 7 \\nThis is false, so \\(\x =1\)
is not a valid solution.\n\nTherefore, the only valid solution is \\(x =
5\\).\n\nThe final answer is: \\boxed{5}

(Tool Calls = 0)

Figure 11: An example of OTC-GRPO does not need any external tool calls to get the correct

answer.

19

	Introduction
	Related Work
	Methodology
	Task Definition
	Tool-integrated Reinforcement Learning
	OTC-PO: Optimized Tool Call-controlled Policy Optimization

	Experiments
	Set up
	Main Results

	Analysis
	Tool Use Behavior Analysis
	Out-of-domain Evaluation
	More Analysis

	Conclusion and Future Work
	The Use of Large Language Models (LLMs)
	Related Work
	Tool-integrated Reinforcement Learning
	Search Template
	Reward Function
	Figure Illustration
	Theoretical Justification
	Generalization of Reward

	Analysis of Search as Tool
	The Effects of

	Analysis of Code as Tool
	The Effects of C
	Additional Results

	Case Study
	More Examples

