
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

QUANTUM MACHINE LEARNING ADVANTAGES BEYOND
HARDNESS OF EVALUATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent years have seen rigorous proofs of quantum advantages in machine learning,
particularly when data is labeled by cryptographic or inherently quantum functions.
These results typically rely on the infeasibility of classical polynomial-sized circuits
to evaluate the true labeling function. While broad in scope, these results however
reveal little about advantages stemming from the actual learning process itself. This
motivates the study of the so-called identification task, where the goal is to “just”
identify the labeling function behind a dataset, making the learning step the only
possible source of advantage. The identification task also has natural applications,
which we discuss. Yet, such identification advantages remain poorly understood.
So far they have only been proven in cryptographic settings by leveraging random-
generatability, the ability to efficiently generate labeled data. However, for quantum
functions this property is conjectured not to hold, leaving identification advantages
unexplored. In this work, we provide the first proofs of identification learning
advantages for quantum functions under complexity-theoretic assumptions. Our
main result relies on a new proof strategy, allowing us to show that for a broad
class of quantum identification tasks there exists an exponential quantum advantage
unless BQP is in a low level of the polynomial hierarchy. Along the way we prove
a number of more technical results including the aforementioned conjecture that
quantum functions are not random generatable (subject to plausible complexity-
theoretic assumptions), which shows a new proof strategy was necessary. These
findings suggest that for many quantum-related learning tasks, the entire learning
process—not just final evaluation—gains significant advantages from quantum
computation.

1 INTRODUCTION

A central question in quantum machine learning (QML) is understanding which learning problems
inherently require a quantum computer for efficient solutions. As shown in (Huang et al., 2021),
access to data enables classical learners to efficiently evaluate some hard-to-compute functions
that are otherwise intractable for polynomial time classical randomized algorithms. Most of the
known examples of learning problems where data does not aid in computing the target function
involve cryptographic functions, for which random labeled samples can be generated efficiently
using classical algorithms. While the proofs may be more involved, the intuition remains simple:
if a classical machine could generate the data, then the data itself cannot be what makes a hard
problem easy. In the context of QML, where the greatest advantages are intuitively expected for “fully
quantum” functions (i.e., functions that are BQP-complete1), the focus on cryptographic tasks was
somewhat unsatisfactory. This limitation was addressed in (Gyurik & Dunjko, 2023) by employing
stronger computational complexity assumptions and, crucially, by leveraging the fact that standard
learning definitions require the learned model to evaluate new data points.

However, a different learning condition could be considered where the learning algorithm is solely
required to identify the target labeling function from a set of labeled data. In this scenario, the classical
learner would only need to output a description of the unknown target function, without needing
to also evaluate it on new input points. From a fundamental standpoint, analyzing the hardness of

1More precisely, the class BQP does not contain complete problems. Throughout this paper, whenever we
refer to complete problems, we will instead consider the class PromiseBQP.
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the identification task in learning problems involving quantum functions helps clarify the source of
learning separations. From a practical viewpoint, particularly in expected applications of quantum
machine learning, identifying the data-generating function can in fact be the primary goal, such as in
Hamiltonian learning or in tasks related to finding order parameters (Gyurik & Dunjko, 2023), as we
will comment in Appendix G. Crucially, as was proved in (Gyurik & Dunjko, 2023), separations for
the identification problem cannot exist without assumptions on the hypothesis class (intuitively, the
classical learner can always outputs the circuit for the whole quantum learner with hardwired data as
the output). The main goal of this paper is then to determine the conditions under which a learning
separation for fully quantum functions can already emerge from the identification step.

Classical hardness of the identification problem has already been established for certain learning
tasks, such as the learnability of DNF formulas (Kearns & Vazirani, 1994) and cryptographic
functions (Gyurik & Dunjko, 2023; Jerbi et al., 2024). The key components in these hardness
proofs are: (1) the existence of a succinct representation of the target function that enables efficient
extraction of the relevant property, and (2) the property of “random generatability”. In this paper, we
use the term “random generatability” to refer to the ability to efficiently generate labeled samples
(x, f(x)) for random inputs x. We also refer to the characteristic functions of BQP languages as
“quantum functions” (see Def. 10). In Appendix G we list a series of practical scenarios where
quantum functions naturally arise. Crucially, for learning tasks involving quantum functions, we
cannot rely on a simple representation of the target function, and we also show that these functions
are not randomly generatable. Consequently, our hardness result for the identification task requires a
fundamentally different proof strategy from those used in prior works. We discuss this in more detail
in Appendix A. The main contributions of the paper are the following.

