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Abstract

Language–image pre-training (LIP) enables the development of vision–language
models capable of zero-shot classification, localization, multimodal retrieval, and
semantic understanding. Various explanation methods have been proposed to visu-
alize the importance of input image–text pairs on the model’s similarity outputs.
However, popular saliency maps are limited by capturing only first-order attribu-
tions, overlooking the complex cross-modal interactions intrinsic to such encoders.
We introduce faithful interaction explanations of LIP models (FIXLIP) as a unified
approach to decomposing the similarity in vision–language encoders. FIXLIP is
rooted in game theory, where we analyze how using the weighted Banzhaf inter-
action index offers greater flexibility and improves computational efficiency over
the Shapley interaction quantification framework. From a practical perspective,
we propose how to naturally extend explanation evaluation metrics, such as the
pointing game and area between the insertion/deletion curves, to second-order
interaction explanations. Experiments on the MS COCO and ImageNet-1k bench-
marks validate that second-order methods, such as FIXLIP, outperform first-order
attribution methods. Beyond delivering high-quality explanations, we demonstrate
the utility of FIXLIP in comparing different models, e.g. CLIP vs. SigLIP-2.

1 Introduction

Contrastive language–image pre-training [CLIP, 57] revolutionized computer vision by learning
data representations well-performing in a plethora of downstream tasks. Scaling the training to
predict similarity between image and text, combined with continuous architectural improvements [e.g.
SigLIP, 75] and increasing the size of datasets, leads to the development of powerful vision–language
encoders [VLEs, 13, 66, 68, 75]. These rather opaque encoders become the backbone components
in large vision–language models capable of actual conversation and reasoning [2, 36, 43], and are
increasingly applied in high-stakes decision-making, like in the case of medical imaging [29, 76, 78].

The limitations in the way CLIP represents the visual world have been extensively studied [14, 35,
67, 72, 73]. For example, a recent study by Tong et al. [63] suggests vision–language models are
limited by the systematic shortcomings of CLIP, e.g. they fail when questioned about directions,
quantity of objects in an image, or recognizing the presented text in a visual form. The emergence of
“CLIP-blind pairs”, inputs that CLIP perceives as similar despite their clear differences, could lead to
critical errors when applied in medical visual question answering and treatment recommendation [78].
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Figure 1: Explaining similarity in vision–language encoders with weighted Banzhaf interactions.
We propose a cross-modal sampling strategy to efficiently query the model for m2 game values from
m coalitions, and p-weighted masking to circumvent querying the model on out-of-distribution inputs.
A regression-based approximation with weighted least squares (WLS) of second-order attributions
gives a faithful decomposition of the predicted similarity score. Explanations of cross-modal and
intra–modal interactions can be visualized and analyzed to interpret the CLIP’s similarity prediction.
The red values denote positive interactions contributing to an increase in similarity, while blue denotes
interactions between tokens contributing to a decrease in similarity.

One way of validating similarity predictions at inference time is explaining the encoders with saliency
maps [12, 39, 49, 70, 77]. However, these first-order importance scores are limited by their unimodal
view of the model’s output [1]. Vision–language encoders cannot be faithfully explained without
taking into account the cross-modal interactions between image–text pairs [32, 40].

We thus propose a model-agnostic approach to interpreting VLEs based on a game-theoretical
perspective where input tokens form coalitions of players in a cooperative game [19, 44]. In doing that,
we extend the faithful Banzhaf interaction index [64] to a weighted case [47], addressing the emerging
requirement for controllable sparsity in coalition sampling [6, 25, 27, 79]. Specifically, sparse inputs
with many masked tokens become out-of-distribution, i.e. images become unrecognizable and text
captions become ambiguous. Figure 1 shows a high-level view of our approach. We sample uniformly
m2 variations of the input image–text pair. Each mask is sampled uniformly with probability p
for each token in a mask, and we take all pairwise combinations between m masked images and
m masked texts. Then, we apply the explained model to predict similarity values for each of the
input variations. Finally, we apply weighted least squares to approximate the model’s predictions
from sampled binary masks. The resulting explanation assigns attribution scores to each token and
interaction scores to each pair of tokens in an image–text pair.

Contributions. Our work advances literature in multiple ways: (1) A game-theoretic explanation of
vision–language encoders. We introduce faithful interaction explanations of LIP models (FIXLIP)
that provide a unique perspective on decomposing the similarity predictions of VLEs. Our results
highlight the necessity to consider cross-modal interactions between text and image inputs for an
accurate model interpretation, beyond the first-order attribution. In fact, this is the first work to argue
for using weighted Banzhaf interactions in this domain to overcome the out-of-distribution problem
apparent in removal-based explainability. (2) Efficient computation allows scaling to larger
models. We propose a cross-modal sampling strategy for approximating FIXLIP that improves
its efficiency by 5–20× over traditional Shapley interaction quantification. We further scale the
regression-based approximation of interactions to hundreds of tokens by prioritizing their subset for a
faithful explanation. (3) Evaluation metrics for second-order interactions. We extend explanation
evaluation metrics—the pointing game and area between the insertion/deletion curves—to explanation
methods of higher order. Experiments on the MS COCO and ImageNet-1k benchmarks validate that
second-order methods, such as FIXLIP, outperform first-order attributions. (4) FIXLIP facilitates
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various approaches to understanding vision–language encoders. Finally, we demonstrate the
utility of FIXLIP in applications like a model-agnostic comparison between CLIP and SigLIP-2.

2 Related Work

Attribution explanations of CLIP. Multimodal explanations have been studied in various tasks,
including visual question answering [28, 55], visual reasoning [46], video classification [71], and
sentiment analysis [69]. Our work considers explaining the bi-modal encoder prediction in the means
of input attributions, specifically image and text token attributions of similarity predictions in CLIP.
In this context, existing gradient-based [77], attention-based [12, 39], and information-based [70, 80]
methods approximate only first-order attributions visualized as saliency maps. Yet, Liang et al.
[40] perform extensive user studies showing that visualizing the second-order attributions (pairwise
interactions) is necessary for understanding complex multimodal models. Joukovsky et al. [32]
propose to approximate these interactions with bilinear models [also for image–image encoders, 61].
We formalize the problem in the means of game theory and propose an efficient approximation of cross-
modal and intra-modal interactions (Figure 1), discussing its several desirable theoretical properties.
In concurrent work, Moeller et al. [48] propose to approximate only cross-modal interactions based
on the Integrated Hessians methodology [30]. Our proposed evaluation metrics for interaction-based
explanations can be used to empirically cross-compare the above-mentioned attribution explanations.

Mechanistic interpretability of CLIP. Our research is orthogonal to work on the concept-based
interpretability of CLIP’s internal representations. Research in this direction considers explaining
particular neurons [22], concept-based image classification [60], linear probing [5], and training sparse
autoencoders [41, 74]. Gandelsman et al. [21] investigate how the individual model’s components
affect its final representation. Beyond CLIP, Balasubramanian et al. [4] analyze interpreting image
representations via text in alternative vision transformer architectures [e.g. DINO, 11].

Shapley and Banzhaf interactions in machine learning. We build on the developments using
game-theoretic interaction indices to understand complex machine learning models [9, 19, 56, 62, 64].
Our goal in this work is not to compare with the most recent advancements in approximating the
interaction index [16, 33, 52], but rather to faithfully explain the similarity predicted by VLEs. From
the first-order perspective, Parcalabescu and Frank [53, 54] apply the Shapley value to measure the
importance each modality has on various tasks solved by CLIP. Tsai et al. [64] and Fumagalli et al.
[20] propose a weighted least squares regression approximation of higher-order interactions, which
we incorporate as a baseline in our methodology. Recently, Kang et al. [34] applied a sparse Fourier
transform to scale feature interaction explanations for large language models, while we explain vision–
language encoders instead. Related to our contribution of weighted Banzhaf interaction explanations
is work on using weighted Banzhaf values to estimate data valuation scores [37, 38], which are the
importance that training data points or subsets have on the model’s performance. Jin et al. [31]
use Banzhaf interactions to enhance the training of video–language encoders. For a comprehensive
overview of work in this direction, see [50, 59] and references given there.

3 A Game-theoretic Explanation of Similarity in Vision–Language Encoders

A vision–language encoder f consists of a vision encoder fI : RnI → Rd with nI ∈ N image
patches (tokens), and a language encoder fT : RnT → Rd with nT ∈ N text tokens. For a given
input pair (xI , xT ), the model computes a cosine similarity of their d-dimensional embeddings as

f(xI , xT ) := cos
(
fI(xI), fT (xT )

)
=

fI(xI) · fT (xT )

∥fI(xI)∥ · ∥fT (xT )∥
. (1)

In this context, we index the set of image tokens with NI := {1, . . . , nI} and the set of text tokens
with NT := {nI + 1, . . . , nI + nT }. Related attribution methods construct explanations that
assign importance values to all individual input tokens. To understand cross-modal and intra-modal
relationships between tokens, we extend these explanations by adding all pairwise token interactions.

Definition 1 (Explanation). An explanation e ∈ R|B| assigns a constant e0, individual attributions
ei ∈ R and pairwise interactions e{i,j} ∈ R, for an explanation basis

B := {0}︸︷︷︸
constant

∪{i : i ∈ NI ∪NT }︸ ︷︷ ︸
individual tokens

∪{{i, j} : i, j ∈ NI ∪NT , i ̸= j}︸ ︷︷ ︸
two-token interaction sets

.
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An interaction explanation can be viewed as a complete graph with weighted nodes and edges,
similar to the SI-Graph [51], or a symmetric quadratic matrix of dimension nI + nT , where the
diagonal represents token attributions. To compute explanations, we mask tokens with a pre-defined
baseline, depending on the encoder’s architecture, e.g. attention masking for text tokens (we defer
implementation details to Appendix B). The masking operator is used to define the FIXLIP game
that captures all possible masks.
Definition 2 (Masking). We define the masking operator ⊕Mo : Rn × Rn → Rn for n ∈ {nI , nT }
that compute for a subset of indices Mo ⊆ N with N ∈ {NI , NT } and inputs x, b ∈ Rn as

x⊕Mo b :=

{
xi, if i ∈ Mo,

bi, if i ∈ N \Mo.

Definition 3 (Game). For an input image–text pair (xI , xT ) and a baseline (bI , bT ) indexed by
NI∪NT , the FIXLIP explanation game ν : 2NI∪NT → R measures the similarity of the inputs given
any mask M ⊆ NI ∪NT as ν(M) := ν(M ∩NI ,M ∩NT ) := f(xI ⊕M∩NI bI , xT ⊕M∩NT bT ).

The FIXLIP game measures the similarity of the masked image and text inputs for every possible
mask. In the following, we will quantify attributions of individual tokens, as well as cross- and
intra-modal interactions, that faithfully explain the FIXLIP game, and satisfy important axioms.

