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Abstract

Machine translation systems often struggle
with maintaining quality in low-resource sce-
narios, due to the lack of sufficient parallel
data. We present a novel learning framework
that continuously (potentially life-long) im-
proves Large Language Model (LLM)’s per-
formance for low-resource language machine
translation through self-optimization. Our sys-
tem comprises three key components: an In-
struction Optimizer that dynamically refines
translation prompts based on failure cases, a
Demonstration Manager that intelligently se-
lects relevant examples for in-context learning,
and a Quality Estimator using multiple met-
rics that evaluates and arranges translations for
the Instruction Optimizer and the Demonstra-
tion Manager. The resulting system, called
DAIL-translation, boosts the performance in
low-resource machine translation of moderate-
sized LLMs (~7B), larger-scale LLMs (~70B)
and OpenAl model series, with only 1k mono-
lingual English sentences as a starting point.

1 Introduction

LLMs have demonstrated significant potential in
the field of natural language processing (Yang
et al., 2024b; OpenAl, 2023; Dubey et al., 2024).
Some studies (Enis and Hopkins, 2024; Robin-
son et al., 2023; Zhu et al., 2024a) have shown
that these models perform well in neural machine
translation (NMT) tasks for high-resource lan-
guages but struggle with low-resource languages.
Although most languages spoken worldwide to-
day are low-resource languages, many languages
within this category receive limited attention and
resources (Joulin et al., 2017; Costa-jussa et al.,
2022). Additionally, the data for low-resource lan-
guages is often scarce and difficult to find online.
Therefore, machine translation for low-resource
languages continues to be a challenging problem.
Effective methods for enhancing LLM capabil-
ities primarily include: (1) Post-training meth-

ods such as Supervised Fine-Tuning (SFT), Direct
Preference Optimization (DPO) (Rafailov et al.,
2023) have demonstrated potential in improving
model performance. However, as indicated by
(Vieira et al., 2024), SFT can negatively impact
model performance in machine translation tasks
when training data is limited. While Contrastive
Preference Optimization (CPO) (Xu et al., 2024)
achieves great results in machine translation, its
effectiveness is mainly verified on high-resource
languages. (2) Prompt Engineering addresses the
prompt-sensitive nature of LLMs, which signif-
icantly affects interaction outcomes. Neverthe-
less, automated prompt engineering methods (Yang
et al., 2024c; Wang et al., 2024) often require per-
formance of historical prompts as feedback signals,
necessitating frequent and costly calls to LLMs. (3)
In-Context Learning (ICL), by integrating exam-
ples into prompts, can enhance a model’s ability
to understand semantics and formats. However,
according to (Court and Elsner, 2024), LLMs ex-
hibit poor retrieval performance for low-resource
languages, particularly when translating from low-
resource languages to English. This issue arises
due to difficulties in obtaining accurate text embed-
dings due to insufficient training data, leading to
failures in similarity-based retrieval.

To tackle the challenges and better apply these
effective methods to low-resource language trans-
lation, we have designed the DAIL-translation sys-
tem. Our system is structured around two databases
and three key components. One database stores
accurate translations, denoted as {(gq, 9¢)}, facili-
tating ICL sampling; whereas the other retains po-
tentially wrong translations, denoted as {(bg, b¢) },
which aids in prompt optimization. The Instruc-
tion Optimizer dynamically refines translation
prompts by analyzing stored failure cases, thus
reducing the dependency on costly, frequent inter-
actions with LLMs for automated prompt engineer-
ing. Our research also indicates that the length ratio



between input and output in high-quality transla-
tion pairs aligns with a language-specific Gaussian
distribution. Consequently, when selecting ICL ex-
amples, the Demonstration Manager draws from
this length ratio distribution to enhance format com-
prehension, complementing traditional similarity-
based approaches for better semantic capturing. Af-
ter translation, the Quality Estimator evaluates the
output quality, deciding which database the trans-
lation should populate, thereby expanding the ICL
search space for the Demonstration Manager or pro-
viding more bad cases for the Instruction Optimizer.
Beyond length ratio, we have also identified that the
perplexity ratio between input and output should
be constrained within a certain range. Therefore,
we employ both length ratio and perplexity as indi-
cators for selection. Through these interconnected
components, DAIL-translation demonstrates a ro-
bust, self-improving mechanism that significantly
boosts the performance of LLMs across different
scales, including moderate-sized models (~7B pa-
rameters), larger models (~70B parameters), and
those within the OpenAl series.

Our contributions are:

* We propose DAIL-translation, a continuous self-
improving system to enhance the translation ability
of LLMSs in low-resource languages without train-
ing and using only monolingual English data.

With the help of past translations, we build an
Instruction Optimizer that dynamically refines
prompts for better translation quality.