1. We show that quantum functions are not random generatable unless BQP is in the second
level of the polynomial hierarchy. This result has consequences on quantum generative
modelling as well, see Corollary 2.

2. We introduce the task of verifiable-identification, where the algorithm must reject in-
valid datasets, and solve identification correctly otherwise, and prove classical verifiable-
identification for quantum target function is impossible, unless BQP is in BPPNP.

3. We identify sufficient conditions on learning algorithm and concept class such that “mere”
classical identification implies approximate-verifiable identification (the algorithm must
reject datasets unless most of the samples are labeled according to the same concept) within
the polynomial hierarchy. This implies identification is classically intractable unless BQP is

in BPPNPNPNP

(two levels “up” in the hierarchy compared to the verifiable case in the point
above).

4. We provide examples of classes of physically relevant learning tasks which satisfy the
above condition, for which then the quantum advantage for identification tasks holds, see
Corollary 1.

The relationship between our proofs is illustrated in Figure 1 in Section 5. We note that the results in
the main text are presented under the heuristic form of the complexity-theoretic assumptions, since
our analysis follows a distribution-specific scenario (see Appendix C for the exact-case adaptation).

2 PRELIMINARIES

We now provide here the precise definitions of the two tasks we are addressing in this work. Ap-
pendix B provides the definitions of quantum functions and the complexity-theoretic background
relevant to our hardness results, along with a glossary of the most frequently used symbols in Table 1.

2.1 DEFINITION OF RANDOM GENERATABILITY

Given a uniform family of functions f = {fn}n∈N, with fn : {0, 1}n → {0, 1}, we say that f is
“random-generable” under a distribution D if there exists a uniform (randomized) algorithm capable
of producing samples (x, fn(x)) with x sampled from D efficiently for any n. The concept of
functions that permit an efficient procedure to generate random samples (x, f(x)) was introduced
in (Arrighi & Salvail, 2006) under the term “random verifiability”. In this paper, we refer to the
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same property as “random generatability” to avoid potential confusion with the “verifiable case”
of the identification task described in Def. 7. Specifically, we consider two cases: exact random
generatability in Def. 1, where the algorithm is not allowed to make any errors, and approximate
random generatability in Def. 2, where the algorithm outputs samples from a distribution only close
to the true target distribution.
Definition 1 (Exact random generatability). Let f = {fn}n∈N be a uniform family of functions2,
with fn : {0, 1}n → {0, 1}. f is exact random generatable under the input distribution D if there
exists an efficient uniform (randomized) algorithm AD such that given as input a description of fn
for any n and a random string r is such that with probability 1:

AD(fn, r) = (xr, fn(xr)). (1)
When r is chosen uniformly at random from the set of all random strings with length polynomial in n,
then (xr, fn(xr)) ∼ πf (D), where πf (D) samples x from the target distribution D over x ∈ {0, 1}n
and assigns the corresponding label fn(xr) ∈ {0, 1}.
Definition 2 (Approximate random generatability). Let f = {fn}n∈N be a uniform family of
functions, with fn : {0, 1}n → {0, 1}. f is approximately random generatable under the distribution
D if there exists an efficient uniform (randomized) algorithmAD such that given as input a description
of fn for any n, a random string r and an error value ϵ outputs:

AD(fn, 0
1/ϵ, r) = (xr, fn(xr)) (2)

with (xr, fn(xr)) ∼ πf
ϵ (D) when r is sampled uniformly at random from the distribution of all

the random strings (with polynomial size). In particular, πf
ϵ (D) is a probability distribution over

{0, 1}n × {0, 1} which satisfies: ∥πf
ϵ (D)− πf (D)∥TV ≤ ϵ, where πf (D) is the same distribution

defined in Def. 1.

As the total variation distance between two distributions p and q over x ∈ {0, 1}n is defined as
∥p− q∥TV = 1

2

∑
x |p(x)− q(x)|, the algorithm A in Def. 2 is allowed to make mistakes both with

respect to the probability distribution of the outputted xs (e.g. they may not be generated from the
uniform distribution) and with respect to the assigned labels.

