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Abstract
Machine translation systems often struggle001
with maintaining quality in low-resource sce-002
narios, due to the lack of sufficient parallel003
data. We present a novel learning framework004
that continuously (potentially life-long) im-005
proves Large Language Model (LLM)’s per-006
formance for low-resource language machine007
translation through self-optimization. Our sys-008
tem comprises three key components: an In-009
struction Optimizer that dynamically refines010
translation prompts based on failure cases, a011
Demonstration Manager that intelligently se-012
lects relevant examples for in-context learning,013
and a Quality Estimator using multiple met-014
rics that evaluates and arranges translations for015
the Instruction Optimizer and the Demonstra-016
tion Manager. The resulting system, called017
DAIL-translation, boosts the performance in018
low-resource machine translation of moderate-019
sized LLMs (∼7B), larger-scale LLMs (∼70B)020
and OpenAI model series, with only 1k mono-021
lingual English sentences as a starting point.022

1 Introduction023

LLMs have demonstrated significant potential in024

the field of natural language processing (Yang025

et al., 2024b; OpenAI, 2023; Dubey et al., 2024).026

Some studies (Enis and Hopkins, 2024; Robin-027

son et al., 2023; Zhu et al., 2024a) have shown028

that these models perform well in neural machine029

translation (NMT) tasks for high-resource lan-030

guages but struggle with low-resource languages.031

Although most languages spoken worldwide to-032

day are low-resource languages, many languages033

within this category receive limited attention and034

resources (Joulin et al., 2017; Costa-jussà et al.,035

2022). Additionally, the data for low-resource lan-036

guages is often scarce and difficult to find online.037

Therefore, machine translation for low-resource038

languages continues to be a challenging problem.039

Effective methods for enhancing LLM capabil-040

ities primarily include: (1) Post-training meth-041

ods such as Supervised Fine-Tuning (SFT), Direct 042

Preference Optimization (DPO) (Rafailov et al., 043

2023) have demonstrated potential in improving 044

model performance. However, as indicated by 045

(Vieira et al., 2024), SFT can negatively impact 046

model performance in machine translation tasks 047

when training data is limited. While Contrastive 048

Preference Optimization (CPO) (Xu et al., 2024) 049

achieves great results in machine translation, its 050

effectiveness is mainly verified on high-resource 051

languages. (2) Prompt Engineering addresses the 052

prompt-sensitive nature of LLMs, which signif- 053

icantly affects interaction outcomes. Neverthe- 054

less, automated prompt engineering methods (Yang 055

et al., 2024c; Wang et al., 2024) often require per- 056

formance of historical prompts as feedback signals, 057

necessitating frequent and costly calls to LLMs. (3) 058

In-Context Learning (ICL), by integrating exam- 059

ples into prompts, can enhance a model’s ability 060

to understand semantics and formats. However, 061

according to (Court and Elsner, 2024), LLMs ex- 062

hibit poor retrieval performance for low-resource 063

languages, particularly when translating from low- 064

resource languages to English. This issue arises 065

due to difficulties in obtaining accurate text embed- 066

dings due to insufficient training data, leading to 067

failures in similarity-based retrieval. 068

To tackle the challenges and better apply these 069

effective methods to low-resource language trans- 070

lation, we have designed the DAIL-translation sys- 071

tem. Our system is structured around two databases 072

and three key components. One database stores 073

accurate translations, denoted as {(gq, gt)}, facili- 074

tating ICL sampling; whereas the other retains po- 075

tentially wrong translations, denoted as {(bq, bt)}, 076

which aids in prompt optimization. The Instruc- 077

tion Optimizer dynamically refines translation 078

prompts by analyzing stored failure cases, thus 079

reducing the dependency on costly, frequent inter- 080

actions with LLMs for automated prompt engineer- 081

ing. Our research also indicates that the length ratio 082
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between input and output in high-quality transla-083