We adopt both perplexity and length ratios as cru-
cial indicators for ICL example selection, contribut-
ing to the system’s self-improvement mechanism.

Our experiments show superior performance of the
system on 5 low-resource languages across differ-
ent LLM scales, demonstrating its versatility.

2 Related Work

LLMs have demonstrated remarkable capabilities
across a range of natural language processing tasks,
showcasing their potential to effectively tackle
downstream machine translation tasks. Notably,
these LLMs can achieve impressive performance
with minimal or even no task-specific fine-tuning, a
feature particularly advantageous for low-resource
languages (Bawden and Yvon, 2023; Jiao et al.,
2023). This capability is frequently attributed to
advanced techniques such as prompt design and
in-context learning.

Effective communication with Al systems re-
quires practice and understanding of optimal inter-
action strategies. As such, automatic prompt opti-
mization (Yang et al., 2024c; Wang et al., 2024) has
emerged as an active area of research, with machine
translation being no exception. Recent studies high-
light significant variations in zero-shot prompting
performance based on the template used (Zhang
et al., 2023a). Additionally, it has been discovered
that the stylistic elements of a prompt influences
the quality of translation outputs (Jiao et al., 2023).

Turning to the field of in-context learning, the
strategy for selecting demonstration examples
plays a crucial role in performance outcomes. Re-
search indicates that employing diverse strategies
for prompt example selection can lead to varying
results (Zhang et al., 2023a). Furthermore, some
scholars argue that the intrinsic quality of an ex-
ample often outweighs its proximity to the cur-
rent source sentence in terms of importance (Vi-
lar et al., 2023). Few-shot demonstrations have
been shown to influence the output in terms of lan-
guage variety and formality (Garcia et al., 2023).
Efficient augmentation of multiple ICL prompt in-
puts has been found to enhance the accuracy and
confidence of LLM predictions (Yao et al., 2023).
Moreover, the accuracy of translations can vary
significantly based on the examples included in
the prompt (Merx et al., 2024): for instance, one-
shot task-level example improves translation qual-
ity (Agrawal et al., 2023), and providing LLMs
with specific examples or relevant contextual infor-
mation about the translation task substantially im-
proves their performance (Jiang and Zhang, 2024).

3 DAIL-translation Approach

Since we do not have enough data to fine-tune an
LLM, DAIL-translation enhances translation capa-
bilities through the integration of three intercon-
nected components (Figure 1). For each language,
the system maintains two databases—one for high-
quality translations and another for potentially in-
correct translations—alongside an instruction op-
timizer, a demonstration manager, and a quality
estimator. The translation process for a single ut-
terance involves four steps: (1) for a given query )
to be translated, we first check if there are enough
number of wrong translations |{(bg, b;)}| available.
If so, the instruction optimizer refines the current
translation instruction / to generate an improved
instruction I’; otherwise, this step is bypassed. (2)
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Figure 1: System architecture of our translation framework consisting of three main components: (1) Instruction Op-
timizer dynamically refines translation prompts based on failure cases, (2) Demonstration Manager that intelligently
retrieves relevant examples through similarity and length-based matching, and (3) Quality Estimator that evaluates
translation quality using perplexity-based, length-based, and reference-free metrics. The bottom timeline illustrates
the system’s life-long learning capability, where current translation contributes to continuous improvement - wrong
translations set aids in prompt optimization, while successful ones facilitate ICL sampling in the future.

Demonstration Manager intelligently retrieves rele-
vant examples D from {(g,, g¢)} through a combi-
nation of similarity-based search and length-ratio-
based sampling to assist with the translation; (3)
LLM takes @, I’ and D as inputs to produce trans-
lation output 7'; (4) Quality estimator evaluates the
output quality of 1" given @), and determines which
database the translation should be stored into.

3.1 Instruction Optimizer

Large Language Models (LLMs) have been shown
to be highly sensitive to the prompt format (Zhao
etal., 2021). Notably, semantically similar prompts
can yield drastically different performance out-
comes (Kojima et al., 2022; Zhou et al., 2023;
Zhang et al., 2023b). In some instances, optimized
prompts may include several uninterpretable to-
kens (Wen et al., 2023), making it challenging
for humans to discover and construct such effec-
tive prompts manually. Recent work (Yang et al.,
2024c; Wang et al., 2024) has shown that LLMs can
be utilized to optimize instruction, but this often
involves repeatedly scoring the performance of his-
torical prompts on the same dataset, which is time-
consuming and costly. To address this issue, we
propose dynamically refining translation prompts
based on past failure cases. This approach is analo-
gous to a self-reflective process (Shinn et al., 2023;
Jietal., 2023), where errors serve as the foundation
for future enhancements.