2.2 PAC FRAMEWORK

The results in this paper are expressed in the standard terms of the efficient probably approximately
correct (PAC) learning framework (Kearns & Vazirani, 1994; Mohri, 2018). In the case of supervised
learning, a learning problem in the PAC framework is defined by a concept class F = {Fn}n∈N,
where each Fn is a set of concepts, which are functions from some input space Xn (in this paper
we assume Xn is a subset of {0, 1}n ) to some label set Yn (in this paper we assume Yn is {0, 1},
unless stated otherwise). The learning algorithm receives on input samples of the target concepts
T = {(xℓ, f(xℓ))}ℓ, where xℓ ∈ Xn are drawn according to target distributions D = {Dn}n∈N.
Finally, the learning algorithm has a hypothesis classH = {Hn}n∈N associated to it, and the learning
algorithm should output a hypothesis h ∈ Hn – which is another function from Xn to Yn– that is in
some sense “close” (see Eq. (3) below) to the concept f ∈ Fn generating the samples in T .
Definition 3 (Efficient probably approximately correct learnability). A concept class F = {Fn}n∈N
is efficiently PAC learnable under target distributions D = {Dn}n∈N if there exists a hypothesis
classH = {Hn}n∈N and a (randomized) learning algorithm L with the following property: for every
f ∈ Fn, and for all 0 < ϵ < 1/2 and 0 < δ < 1/2, if L receives in input a training set T of size
greater than M ∈ O(poly(n)), then with probability at least 1 − δ over the random samples in T
and over the internal randomization of L, the learning algorithm L outputs a specification3 of some
h ∈ Hn that satisfies:

Prx∼Dn

[
h(x) ̸= f(x)

]
≤ ϵ. (3)

Moreover, the learning algorithm L must run in time O(poly(n, 1/ϵ, 1/δ)). If the learning algorithm
runs in classical (or quantum) polynomial time, and the hypothesis functions can be evaluated
efficiently on a classical (or quantum) computer, we refer to the concept class as classically learnable
(or quantumly learnable, respectively).

2Committing slight abuse of notation, we will use fn to denote both the function itself and its description.
3The hypotheses (and concepts) are specified according to some enumeration R : ∪n∈N{0, 1}n → ∪nHn

(or, ∪nCn) and by a “specification of h ∈ Hn” we mean a string σ ∈ {0, 1}∗ such that R(σ) = h (see (Kearns
& Vazirani, 1994) for more details).
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In classical machine learning literature, hypothesis functions are generally assumed to be efficiently
evaluable by classical algorithms, as the primary goal is to accurately label new data points. In this
paper, however, we focus on learning separations that arise from the inability of a classical algorithm to
identify the target concept that labels the data, rather than from the hardness of evaluating the concept
itself. Therefore, for our purposes we consider hypothesis functions that may be computationally
hard to evaluate classically. Specifically, we will consider target concept functions, as defined in
Def. 10, that are related to (Promise)BQP complete languages. As discussed in (Gyurik & Dunjko,
2023), obtaining a learning separation for the identification problem in this case requires restricting
the hypothesis class available to the classical learning algorithm. Otherwise, a classical learner
can always outputs the circuit for the whole quantum learner with hardwired data as the output. A
common approach is then to define the hypothesis class as exactly the same set of functions contained
in the concept class that label the data. The classical learning algorithm will then have to correctly
identify which is the concept, among the ones in the concept class, that labeled the data. As we will
make clear later, the task is close to a variant of the PAC learning framework in Def. 3, called proper
PAC learning.
Definition 4 (Proper PAC learning (Kearns & Vazirani, 1994)). A concept class F = {Fn}n∈N is
efficiently proper PAC learnable under the distribution D = {Dn}n∈N if it satisfies the definition of
PAC learnability given in Def. 3, with the additional requirement that the learning algorithm L uses a
hypothesis classH identical to the concept class, i.e.,H = F .