3.1 FIXLIP-p explanations via weighted faithful Banzhaf interactions

In this section, we formally define the FIXLIP explanation as an instance of Definition 1, which
faithfully describes the similarity of all masked inputs ν(M). We thus define e as an additive
explanation with interaction terms that recovers ν(M) ≈ ν̂e(M) via a 2-additive game [24] as

ν̂e(M) := e0 +
∑
i∈M

ei +
∑

{i,j}⊆M :i ̸=j

e{i,j} for all masks M ⊆ NI ∪NT . (2)

A natural choice of faithfulness is to measure the squared error
(
ν(M)− ν̂e(M)

)2
across all masks.

To further distinguish in-distribution (few tokens masked) and out-of-distribution (many tokens
masked) inputs, we associate a mask weight according to its size |M | in the following metric.
Definition 4 (p-faithfulness). For p ∈ (0, 1) and ν, ν̂ : 2NI∪NT → R, we measure p-faithfulness Fp

as Fp(ν, ν̂) :=
∑

M⊆NI∪NT
p|M |(1− p)nI+nT −|M |(ν(M)− ν̂(M)

)2
.

Remark 1. Computing p-faithfulness requires evaluating 2nI+nT masks, which is infeasible
in practice. Instead, we write Fp as an expectation over randomly generated masks Fp =

EM∼Pp

[(
ν(M) − ν̂(M)

)2]
, where Pp(M) := p|M |(1 − p)nI+nT −|M | is a probability distribu-

tion over 2NI∪NT . This formulation allows us to estimate Fp using Monte Carlo integration.

The hyperparameter p determines the importance of each mask and can be viewed as the probability
of a token being active, i.e. its index being included in M . The case p = 0.5 equally weights all
masks, p > 0.5 prioritizes masks with many active tokens, i.e. preferring in-distribution inputs,
whereas p < 0.5 prioritizes sparse masks preferring more out-of-distribution inputs.
Definition 5 (FIXLIP-p). We define the FIXLIP-p explanation as eFIXLIP-p := argmine Fp(ν, ν̂e).

The FIXLIP-p explanation is the most faithful approximation of ν with respect to Fp. Its interactions
correspond to the weighted Banzhaf interactions [47]. For p = 0.5, FIXLIP-p is the faithful Banzhaf
interaction index [64] with a known analytical solution [26].
Remark 2. Weighted Banzhaf interactions define a cardinal-probabilistic interaction index that
satisfies the linearity, symmetry, and dummy axiom [18]. Alternatively, faithful Shapley interactions
optimize a variant of the faithfulness metric [64]. In our context, weighted Banzhaf interactions have
two benefits: First and foremost, the hyperparameter p allows for prioritizing masks that are expected
to better reflect in-distribution inputs, and provides a flexible explanation framework with intuitive
weights. Second, it is unknown if the Shapley weights can be factored into independent distributions
for each modality – a crucial requirement for the cross-modal estimator introduced in Section 3.2.

FIXLIP-p explanations of VLEs offer a unique perspective on interpreting image–text similarity
predictions. Notably, the resulting second-order interaction explanation can always be simplified into
a first-order attribution explanation and visualized as a traditional saliency map over input tokens.
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Theorem 1 (First-order conversion). For i ∈ NI ∪ NT and eFIXLIP-p, the first-order attribution
values are given by ei + p

∑
j∈NI∪NT :j ̸=i e{i,j}, which are the weighted Banzhaf values of ν̂.

We defer the proofs to Appendix A. While FIXLIP-p can be computed analytically, it still requires
2nI+nT mask evaluations. We thus introduce a model-agnostic estimator for FIXLIP-p by estimating
Fp via Monte Carlo integration with sampled masks and optimizing the least-squares objective.

Definition 6 (Model-agnostic estimator). Let M (1), . . . ,M (m) iid∼ Pp. The model-agnostic estimator
is then êFIXLIP-p := argmine F̂

(m)
p (ν, ν̂e), where F̂

(m)
p (ν, ν̂e) :=

1
m

∑m
ℓ=1

(
ν(M (ℓ))− ν̂e(M

(ℓ))
)2

.

For p = 0.5, this estimator reduces to Faith-Banzhaf [64] – a variant of KernelSHAP [44].

3.2 Cross-modal sampling with p-weighted masking

We observe that the model-agnostic estimator uses naive sampling over masks M ∼ Pp, which be-
comes prohibitive for models with a large number of input tokens. Since every token is independently
active with probability p, we propose to separately sample mI subsets for the image and mT subsets
for the text modality, i.e. to decompose Pp = Pp,I ⊗ Pp,T , and sample independently. This allows
for generating all possible combinations, obtaining a novel estimator of Fp.

Definition 7 (Cross-modal estimator). Let M (1)
I , . . . ,M

(mI)
I

iid∼ Pp,I and M (1)
T , . . . ,M

(mT )
T

iid∼ Pp,T .
We define the cross-modal estimator as êFIXLIP-p := argmine F̂

(mI ,mT )
p (ν, ν̂e), where

F̂(mI ,mT )
p (ν, ν̂e) :=

1

mI ·mT

mI∑
ℓI=1

mT∑
ℓT =1

(
ν(M

(ℓI)
I ∪M

(ℓT )
T )− ν̂e(M

(ℓI)
I ∪M

(ℓT )
T )

)2
.

Crucially, F̂(mI ,mT )
p can be computed efficiently because f independently encodes images for mI

samples with fI and texts for mT samples with fT (cf. Equation 1). Then, similarity predictions
are computed in a vectorized manner between all the cross-modal combinations of masked inputs.
In theory, given m = mI + mT samples, the model-agnostic estimator obtains m game values
(similarity predictions), while our proposed cross-modal estimator obtains mI · mT ≫ m. The
empirically observed computational speedup, which we analyze in Section 5.4, can depend on the
model’s batch size (closely related to the GPU VRAM hardware). Note that reusing the samples in
text and image modalities inflicts dependence between them, and the following result establishes
important theoretical properties.

Theorem 2. The cross-modal estimator F̂(mI ,mT )
p is unbiased, and its variance is bounded by

V
[
F̂(mI ·mT )
p (ν, ν̂e)

]
≤ V

[
F̂(mI ,mT )
p (ν, ν̂e)

]
≤ mI +mT

mI ·mT
V
[(
ν(MI ∪MT )− ν̂e(MI ∪MT )

)2]
.

In other words, Theorem 2 shows that the variance of the cross-modal estimator is at most of the same
order as the variance of the model-agnostic estimator with m ≈ mI ≈ mT samples. Moreover, the
variance is at least the variance of the model-agnostic estimator with mI ·mT independent samples.
In practice, we use the cross-modal estimator in higher budget scenarios to speed up the computation
by decreasing the number of effective model inferences.

3.3 Large-scale adaptations for FIxLIP explanations

In contrast to first-order explanations, the explanation basis of Definition 1 grows quadratically as
|B| = 1 + nI + nT +

(
nI+nT

2

)
≈ (nI + nT )

2. For example, a ViT-B/16 version of CLIP with
196 image and 30 text input tokens (players) results already in 25 425 interactions. From a practical
perspective, we thus consider two heuristics as part of our complete methodology: (1) We employ
a two-step filtering approach for prioritizing interactions to approximate when explaining games
with a large number of players. A default is to pick a clique subset with the highest (absolute)
first-order attributions and compute interactions between them, e.g. top-72 with

(
72
2

)
= 2 556

interactions. Another approach is to include only cross-modal interactions in the approximation,
e.g. 196 × 30 = 5 880. (2) We apply a simple greedy subset selection algorithm on explanation
e to find subgraphs M ⊆ NI ∪ NT of the highest and lowest sums of ν̂e(M), which we use in
evaluating (Section 5.1) and visualizing (Section 5.5) explanations. Further details are in Appendix B.
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4 Evaluation Metrics for Interaction Explanations of VLE Predictions

In this section, we derive three evaluation metrics for explanations that may include second-order
interactions. First, we evaluate the faithfulness of the approximation ν̂e to ν, since the basis of
explaining VLEs is the masking operator that defines the FIXLIP game ν. Note that conventionally
this is done with an R2 coefficient [33, 50] or mean squared error [16, 19, 52], but we need to rely on
rankings to compare attribution methods like saliency maps. Second, we generalize the area between
insertion and deletion curves [AID, 25, 77], aka remove least/most important first [6], a popular
faithfulness metric for token attribution methods. Finally, we extend the well-established pointing
game evaluation of faithfulness from the image classification literature [3, 7, 8, 48]. In the latter two
metrics, we need to assume e{i,j} = 0 for the first-order attribution explanations without interactions.

We validate the faithfulness to the FIXLIP game ν across sampled subsets. To this end, we compare
the rankings of ν and ν̂, since related explanation methods are not normalized to estimate ν correctly.
Definition 8 (p-faithfulness correlation). We define p-faithfulness correlation as the Spearman’s rank
correlation computed between ν and ν̂e evaluated for m masks sampled from Pp (cf. Remark 1) as

µcorr(e; p) := correlation
M(1),...,M(m)iid∼Pp

(
ν(M (i)), ν̂e(M

(i))
)
.

The rank correlation metric µcorr yields insights into the general capability of recovering the ranking
of similarity scores of uniformly masked inputs based on Pp.

Beyond capturing the general p-faithfulness, we derive an insertion/deletion visualization with a
metric measuring the explanation’s ability to identify token subsets (masks) of high and low similarity
as evaluated by the game (model).
Definition 9 (Area between insertion/deletion curves (AID)). For each size k = 1, . . . , nI + nT , let
Me,min,k := argminM⊆NI∪NT :|M |=k ν̂e(M) and Me,max,k := argmaxM⊆NI∪NT :|M |=k ν̂e(M).
Insertion and deletion curves are computed as Cinsert(e) :=

{(
k, ν(Me,max,k)

)}
k=1,...,nI+nT

, and
Cdelete(e) :=

{(
k, ν(Me,min,nI+nT −k)

)}
k=1,...,nI+nT

, respectively. The metric is then defined as

µAID(e) :=

∫
Cinsert(e)−

∫
Cdelete(e) =

nI+nT∑
k=1

(
ν(Me,max,k)− ν(Me,min,k)

)
.

µAID measures the difference between model predictions when including and excluding the most
relevant tokens. For first-order methods, Me,min,k and Me,max,k are directly found by ranking e.
Proposition 1. For token attribution values, i.e. when ∀i,j e{i,j} ≡ 0, such as weighted Banzhaf
values, Me,max,k and Me,min,k are given by the top-k and bottom-k coefficients of e, respectively.
Consequently, Cdelete is found by deleting Me,max,k, i.e. Me,min,nI+nT −k = (NI ∪NT )\Me,max,k.

Consequently, Cinsert and Cdelete generalize insertion and deletion curves to second-order interac-
tion explanations. Note that for token attribution values, we have Me,max,k ⊂ Me,max,k+1, and
Me,min,k ⊂ Me,min,k+1, which does not hold when modeling interaction terms. We give a further
description of the insertion/deletion process on a single image–text input in Appendix B.2, Figure 9.