The optimization process is conducted in a black-
box manner, making it applicable to both open-

source models and LL.Ms that are accessible only
through API calls. In each optimization step, we
provide the optimizer LLM with the instruction
trajectory as contextual hints, current {(bg, b)} as
semantic gradients, and a description of the opti-
mization goal as well as how to utilize the provided
information. It is important to note that the poten-
tially wrong translations are removed following the
completion of the optimization step. The prompt
templates used for this process can be diverse, a
sample of which is detailed in Appendix A.

3.2 Demonstration Manager

In-context parallel examples enhance machine
translation by providing the model with knowledge
of the task and the desired output format (Agrawal
et al., 2023). It is well-established that selecting
ICL examples based on cosine similarity outper-
forms random selection because it provides more
contextually relevance to the previously unseen
source sentence. However, in translation tasks in-
volving low-resource languages, particularly when
they are the source language, identifying multi-
ple highly similar examples becomes challenging.
This difficulty can stem from: (1) the limited avail-
ability of the parallel data from which to retrieve
examples; and (2) the relatively weak tokenizer and
embedding models for low-resource languages.
With the aim of identifying an efficient solution
that complements traditional similarity-based meth-
ods, we draw inspiration from the Gale-Church
alignment algorithm (Gale and Church, 1991; Liu
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Figure 3: Fitted distribution of Perplexity Ratios for three different low-resource languages.

et al., 2024), which highlights that the character-
level length ratio (length ratio for short in following
texts) between source and target sentences typically
varies around a fixed value, generally following
a Gaussian distribution. Our analysis across ten
datasets reveals that the length ratio between low-
resource and English pairs conforms to a language-
specific Gaussian distribution. This insight implies
that if the parameter (i.e. mean and standard de-
viations) of this distribution can be determined,
the desired target sentence length can be estimated
from the source sentence. Accordingly, when se-
lecting ICL examples, the Demonstration Manager
utilizes this length ratio distribution to enhance the
model’s comprehension of the output format.

Parameter Estimation. The parameters of the
distribution are determined by fitting them to
{(9¢,9:)}. This set can be cold-started using
pseudo parallel examples (Zhang et al., 2023a),
where we translate a collection of English sen-
tences into low-resource languages via zero-shot
prompting. Specifically, (1) We uniformly sample
1,000 English sentences from the dataset provided
by (Maillard et al., 2023), who extracted sentences
from Wikimedia’s “List of articles every Wikipedia
should have”. We reveal an increase in model per-
formance when data gets larger, and approximately
1,000 cold-start examples is enough to make a sta-
tistically significant improvement. (2) We translate
them into low-resource languages with GPT-4o.

This method simulates the common scenario where
low-resource text is scarce, whereas English mono-
lingual corpora are abundant and readily accessible.
Since assumed distribution is Gaussian, length ra-
tios that deviate beyond 3¢ are considered outliers
and removed for LLM-generated translation. The
resulting distribution closely aligns with that of
human translations. Consequently, we utilize data
translated by LLMs as the initial {(g,, ¢¢)}. The
distribution for different languages are illustrated in
Figure 2. For each query, we sample one example
from {(gq, g+)} according to the fitted distribution.

3.3 Quality Estimator

After each translation, the query-translation pair
denoted as (Q,T') is allocated to one of {(by, b;)}
or {(gq,9¢)}. The assignment is determined by
the Quality estimator, which evaluates the output
quality to ascertain its appropriate position. This
mechanism not only expands the ICL search space
for the Demonstration Manager but also providing
more bad cases for the Instruction Optimizer. In our
experiment, the numbers of pairs in {(by, b;)} and
{(9q, 9¢)} are 30 and 970 respectively in the cold-
start phase for fur_Latn; while the numbers in the
self-improvement phase become 50 and 1962.
Like mentioned before, the length ratio could
be served as crucial indicators for selection. If
the length ratio is in-distribution, we arrange them
to {(gq, g¢) }, otherwise to {(by, b¢)}. Besides we



Table 1: BLEU and chrF++ scores for five low-resource languages (xxx-eng). Bold numbers denote the highest
scores across all systems. Statistical significance compared to the second-best system is indicated by dark blue (p <
0.05) and dark yellow (p >= 0.05), computed using paired bootstrap resampling (Koehn, 2004). Note that for token
efficiency, we only compare Zero-shot GPT-40 with our model.