We provide now the definition of the two types of concept classes considered in our main Theorem 10.

c-distinct concept class In the first scenario, we require the concept class to consist of BQP-complete
functions, as defined in Def. 10, that disagree on a sufficiently large fraction of inputs. More
specifically, we define a c-distinct concept class as follows.
Definition 5 (c-distinct concept class). Let F = {fα : {0, 1}n → {0, 1} | α ∈ {0, 1}m} be a
concept class. We say F is a c-distinct concept class if

∀α1, α2 ∈ {0, 1}m, α1 ̸= α2 ∃S ⊂ {0, 1}n, |S|/2n ≥ c s.t. ∀x ∈ S fα1(x) ̸= fα2(x). (4)

We note that in the case of concept classes containing PromiseBQP functions as defined in Def. 13,
for the definition of c-distinct concepts to be meaningful, we require that the set S is a subset of the
inputs specified in the promise. In the Appendix F.2, we provide an example of a 0.5-distinct concept
class where the concepts are all (Promise)BQP functions.

Average-case-smooth concept class We now consider concept classes where the label space is
equipped with a metric such that if two concepts are close under the PAC conditions, then their
corresponding labels α1 and α2 are also close with respect to the metric on the label space. We
formalize this notion of closeness in the definition below.
Definition 6 (Average-case-smooth concept class). LetF = {fα : {0, 1}n → {0, 1} | α ∈ {0, 1}m}
be a concept class. We say that F is average-case-smooth if there exists a distance function
d : {0, 1}m × {0, 1}m → R+ defined over the labels α ∈ {0, 1}m and a C ≥ 0 such that
∀α1, α2 ∈ {0, 1}m:

Ex∼Unif(0,1n)|fα1(x)− fα2(x)| ≥ C d(α1, α2). (5)

We note that in machine learning, it is often the case that closeness of functions in parameter space
implies closeness in the PAC sense. However, in Def. 6, we require the reverse: that closeness at the
function level implies closeness in parameter space.

2.3 DEFINITIONS OF THE IDENTIFICATION TASKS

Imagine we are given a machine learning task defined by a concept class F composed of 2m target
functions, each one specified by a vector alpha α ∈ {0, 1}m with m scaling polynomially with input
size n. Formally, that means that there exists a function e : S ⊆ {0, 1}m → F which is bijective
and such that e(α) = fα ∈ F . By abuse of notation, in this paper we often use α to refer to e(α)
when it is clear from the context that we mean the function fα, rather than the vector α ∈ {0, 1}m.
Given a training set of inputs labeled by one of these concepts, the goal of the identification learning
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algorithm is to “recognize” the target concept which labeled the data and output the corresponding4

α. We address two closely related but subtly different versions of identification tasks, for which we
provide precise definitions below. In the first one, we assume the learning algorithm can decide if a
dataset is invalid, i.e. if it is not consistent with any of the concepts in the concept class. In particular,
we adopt the notion of consistency as defined in Definition 3 of (Kearns & Vazirani, 1994) and regard
a dataset as valid if every point in it is labeled in accordance with a concept. In Appendix A.4 we
explain that this version of the task is closely related to the learning framework of the so-called
consistency model found in the literature (Kearns & Vazirani, 1994; Mohri, 2018; Schapire, 1990).
Definition 7 (Identification task - verifiable case). Let F = {fα(x) ∈ {0, 1} | α ∈ {0, 1}m} be
a concept class5. A verifiable identification algorithm is a (randomized) algorithm AB such that
when given as input a set T = {(xℓ, yℓ)}Bℓ=1 of at least B pairs (x, y) ∈ {0, 1}n × {0, 1}, an error
parameter ϵ > 0 and a random string r ∈ R, it satisfies:

• If ∄ α ∈ {0, 1}m such that yℓ = fα(xℓ) holds for all (xℓ, yℓ) ∈ T , thenAB outputs “invalid
dataset”.

• If the samples in T come from the distribution D, i.e. xℓ ∼ D, and there exists an
α ∈ {0, 1}m such that yℓ = fα(xℓ) ∈ {0, 1} holds for all (xℓ, yℓ) ∈ T = {(xℓ, yℓ)}Bℓ=1,
then with probability 1− δ it outputs:

AB(T, ϵ, r) = α̃, α̃ ∈ {0, 1}m, (6)

satisfying Ex∼D|fα(x)− f α̃(x)| ≤ ϵ.
We say that AB solves the identification task for a concept class F under the input distribu-
tion D if the algorithm works for any values of ϵ, δ ≥ 0. The success probability 1− δ is
over the training sets where the input points are sampled from the distribution D and the
internal randomization of the algorithm. The required minimum size B of the input set T
scales as poly(n,1/ϵ,1/δ), while the running time of the algorithm scales as poly(B, n).