tion pairs aligns with a language-specific Gaussian084

distribution. Consequently, when selecting ICL ex-085

amples, the Demonstration Manager draws from086

this length ratio distribution to enhance format com-087

prehension, complementing traditional similarity-088

based approaches for better semantic capturing. Af-089

ter translation, the Quality Estimator evaluates the090

output quality, deciding which database the trans-091

lation should populate, thereby expanding the ICL092

search space for the Demonstration Manager or pro-093

viding more bad cases for the Instruction Optimizer.094

Beyond length ratio, we have also identified that the095

perplexity ratio between input and output should096

be constrained within a certain range. Therefore,097

we employ both length ratio and perplexity as indi-098

cators for selection. Through these interconnected099

components, DAIL-translation demonstrates a ro-100

bust, self-improving mechanism that significantly101

boosts the performance of LLMs across different102

scales, including moderate-sized models (∼7B pa-103

rameters), larger models (∼70B parameters), and104

those within the OpenAI series.105

Our contributions are:106

• We propose DAIL-translation, a continuous self-107

improving system to enhance the translation ability108

of LLMs in low-resource languages without train-109

ing and using only monolingual English data.110

• With the help of past translations, we build an111

Instruction Optimizer that dynamically refines112

prompts for better translation quality.113

• We adopt both perplexity and length ratios as cru-114

cial indicators for ICL example selection, contribut-115

ing to the system’s self-improvement mechanism.116

• Our experiments show superior performance of the117

system on 5 low-resource languages across differ-118

ent LLM scales, demonstrating its versatility.119

2 Related Work120

LLMs have demonstrated remarkable capabilities121

across a range of natural language processing tasks,122

showcasing their potential to effectively tackle123

downstream machine translation tasks. Notably,124

these LLMs can achieve impressive performance125

with minimal or even no task-specific fine-tuning, a126

feature particularly advantageous for low-resource127

languages (Bawden and Yvon, 2023; Jiao et al.,128

2023). This capability is frequently attributed to129

advanced techniques such as prompt design and130

in-context learning.131

Effective communication with AI systems re- 132

quires practice and understanding of optimal inter- 133

action strategies. As such, automatic prompt opti- 134

mization (Yang et al., 2024c; Wang et al., 2024) has 135

emerged as an active area of research, with machine 136

translation being no exception. Recent studies high- 137

light significant variations in zero-shot prompting 138

performance based on the template used (Zhang 139

et al., 2023a). Additionally, it has been discovered 140

that the stylistic elements of a prompt influences 141

the quality of translation outputs (Jiao et al., 2023). 142

Turning to the field of in-context learning, the 143

strategy for selecting demonstration examples 144

plays a crucial role in performance outcomes. Re- 145

search indicates that employing diverse strategies 146

for prompt example selection can lead to varying 147

results (Zhang et al., 2023a). Furthermore, some 148

scholars argue that the intrinsic quality of an ex- 149

ample often outweighs its proximity to the cur- 150

rent source sentence in terms of importance (Vi- 151

lar et al., 2023). Few-shot demonstrations have 152

been shown to influence the output in terms of lan- 153

guage variety and formality (Garcia et al., 2023). 154

Efficient augmentation of multiple ICL prompt in- 155

puts has been found to enhance the accuracy and 156

confidence of LLM predictions (Yao et al., 2023). 157

Moreover, the accuracy of translations can vary 158

significantly based on the examples included in 159

the prompt (Merx et al., 2024): for instance, one- 160

shot task-level example improves translation qual- 161

ity (Agrawal et al., 2023), and providing LLMs 162

with specific examples or relevant contextual infor- 163

mation about the translation task substantially im- 164

proves their performance (Jiang and Zhang, 2024). 165

3 DAIL-translation Approach 166

Since we do not have enough data to fine-tune an 167

LLM, DAIL-translation enhances translation capa- 168

bilities through the integration of three intercon- 169

nected components (Figure 1). For each language, 170

the system maintains two databases—one for high- 171

quality translations and another for potentially in- 172

correct translations—alongside an instruction op- 173

timizer, a demonstration manager, and a quality 174

estimator. The translation process for a single ut- 175

terance involves four steps: (1) for a given query Q 176

to be translated, we first check if there are enough 177

number of wrong translations |{(bq, bt)}| available. 178

If so, the instruction optimizer refines the current 179

translation instruction I to generate an improved 180

instruction I ′; otherwise, this step is bypassed. (2) 181
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Figure 1: System architecture of our translation framework consisting of three main components: (1) Instruction Op-
timizer dynamically refines translation prompts based on failure cases, (2) Demonstration Manager that intelligently
retrieves relevant examples through similarity and length-based matching, and (3) Quality Estimator that evaluates
translation quality using perplexity-based, length-based, and reference-free metrics. The bottom timeline illustrates
the system’s life-long learning capability, where current translation contributes to continuous improvement - wrong
translations set aids in prompt optimization, while successful ones facilitate ICL sampling in the future.