Lastly, we propose to evaluate an explanation e with designed pseudo ground-truth data. We measure
the overlap between an explanation of inputs crafted as four combined images with a multi-object text
prompt, and its “ground-truth” assumed prior. We show a visual example in Appendix B.3, Figure 8
Definition 10 (Pointing game recognition (PGR)). For e, let ein,k and eout,k denote the values of
interactions belonging to, and not belonging to, object k – a text token with its corresponding image
patches. We denote the positive and negative interactions by e>0, e<0. The metric is then defined as

µPGR(e;NT ) :=

∑
k∈NT

(
∥ein,k,>0∥1 + ∥eout,k,<0∥1

)∑
k∈NT

(
∥ein,k∥1 + ∥eout,k∥1

) ∈ [0, 1], where ∥e∥1 :=
∑
i,j

|e{i,j}|.

µPGR quantifies the ratio of absolute values of “correctly” identified cross-modal interaction terms to
total interaction terms. Thereby, “correctly” identified cross-modal interactions refer to positive and
negative interactions that are associated with and without object k in an image, respectively. We use
µPGR as a sanity check that interaction explanations are essential for explaining VLEs as compared
to alternative attribution approaches. Scoring high PGR values across multiple objects present in an
image–text pair denotes that an explanation method can show the model distinguishes between them.
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FIxLIPGAME Grad-ECLIP exCLIP

Figure 2: Visual comparison between FIXLIP and baselines. First-order attribution methods, e.g.
GAME and Grad-ECLIP, lack the tools to faithfully explain complex similarity predictions of vision–
language encoders like CLIP. Notably, in this example, the text token ant is the most important
for the similarity prediction. One of the differences from exCLIP is that we include intra-modal and
main effects in the approximation, which are crucial for obtaining faithful interaction explanations.

5 Experiments

Setup. In experiments, we empirically validate the performance of FIXLIP with three metrics defined
in Section 4, measure its computational efficiency, and demonstrate its utility in visual explanation
of VLEs. We mainly use the openly available pre-trained CLIP models [57] of two sizes: ViT-B/32
with 7 × 7 image patches and ViT-B/16 with 14 × 14. Moreover, we demonstrate the broader
applicability of FIXLIP to explain SigLIP [75] and SigLIP-2 [66] up to the ViT-L/16 variant with
16× 16 patches. We rely on two openly available datasets commonly used in explainability research:
MS COCO [42] and ImageNet-1k [15]; the latter specifically to design the pointing game evaluation
considering zero-shot classification.

In quantitative evaluation, we compare FIXLIP to a few representative baselines: the first attribution
method for CLIP abbreviated as GAME [12], a state-of-the-art first-order attribution method Grad-
ECLIP [77], and a recently released second-order interaction method exCLIP [48]. For comparisons
of Grad-ECLIP and exCLIP with previous baselines, refer to the appropriate benchmarks [48, 77].
Figure 2 conceptually compares FIXLIP to baselines using the image–text input example from
Figure 1. Furthermore, we naturally demonstrate the improvement between FIXLIP and first-
order Shapley/Banzhaf values. In that, we effectively scale FIXLIP to approximate second-order
explanations with a budget of over 106 model inferences, which far exceeds related work. For
FIXLIP-p, we use the cross-modal estimator with a budget of 221, whereas FIXLIP with Shapley
interactions uses the model-agnostic estimator with a budget of 217, yielding approximately similar
runtime. We mainly experiment with p ∈ {0.3, 0.5, 0.7}; note that there is no computational overhead
for different p settings. Further details for the experimental setup are provided in Appendix C.

5.1 FIXLIP outperforms baselines as measured with insertion/deletion curves

Figure 3 shows insertion/deletion results for different explanation methods, where each line and
metric value is an average (± sd.) over 1000 inputs. We observe that FIXLIP faithfully recovers the
nonlinear importance rankings of token subsets (see Appendix Figure 9 for a visual example). It not
only finds the most important tokens whose deletion results in a significant drop in similarity (y-axis),
but also finds the least important tokens whose deletion may even result in the prediction’s
increase, contrary to gradient-based methods. The general conclusion is consistent for SigLIP-2 and
a larger ViT-B/16 model (refer to Appendix D for additional results), albeit the method’s faithfulness
drops when increasing the size of input tokens, where further scaling to even higher image resolutions
is a natural future work direction. As designed, increasing the masking weight to p = 0.7 leads to an
improved faithfulness in the 0–50% range of input deleted (100–50% inserted), while decreasing to
p = 0.3 improves faithfulness with 50–100% input deleted (50–0% inserted). Note that, in theory,
all of the methods can obtain negative normalized values on the y-axis. We think that exCLIP fails
to recover the appropriate ranking because it only approximates cross-modal interactions between
tokens from the two modalities, omitting first-order effects and intra-modal interactions in the process
(effectively constructing a bipartite weighted graph without weights in nodes).
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insert

delete

Figure 3: Insertion/deletion curves for CLIP (ViT-B/32) on MS COCO. AID score (higher is
better) for FIXLIP against alternative explanation methods, where a random baseline scores 0. The
y-axis is normalized between the model’s prediction on the original input (100%) and the fully
removed one (0%), where negative values denote that the model is predicting the image–text inputs
are unsimilar. It means the similarity prediction on a partially masked input is smaller than the
prediction on the fully masked input. Methods such as Grad-ECLIP and exCLIP fail to recover
nonlinear rankings of important tokens, while our method faithfully recovers the optimal subset
explanation. Extended results for CLIP (ViT-B/16) and SigLIP-2 (ViT-B/32) are in Figures 10 & 11.

Table 1: Pointing game recognition for CLIP (ViT-B/32) on ImageNet-1k. PGR score (higher is
better) for FIXLIP against alternative explanation methods, where a random baseline scores 0.25.
First-order methods, such as Grad-ECLIP and Shapley values, fail to distinguish between multiple
objects at once, while second-order methods faithfully recover the appropriate explanation (up to the
pointing game’s irreducible non-optimality). Extended results for CLIP (ViT-B/16) are in Table 4.

Explanation Method Recognition (↑)
1 object 2 objects 3 objects 4 objects

GAME [12] .61±.12 .43±.03 .33±.02 .28±.01

Grad-ECLIP [77] .68±.15 .45±.04 .33±.02 .28±.01

Shapley values .70±.11 .56±.06 .46±.05 .37±.04

Banzhaf values .64±.12 .52±.06 .43±.05 .35±.04

exCLIP [48] .73±.20 .88±.08 .89±.06 .92±.05

FIXLIP (Shapley interactions) .83±.10 .82±.08 .84±.06 .86±.06

FIXLIP (w. Banzhaf interactions p = 0.3) .78±.13 .78±.11 .80±.08 .81±.07

FIXLIP (w. Banzhaf interactions p = 0.5) .81±.12 .80±.09 .81±.07 .83±.06

FIXLIP (w. Banzhaf interactions p = 0.7) .83±.12 .81±.08 .83±.07 .85±.06

5.2 First-order attribution methods fail to pass a sanity check with a pointing game

Table 1 shows PGR results for different explanation methods, where each metric value is an average
(± sd.) over 500 inputs. We observe that first-order methods, e.g. Banzhaf values, fail to discriminate
between multiple objects in an image. Saliency maps can only highlight the important part of
image–text inputs without disentangling the complex relationship between each separate word in a
caption and the corresponding image regions (Appendix Figure 8). Second-order methods such as
FIXLIP and exCLIP pass our proposed sanity check; the latter scores slightly higher, as it specializes
in approximating cross-modal interactions. The conclusion is consistent for CLIP (ViT-B/16). We
further analyze the potential application of a pointing game to evaluate different models in Section 5.6.

5.3 FIXLIP recovers a faithful decomposition of the similarity function

Figure 4 demonstrates p-faithfulness results for different explanation methods, where each boxplot
represents statistics aggregated from 1000 inputs. We confirm that FIXLIP optimizes faithfulness,
which depends on the parameter p. Weighted Banzhaf interactions allow for precise controllability
of the faithfulness optimization, whereas Shapley interactions perform well on average. Alternative
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Figure 4: p-faithfulness correlation for CLIP (ViT-B/32) on MS COCO. Correlation for different
variants of FIXLIP against other explanation methods (left). Game-theoretical approaches can also
be evaluated with the R2 coefficient (right). Extended results for CLIP (ViT-B/16) are in Figure 12.

attribution methods compute explanations unfaithful to the explained similarity function (µcorr ≈ 0.5).
Extended results for different models and p values are given in Appendix D.

5.4 On the computational efficiency of the FIXLIP cross-modal estimator

5×
45×

20×

6×

Figure 5: Computation time vs. budget for the
FIXLIP explanation of SigLIP-2 (ViT-B/32), in-
cluding game evaluations (model inference).

Figure 5 demonstrates that the FIXLIP cross-
modal estimator achieves over 20× speedup
when considering model inference time, i.e.
game evaluations, and about 5× speedup when
accounting for the entire explanation pipeline im-
plemented in Python. We did not necessarily op-
timize the latter, i.e. subset sampling, weighted
least squares optimization, and other processing
steps, expecting that the visible gap between the
explanation and game time could be further de-
creased. For context, related first-order attribu-
tion methods take about 1 second to compute; see
Table 5 in [77], but note that it could be only for
an image explanation without text attribution.

5.5 Visual explanation of vision–language encoders

We have already established that FIXLIP delivers state-of-the-art faithfulness performance across
three diverse metrics. One of the explanations’ applications is to interpret the model’s output
function. Figure 6 demonstrates three types of visualizations that we envision can be used to broaden
our understanding of VLEs. In the interest of space, we provide further interesting examples in
Appendix E. Specifically, we provide a comprehensive guide on interpreting interaction explanations
like FIXLIP in Appendix E.1. Figures 8 & 9 further compare FIXLIP to baselines in the context of
evaluation metrics. Figure 16 shows a comparison between FIXLIP of CLIP and SigLIP-2 (ViT-B/32),
while Figure 17 shows a comparison between the ViT-B/32 and ViT-B/16 versions of CLIP.

5.6 Model-agnostic comparison of different vision–language encoder architectures

Table 2: Pointing game results as measured with FIXLIP.

Size Model Recognition (↑)
1 object 2 objects 3 obj. 4 obj.