It will be instructive to think about the algorithm AB as a mapping that, once ϵ and r are fixed, takes
datasets T ⊆ {(x, y) | x ∈ {0, 1}n, y ∈ {0, 1}} with |T | ≥ B, and outputs labels α ∈ {0, 1}m.
The verifiability condition will play a crucial role in our hardness result for the verifiable case of
the identification task. Nevertheless, in our main hardness result, we will show how to relax the
verifiability condition on the learning algorithm and provide hardness result for the existence of a
proper PAC learner algorithm which does not reject any input dataset but satisfies the following
additional assumptions. We call such learning algorithm an approximate-correct identification
algorithm.
Definition 8 (Identification task - non verifiable case ). Let F = {fα : {0, 1}n → {0, 1} | α ∈
{0, 1}m} be a concept class. An approximate-correct identification algorithm is a (randomized)
algorithm AB such that when given as input a set T = {(xℓ, yℓ)}Bℓ=1 of at least B pairs (x, y) ∈
{0, 1}n × {0, 1}, an error parameter ϵ > 0 and a random string r ∈ R satisfies the definition of a
proper PAC learner (see Def. 4) along with the following additional properties:

1. If for any α all the (xℓ, yℓ) ∈ T are such that yℓ ̸= fα(xℓ) then there exists an ϵ1 such that
for all ϵ ≤ ϵ1 and all r ∈ R:

AB(T, ϵ1, r) ̸= α. (7)
In other words, the algorithm will never output a totally incorrect α, i.e. an α inconsistent
with all the inputs in the dataset.

2. If T = {(xℓ, yℓ)}Bℓ=1 is composed of different inputs xℓ and if there exists an α such that
yℓ = fα(xℓ) for all (xℓ, yℓ) ∈ T , then there exists a threshold ϵ2 such that for any ϵ ≤ ϵ2
there exists at least one r ∈ R for which:

AB(T, ϵ2, r) = α2 (8)

4More precisely, the algorithm is allowed to output any α̃ which is close in PAC condition with α. See Def. 7
and 8.

5Here and throughout the paper, we assume that the concepts are labeled by a vector α in {0, 1}m. However,
it is not required that α spans the entire set of bitstrings in {0, 1}m. The key requirement is that m is sufficiently
large to ensure that every concept in the concept class can be assigned a unique vector in {0, 1}m

5
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With the condition: Ex∼Unif({0,1}n)|fα(x)− fα2(x)| ≤ 1
3 .

Therefore, if the dataset is fully consistent with one of the concept α, then there is at least
one random string for which the identification algorithm will output a α̃ closer than 1

3 in
PAC condition to the true labelling α.

We say that AB solves the identification task for a concept class F under the input distribution D if
the algorithm works for any value of ϵ, δ ≥ 0. The required minimum size B of the input set T is
assumed to scale as poly(n,1/ϵ,1/δ), while the running time of the algorithm scales as poly(B, n).
Moreover, the ϵ1 and ϵ2 required values scale at most inverse polynomially with n.

Appendix H examines the two assumptions made about the approximately correct algorithm and
presents a concept class where just a standard proper PAC learner meets both conditions.

3 HARDNESS RESULTS FOR RANDOM GENERATABILITY OF QUANTUM
FUNCTIONS

We now show our results on the hardness of random generability of quantum functions based on
the assumptions that BQP is not contained in the second level of the PH, or, in case of approximate
random generability, heuristically decided within HeurBPP by an efficient classical machine with a
NP oracle. Classical hardness for exact random generatability of quantum functions can be proved
also based on a different complexity-theoretic assumption, i.e. BPP/sampBQP ̸⊆ BPP (we refer to
Appendix B and the works in Marshall et al. (2024); Huang et al. (2021) for the precise definition
of the class BPP/sampBQP, but roughly speaking, this class requires the sample generator to be
a polynomial-time quantum computer). For completeness, we also prove this latter result in the
Appendix D.

Theorem 1 (Exact Random generatability implies BQP ⊆ PNP). Let f = {fn}n∈N be a family of
BQP functions as in Def. 10. If there exists a classical randomized poly-time uniform algorithm that
generates samples (x, fn(x)) correctly with probability 1 as in Def.1, with x ∼ Unif({0, 1}n), then
PNP contains BQP.