LLM Method fur_Latn lij_Latn Imo_Latn bho_Deva hne_Deva
BLEU?T chrF++1 BLEUT chrF++1 BLEU?T chrF++1 BLEU?T chrF++1 BLEUT chrF++71

Zero-shot 17.7 43.0 21.4 46.5 20.0 44.5 12.2 37.7 17.0 43.7

CoT 16.5 40.8 18.5 42.7 19.1 43.4 11.3 35.7 15.2 41.1

Qwen-2,p ICL 22.8 475 25.7 50.5 25.0 49.1 12.6 38.3 17.0 43.6
CoT & ICL 23.1 47.8 25.9 50.7 25.4 49.5 14.1 39.9 19.7 459

Ours 23.3 48.0 26.3 51.0 25.5 49.6 14.7 40.7 20.1 46.5
p-value 0.007 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Zero-shot 26.7 50.5 28.5 52.1 26.9 50.2 16.3 40.5 24.3 48.8

CoT 24.2 47.2 24.9 46.7 23.7 45.6 13.1 33.9 22.4 45.5

Qwen-2,5p ICL 333 56.9 37.0 59.9 343 57.6 22.0 47.6 29.9 54.6
CoT & ICL 32.8 56.4 36.5 59.4 342 57.6 22.3 47.7 30.1 54.6

Ours 34.5 58.4 38.0 61.0 353 58.7 23.5 494 31.0 56.1
p-value 0.000 0.070 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000

Zero-shot 24.7 49.6 26.4 51.1 23.2 47.6 15.5 42.0 18.0 45.1

CoT 23.9 48.6 25.3 50.0 21.4 459 13.9 39.7 17.0 43.7

LLAMA-3gp ICL 31.7 55.5 32.8 56.4 29.8 54.1 19.1 453 23.2 49.5
CoT & ICL 31.6 55.5 32.8 56.4 29.5 53.7 19.1 453 23.2 49.5

Ours 32.2 56.0 33.6 57.2 30.5 54.8 19.9 46.2 23.8 49.9

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.083 0.177 0.090 0.041

Zero-shot 32.8 57.3 33.7 57.7 27.5 514 19.6 46.5 25.0 51.6

CoT 31.8 56.4 32.8 56.9 19.4 40.3 18.9 45.6 24.3 50.9

LLAMA-3708 ICL 39.9 62.8 41.1 63.3 37.1 60.0 25.0 51.2 32.7 57.9
CoT & ICL 39.9 62.8 41.0 63.3 35.9 58.9 25.1 51.4 33.0 58.4

Ours 40.1 63.1 41.4 63.6 38.0 60.8 25.7 51.9 33.9 59.1
p-value 0.170 0.184 0.043 0.002 0.026 0.378 0.003 0.292 0.001 0.203

GPT-4o0 Zero-shot 41.2 64.2 43.1 65.4 40.4 63.1 29.5 55.2 424 66.2
Ours 44.1 66.1 47.0 68.1 43.7 65.6 32.1 57.1 46.0 68.8

also discover that the perplexity ratio between Q
and T should be constrained within a certain range.
Perplexity of a sentence can be defined as:

N
. 1
Perplexity(z) = exp(ﬁ Z —log P(zi]z<;)),

i=1

)
where z is a sequence of tokens of length N. In
contrast to the approach proposed by (Liu et al.,
2024), who model the perplexity ratio as follow-
ing a Gaussian distribution, our analysis reveals a
different understanding of this model-specific met-
ric. Experimenting on LLAMA-3gg (Dubey et al.,
2024), we observed that the distribution of perplex-
ity ratios exhibits a severely left-skewed Gaussian
shape, as illustrated in Figure 3. This discovery has
one important implication: The observed distribu-
tion provides a potential upper bound on expected
perplexity ratio values. This upper limit serves as a
valuable constraint in selection mechanisms, allow-
ing for more informed decision-making processes
when evaluating model outputs. Hence it is impor-
tant to emphasize that while our findings challenge

the assumption of a standard Gaussian distribution,
they do not diminish the utility of perplexity ratios
as indicators for selection tasks. On the contrary,
the understanding enhances their potential as dis-
criminative features by providing a more accurate
representation of their behavior. The combination
of these two metrics allows for a more robust selec-
tion mechanism that can account for both content
and form variations. Several distinct categories of
translation errors that could be effectively identified
by the quality estimator are shown in Appendix B.

4 Experiments

In this section, we present analysis of results us-
ing automatic evaluation metrics against 5 low-
resource languages from the FLORES-200 bench-
mark (Costa-jussa et al., 2022).

4.1 Data and Large Language Models

Following (Maillard et al., 2023), we select two
distinct clusters of related languages to investigate
the efficacy of our proposed approach across differ-
ent linguistic families and script systems. The first



Table 2: BLEU and chrF++ scores for five low-resource languages (eng-xxx). Bold numbers denote the highest
scores across all systems. Statistical significance compared to the second-best system is indicated by dark blue (p <
0.05) and dark yellow (p >= 0.05), computed using paired bootstrap resampling (Koehn, 2004). Note that for token
efficiency, we only compare Zero-shot GPT-40 with our model.