ViT-B/32 CLIP .83±.11 .81±.07 .82±.07 .85±.05

SigLIP-2 .90±.07 .90±.05 .89±.05 .89±.04

ViT-B/16
CLIP .81±.09 .81±.06 .81±.05 .82±.04

SigLIP .80±.08 .82±.06 .84±.05 .84±.05

SigLIP-2 .86±.07 .88±.04 .87±.04 .87±.03

ViT-L/16 SigLIP .81±.08 .84±.05 .85±.04 .84±.04

SigLIP-2 .80±.10 .85±.06 .84±.05 .85±.04

We use FIXLIP to compare differ-
ent VLE architectures with PGR
in Table 2. Surprisingly, SigLIP-2
can be more faithfully explained
with cross-modal interactions
than CLIP, for both model sizes.
We observe that, in general, smaller
models (ViT-B/32) can be more
faithfully explained than larger ones
(ViT-L/16), which is consistent with
prior work [9, 16]. For more visual
comparisons, see Appendix E.3.
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(A) Faithful interaction explanations (B) Conditioning on tokens

(C) Visualizing subsets

negative

positive

condition

Figure 6: FIXLIP facilitates various approaches to model understanding. (A) Interaction
explanations allow answering the pivotal question: Why is it similar for the model? Here, the
strongest interaction is between text token doll and image patch saying “dollar”. One could say the
model is right for the wrong reasons. (B) Each token can be selected for conditioning to visualize as
a heatmap only the interactions (edges) outgoing from it. (C) A complete graph can be traversed to
find subsets of high positive and low negative similarity as approximated by the explanation.

6 Discussion

As vision–language encoders are increasingly deployed in real-world applications, it becomes pivotal
to ensure that their predictions are explainable. To this end, we introduced faithful interaction explana-
tions of CLIP and SigLIP models, offering a unique perspective on interpreting image–text similarity
predictions. Moreover, we derived three evaluation criteria facilitating future work in this direction.

Limitations and future work. Our work faces three limitations, each with a clear path for future
development. Although FIXLIP allows scaling to larger models with hundreds of players and
efficiently computing a million model inferences, improvements could be made to its practical
implementation. Specifically, we envision exploring the use of sparse linear regression, applying the
Archipelago framework [65] to filter interactions for the approximation, and a non-greedy algorithm
for a closer-to-optimal subset selection. Second, the visual properties and usability of FIXLIP should
be further studied as a potential direction in human-computer interaction research [58], see e.g. a
user study of cross-modal interaction explanations by Liang et al. [40]. Finally, our work is restricted
to second-order interaction explanations, while efficiently approximating higher-order interactions
(also in tri-modal settings beyond LIP models) becomes an interesting challenge to overcome.

Broader impact. We believe FIXLIP can empower model developers in debugging VLEs, under-
standing their similarity predictions, and finding unwanted biases in image–text data. Especially
when these models are used in high-stakes decision making, like in the case of medical applications.

Code. We provide additional details on reproducibility in the Appendix, as well as the code to
reproduce all experiments in this paper is available at https://github.com/hbaniecki/fixlip.

Acknowledgments and Disclosure of Funding

We gratefully acknowledge the Polish high-performance computing infrastructure PLGrid (HPC
Centers: ACK Cyfronet AGH) for providing computer facilities and support within the computational
grant no. PLG/2025/018330. Hubert Baniecki was supported from the state budget within the Polish
Ministry of Education and Science program “Pearls of Science” project number PN/01/0087/2022.
Barbara Hammer, Eyke Hüllermeier, Fabian Fumagalli, and Maximilian Muschalik gratefully ac-
knowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation):
TRR 318/1 2021 – 438445824.

10

https://github.com/hbaniecki/fixlip


References
[1] Chirag Agarwal. Rethinking explainability in the era of multimodal AI. preprint,

arXiv:2506.13060, 2025. 1

[2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, et al. Flamingo: a visual
language model for few-shot learning. In NeurIPS, 2022. 1

[3] Shreyash Arya, Sukrut Rao, Moritz Böhle, and Bernt Schiele. B-cosification: Transforming
deep neural networks to be inherently interpretable. In NeurIPS, 2024. 4

[4] Sriram Balasubramanian, Samyadeep Basu, and Soheil Feizi. Decomposing and interpreting
image representations via text in ViTs beyond CLIP. In NeurIPS, 2024. 2

[5] Usha Bhalla, Alex Oesterling, Suraj Srinivas, Flavio P. Calmon, and Himabindu Lakkaraju.
Interpreting CLIP with sparse linear concept embeddings (SpLiCE). In NeurIPS, 2024. 2

[6] Stefan Bluecher, Johanna Vielhaben, and Nils Strodthoff. Decoupling pixel flipping and
occlusion strategy for consistent XAI benchmarks. Transactions on Machine Learning Research,
2024. 1, 4

[7] Moritz Bohle, Mario Fritz, and Bernt Schiele. Convolutional dynamic alignment networks for
interpretable classifications. In CVPR, 2021. 4

[8] Moritz Bohle, Navdeeppal Singh, Mario Fritz, and Bernt Schiele. B-cos alignment for inherently
interpretable CNNs and vision transformers. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 46(06):4504–4518, 2024. 4

[9] Sebastian Bordt and Ulrike von Luxburg. From shapley values to generalized additive models
and back. In AISTATS, 2023. 2, 5.6

[10] Yue Cao, Yun Xing, Jie Zhang, Di Lin, Tianwei Zhang, Ivor Tsang, Yang Liu, and Qing Guo.
SceneTAP: Scene-coherent typographic adversarial planner against vision-language models in
real-world environments. In CVPR, 2025. E.2

[11] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021.
2

[12] Hila Chefer, Shir Gur, and Lior Wolf. Generic attention-model explainability for interpreting
bi-modal and encoder-decoder transformers. In ICCV, 2021. 1, 2, 5, 1, C.3, 4

[13] Sanghyuk Chun, Wonjae Kim, Song Park, and Sangdoo Yun. Probabilistic language-image
pre-training. In ICLR, 2025. 1

[14] Ian Covert, Tony Sun, James Zou, and Tatsunori Hashimoto. Locality alignment improves
vision-language models. In ICLR, 2025. 1

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In CVPR, 2009. 5, C.2

[16] James Enouen and Yan Liu. InstaSHAP: Interpretable additive models explain Shapley values
instantly. In ICLR, 2025. 2, 4, 5.6

[17] Gabriel Erion, Joseph D Janizek, Pascal Sturmfels, Scott M Lundberg, and Su-In Lee. Improving
performance of deep learning models with axiomatic attribution priors and expected gradients.
Nature Machine Intelligence, 3(7):620–631, 2021. B.1

[18] Katsushige Fujimoto, Ivan Kojadinovic, and Jean-Luc Marichal. Axiomatic characterizations
of probabilistic and cardinal-probabilistic interaction indices. Games and Economic Behavior,
55(1):72–99, 2006. 2

[19] Fabian Fumagalli, Maximilian Muschalik, Patrick Kolpaczki, Eyke Hüllermeier, and Bar-
bara Eva Hammer. SHAP-IQ: Unified approximation of any-order Shapley interactions. In
NeurIPS, 2023. 1, 2, 4, B.1

11



[20] Fabian Fumagalli, Maximilian Muschalik, Patrick Kolpaczki, Eyke Hüllermeier, and Barbara
Hammer. KernelSHAP-IQ: Weighted least square optimization for Shapley interactions. In
ICML, 2024. 2

[21] Yossi Gandelsman, Alexei A. Efros, and Jacob Steinhardt. Interpreting CLIP’s image represen-
tation via text-based decomposition. In ICLR, 2024. 2

[22] Gabriel Goh, Nick Cammarata, Chelsea Voss, Shan Carter, Michael Petrov, Ludwig Schubert,
Alec Radford, and Chris Olah. Multimodal neurons in artificial neural networks. Distill, 6(3):
e30, 2021. 2

[23] Yichen Gong, Delong Ran, Jinyuan Liu, Conglei Wang, Tianshuo Cong, Anyu Wang, Sisi Duan,
and Xiaoyun Wang. FigStep: Jailbreaking large vision-language models via typographic visual
prompts. In AAAI, 2025. E.2

[24] Michel Grabisch. Set Functions, Games and Capacities in Decision Making. Springer, 2016.
3.1, A.1

[25] Naofumi Hama, Masayoshi Mase, and Art B. Owen. Deletion and insertion tests in regression
models. Journal of Machine Learning Research, 24(290):1–38, 2023. 1, 4

[26] Peter L. Hammer and Ron Holzman. Approximations of pseudo-boolean functions; applications
to game theory. ZOR Mathematical Methods of Operations Research, 36(1):3–21, 1992. 3.1

[27] Peter Hase, Harry Xie, and Mohit Bansal. The out-of-distribution problem in explainability and
search methods for feature importance explanations. In NeurIPS, 2021. 1, B.1

[28] Jack Hessel and Lillian Lee. Does my multimodal model learn cross-modal interactions? It‘s
harder to tell than you might think! In EMNLP, 2020. 2

[29] Wisdom Oluchi Ikezogwo, Mehmet Saygin Seyfioglu, Fatemeh Ghezloo, Dylan Stefan Chan
Geva, Fatwir Sheikh Mohammed, Pavan Kumar Anand, Ranjay Krishna, and Linda Shapiro.
Quilt-1M: One million image-text pairs for histopathology. In NeurIPS, 2023. 1

[30] Joseph D. Janizek, Pascal Sturmfels, and Su-In Lee. Explaining explanations: Axiomatic feature
interactions for deep networks. Journal of Machine Learning Research, 22(104):1–54, 2021. 2

[31] Peng Jin, Hao Li, Li Yuan, Shuicheng Yan, and Jie Chen. Hierarchical Banzhaf interaction for
general video-language representation learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024. 2

[32] Boris Joukovsky, Fawaz Sammani, and Nikos Deligiannis. Model-agnostic visual explanations
via approximate bilinear models. In ICIP, 2023. 1, 2, C.3

[33] Justin Singh Kang, Yigit Efe Erginbas, Landon Butler, Ramtin Pedarsani, and Kannan Ramchan-
dran. Learning to understand: Identifying interactions via the Möbius transform. In NeurIPS,
2024. 2, 4

[34] Justin Singh Kang, Landon Butler, Abhineet Agarwal, Yigit Efe Erginbas, Ramtin Pedarsani,
Bin Yu, and Kannan Ramchandran. SPEX: Scaling feature interaction explanations for LLMs.
In ICML, 2025. 2

[35] Martha Lewis, Nihal Nayak, Peilin Yu, Jack Merullo, Qinan Yu, Stephen Bach, and Ellie Pavlick.
Does CLIP bind concepts? Probing compositionality in large image models. In Findings of
EACL, 2024. 1

[36] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In ICML, 2023. 1

[37] Weida Li and Yaoliang Yu. Robust data valuation with weighted Banzhaf values. In NeurIPS,
2023. 2

[38] Weida Li and Yaoliang Yu. One sample fits all: Approximating all probabilistic values simulta-
neously and efficiently. In NeurIPS, 2024. 2

12



[39] Yi Li, Hualiang Wang, Yiqun Duan, Jiheng Zhang, and Xiaomeng Li. A closer look at the
explainability of contrastive language-image pre-training. Pattern Recognition, 162:111409,
2025. 1, 2

[40] Paul Pu Liang, Yiwei Lyu, Gunjan Chhablani, Nihal Jain, Zihao Deng, Xingbo Wang, Louis-
Philippe Morency, and Ruslan Salakhutdinov. MultiViz: Towards visualizing and understanding
multimodal models. In ICLR, 2023. 1, 2, 6