Demonstration Manager intelligently retrieves rele-182

vant examples D from {(gq, gt)} through a combi-183

nation of similarity-based search and length-ratio-184

based sampling to assist with the translation; (3)185

LLM takes Q, I ′ and D as inputs to produce trans-186

lation output T ; (4) Quality estimator evaluates the187

output quality of T given Q, and determines which188

database the translation should be stored into.189

3.1 Instruction Optimizer190

Large Language Models (LLMs) have been shown191

to be highly sensitive to the prompt format (Zhao192

et al., 2021). Notably, semantically similar prompts193

can yield drastically different performance out-194

comes (Kojima et al., 2022; Zhou et al., 2023;195

Zhang et al., 2023b). In some instances, optimized196

prompts may include several uninterpretable to-197

kens (Wen et al., 2023), making it challenging198

for humans to discover and construct such effec-199

tive prompts manually. Recent work (Yang et al.,200

2024c; Wang et al., 2024) has shown that LLMs can201

be utilized to optimize instruction, but this often202

involves repeatedly scoring the performance of his-203

torical prompts on the same dataset, which is time-204

consuming and costly. To address this issue, we205

propose dynamically refining translation prompts206

based on past failure cases. This approach is analo-207

gous to a self-reflective process (Shinn et al., 2023;208

Ji et al., 2023), where errors serve as the foundation209

for future enhancements.210

The optimization process is conducted in a black-211

box manner, making it applicable to both open-212

source models and LLMs that are accessible only 213

through API calls. In each optimization step, we 214

provide the optimizer LLM with the instruction 215

trajectory as contextual hints, current {(bq, bt)} as 216

semantic gradients, and a description of the opti- 217

mization goal as well as how to utilize the provided 218

information. It is important to note that the poten- 219

tially wrong translations are removed following the 220

completion of the optimization step. The prompt 221

templates used for this process can be diverse, a 222

sample of which is detailed in Appendix A. 223

3.2 Demonstration Manager 224

In-context parallel examples enhance machine 225

translation by providing the model with knowledge 226

of the task and the desired output format (Agrawal 227

et al., 2023). It is well-established that selecting 228

ICL examples based on cosine similarity outper- 229

forms random selection because it provides more 230

contextually relevance to the previously unseen 231

source sentence. However, in translation tasks in- 232

volving low-resource languages, particularly when 233

they are the source language, identifying multi- 234

ple highly similar examples becomes challenging. 235

This difficulty can stem from: (1) the limited avail- 236

ability of the parallel data from which to retrieve 237

examples; and (2) the relatively weak tokenizer and 238

embedding models for low-resource languages. 239

With the aim of identifying an efficient solution 240

that complements traditional similarity-based meth- 241

ods, we draw inspiration from the Gale-Church 242

alignment algorithm (Gale and Church, 1991; Liu 243
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Figure 2: Fitted Gaussian distribution of length ratios for three different low-resource languages.

Figure 3: Fitted distribution of Perplexity Ratios for three different low-resource languages.

et al., 2024), which highlights that the character-244

level length ratio (length ratio for short in following245

texts) between source and target sentences typically246

varies around a fixed value, generally following247

a Gaussian distribution. Our analysis across ten248

datasets reveals that the length ratio between low-249

resource and English pairs conforms to a language-250

specific Gaussian distribution. This insight implies251

that if the parameter (i.e. mean and standard de-252

viations) of this distribution can be determined,253

the desired target sentence length can be estimated254

from the source sentence. Accordingly, when se-255

lecting ICL examples, the Demonstration Manager256

utilizes this length ratio distribution to enhance the257

model’s comprehension of the output format.258

Parameter Estimation. The parameters of the259

distribution are determined by fitting them to260

{(gq, gt)}. This set can be cold-started using261

pseudo parallel examples (Zhang et al., 2023a),262

where we translate a collection of English sen-263

tences into low-resource languages via zero-shot264

prompting. Specifically, (1) We uniformly sample265

1,000 English sentences from the dataset provided266

by (Maillard et al., 2023), who extracted sentences267

from Wikimedia’s “List of articles every Wikipedia268

should have”. We reveal an increase in model per-269

formance when data gets larger, and approximately270

1,000 cold-start examples is enough to make a sta-271

tistically significant improvement. (2) We translate272

them into low-resource languages with GPT-4o.273

This method simulates the common scenario where 274

low-resource text is scarce, whereas English mono- 275

lingual corpora are abundant and readily accessible. 276

Since assumed distribution is Gaussian, length ra- 277

tios that deviate beyond 3σ are considered outliers 278

and removed for LLM-generated translation. The 279

resulting distribution closely aligns with that of 280

human translations. Consequently, we utilize data 281

translated by LLMs as the initial {(gq, gt)}. The 282

distribution for different languages are illustrated in 283

Figure 2. For each query, we sample one example 284

from {(gq, gt)} according to the fitted distribution. 285

3.3 Quality Estimator 286

After each translation, the query-translation pair 287

denoted as (Q,T ) is allocated to one of {(bq, bt)} 288

or {(gq, gt)}. The assignment is determined by 289

the Quality estimator, which evaluates the output 290

quality to ascertain its appropriate position. This 291

mechanism not only expands the ICL search space 292

for the Demonstration Manager but also providing 293

more bad cases for the Instruction Optimizer. In our 294

experiment, the numbers of pairs in {(bq, bt)} and 295

{(gq, gt)} are 30 and 970 respectively in the cold- 296

start phase for fur_Latn; while the numbers in the 297

self-improvement phase become 50 and 1962. 298

Like mentioned before, the length ratio could 299

be served as crucial indicators for selection. If 300

the length ratio is in-distribution, we arrange them 301

to {(gq, gt)}, otherwise to {(bq, bt)}. Besides we 302

4



Table 1: BLEU and chrF++ scores for five low-resource languages (xxx-eng). Bold numbers denote the highest
scores across all systems. Statistical significance compared to the second-best system is indicated by dark blue (p <
0.05) and dark yellow (p >= 0.05), computed using paired bootstrap resampling (Koehn, 2004). Note that for token
efficiency, we only compare Zero-shot GPT-4o with our model.