LLM Method fur_Latn lij_Latn Imo_Latn bho_Deva hne_Deva
BLEU?T chrF++1 BLEUT chrF++1 BLEU?T chrF++1 BLEU?T chrF++1 BLEUT chrF++71

Zero-shot 2.7 24.3 1.9 23.0 1.7 18.4 2.3 20.1 3.9 23.9

CoT 3.0 25.4 2.3 24.0 1.9 19.0 2.7 20.7 4.0 24.5

Qwen-2,p ICL 3.9 24.5 34 27.6 33 21.7 3.2 20.3 4.8 26.4
CoT & ICL 3.3 229 4.1 28.9 3.1 21.2 33 20.4 5.0 26.6

Ours 5.0 29.0 4.1 29.2 3.8 25.1 3.6 23.1 5.1 26.8
p-value 0.000 0.000 0.000 0.000 0.019 0.000 0.113 0.000 0.000 0.028

Zero-shot 3.8 27.9 3.8 28.4 4.1 27.1 4.7 25.3 5.6 27.3

CoT 3.8 27.6 3.7 28.0 4.2 26.4 4.0 21.3 5.3 24.2

Qwen-2,5p ICL 7.0 30.3 5.1 30.2 4.2 24.9 6.0 27.6 7.6 30.1
CoT & ICL 6.2 27.8 5.3 30.5 3.7 23.1 6.1 27.5 7.6 30.2

Ours 8.1 34.1 54 30.9 5.1 28.9 6.8 294 8.8 33.8
p-value 0.000 0.455 0.008 0.000 0.014 0.001 0.060 0.102 0.000 0.000

Zero-shot 6.1 32.3 4.0 28.1 32 24.7 4.5 26.0 5.3 28.9

CoT 6.0 322 4.0 27.2 32 23.8 4.5 26.0 5.6 29.2

LLAMA-3gp ICL 9.3 32.8 6.5 31.5 4.0 22.6 4.8 23.4 6.9 28.5
CoT & ICL 9.6 33.1 6.9 32.0 34 20.4 5.1 24.1 7.9 324

Ours 12.0 38.3 7.2 32.8 59 29.2 6.9 30.2 8.4 333

p-value 0.000 0.000 0.196 0.000 0.000 0.000 0.000 0.000 0.116 0.003

Zero-shot 21.1 48.7 9.6 379 6.4 32.8 8.8 34.4 7.1 32.7

CoT 20.8 48.2 9.7 37.9 6.4 32.7 8.7 34.1 7.1 32.6

LLAMA-3708 ICL 22.9 49.5 11.4 40.1 7.0 322 11.5 36.7 12.5 40.1
CoT & ICL 23.4 49.4 11.4 40.0 6.9 32.1 11.6 36.6 12.7 40.2

Ours 23.9 50.3 11.6 40.5 7.3 33.6 11.7 37.7 13.6 41.3
p-value 0.000 0.000 0.046 0.000 0.000 0.005 0.001 0.001 0.000 0.000

GPT-4o0 Zero-shot 20.6 46.8 8.8 36.7 7.4 34.2 13.7 41.0 13.7 41.3
Ours 23.0 49.6 9.8 38.7 7.6 33.6 13.9 41.0 15.6 44.4

tional aids or context.

* Chain-of-thought (Wei et al., 2022) (CoT): LLMs
are provided with instructions that encourage step-
by-step reasoning, specifically, "please think step
by step" is added to the end of the prompt.

* ICL (Brown et al., 2020): LLMs are prompted
with 5 exemplars of successful translations.

cluster comprises three languages from the Italic
branch (fur_Latn, 1ij_Latn, Imo_Latn), written
in Latin script; The second cluster focuses on four
languages from the Indo-Aryan branch written in
Devanagari script (bho_Deva, hne_Deva). Each
language dataset has 1012 samples. Our experi-
mental design adopts an English-centric approach:
specifically, we focus on two primary translation di-

rections: (1) xxx-eng: Translation from any of the
selected languages to English; (2) eng-xxx: Trans-
lation from English to any of the selected languages.
More details can be found in Appendix C.

LLMs are specifically selected to represent dif-
ferent scales, architectures, and training paradigms
to ensure a broad and representative assessment.
The models chosen are: (1) LLAMA-3gg and
LLAMA-370p (Dubey et al., 2024); (2) Qwen-2,5
and Qwen-2,95 (Yang et al., 2024a); (3) GPT-
40 (Hurst et al., 2024) accessed through API.

4.2 Baselines

We consider the following comparisons:

» Zero-shot: LL.Ms are prompted without any addi-

CoT & ICL: Combination of CoT and ICL.