[41] Hyesu Lim, Jinho Choi, Jaegul Choo, and Steffen Schneider. Sparse autoencoders reveal
selective remapping of visual concepts during adaptation. In ICLR, 2025. 2

[42] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In ECCV,
2014. 5, C.2

[43] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
NeurIPS, 2023. 1

[44] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
NeurIPS, 2017. 1, 3.1

[45] Daniel D Lundstrom, Tianjian Huang, and Meisam Razaviyayn. A rigorous study of integrated
gradients method and extensions to internal neuron attributions. In ICML, 2022. B.1

[46] Yiwei Lyu, Paul Pu Liang, Zihao Deng, Ruslan Salakhutdinov, and Louis-Philippe Morency.
DIME: Fine-grained interpretations of multimodal models via disentangled local explanations.
In AIES, 2022. 2

[47] Jean-Luc Marichal and Pierre Mathonet. Weighted Banzhaf power and interaction indexes
through weighted approximations of games. European Journal of Operations Research, 211(2):
352–358, 2011. 1, 3.1, A.1

[48] Lucas Moeller, Pascal Tilli, Thang Vu, and Sebastian Padó. Explaining caption-image inter-
actions in CLIP models with second-order attributions. Transactions on Machine Learning
Research, 2025. 2, 4, 5, 1, C.3, 4

[49] Niels Morch, Ulrik Kjems, Lars Kai Hansen, Claus Svarer, Ian Law, Benny Lautrup, Stephen
Strother, and Kelly Rehm. Visualization of neural networks using saliency maps. In ICNN,
1995. 1

[50] Maximilian Muschalik, Hubert Baniecki, Fabian Fumagalli, Patrick Kolpaczki, Barbara Ham-
mer, and Eyke Hüllermeier. shapiq: Shapley interactions for machine learning. In NeurIPS,
2024. 2, 4

[51] Maximilian Muschalik, Fabian Fumagalli, Paolo Frazzetto, Janine Strotherm, Luca Hermes,
Alessandro Sperduti, Eyke Hüllermeier, and Barbara Hammer. Exact computation of any-order
Shapley interactions for graph neural networks. In ICLR, 2025. 3

[52] Christopher Musco and R. Teal Witter. Provably accurate shapley value estimation via leverage
score sampling. In ICLR, 2025. 2, 4

[53] Letitia Parcalabescu and Anette Frank. MM-SHAP: A performance-agnostic metric for measur-
ing multimodal contributions in vision and language models & tasks. In ACL, 2023. 2

[54] Letitia Parcalabescu and Anette Frank. Do vision & language decoders use images and text
equally? How self-consistent are their explanations? In ICLR, 2025. 2

[55] Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata, Anna Rohrbach, Bernt Schiele, Trevor
Darrell, and Marcus Rohrbach. Multimodal explanations: Justifying decisions and pointing to
the evidence. In CVPR, 2018. 2

[56] Guilherme Dean Pelegrina, Leonardo Tomazeli Duarte, and Michel Grabisch. A k-additive
Choquet integral-based approach to approximate the SHAP values for local interpretability in
machine learning. Artificial Intelligence, 325:104014, 2023. 2

13



[57] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In ICML,
2021. 1, 5, C.1

[58] Yao Rong, Tobias Leemann, Thai-Trang Nguyen, Lisa Fiedler, Peizhu Qian, Vaibhav Unhelkar,
Tina Seidel, Gjergji Kasneci, and Enkelejda Kasneci. Towards human-centered explainable AI:
A survey of user studies for model explanations. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 46(4):2104–2122, 2024. 6

[59] Benedek Rozemberczki, Lauren Watson, Péter Bayer, Hao-Tsung Yang, Olivér Kiss, Sebastian
Nilsson, and Rik Sarkar. The Shapley value in machine learning. In IJCAI, 2022. 2

[60] Fawaz Sammani and Nikos Deligiannis. Interpreting and analysing CLIP’s zero-shot image
classification via mutual knowledge. In NeurIPS, 2024. 2

[61] Fawaz Sammani, Boris Joukovsky, and Nikos Deligiannis. Visualizing and understanding
contrastive learning. IEEE Transactions on Image Processing, 33:541–555, 2024. 2, C.3

[62] Mukund Sundararajan, Kedar Dhamdhere, and Ashish Agarwal. The Shapley Taylor interaction
index. In ICML, 2020. 2

[63] Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes
wide shut? exploring the visual shortcomings of multimodal LLMs. In CVPR, 2024. 1, E.2

[64] Che-Ping Tsai, Chih-Kuan Yeh, and Pradeep Ravikumar. Faith-Shap: The faithful Shapley
interaction index. Journal of Machine Learning Research, 24(94):1–42, 2023. 1, 2, 3.1, 2, 3.1

[65] Michael Tsang, Sirisha Rambhatla, and Yan Liu. How does this interaction affect me? Inter-
pretable attribution for feature interactions. In NeurIPS, 2020. 6

[66] Michael Tschannen et al. SigLIP 2: Multilingual vision-language encoders with improved
semantic understanding, localization, and dense features. preprint arXiv:2502.14786, 2025. 1,
5, C.1

[67] Vishaal Udandarao, Max F Burg, Samuel Albanie, and Matthias Bethge. Visual data-type
understanding does not emerge from scaling vision-language models. In ICLR, 2024. 1

[68] Bo Wan, Michael Tschannen, Yongqin Xian, Filip Pavetic, Ibrahim Alabdulmohsin, Xiao Wang,
André Susano Pinto, Andreas Peter Steiner, Lucas Beyer, and Xiaohua Zhai. LocCa: Visual
pretraining with location-aware captioners. In NeurIPS, 2024. 1

[69] Xingbo Wang, Jianben He, Zhihua Jin, Muqiao Yang, Yong Wang, and Huamin Qu. M2Lens:
Visualizing and explaining multimodal models for sentiment analysis. IEEE Transactions on
Visualization and Computer Graphics, 28(1):802–812, 2022. 2

[70] Ying Wang, Tim G. J. Rudner, and Andrew G Wilson. Visual explanations of image-text
representations via multi-modal information bottleneck attribution. In NeurIPS, 2023. 1, 2

[71] Jialin Wu and Raymond Mooney. Faithful multimodal explanation for visual question answering.
In ACL Workshop BlackboxNLP, 2019. 2

[72] Rui Xiao, Sanghwan Kim, Mariana-Iuliana Georgescu, Zeynep Akata, and Stephan Alaniz.
FLAIR: VLM with fine-grained language-informed image representations. In CVPR, 2025. 1

[73] Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When
and why vision-language models behave like bags-of-words, and what to do about it? In ICLR,
2023. 1

[74] Vladimir Zaigrajew, Hubert Baniecki, and Przemyslaw Biecek. Interpreting CLIP with hierar-
chical sparse autoencoders. In ICML, 2025. 2

[75] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for
language image pre-training. In ICCV, 2023. 1, 5, C.1

14



[76] Sheng Zhang et al. A multimodal biomedical foundation model trained from fifteen million
image–text pairs. NEJM AI, 2(1), 2024. 1, B.1

[77] Chenyang Zhao, Kun Wang, Janet H. Hsiao, and Antoni B. Chan. Grad-ECLIP: Gradient-based
visual and textual explanations for CLIP. In ICML, 2024. 1, 2, 4, 5, 1, 5.4, C.3, 4

[78] Zihao Zhao, Yuxiao Liu, Han Wu, Mei Wang, Yonghao Li, Sheng Wang, Lin Teng, Disheng Liu,
Zhiming Cui, Qian Wang, and Dinggang Shen. CLIP in medical imaging: A survey. Medical
Image Analysis, 102:103551, 2025. 1

[79] Xu Zheng, Farhad Shirani, Zhuomin Chen, Chaohao Lin, Wei Cheng, Wenbo Guo, and Dong-
sheng Luo. F-Fidelity: A robust framework for faithfulness evaluation of explainable AI. In
ICLR, 2025. 1

[80] Zhiyu Zhu, Zhibo Jin, Jiayu Zhang, Nan Yang, Jiahao Huang, Jianlong Zhou, and Fang
Chen. Narrowing information bottleneck theory for multimodal image-text representations
interpretability. In ICLR, 2025. 2

15



Appendix

Table 3 summarises the mathematical notation used in the paper. In Appendix A, we derive proofs for
Theorems 1 & 2, and Proposition 1. Appendix B describes the implementation details of our methods
introduced in Sections 3 & 4. Appendix C provides further details on the setup of experiments
conducted in Section 5. Finally, we discuss ablation results in Appendix D and visualize additional
explanations in Appendix E.
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Table 3: Summary of notation.

Notation Description

nI ∈ N, nT ∈ N Image and text input dimensions (number of tokens)
xI ∈ RnI , xT ∈ RnT Image and text input vectors
f(xI , xT ) Vision–language encoder prediction for an image–text input pair
d ∈ N Encoder embedding dimension
fI(xI) ∈ Rd, fT (xT ) ∈ Rd Vision and language encoder embedding vectors
NI , NT Sets of image and text token indices
i, j Token indices
B Explanation basis set containing indices of tokens and token pairs
e ∈ R|B| Explanation object
ei, e{i,j} ∈ R Token attribution and interaction values
Mo ⊆ N with N ∈ {NI , NT } Subset of image or text token indices
M ⊆ NI ∪NT Subset of image and text token indices
bI , bT Baseline image and text vectors
x⊕Mo b Input x masked using the operator for subset Mo and baseline b
ν(M) Game (value) function

ν̂, ν̂e Estimators of the game (value) function
p ∈ (0, 1) Probability parameter
Fp(ν, ν̂) p-faithfulness error metric
eFIXLIP-p := argmine Fp(ν, ν̂e) Explanation approximating the game function w.r.t. p-faithfulness
Pp(M) := p|M|(1− p)nI+nT −|M| Probability distribution of sampled masks over 2NI∪NT

m Number of sampled mask subsets
M (1), . . . ,M (m) Sampled mask subsets of image and text token indices
F̂
(m)
p (ν, ν̂e) Model-agnostic estimator of p-faithfulness

Pp,I Pp,T Probability distributions of sampled masks over 2NI and 2NT

mI , mT Numbers of sampled image and text mask subsets
M (1), . . . ,M (mI) Sampled mask subsets of image token indices
M (1), . . . ,M (mT ) Sampled mask subsets of text token indices
F̂
(mI ,mT )
p (ν, ν̂e) Cross-modal estimator of p-faithfulness

µcorr(e; p) p-faithfulness Spearman’s rank correlation evaluation metric
µAID(e) Area between insertion/deletion curves evaluation metric
Me,min,k Mask subset of size k for explanation e minimizing ν̂e(Me,min,k)
Me,max,k Mask subset of size k for explanation e maximizing ν̂e(Me,min,k)
Cinsert(e) Insertion curve; a set of paired

(
k, ν(Me,max,k)

)
values

Cdelete(e) Deletion curve; a set of paired
(
k, ν(Me,min,nI+nT −k)

)
values

µPGR(e;NT ) Pointing game recognition evaluation metric
ein,k Interaction values belonging to text token k
eout,k Interaction values not belonging to text token k
e>0, e<0 Negative and positive interaction values in an explanation
∥e∥1 :=

∑
i,j |e{i,j}| Absolute sum of an explanation
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A Proofs

A.1 Proof of Theorem 1

Proof. To prove this result, we combine alternative representations of the cooperative games using
the Möbius transform a : 2NI∪NT → R, which is defined by

a(M) :=
∑
L⊆M

(−1)|M |−|L|ν(L) for every M ⊆ NI ∪NT .