LLM Method
fur_Latn lij_Latn lmo_Latn bho_Deva hne_Deva

BLEU↑ chrF++↑ BLEU↑ chrF++↑ BLEU↑ chrF++↑ BLEU↑ chrF++↑ BLEU↑ chrF++↑

Qwen-27B

Zero-shot 17.7 43.0 21.4 46.5 20.0 44.5 12.2 37.7 17.0 43.7
CoT 16.5 40.8 18.5 42.7 19.1 43.4 11.3 35.7 15.2 41.1
ICL 22.8 47.5 25.7 50.5 25.0 49.1 12.6 38.3 17.0 43.6

CoT & ICL 23.1 47.8 25.9 50.7 25.4 49.5 14.1 39.9 19.7 45.9
Ours 23.3 48.0 26.3 51.0 25.5 49.6 14.7 40.7 20.1 46.5

p-value 0.007 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Qwen-272B

Zero-shot 26.7 50.5 28.5 52.1 26.9 50.2 16.3 40.5 24.3 48.8
CoT 24.2 47.2 24.9 46.7 23.7 45.6 13.1 33.9 22.4 45.5
ICL 33.3 56.9 37.0 59.9 34.3 57.6 22.0 47.6 29.9 54.6

CoT & ICL 32.8 56.4 36.5 59.4 34.2 57.6 22.3 47.7 30.1 54.6
Ours 34.5 58.4 38.0 61.0 35.3 58.7 23.5 49.4 31.0 56.1

p-value 0.000 0.070 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000

LLAMA-38B

Zero-shot 24.7 49.6 26.4 51.1 23.2 47.6 15.5 42.0 18.0 45.1
CoT 23.9 48.6 25.3 50.0 21.4 45.9 13.9 39.7 17.0 43.7
ICL 31.7 55.5 32.8 56.4 29.8 54.1 19.1 45.3 23.2 49.5

CoT & ICL 31.6 55.5 32.8 56.4 29.5 53.7 19.1 45.3 23.2 49.5
Ours 32.2 56.0 33.6 57.2 30.5 54.8 19.9 46.2 23.8 49.9

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.083 0.177 0.090 0.041

LLAMA-370B

Zero-shot 32.8 57.3 33.7 57.7 27.5 51.4 19.6 46.5 25.0 51.6
CoT 31.8 56.4 32.8 56.9 19.4 40.3 18.9 45.6 24.3 50.9
ICL 39.9 62.8 41.1 63.3 37.1 60.0 25.0 51.2 32.7 57.9

CoT & ICL 39.9 62.8 41.0 63.3 35.9 58.9 25.1 51.4 33.0 58.4
Ours 40.1 63.1 41.4 63.6 38.0 60.8 25.7 51.9 33.9 59.1

p-value 0.170 0.184 0.043 0.002 0.026 0.378 0.003 0.292 0.001 0.203

GPT-4o
Zero-shot 41.2 64.2 43.1 65.4 40.4 63.1 29.5 55.2 42.4 66.2

Ours 44.1 66.1 47.0 68.1 43.7 65.6 32.1 57.1 46.0 68.8

also discover that the perplexity ratio between Q303

and T should be constrained within a certain range.304

Perplexity of a sentence can be defined as:305

Perplexity(x) = exp(
1

N

N∑
i=1

− logP (xi|x<i)),

(1)306

where x is a sequence of tokens of length N . In307

contrast to the approach proposed by (Liu et al.,308

2024), who model the perplexity ratio as follow-309

ing a Gaussian distribution, our analysis reveals a310

different understanding of this model-specific met-311

ric. Experimenting on LLAMA-38B (Dubey et al.,312

2024), we observed that the distribution of perplex-313

ity ratios exhibits a severely left-skewed Gaussian314

shape, as illustrated in Figure 3. This discovery has315

one important implication: The observed distribu-316

tion provides a potential upper bound on expected317

perplexity ratio values. This upper limit serves as a318

valuable constraint in selection mechanisms, allow-319

ing for more informed decision-making processes320

when evaluating model outputs. Hence it is impor-321

tant to emphasize that while our findings challenge322

the assumption of a standard Gaussian distribution, 323

they do not diminish the utility of perplexity ratios 324

as indicators for selection tasks. On the contrary, 325

the understanding enhances their potential as dis- 326

criminative features by providing a more accurate 327

representation of their behavior. The combination 328

of these two metrics allows for a more robust selec- 329

tion mechanism that can account for both content 330

and form variations. Several distinct categories of 331

translation errors that could be effectively identified 332

by the quality estimator are shown in Appendix B. 333

4 Experiments 334

In this section, we present analysis of results us- 335

ing automatic evaluation metrics against 5 low- 336

resource languages from the FLORES-200 bench- 337

mark (Costa-jussà et al., 2022). 338

4.1 Data and Large Language Models 339

Following (Maillard et al., 2023), we select two 340

distinct clusters of related languages to investigate 341

the efficacy of our proposed approach across differ- 342

ent linguistic families and script systems. The first 343
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Table 2: BLEU and chrF++ scores for five low-resource languages (eng-xxx). Bold numbers denote the highest
scores across all systems. Statistical significance compared to the second-best system is indicated by dark blue (p <
0.05) and dark yellow (p >= 0.05), computed using paired bootstrap resampling (Koehn, 2004). Note that for token
efficiency, we only compare Zero-shot GPT-4o with our model.