4.3 Results

To evaluate the effectiveness of DAIL-translation,
we conduct experiments on five language pairs in
both xxx-eng and eng-xxx directions across differ-
ent LLM architectures. The results are shown in
Tables 1 and 2. Note that the number of ICL ex-
amples for all few-shot methods including “ours”
are equal to 5. The sentence representations are ob-
tained with Qwen-text-embedding-v3 model. The
statistical significance is computed using paired
bootstrap resampling (Koehn, 2004): we test on
1,000 different test sets to reduce estimation error,
where the test sets are generated by randomly sam-



pling queries with replacement from the original
test collection. We have following observations: (1)
For both xxx-eng and eng-xxx translations, DAIL-
translation consistently outperforms all baseline
approaches. Our method consistently achieves the
highest BLEU and chrF++ scores, and is statisti-
cally significant compared to the second-best sys-
tems in most of the cases. This suggests that our
approach is particularly effective at handling the
challenges posed by low-resource language trans-
lation, providing superior translation quality com-
pared to existing methods. (2) DAIL-translation im-
proves the translation performance in the Qwen and
LLAMA family across different parameter sizes in-
dicates that our method effectively enhances the
model’s cross-lingual transfer capabilities regard-
less of the underlying architecture. (3) Compar-
ing CoT with Zero-shot, we reveal an interesting
finding: CoT yields only marginal improvements
or even decreases performance. While CoT has
proven beneficial in many NLP tasks, these results
suggest it may not be well-suited for low-resource
translation tasks.

4.4 Computational Overhead

As we introduce three modules to our system, we
estimate the computational overhead as follows:

Perplexity Estimation needs a one-pass inference
using LLAMA-3gg, which incurs little cost.

Dynamic Demonstration Selection involves co-
sine similarity between the query and stored demon-
strations, which is computationally lightweight.

Prompt Optimization is executed only when de-
tecting enough problematic cases based on out-of-
distribution length-ratio and perplexity ratio sam-
ples. These problematic cases are systematically re-
moved post-optimization, reducing frequency and
computational needs over time.

5 Analysis

In this section, we present analysis of results from
the perspective of the instruction optimization pro-
cess; and investigate if our system enhances the
model’s ability to understand the length format of
the translation pairs. More experimental results are
shown in Appendix D.

5.1 Are optimized instructions transferable?

A crucial part of the system, mentioned in § 3.1, is
the instruction optimizer. In this section, we would

Table 3: Performance changing when xxx-eng di-
rection prompt is optimized on fur_Latn for gpt-4o.
Shallow blue / Shallow yellow indicates the translation
performance increases / decreases after optimization.

Data chrF++ BLEU
before after before after
fur_Latn  46.8 48.8 20.6 21.6
lij_Latn  38.7 38.0 8.8 8.6
Imo_Latn  34.2 33.8 7.4 7.4
bho_Deva 41.0 39.0 13.9 12.7
hne_Deva 41.3 37.0 13.7 11.1

like to dive deep into the properties of the optimized
instructions. Based on Table 3, our findings reveal
several key observations:

First, the instruction optimization process im-
proves the performance for the source language
(fur_Latn), with absolute gains of +2.0 and +1.0
points in chrF++ and BLEU scores, respectively.
This confirms the effectiveness of our optimization
approach within the target domain.

However, this improvement may not be trans-
ferable. We can observe consistent performance
degradation when applying the optimized prompt
to other languages, with varying degrees. No-
tably, languages sharing the Latin script (1ij_Latn,
Imo_Latn) show relatively minor degradation (-0.1
and -0.55 on average for BLEU and chrF++ scores
respectively); In contrast, languages utilizing the
Devanagari script (bho_Deva, hne_Deva) demon-
strate significant performance drops (-1.4 and -3.15
respectively), indicating potential script-specific
barriers about prompt optimization. These find-
ings have important implications for multilingual
prompt optimization strategies.

5.2 How to choose the language of prompt?

Understanding the optimal prompt language is cru-
cial for effective machine translation, especially
when dealing with low-resource languages using
different scripts. To investigate this, we analyze
the language of prompts in our translation setup
across different language pairs and directions. Ta-
ble 4 shows the number of English prompts out
of 20 total prompts for different translation direc-
tions, the 20 prompts consists of the best-5 prompts
for 4 open-source LLMs. For xxx-eng direction,
all prompts are consistently in English regardless
of the source language. However, for eng-xxx di-
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Figure 4: KL Divergence between Length Ratio Distributions of Ground Truth and Three Methods.

rection, the prompt language depends on the tar-
get script: languages using Latin script maintain
English prompts, while languages using Devana-
gari script require prompts in their respective target
languages, resulting in very few English prompts.
This finding is further supported by empirical re-
sults in Figure 5 where translating to hne_Deva
achieved better performance (13.6 BLEU) when
using prompts in Devanagari script compared to En-
glish prompts (12.5 BLEU), suggesting that match-
ing the prompt script to the target language is ben-
eficial for Devanagari script languages. Besides
language type, we also provide with a prompt opti-
mization case study in Appendix E.