The approximated game ν̂e is a 2-additive game, and hence its Möbius transform is restricted up to
second-order interactions [24]. Moreover, the Möbius transform of the approximated game âFIXLIP

satisfies

âFIXLIP-p(∅) = ν̂e(∅) = e0,

âFIXLIP-p({i}) = ν̂e({i})− ν̂e(∅) = ei,

âFIXLIP-p({i, j}) = ν̂e({i, j})− ν̂e({i})− ν̂e({j}) + ν̂e(∅) = e{i,j},

where i, j ∈ NI ∪NT and i ̸= j. The approximated game ν̂ is by construction a 2-additive game,
and thus all higher-order Möbius coefficients are zero [24]. It was further shown by Marichal and
Mathonet [47, Proposition 3] that the weighted Banzhaf values of ν̂ can be computed as the optimal
first-order approximation of ν̂. The representation of the best k-th order approximation in the Möbius
transform was given by Marichal and Mathonet [47, Proposition 6], and reads for i ∈ NI ∪ NT ,
k = 1, and equal probabilities p as

â({i}) + (−1)1−1
∑

M⊆NI∪NT :|M |>1,i∈M

(
|M | − 1− 1

1− 1

)
p|M |−1â(M)

= â({i}) + p
∑

j∈NI∪NT :j ̸=i

â({i, j})

= ei + p
∑

j∈NI∪NT :j ̸=i

e{i,j},

which concludes the proof.
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A.2 Proof of Theorem 2

Proof. We first compute the expectations as

E[F̂(mI ,mT )
p (ν, ν̂e)] = E

[
1

mImT

mI∑
ℓI=1

mT∑
ℓT =1

(ν(M
(ℓI)
I ∪M

(ℓT )
T )− ν̂(M

(ℓI)
I ∪M

(ℓT )
T ))2

]

=
1

mImT

mI∑
ℓI=1

mT∑
ℓT =1

E
[
(ν(M

(ℓI)
I ∪M

(ℓT )
T )− ν̂(M

(ℓI)
I ∪M

(ℓT )
T ))2

]
= E(MI ,MT )∼Pp,I⊗Pp,T

[
(ν(MI ∪MT )− ν̂(MI ∪MT )))

2
]

= EM∼P

[
(ν(M)− ν̂(M))

2
]

= Fp(ν, ν̂e),

since MI ⊥ MT are independent.

We now proceed by computing the variance. We first introduce ge : 2NI × 2NT → R for MI ⊆ NI
and MT ⊆ NT as

ge(MI ,MT ) := (ν(MI ∪MT )− ν̂e(MI ∪MT ))
2
.

For the standard Monte Carlo estimator, we then obtain

V[F̂(m)
p (ν, ν̂e)] =

1

m
V[ge(MI ,MT )],

due to m iid samples. For the cross-modal estimator, we first prove a result for the explicit form of
the variance in Proposition 2.

Proposition 2. We denote the expectation over the conditional variances as

τI|T := EMT ∼Pp,T

[
VMI∼Pp,I [(ν(MI ∪MT )− ν̂e(MI ∪MT ))

2]
]
,

τT |I := EMI∼Pp,I

[
VMT ∼Pp,T [(ν(MI ∪MT )− ν̂e(MI ∪MT ))

2]
]
.

The variance of the estimator F̂(mI ,mT )
p (ν, ν̂e) is then given by

V[F̂(mI ,mT )
p (ν, ν̂e)] =

mI +mT − 1

mImT
V[ge(MI ,MT )]−

mI − 1

mImT
τI|T − mT − 1

mImT
τT |I .

Proof. The variance is computed as

V[F̂(mI ,mT )
p (ν, ν̂e)] = V

[
1

mImT

mI∑
ℓI=1

mT∑
ℓT =1

ge

(
M

(ℓI)
I ,M

(ℓT )
T

)]

=
1

m2
Im

2
T

mI∑
ℓI=1

mT∑
ℓT =1

mI∑
kI=1

mT∑
kT =1

cov
(
ge(M

(ℓI)
I ,M

(ℓT )
T ), ge(M

(kI)
I ,M

(kT )
T )

)
. (3)

To compute the covariance, we distinguish four cases, namely

cov(ge(M
(ℓI)
I ,M

(ℓT )
T ), ge(M

(kI)
I ,M

(kT )
T ))

=


V[ge(MI ,MT )], if ℓI = kI , ℓT = kT ,

cov(ge(MI ,MT ), ge(MI ,M
′
T )) , if ℓI = kI , ℓT ̸= kT ,

cov(ge(MI ,MT ), ge(M
′
I ,MT )) , if ℓI ̸= kI , ℓT = kT ,

0, if ℓI ̸= kI , ℓT ̸= kT ,

where MI ,M
′
I∼Pp,I and MT ,M

′
T ∼PT ,p. The covariances can be further computed as

cov(ge(MI ,MT ), ge(MI ,M
′
T )) = E[ge(MI ,MT )ge(MI ,M

′
T )]− E[ge(MI ,MT )]E[ge(MI ,M

′
T )]

= EMI∼Pp,I

[
EMT ∼Pp,T [ge(MI ,MT )]EM ′

T ∼Pp,T [ge(MI ,M
′
T )]

]
− E[ge(MI ,MT )]

2

= EMI∼Pp,I [EMT ∼Pp,T [ge(MI ,MT )]
2]− EMI∼Pp,I

[
EMT ∼Pp,T [ge(MI ,MT )]

]2
= VMI∼Pp,I

[
EMT ∼Pp,T [ge(MI ,MT )]

]
,
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where we have used MI ⊥ MT ,M
′
T and MT ⊥ M ′

T . Similarly, we obtain

cov (ge(MI ,MT ), ge(M
′
I ,MT )) = VMT ∼Pp,T [EMI∼Pp,I [ge(MI ,MT )]] .

Combining these results into Eq. (3), we obtain

V[F̂(mI ,mT )
p (ν, ν̂e)] =

1

m2
Im

2
T

mI∑
ℓI ,kI=1

mT∑
ℓT ,kT =1

cov
(
ge(M

(ℓI)
I ,M

(ℓT )
T ), ge(M

(kI)
I ,M

(kT )
T

)
=

1

m2
Im

2
T

( mI∑
ℓI=1

mT∑
ℓT =1

V[ge(MI ,MT )]︸ ︷︷ ︸
case ℓI=kI ,ℓT =kT

+

mI∑
ℓI=1

mT∑
ℓT ,kT =1
ℓT ̸=kT

VMI∼Pp,I

[
EMT ∼Pp,T [ge(MI ,MT )]

]
︸ ︷︷ ︸

case ℓI=kI ,ℓT ̸=kT

+

mI∑
ℓI ,kI=1
ℓI ̸=kI

mT∑
ℓT =1

VMT ∼Pp,T

[
EMI∼Pp,I [ge(MI ,MT )]

]
︸ ︷︷ ︸

case ℓI ̸=kI ,ℓT =kT

)

=
mImT

m2
Im

2
T
V[ge(MI ,MT )]

+
mImT (mT − 1)

m2
Im

2
T

VMI∼Pp,I

[
EMT ∼Pp,T [ge(MI ,MT )]

]
+

mT mI(mI − 1)

m2
Im

2
T

VMT ∼Pp,T

[
EMI∼Pp,I [ge(MI ,MT )]

]
We now use the law of total variance and MI ⊥ MT to rewrite

VMI∼Pp,I

[
EMT ∼Pp,T [ge(MI ,MT )]

]
= V[ge(MI ,MT )]− EMI∼Pp,I [VMT ∼Pp,T [ge(MI ,MT )]],

and use a similar result for MT to obtain

V[F̂(mI ,mT )
p (ν, ν̂e)] =

mImT +mImT (mT − 1) +mT mI(mI − 1)

m2
Im

2
T

V[ge(MI ,MT )]

− mT − 1

mImT
EMI∼Pp,I [VMT ∼Pp,T [ge(MI ,MT )]]−

mI − 1

mImT
EMT ∼Pp,T [VMI∼Pp,I [ge(MI ,MT )]]

=
mI +mT − 1

mImT
V[ge(MI ,MT )]

−
(mT − 1)EMI∼Pp,I [VMT ∼Pp,T [ge(MI ,MT )]] + (mI − 1)EMT ∼Pp,T [VMI∼Pp,I [ge(MI ,MT )]]

mImT

=
mI +mT − 1

mImT
V[ge(MI ,MT )]−

mI − 1

mImT
τI|T − mT − 1

mImT
τT |I ,

where we have used the definitions of τI|T := EMT ∼Pp,T [VMI∼Pp,I [ge(MI ,MT )] and τT |I :=
EMI∼Pp,I [VMT ∼Pp,T [ge(MI ,MT )]]. This concludes the proof.

By using Proposition 2, we obtain

V[F̂(mI ,mT )
p (ν, ν̂e)] ≤

mI +mT − 1

mImT
V[ge(MI ,MT )] ≤

mI +mT

mImT
V[ge(MI ,MT )],

since τI|T , τT |I ≥ 0.
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Moreover, by the law of total variance we have τI|T , τT |T ≤ V[ge(MI ,MT )], which implies

V[F̂(m,m)
p (ν, ν̂e)] ≥

2m− 1

m2
V[ge(MI ,MT )]−

2(m− 1)

m2
V[ge(MI ,MT )]

=
1

m2
V[ge(MI ,MT )]

= V[F(m2)
p (ν, ν̂e)],

which finishes the proof.
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A.3 Proof of Proposition 1

Proof. For a token attribution explanation e, the additive approximation reads as

ν̂e(M) = e0 +
∑
i∈M

ei.

Denote M+
k the top-k coefficients of e, then for M ⊆ NI ∪NT with |M | = k, we have∑

i∈M

ei ≤
∑

i∈M+
k

ei,

and thus

Me,max,k = argmax
M⊆NI∪NI :|M |=k

ν̂e(M) = argmax
M⊆NI∪NI :|M |=k

∑
i∈M

ei = M+
k .