LLM Method
fur_Latn lij_Latn lmo_Latn bho_Deva hne_Deva

BLEU↑ chrF++↑ BLEU↑ chrF++↑ BLEU↑ chrF++↑ BLEU↑ chrF++↑ BLEU↑ chrF++↑

Qwen-27B

Zero-shot 2.7 24.3 1.9 23.0 1.7 18.4 2.3 20.1 3.9 23.9
CoT 3.0 25.4 2.3 24.0 1.9 19.0 2.7 20.7 4.0 24.5
ICL 3.9 24.5 3.4 27.6 3.3 21.7 3.2 20.3 4.8 26.4

CoT & ICL 3.3 22.9 4.1 28.9 3.1 21.2 3.3 20.4 5.0 26.6
Ours 5.0 29.0 4.1 29.2 3.8 25.1 3.6 23.1 5.1 26.8

p-value 0.000 0.000 0.000 0.000 0.019 0.000 0.113 0.000 0.000 0.028

Qwen-272B

Zero-shot 3.8 27.9 3.8 28.4 4.1 27.1 4.7 25.3 5.6 27.3
CoT 3.8 27.6 3.7 28.0 4.2 26.4 4.0 21.3 5.3 24.2
ICL 7.0 30.3 5.1 30.2 4.2 24.9 6.0 27.6 7.6 30.1

CoT & ICL 6.2 27.8 5.3 30.5 3.7 23.1 6.1 27.5 7.6 30.2
Ours 8.1 34.1 5.4 30.9 5.1 28.9 6.8 29.4 8.8 33.8

p-value 0.000 0.455 0.008 0.000 0.014 0.001 0.060 0.102 0.000 0.000

LLAMA-38B

Zero-shot 6.1 32.3 4.0 28.1 3.2 24.7 4.5 26.0 5.3 28.9
CoT 6.0 32.2 4.0 27.2 3.2 23.8 4.5 26.0 5.6 29.2
ICL 9.3 32.8 6.5 31.5 4.0 22.6 4.8 23.4 6.9 28.5

CoT & ICL 9.6 33.1 6.9 32.0 3.4 20.4 5.1 24.1 7.9 32.4
Ours 12.0 38.3 7.2 32.8 5.9 29.2 6.9 30.2 8.4 33.3

p-value 0.000 0.000 0.196 0.000 0.000 0.000 0.000 0.000 0.116 0.003

LLAMA-370B

Zero-shot 21.1 48.7 9.6 37.9 6.4 32.8 8.8 34.4 7.1 32.7
CoT 20.8 48.2 9.7 37.9 6.4 32.7 8.7 34.1 7.1 32.6
ICL 22.9 49.5 11.4 40.1 7.0 32.2 11.5 36.7 12.5 40.1

CoT & ICL 23.4 49.4 11.4 40.0 6.9 32.1 11.6 36.6 12.7 40.2
Ours 23.9 50.3 11.6 40.5 7.3 33.6 11.7 37.7 13.6 41.3