5.3 Are length ratios getting better?

To evaluate whether our system improves the han-
dling of length relationships, we employ KL di-
vergence to measure how closely the length ratio
distributions match between different translation
methods. The experimental results demonstrate
several notable patterns in KL divergence across
different language pairs and translation methods:
(1) The proposed method achieves the lowest KL
divergence values consistently, followed by ICL,
while Zero-shot shows the highest divergence. This
indicates that ICL can enhance the model’s abil-
ity to understand formats, and select ICL exam-
ples based on length ratio further improves this
desired property. (2) Devanagari script languages
exhibit higher divergence compared to Latin script
languages, possibly due to greater structural differ-
ences from English which is also written in Latin.
(3) We can observe directional asymmetry, where
eng-xxx translations show slightly higher diver-
gence than xxx-eng, which is consistent with the
previous findings, who have shown that current
LLMs are most effective at machine translation
when English is the target language (Enis and Hop-
kins, 2024; Zhu et al., 2024b) (i.e. they are better
at xxx-eng translation than eng-xxx translation).

Table 4: Distribution of English prompts across differ-
ent translation directions and languages. The total 20
prompts consists of the best-5 prompts for 4 open-source
LLMs. For instance, when translating from English to
hne_Deva, none of the prompts are in English.

Data fur_Latn 1lij_Latn 1lmo_Latn bho_Deva hne_Deva
XXX-eng 20/20 20/20 20/20 20/20 20/20
eng-xxx 1720 17/20 20/20 1/20 0/20
Please translate following English sentence to Chhattisgarhi 195
sentence written in Devanagari script. Note that directly output ’
the translated sentence without any explanations.

PuaT fAEfAfEd 3 e @ s ¥, g fepe & 136

AT PIIT | BT I, Baed I ITFaTfee aTerd Bl 7EH &,
ot ¥t e, feeqott, am e aTeY W Y omfiet 7 Y|

Figure 5: Translation prompts in source and target lan-
guage with their respective BLEU scores for English-to-
Chhattisgarhi translation using LLAMA-3~g5.

6 Conclusion

In this paper, we propose DAIL-translation, a sys-
tem to improve the translation ability of LLMs
in endangered languages with minimal cost. Our
system consists of three components: Instruction
Optimizer, Demonstration Manager, and Qual-
ity Estimator. Starting from 1k monolingual En-
glish sentences, our system achieves good perfor-
mance through self-improving on 5 low-resource
languages across different LLM parameter scales.

During investigation, we discover that optimized
instructions are language-specific with limited
transferability; however, there may exist a script-
dependent transfer pattern which helps generaliza-
tion. For Devanagari script languages, matching
the prompt script to the target language can be bene-
ficial. Our finding shows that length-based parallel
example selection can provide a complementary ad-
vantage to similarity-based searching by enhancing
the model’s ability to understand formats.



7 Limitations

The major limitation of our experiments is eval-
uation type. Because the languages that we
work with in this paper are low-resource, it was
not feasible to find native speakers to do hu-
man evaluation (at least for us) on the output of
our models. Furthermore, previous work (Xu
et al., 2024) has shown that metrics like BLEU
may focus on lexical matches but lack semantic
depth; however, reference-free evaluation models
such as XCOMET (Guerreiro et al., 2024) and
KIWI-XXL (Rei et al., 2022) doesn’t support low-
resource languages used in the paper, hence we
don’t do reference-free evaluation.
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A Prompt Optimization Template

Objective: Optimize system prompts for
high-quality translation in a low-resource
language setting.

Optimization Framework: 1. Prompt Varia-
tion Methodology

- Generate diverse prompt variations

- Systematically modify:

a) Role specification

b) Instruction clarity

c) Contextual examples

d) Linguistic guidance

2. Evaluation Criteria

- BLEU score (0-100)

- Chrf++ score (0-100)

3. Iteration Strategy

- Analyze current top-performing prompts
- Identify common successful patterns

- Generate new prompts building on these
insights

4. Challenging Case Analysis

- Catalog translation difficult cases

- Use bad cases to inform prompt refinement
- Create targeted variations addressing spe-
cific challenges

Deliverables:

- Ranked prompt variations

- Detailed performance breakdown

- Insights into prompt design effectiveness
Previous system prompts are arranged in
ascending order based on their bleu scores,
where higher scores indicate better quality.
{prompt_with_scores}

Here is a list of challenging cases for the
given prompts:

{challenge_cases}

Write your new text that is different from the
old ones and has a score as high as possible.