Conversely, for the bottom-k coefficients M−
k , we have∑

i∈M

ei ≥
∑

i∈M−
k

ei,

for every M ⊆ NI ∪NT with |M | = k, and thus

Me,min,k = argmin
M⊆NI∪NI :|M |=k

ν̂e(M) = argmin
M⊆NI∪NI :|M |=k

∑
i∈M

ei = M−
k .

Lastly, the top-k coefficients correspond to the complement of bottom-(nI + nT − k) coefficients,
which yields

Me,min,nI+nT −k = M−
nI+nT −k = (NI ∪NT ) \M+

k ,

which finishes the proof of the deletion curve Cdelete = {(k, ν(Me,min,nI+nT −k))}k=1,...,nI+nT .
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B Implementation Details

B.1 Faithful interaction explanations of LIP models (FIXLIP)

Because of how the model’s forward function is implemented, without loss of generality, we explain
a logit-scaled similarity output from Equation 1, i.e. C · f(xI , xT ), which depends on the particular
model’s learnt constant, e.g. C ≈ 100 for CLIP, but C ≈ 117 for SigLIP and C ≈ 112 for SigLIP-2.

Masking. Following related work using input removal in attribution methods [17, 19, 27, 45], we
apply simple baseline masking strategies, which were also proven successful based on our empirical
results. For vision encoders, we use a 0 baseline after image normalization to propagate no signal
forward. In the case of language encoders, we use a native attention masking mechanism, where we
encode active tokens with 1 and the deleted ones with 0. It is important to leave the beginning/end
sequence and padding tokens as is. Note that in theory, the maximum possible context length
nT is finite (e.g. 64, 77) and could be treated as constant across different inputs. However, we
never explain these special tokens, treating parts of text inputs as the only features of interest.
Alternative implementations of masking worth considering are: removing words from the text inputs,
or tokens from tokenized inputs, imputing with the [UNK] token, or [MASK], e.g. in the case of the
BiomedCLIP architecture that is based on BERT [76]. Acknowledging the potential influence of the
masking approach, as well as position encodings, on the value of an empty input, we check that it
remains about constant across different text input lengths in Figure 7.
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Figure 7: Value of an empty input is about constant across different text lengths.

Budget split in the cross-modal estimator. The model-agnostic estimator (Definition 6) relies on m
sampled masks for approximation; the number is often called the approximation budget. The cross-
modal estimator (Definition 7) introduces budget split, where m = mT ·mI . For all our experiments,
we set mT := min

(
2nT ,max(4, ⌈

√
m · nT /nI⌉)

)
and mI := min

(
2nI ,max(4, ⌊

√
m · nI/nT ⌋)

)
as a reasonable default, allowing for a balanced exploration of both input spaces.

Two-step filtering approach. For the ViT-B/16 and ViT-L/16 model versions with a larger number
of input image tokens (patches), we perform a cheap computation of the first-order attribution to
prioritize interactions for approximation. We consider two strategies: picking a clique subset of
the most interesting tokens, or focusing only on cross-modal interaction for explanation, which we
specifically apply in the pointing game recognition (Definition 10, Appendix B.3). In the first strategy,
given the desirable clique size k = 72, we take kT := max

(
5, ⌈k ·nT /(nT +nI)⌉

)
text tokens with

the highest absolute feature attribution scores, and kI := k− kT image tokens accordingly. Similarly
to the above considerations regarding the budget split between the two modalities, we found this to
be empirically adequate. Future work can propose optimal strategies for both of these nuances.

Greedy subset selection. Even for the ViT-B/32 model version with fewer than 100 input tokens
(nodes in a graph), finding cliques of the highest and smallest sums using brute force is computation-
ally prohibitive. Still, we want to use these subsets denoted as Me,min,k and Me,max,k in evaluation
with insertion/deletion curves (Definition 9) and explanation visualization. Thus, we implemented a
simple greedy algorithm starting the search from each (or a subset) of the tokens (nodes). Its general
goal is to add consecutive tokens to the subset based on minimizing/maximizing the subset’s value.
For models with a larger number of inputs, e.g. nI + nT = 196 + 30, the greedy strategy remains
applicable; however, it may require a few minutes to complete when considering all subset sizes
k = 1, . . . , nI + nT .
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B.2 Area between the insertion/deletion curves (AID)

Figure 9 describes visually the process of computing insertion/deletion curves and how it can differ
between the first-order attribution methods and second-order interaction explanations. Consider the
following example shown in (bottom, Ours, 73%), where the faces of a smiling man and child are
masked with the masked caption saying “a man — a child smiling at a — in a —”. Here, the
model predicts the input to be dissimilar (below-average similarity), which means it enters negative
values in our normalized case. Contrarily, in (bottom, Baseline), the unmasked restaurant text
token keeps the model’s similarity near the average level. Another interesting phenomenon happens
for the insertion curve in Figure 9 (top). Faithfully masking the redundant information with our
method causes the model’s similarity to increase above the original prediction. Contrarily, in (top,
Baseline), the baseline gradient-based method is unable to faithfully recover such redundant tokens.

B.3 Pointing game recognition (PGR)

Figure 8 illustrates an example of the pointing game evaluation for interaction explanations
like FIXLIP, giving additional context as to why first-order attribution methods fail to pass this
desirable sanity check. A saliency map can only highlight important parts of image/text inputs, but
whenever more objects/concepts appear in the input, they are unable to disentangle the basic rela-
tionship between the two modalities. PGR metric measures the ratio of absolute values of “correctly”
identified cross-modal interaction terms to total interaction terms. For example, in Figure 8 (2nd
row, 2nd column), we sum the positive interactions between “banana”/“cat” image tokens and the
banana/cat text tokens, as well as the absolute negative interactions between “tractor”/“ball” image
tokens and the banana/cat text tokens. Then, we divide this sum by the total absolute sum of all
interactions, which gives a normalized PGR score. In Appendix C.2, we further describe the specific
combinations of image and object/class labels used to create our exemplary benchmark in this paper,
although the overall methodology should be treated in a generic manner.

1 object 2 objects 3 objects 4 objects

Figure 8: Visualization of a first-order attribution (top row), e.g. Shapley values, compared to
cross-modal interactions in FIXLIP (middle row) for an exemplary pointing game. FIXLIP can be
conditioned on any token, e.g. the first text input token (bottom row) for a simpler visualization.
Consecutive columns here correspond to consecutive columns in Tables 1, 2 & 4.
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Baseline
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5%15%40%73%92%

5%15%40%73%92%

Figure 9: Exemplary insertion/deletion curves for two explanations e computed with FIXLIP and
another first-order method. We show five subset visualizations per curve per method. In the case of
the baseline method, each consecutive subset needs to include the preceding one, which is not the case
for FIXLIP, capturing the complex cross-modal and intra-modal interactions. For example, a child
with the corresponding face patches (top right corner) gets overvalued by the man–pizza tokens
appearing jointly with the corresponding image part (child disappears). Similarly, in the deletion
curve, the subsets of text and image tokens interchange with each other at around 50% (bottom row).
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C Experimental Setup

C.1 Models

We use the following openly available models from Hugging Face with default hyperparameters:

• CLIP ViT-B/32 [57]: openai/clip-vit-base-patch32 (MIT License)

• CLIP ViT-B/16 [57]: openai/clip-vit-base-patch16 (MIT License)

• SigLIP ViT-B/16 [75]: google/siglip-base-patch16-224 (Apache License 2.0)

• SigLIP ViT-L/16 [75]: google/siglip-large-patch16-256 (Apache License 2.0)

• SigLIP-2 ViT-B/32 [66]: google/siglip2-base-patch32-256 (Apache License 2.0)

• SigLIP-2 ViT-B/16 [66]: google/siglip2-base-patch16-224 (Apache License 2.0)

• SigLIP-2 ViT-L/16 [66]: google/siglip2-large-patch16-256 (Apache License 2.0)

We additionally rely on the CLIP ViT-B/32 and ViT-B/16 model versions from the clip Python
library [57, MIT License], not to modify the official implementation of the baselines (Appendix C.3).
We set the batch size to 64 for the base models and to 32 for the large models, performing computation
on A100 GPUs with 40GB VRAM.

C.2 Datasets

We use the following openly available datasets from Hugging Face:

• MS COCO test set [42]: clip-benchmark/wds_mscoco_captions (CC BY 4.0)

• ImageNet-1k validation set [15]: ILSVRC/imagenet-1k (ImageNet Agreement)

Experiments with the CLIP models are performed using 1000 image–text pairs from the MS COCO
test set, for which each of the models predicted the highest similarity scores. Experiments with the
SigLIP-2 models are performed using 100 image–text pairs to save computational resources, since
we are not using it to compare with baseline methods.

Regarding ImageNet-1k, we use all 50 images from each of the following 10 class labels for
constructing the pointing game evaluation: goldfish (1), husky (248), cat (282), plane (404),
church (497), ipod (605), ball (805), tractor (866), banana (954), pizza (963). We combine
these images with labels into 10 varied games as follows: goldfish-husky-pizza-tractor,
cat-goldfish-plane-pizza, banana-cat-tractor-ball, husky-banana-plane-church,
pizza-ipod-goldfish-banana, ipod-cat-husky-plane, tractor-ball-banana-ipod,
plane-church-ball-goldfish, church-pizza-ipod-cat, ball-husky-banana-tractor.
In each case, we distinguish four scenarios by gradually adding each consecutive token from left to
right, resulting in 40 scenarios, each with a total of 50 images, which constitutes a reasonable case.

C.3 Baselines

We use the following publicly available source code:

• GAME [12]: https://github.com/hila-chefer/Transformer-MM-Explainability
(MIT License)

• Grad-ECLIP [77]: https://github.com/Cyang-Zhao/Grad-Eclip (License unknown)

• exCLIP [48]: Supplementary material at https://openreview.net/forum?id=
plkrRJt98c (License unknown)

We were unable to run exCLIP on the CLIP (ViT-B/16) model version for inputs with more than
24 text tokens, which are common in MS COCO, running into out-of-memory errors. Furthermore,
we refrain from attempting to run these implementations on SigLIP models, which were not part
of the original experiments. For context, we did not find an openly available implementation of
InteractionLIME [32], while it is not clear how to adapt InteractionCAM [61] (proposed for image–
image encoders) to the text/language domain.
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C.4 Metrics

For p-faithfulness correlation (Definition 8), we set m = 1000 for a reasonable sample size and
analyze p = {0.3, 0.5, 0.7}, as well as Shapley sampling weights to give a broader context.

Note that the insertion/deletion curves (Definition 9) have different lengths for each input (explana-
tion), depending on the number of tokens (players). We thus interpolate each curve over a fixed range
of 51 points between 0–100% input and then aggregate them to obtain the final visualization.

Pointing game recognition has no additional hyperparameters beyond the pre-defined dataset described
in Appendix C.2. For the example presented in Table 2, we omit the (sub)games with either goldfish
or ipod for SigLIP models, because their corresponding text tokenizer divides these class labels into
multiple tokens.