p-value 0.000 0.000 0.046 0.000 0.000 0.005 0.001 0.001 0.000 0.000

GPT-4o
Zero-shot 20.6 46.8 8.8 36.7 7.4 34.2 13.7 41.0 13.7 41.3

Ours 23.0 49.6 9.8 38.7 7.6 33.6 13.9 41.0 15.6 44.4

cluster comprises three languages from the Italic344

branch (fur_Latn, lij_Latn, lmo_Latn), written345

in Latin script; The second cluster focuses on four346

languages from the Indo-Aryan branch written in347

Devanagari script (bho_Deva, hne_Deva). Each348

language dataset has 1012 samples. Our experi-349

mental design adopts an English-centric approach:350

specifically, we focus on two primary translation di-351

rections: (1) xxx-eng: Translation from any of the352

selected languages to English; (2) eng-xxx: Trans-353

lation from English to any of the selected languages.354

More details can be found in Appendix C.355

LLMs are specifically selected to represent dif-356

ferent scales, architectures, and training paradigms357

to ensure a broad and representative assessment.358

The models chosen are: (1) LLAMA-38B and359

LLAMA-370B (Dubey et al., 2024); (2) Qwen-27B360

and Qwen-272B (Yang et al., 2024a); (3) GPT-361

4o (Hurst et al., 2024) accessed through API.362

4.2 Baselines363

We consider the following comparisons:364

• Zero-shot: LLMs are prompted without any addi-365

tional aids or context. 366

• Chain-of-thought (Wei et al., 2022) (CoT): LLMs 367

are provided with instructions that encourage step- 368

by-step reasoning, specifically, "please think step 369

by step" is added to the end of the prompt. 370

• ICL (Brown et al., 2020): LLMs are prompted 371

with 5 exemplars of successful translations. 372

• CoT & ICL: Combination of CoT and ICL. 373

4.3 Results 374

To evaluate the effectiveness of DAIL-translation, 375

we conduct experiments on five language pairs in 376

both xxx-eng and eng-xxx directions across differ- 377

ent LLM architectures. The results are shown in 378

Tables 1 and 2. Note that the number of ICL ex- 379

amples for all few-shot methods including “ours” 380

are equal to 5. The sentence representations are ob- 381

tained with Qwen-text-embedding-v3 model. The 382

statistical significance is computed using paired 383

bootstrap resampling (Koehn, 2004): we test on 384

1,000 different test sets to reduce estimation error, 385

where the test sets are generated by randomly sam- 386
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pling queries with replacement from the original387

test collection. We have following observations: (1)388

For both xxx-eng and eng-xxx translations, DAIL-389

translation consistently outperforms all baseline390

approaches. Our method consistently achieves the391

highest BLEU and chrF++ scores, and is statisti-392

cally significant compared to the second-best sys-393

tems in most of the cases. This suggests that our394

approach is particularly effective at handling the395

challenges posed by low-resource language trans-396

lation, providing superior translation quality com-397

pared to existing methods. (2) DAIL-translation im-398

proves the translation performance in the Qwen and399

LLAMA family across different parameter sizes in-400

dicates that our method effectively enhances the401

model’s cross-lingual transfer capabilities regard-402

less of the underlying architecture. (3) Compar-403

ing CoT with Zero-shot, we reveal an interesting404

finding: CoT yields only marginal improvements405

or even decreases performance. While CoT has406

proven beneficial in many NLP tasks, these results407

suggest it may not be well-suited for low-resource408

translation tasks.409

4.4 Computational Overhead410

As we introduce three modules to our system, we411

estimate the computational overhead as follows:412

• Perplexity Estimation needs a one-pass inference413

using LLAMA-38B, which incurs little cost.414

• Dynamic Demonstration Selection involves co-415

sine similarity between the query and stored demon-416

strations, which is computationally lightweight.417

• Prompt Optimization is executed only when de-418

tecting enough problematic cases based on out-of-419

distribution length-ratio and perplexity ratio sam-420

ples. These problematic cases are systematically re-421

moved post-optimization, reducing frequency and422

computational needs over time.423

5 Analysis424

In this section, we present analysis of results from425

the perspective of the instruction optimization pro-426

cess; and investigate if our system enhances the427

model’s ability to understand the length format of428

the translation pairs. More experimental results are429

shown in Appendix D.430

5.1 Are optimized instructions transferable?431

A crucial part of the system, mentioned in § 3.1, is432

the instruction optimizer. In this section, we would433

Table 3: Performance changing when xxx-eng di-
rection prompt is optimized on fur_Latn for gpt-4o.
Shallow blue / Shallow yellow indicates the translation
performance increases / decreases after optimization.

Data
chrF++ BLEU

before after before after

fur_Latn 46.8 48.8 20.6 21.6
lij_Latn 38.7 38.0 8.8 8.6
lmo_Latn 34.2 33.8 7.4 7.4
bho_Deva 41.0 39.0 13.9 12.7
hne_Deva 41.3 37.0 13.7 11.1

like to dive deep into the properties of the optimized 434

instructions. Based on Table 3, our findings reveal 435

several key observations: 436

First, the instruction optimization process im- 437

proves the performance for the source language 438

(fur_Latn), with absolute gains of +2.0 and +1.0 439

points in chrF++ and BLEU scores, respectively. 440

This confirms the effectiveness of our optimization 441

approach within the target domain. 442

However, this improvement may not be trans- 443

ferable. We can observe consistent performance 444

degradation when applying the optimized prompt 445

to other languages, with varying degrees. No- 446

tably, languages sharing the Latin script (lij_Latn, 447

lmo_Latn) show relatively minor degradation (-0.1 448

and -0.55 on average for BLEU and chrF++ scores 449

respectively); In contrast, languages utilizing the 450

Devanagari script (bho_Deva, hne_Deva) demon- 451

strate significant performance drops (-1.4 and -3.15 452

respectively), indicating potential script-specific 453

barriers about prompt optimization. These find- 454

ings have important implications for multilingual 455

prompt optimization strategies. 456

5.2 How to choose the language of prompt? 457

Understanding the optimal prompt language is cru- 458

cial for effective machine translation, especially 459

when dealing with low-resource languages using 460

different scripts. To investigate this, we analyze 461

the language of prompts in our translation setup 462

across different language pairs and directions. Ta- 463

ble 4 shows the number of English prompts out 464

of 20 total prompts for different translation direc- 465

tions, the 20 prompts consists of the best-5 prompts 466

for 4 open-source LLMs. For xxx-eng direction, 467

all prompts are consistently in English regardless 468

of the source language. However, for eng-xxx di- 469
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Figure 4: KL Divergence between Length Ratio Distributions of Ground Truth and Three Methods.