B Failed Examples

To confirm that improvements are indeed due to the
proposed heuristics rather than general repeated op-
timization, failed examples are selected randomly.
Our quality metrics effectively identify several dis-
tinct categories of translation errors in Table 5.
We believe the proposed metrics complement each
other in identifying different types of translation
failures, providing a robust automated quality as-
sessment system.
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C Reproducibility

C.1 Evaluation Metrics

We evaluate translation quality using ChrF++ and
BLEU metrics via sacrebleu’. The signatures are:
chrF2++|nrefs:1|case:mixed|eff:yes|nc:6]
nw:2|space:no|version:2.5.1

and bleu|nrefs:1|case:mixed|eff:no

| tok:13a|smooth:exp|version:2.5.1.

C.2 Experimental Setup

To ensure efficient and scalable inference, we de-
ploy our selected LLMs on up to 4 GPUs us-
ing vVLLM serving system (Kwon et al., 2023).
The sampling parameters involves a temperature
of 0.0, a maximum output length of 200 tokens,
with stop tokens as “< |eot_id| >” and “<
|start_header_id| >".

D Ablation Study

In our paper, the quality estimator and the instruc-
tion optimizer are interdependent. The quality
estimator provides the potentially bad case to in-
struction optimizer, and the instruction optimizer
relies on these bad cases to do prompt optimiza-
tion. Hence we conduct the ablation study without
Demonstration Manager in Table 6.

E Prompt Optimization Case Study

To answer the question about What kind of prompts
are much better than others? We provide with an
example of prompt optimization steps.

Initial: You are an expert linguist specializing
in rare and endangered languages. Please translate
following English sentence to Friulian sentence
written in Latin script.

Step 1 (Format): You are an expert linguist spe-
cializing in rare and endangered languages. Please
translate following English sentence to Friulian
sentence written in Latin script. Note that directly
output the translated sentence without any explana-
tions.

Step 2 (Language specificity): You are an expert
translator specializing in Friulian. Translate the
following English sentence into Friulian, avoiding
influences from Italian languages. Use genuine
Friulian vocabulary, expressions, and grammatical
structures. Maintain the original sentence struc-
ture where possible, but prioritize natural Friulian

"https://github.com/mjpost/sacrebleu



Table 5: Detection Methods and Their Associated Issues

Detection Method  Issue Category

Specific Cases and Results

Token Generation
Length Ratio

Missing token
Repetitive/circular output patterns
Result: Abnormally long translations

Content Accuracy

Hallucinations (longer translations)
Content omissions (shorter translations)

Model Behavior

Response refusal
Missing token with repetitive patterns
Result: Unusually low perplexity scores

Perplexity Ratio Language Coherence

Mixed language output
Result: Abnormally high perplexity scores

Content Accuracy

Hallucinations
Result: Elevated perplexity scores

Table 6: Translation performance (BLEU/Chrf++) across different language pairs without Demonstration Manager

Model Direction fur_Latn lij_Latn lmo_Latn bho_Deva hne_Deva
Qwen-2,p XXX-eng 17.7/43.0 21.4/46.5 20.0/44.5 12.2/37.7 17.0/43.7
Qwen-2-g-Enhanced XXX-eng 18.6/43.9 21.5/46.8 20.8/45.4 13.3/39.3 17.8/44.7
LLAMA-3gg xxx-eng  24.7/49.6 26.4/51.1 23.2/47.6 15.5/42.0 18.0/45.1
LLAMA-3gg-Enhanced xxx-eng  26.6/51.5 26.5/51.3 24.8/49.6 16.6/43.3 20.0/47.5
Qwen-2,p eng-xxx 2.7/24.3 1.9/23.0 1.7/18.4 2.3/20.1 3.9/23.9
Qwen-2,p-Enhanced eng-xxx 3.5/26.2 3.8/284  2.6/19.2 3.5/22.6 4.3/25.5
LLAMA-3sp eng-xXxx 6.1/32.3  4.0/28.1 3.2/24.7 4.5/26.0 5.3/28.9
LLAMA-3gg-Enhanced eng-xxx 7.3/33.9  4.6/284  4.1/26.7 5.2/27.4 6.3/30.8

phrasing. Note that directly output the translated
sentence without any explanations.

Step 3 (Comprehensive guidelines): You are an
expert translator specializing in Friulian. Translate
the following English sentence into Friulian, avoid-
ing influences from Italian languages. Use genuine
Friulian vocabulary, expressions, and grammatical
structures. Maintain the original sentence struc-
ture where possible, but prioritize natural Friulian
phrasing. For technical or specialized terms, use es-
tablished Friulian equivalents if they exist, or create
appropriate neologisms based on Friulian linguistic
patterns. Preserve all named entities, numbers, and
punctuation. Aim for a translation that a native
Friulian speaker would produce, even for complex
or technical content. Note that directly output the
translated sentence without any explanations.
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