C.5 Compute resources

Experiments described in Section 5 and Appendix D were computed on a cluster consisting of 4×
AMD Rome 7742 CPUs (256 cores), 4TB of RAM, and 16× A100 GPUs for about 15 days combined.
We envision that preliminary and failed experiments have required the same amount of compute
resources.
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D Additional Experimental Results

We report the insertion/deletion results for CLIP (ViT-B/16) in Figure 10 and for SigLIP-2 (ViT-B/32)
in Figure 11, where we also analyze the gradual relationship between p-masking in FIXLIP and the
model’s prediction change more gradually. Table 4 reports pointing game results for CLIP (ViT-B/16),
where interestingly FIXLIP with p = 0.5 outperforms FIXLIP (Shapley interactions).

Figure 12 shows further ablations based on the different distributions in the p-faithfulness correlation
metric. Interestingly, FIXLIP with p = 0.7 evaluated on masks from p = 0.3 performs much better
than FIXLIP with p = 0.3 evaluated on masks from p = 0.7, which further confirms our motivation
to increase p in machine learning applications where out-of-distribution sampling is not desirable.
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Figure 10: Insertion/deletion curves for CLIP (ViT-B/16) on MS COCO. Extended Figure 3. AID
score (higher is better) for FIXLIP against alternative explanation methods, where a random baseline
scores 0. The y-axis is normalized between the model’s prediction on the original input (100%) and
the fully removed one (0%), where negative values denote that the model is predicting the inputs
are unsimilar. Gradient-based methods such as Grad-ECLIP fail to recover nonlinear rankings of
important tokens, whereas FIxLIP faithfully recovers the optimal subset explanation. exCLIP does
not appear in the comparison as its implementation returns an OOM error when querying the larger
model (14× 14 image tokens) with texts longer than 24 tokens, which are common in MS COCO.
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Figure 11: Insertion/deletion curves for SigLIP-2 (ViT-B/32) on MS COCO. Extended Figure 3.
AID score (higher is better) for a model-agnostic estimator of FIXLIP with different masking weights.
The y-axis is normalized between the model’s prediction on the original input (100%) and the fully
removed one (0%), where negative values denote that the model is predicting the inputs are unsimilar.
We observe a gradual relationship between p and the steepness of the curves at a particular fraction
of input deleted. We omit comparison with other baselines in this case as they were originally
implemented for CLIP and not SigLIP.
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Table 4: Pointing game recognition for CLIP (ViT-B/16) on ImageNet-1k. Extended Table 1.
PGR score for FIXLIP against alternative explanation methods, where a random baseline scores 0.25.
First-order methods, such as Grad-ECLIP and Shapley values, fail to distinguish between multiple
objects simultaneously, while second-order methods faithfully recover the appropriate explanation
(up to the irreducible non-optimality of the pointing game).

Explanation Method Recognition (↑)
1 object 2 objects 3 objects 4 objects

GAME [12] .60±.11 .41±.04 .33±.02 .27±.01

Grad-ECLIP [77] .72±.13 .44±.04 .33±.01 .26±.01

Shapley values .66±.07 .57±.05 .50±.04 .42±.03

Banzhaf values .70±.08 .58±.05 .50±.05 .41±.04

exCLIP [48] .73±.15 .82±.07 .85±.05 .87±.05

FIXLIP (Shapley interactions) .76±.08 .78±.06 .79±.05 .79±.05

FIXLIP (w. Banzhaf interactions p = 0.3) .76±.10 .75±.08 .77±.07 .77±.06

FIXLIP (w. Banzhaf interactions p = 0.5) .81±.08 .80±.06 .81±.05 .81±.05

FIXLIP (w. Banzhaf interactions p = 0.7) .75±.09 .75±.07 .77±.06 .78±.05
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Figure 12: Faithfulness evaluation for CLIP (ViT-B/32 and ViT-B/16) on MS COCO. Extended
Figure 4. We evaluate the faithfulness of different FIXLIP variants and baselines in terms of p-
faithfulness correlation and the R2 coefficient (where it is possible for game-theoretic approaches).
For 1 000 inputs, we sample 1 000 evaluation masks according to different p-faithfulness distributions:
p = 0.3, p = 0.5, p = 0.7. For each p-faithfulness distribution, the corresponding FIXLIP (w.
Banzhaf interactions) outperforms the baselines.
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E Visual Explanatons

E.1 Guidance on interpreting visualizations of interaction explanations

In all of our visualizations, explanations are highlighted using a red–blue color scheme, where red
indicates a positive contribution to the model’s output and blue a negative one. The transparency
of the color reflects the strength of the contribution—more opaque elements correspond to higher
absolute explanation values. Pairwise interactions are represented as edges, main effects (or first-order
attributions) are displayed as colored boxes around words or overlayed as heatmaps on top of images.
In addition to the color and transparency, edges also vary in thickness based on the interaction strength.
In general, interactions may link elements within the same modality, e.g. text–text interactions or
image–image interactions, or across modalities, e.g. text–image interactions.

Figure 13 illustrates how to interpret visualizations in a multimodal setting involving image and text
inputs. Provided an input image and text pair (Figure 13A), we compute FIXLIP and retrieve an
explanation e containing interactions and main effects. The FIXLIP output (Figure 13B) can be
visualized by plotting the image and text together, and overlaying the main effects and interactions.
This allows for a quick screening of interesting parts in the input as judged by an explanation. In
this particular example, the elephant text token is positively linked to all image tokens containing
the elephant. The two text tokens white and bird are linked to the one image token containing the
bird. Here, elephant is red because removing it would decrease the predicted similarity score, while
bird is blue because removing it might even increase the predicted similarity score (depending on
cross-modal interactions). Based on the FIXLIP, more detailed visualizations can be created.

Conditioning on tokens. To investigate the role of a specific token i ∈ NT ∪NI , we can condition
the interaction space on i and retrieve all interactions of the form e{i,j} for j ∈ N \ {i}. This
conditional view highlights how token i interacts with all other tokens and is especially useful for
analyzing its contextual relevance across modalities. Then, we project the interactions onto the
first-order and visualize them with a heatmap (Figure 13C). Conditioning on elephant shows the
greatest positive interactions with the body in the image tokens and the word small. Conditioning
on the image token containing the bird mostly interacts with white and bird.

Finding interesting subsets. FIXLIP explanations allow searching for interesting subsets M like
Me,max,k or Me,min,k for varying sizes of k. We can search the space of interactions and visualize
only the explanations for tokens in these subsets, or overlay the masks on top of the input. In
Figure 13D, we illustrate Me,max,7 containing tokens related to elephant. Starting the search from
the bird token retrieves the k = 4 subset with information about the bird. While the elephant subset
increases the similarity, the bird subset could slightly decrease the similarity, presumably because the
model would find the isolated image–text similarity of the elephant clearer.

Visualizing heatmaps. Based on Theorem 1, second-order explanations provided by FIXLIP can
be converted into first-order explanations. Hence, FIXLIP explanations can also be visualized with
heatmaps (Figure 13E). Similar to baselines such as Grad-ECLIP or Shapley values, we overlay
the converted first-order FIXLIP explanations onto the input. The scores are scaled jointly across
both modalities since we retrieve the explanation scores across both modalities. An alternative could
be to scale scores independently with different maximum values (one per modality). Joint scaling
allows for relative comparisons, which is not the case for independent scaling, where two tokens are
visualized with full color intensity. In Figure 13E (left), the independently scaled heatmap shows
that the vision token containing the bird and the elephant text token have the highest scores in their
respective modality. Jointly scaling the heatmap reveals that the elephant text token is of a higher
score than the vision token containing the bird.
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(A) Input

a small elephant standing
next to a white bird .

(B) FIxLIP output

a small elephant standing next to a white bird .

(C) Conditioning on tokens

a small elephant standing
next to a white bird .

a small elephant standing
next to a white bird .

a small elephant standing
next to a white bird .

(D) Finding interesting subsets
Subset with ν̂e(M) ≈ 8.7

smallsmall

elephantelephant

a small elephant standing
next to a white bird .

Subset with ν̂e(M) ≈ −0.9

whitewhite

birdbird

a small elephant standing
next to a white bird .

(E) Visualizing heatmaps
Scaled independently

a small elephant standing
next to a white bird .

Scaled jointly

a small elephant standing
next to a white bird .

Figure 13: Showcase of explanation visualization. A comprehensive description is in Appendix E.1.
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E.2 Additional examples

Figure 14 demonstrates the utility of conditioning on tokens. Figure 15 shows intriguing examples of
interactions in inputs with text written in an image, which is related to the typographic capabilities of
large vision–language models [10, 23, 63].

First-order explanation Conditioning on tokensSecond-order explanation

negative

positive

condition

Figure 14: FIXLIP provides a utility of conditional heatmap generation. Comparison between
a first-order attribution explanation and a second-order interaction explanation, which is able to
recognize complex nuances of the presented scene.
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a sign that says " abbey road nw 8 city of westminster ".

a sign reading " juice theory " near a traffic light .

the streets signs at the intersection of ha ight and ash
bury .

Figure 15: Intriguing examples. Top interactions in inputs with text written in an image.
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E.3 Comparison between CLIP (ViT-B/32) and SigLIP-2 (ViT-B/32)

See Figure 16. Note that these models have different text tokenizers and input image resolutions, i.e.
224× 224 vs. 256× 256, which is why the images differ slightly.

CLIP (ViT-B/32) SigLIP-2 (ViT-B/32)

Figure 16: Visual comparison between FIXLIP of CLIP (left) and SigLIP-2 (right).
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E.4 Comparison between CLIP (ViT-B/32) and CLIP (ViT-B/16)

Visual examples between CLIP (ViT-B/32) and CLIP (ViT-B/16) are in Figure 17. Notably, in the
example including the clock (Fig. 17, row 3), conditioning on the vision token containing the letters
T and part of O reveals a strong interaction with another vision token of this word in the “sign” and
the text token town. This may suggest the presence of a third-order interaction between these tokens.

CLIP (ViT-B/32) CLIP (ViT-B/16)Input

Figure 17: Visual comparison between FIXLIP of CLIP ViT-B/32 (left) and ViT-B/16 (right). Each
heatmap is conditioned on the selected input token (in black), also for vision tokens (in yellow).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We validate our claims empirically and provide proofs in Appendix A.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 6.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In Section A.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All models and datasets used are openly available. We share code imple-
mentation for our method, experiments, and analyzes on GitHub. We add details on the
implementation and experimental setup in Appendices B & C, respectively.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All models and datasets used are openly available. We share code implementa-
tion for our method, experiments, and analyzes on GitHub.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] ,

Justification: We state experimental setting at the beginning of Section 5, and elaborate on it
in Appendix C.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report metric values with standard deviations and via boxplots.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: We estimate compute resources in Appendix C.5.
9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not violate the NeurIPS Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We describe the broader impact in Section 6.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release new data or models.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers, state versions, include URLs, and list asset licenses
in Appendix C.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our method does not involve using LLMs.
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