rection, the prompt language depends on the tar-470

get script: languages using Latin script maintain471

English prompts, while languages using Devana-472

gari script require prompts in their respective target473

languages, resulting in very few English prompts.474

This finding is further supported by empirical re-475

sults in Figure 5 where translating to hne_Deva476

achieved better performance (13.6 BLEU) when477

using prompts in Devanagari script compared to En-478

glish prompts (12.5 BLEU), suggesting that match-479

ing the prompt script to the target language is ben-480

eficial for Devanagari script languages. Besides481

language type, we also provide with a prompt opti-482

mization case study in Appendix E.483

5.3 Are length ratios getting better?484

To evaluate whether our system improves the han-485

dling of length relationships, we employ KL di-486

vergence to measure how closely the length ratio487

distributions match between different translation488

methods. The experimental results demonstrate489

several notable patterns in KL divergence across490

different language pairs and translation methods:491

(1) The proposed method achieves the lowest KL492

divergence values consistently, followed by ICL,493

while Zero-shot shows the highest divergence. This494

indicates that ICL can enhance the model’s abil-495

ity to understand formats, and select ICL exam-496

ples based on length ratio further improves this497

desired property. (2) Devanagari script languages498

exhibit higher divergence compared to Latin script499

languages, possibly due to greater structural differ-500

ences from English which is also written in Latin.501

(3) We can observe directional asymmetry, where502

eng-xxx translations show slightly higher diver-503

gence than xxx-eng, which is consistent with the504

previous findings, who have shown that current505

LLMs are most effective at machine translation506

when English is the target language (Enis and Hop-507

kins, 2024; Zhu et al., 2024b) (i.e. they are better508

at xxx-eng translation than eng-xxx translation).509

Table 4: Distribution of English prompts across differ-
ent translation directions and languages. The total 20
prompts consists of the best-5 prompts for 4 open-source
LLMs. For instance, when translating from English to
hne_Deva, none of the prompts are in English.

Data fur_Latn lij_Latn lmo_Latn bho_Deva hne_Deva

xxx-eng 20/20 20/20 20/20 20/20 20/20
eng-xxx 17/20 17/20 20/20 1/20 0/20

Figure 5: Translation prompts in source and target lan-
guage with their respective BLEU scores for English-to-
Chhattisgarhi translation using LLAMA-370B.

6 Conclusion 510

In this paper, we propose DAIL-translation, a sys- 511

tem to improve the translation ability of LLMs 512

in endangered languages with minimal cost. Our 513

system consists of three components: Instruction 514

Optimizer, Demonstration Manager, and Qual- 515

ity Estimator. Starting from 1k monolingual En- 516

glish sentences, our system achieves good perfor- 517

mance through self-improving on 5 low-resource 518

languages across different LLM parameter scales. 519

During investigation, we discover that optimized 520

instructions are language-specific with limited 521

transferability; however, there may exist a script- 522

dependent transfer pattern which helps generaliza- 523

tion. For Devanagari script languages, matching 524

the prompt script to the target language can be bene- 525

ficial. Our finding shows that length-based parallel 526

example selection can provide a complementary ad- 527

vantage to similarity-based searching by enhancing 528

the model’s ability to understand formats. 529
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7 Limitations530

The major limitation of our experiments is eval-531

uation type. Because the languages that we532

work with in this paper are low-resource, it was533

not feasible to find native speakers to do hu-534

man evaluation (at least for us) on the output of535

our models. Furthermore, previous work (Xu536

et al., 2024) has shown that metrics like BLEU537

may focus on lexical matches but lack semantic538

depth; however, reference-free evaluation models539

such as XCOMET (Guerreiro et al., 2024) and540

KIWI-XXL (Rei et al., 2022) doesn’t support low-541

resource languages used in the paper, hence we542

don’t do reference-free evaluation.543
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A Prompt Optimization Template833

Objective: Optimize system prompts for
high-quality translation in a low-resource
language setting.
Optimization Framework: 1. Prompt Varia-
tion Methodology
- Generate diverse prompt variations
- Systematically modify:
a) Role specification
b) Instruction clarity
c) Contextual examples
d) Linguistic guidance
2. Evaluation Criteria
- BLEU score (0-100)
- Chrf++ score (0-100)
3. Iteration Strategy
- Analyze current top-performing prompts
- Identify common successful patterns
- Generate new prompts building on these
insights
4. Challenging Case Analysis
- Catalog translation difficult cases
- Use bad cases to inform prompt refinement
- Create targeted variations addressing spe-
cific challenges
Deliverables:
- Ranked prompt variations
- Detailed performance breakdown
- Insights into prompt design effectiveness
Previous system prompts are arranged in
ascending order based on their bleu scores,
where higher scores indicate better quality.
{prompt_with_scores}
Here is a list of challenging cases for the
given prompts:
{challenge_cases}
Write your new text that is different from the
old ones and has a score as high as possible.

834

B Failed Examples835

To confirm that improvements are indeed due to the836

proposed heuristics rather than general repeated op-837

timization, failed examples are selected randomly.838

Our quality metrics effectively identify several dis-839

tinct categories of translation errors in Table 5.840

We believe the proposed metrics complement each841

other in identifying different types of translation842

failures, providing a robust automated quality as-843

sessment system.844

C Reproducibility 845

C.1 Evaluation Metrics 846

We evaluate translation quality using ChrF++ and 847

BLEU metrics via sacrebleu1. The signatures are: 848

chrF2++|nrefs:1|case:mixed|eff:yes|nc:6| 849

nw:2|space:no|version:2.5.1 850

and bleu|nrefs:1|case:mixed|eff:no 851

|tok:13a|smooth:exp|version:2.5.1. 852

C.2 Experimental Setup 853

To ensure efficient and scalable inference, we de- 854

ploy our selected LLMs on up to 4 GPUs us- 855

ing vLLM serving system (Kwon et al., 2023). 856

The sampling parameters involves a temperature 857

of 0.0, a maximum output length of 200 tokens, 858

with stop tokens as “< |eot_id| >” and “< 859

|start_header_id| >”. 860

D Ablation Study 861

In our paper, the quality estimator and the instruc- 862

tion optimizer are interdependent. The quality 863

estimator provides the potentially bad case to in- 864

struction optimizer, and the instruction optimizer 865

relies on these bad cases to do prompt optimiza- 866

tion. Hence we conduct the ablation study without 867

Demonstration Manager in Table 6. 868

E Prompt Optimization Case Study 869

To answer the question about What kind of prompts 870

are much better than others? We provide with an 871

example of prompt optimization steps. 872

Initial: You are an expert linguist specializing 873

in rare and endangered languages. Please translate 874

following English sentence to Friulian sentence 875

written in Latin script. 876

Step 1 (Format): You are an expert linguist spe- 877

cializing in rare and endangered languages. Please 878

translate following English sentence to Friulian 879

sentence written in Latin script. Note that directly 880

output the translated sentence without any explana- 881

tions. 882

Step 2 (Language specificity): You are an expert 883

translator specializing in Friulian. Translate the 884

following English sentence into Friulian, avoiding 885

influences from Italian languages. Use genuine 886

Friulian vocabulary, expressions, and grammatical 887

structures. Maintain the original sentence struc- 888

ture where possible, but prioritize natural Friulian 889

1https://github.com/mjpost/sacrebleu
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Table 5: Detection Methods and Their Associated Issues

Detection Method Issue Category Specific Cases and Results

Length Ratio
Token Generation

Missing token
Repetitive/circular output patterns
Result: Abnormally long translations

Content Accuracy
Hallucinations (longer translations)
Content omissions (shorter translations)

Perplexity Ratio

Model Behavior
Response refusal
Missing token with repetitive patterns
Result: Unusually low perplexity scores

Language Coherence
Mixed language output
Result: Abnormally high perplexity scores

Content Accuracy
Hallucinations
Result: Elevated perplexity scores

Table 6: Translation performance (BLEU/Chrf++) across different language pairs without Demonstration Manager

Model Direction fur_Latn lij_Latn lmo_Latn bho_Deva hne_Deva

Qwen-27B xxx-eng 17.7/43.0 21.4/46.5 20.0/44.5 12.2/37.7 17.0/43.7
Qwen-27B-Enhanced xxx-eng 18.6/43.9 21.5/46.8 20.8/45.4 13.3/39.3 17.8/44.7
LLAMA-38B xxx-eng 24.7/49.6 26.4/51.1 23.2/47.6 15.5/42.0 18.0/45.1
LLAMA-38B-Enhanced xxx-eng 26.6/51.5 26.5/51.3 24.8/49.6 16.6/43.3 20.0/47.5

Qwen-27B eng-xxx 2.7/24.3 1.9/23.0 1.7/18.4 2.3/20.1 3.9/23.9
Qwen-27B-Enhanced eng-xxx 3.5/26.2 3.8/28.4 2.6/19.2 3.5/22.6 4.3/25.5
LLAMA-38B eng-xxx 6.1/32.3 4.0/28.1 3.2/24.7 4.5/26.0 5.3/28.9
LLAMA-38B-Enhanced eng-xxx 7.3/33.9 4.6/28.4 4.1/26.7 5.2/27.4 6.3/30.8

phrasing. Note that directly output the translated890

sentence without any explanations.891

Step 3 (Comprehensive guidelines): You are an892

expert translator specializing in Friulian. Translate893

the following English sentence into Friulian, avoid-894

ing influences from Italian languages. Use genuine895

Friulian vocabulary, expressions, and grammatical896

structures. Maintain the original sentence struc-897

ture where possible, but prioritize natural Friulian898

phrasing. For technical or specialized terms, use es-899

tablished Friulian equivalents if they exist, or create900

appropriate neologisms based on Friulian linguistic901

patterns. Preserve all named entities, numbers, and902

punctuation. Aim for a translation that a native903

Friulian speaker would produce, even for complex904

or technical content. Note that directly output the905

translated sentence without any explanations.906
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