Proof sketch. The whole proof can be found in the Appendix D.2.1, here we give the main idea.
Suppose there exists an algorithm A which satisfies Def. 1 for a BQP family of function f and for
the uniform distribution over the inputs x ∈ {0, 1}n. For a fixed function fn : {0, 1}n → {0, 1},
the algorithm A maps a random string r ∈ {0, 1}poly(n) to a tuple of (xr, fn(xr)), i.e. A(fn, .) :
{0, 1}poly(n) → {0, 1}n × {0, 1}. Then, in order to prove Theorem 1 we construct an algorithm A′

which can decide the BQP language associated to fn by using A and an NP oracle. Such algorithm
A′ will essentially invertA on a given input xr̃ to find a corresponding valid random string r̃ and then
computes fn(xr̃) using A(fn, r̃). Specifically, by using the NP oracle, A′ can find the random string
r̃ associated to xr̃ for which A(fn, r̃) = (xr̃, fn(xr̃)) in polynomial time. Importantly, finding the
string r̃ can be achieved using an NP oracle since A operates in classical polynomial time, and thus it
can efficiently verify the correct string r̃. This concludes the proof as, by Def. 10, f correctly decides
an arbitrary BQP language and A′ can evaluate any fn on every xr̃ by just running A(fn, r̃).

In the next theorem, we allow the algorithm A to make mistakes both on the distribution followed by
the outputted x and we also allow errors on some of the outputted (x, fn(x)).

Theorem 2 (Approximate Random generatability implies (BQP,Unif) ∈ HeurBPPNP). Let f =
{fn}n∈N be a family of BQP functions which is the characteristic function of a language L ∈ BQP
as in Def. 10, and let Unif be the uniform distribution over {0, 1}n. If there exists a polynomial
time algorithm A which satisfies Def. 2 for the uniform input distribution Unif, then (L,Unif) ∈
HeurBPPNP.

Proof sketch. The full proof can be found in Appendix D.2.2, here we outline the main idea. We
present an algorithm A′ ∈ HeurBPPNP which can heuristically decide the language L with respect
to the uniform distribution over the inputs, i.e. it satisfies Eq. (10) for the input distribution D = Unif.
Let f = {fn}n be the family of functions associated to the BQP language as in Def. 10. The
algorithm A′ follows directly from the one described in the proof of Theorem 1. For a fixed
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function fn and error parameter ϵ, the algorithm A(fn, 01/ϵ, .) in Def. 2 still maps random strings
r ∈ {0, 1}poly(n) to tuples (xr, fn(xr)) ∈ {0, 1}n × {0, 1}. Then, on an input xr̃, A′ still inverts
the algorithm A in order to obtain a random string r̃ such that A(fn, 01/ϵ, r̃) = (xr̃, fn(xr̃)). This
time however, it samples multiple such random strings uniformly at random (this can be done in
polynomial time using the result from Bellare et al. (2000)). By doing so, we can guarantee that
taking the average of the corresponding fn(xr̃i), obtained from A(fn, 01/ϵ, r̃i) = (xr̃i , fn(xr̃i)) for
different r̃i, will correctly classify the input point xr̃ with high probability. More precisely, as stated
in Def. 2, the algorithm A outputs samples (x, fn(x)) which follow a distribution Lϵ ϵ-close in total
variation with the exactly labeled, uniformly sampled over x ∈ {0, 1}n one. It follows (see full proof
in the Appendix D.2.2) that the maximum fraction of point x which A′ may misclassify is upper
bounded by a linear function of ϵ.

Although this is tangential to our present discussion, in Appendix D.2.2 we present Corollary 2 of the
last theorem, which proves that a certain class of quantum generative models called expectation value
samplers (introduced in Romero & Aspuru-Guzik (2021), and proven universal in Barthe et al. (2024)
and generalized in Shen et al. (2024)) is classically intractable.

4 HARDNESS RESULTS FOR THE VERIFIABLE IDENTIFICATION PROBLEM

We now address the second problem studied in this paper, specifically the hardness of the identification
task defined in Def. 7.
Theorem 3 (Identification hardness for the verifiable case ). Let F = {fα : {0, 1}n → {0, 1} | α ∈
{0, 1}m,m = poly(n)} be a concept class such that there exists a fα ∈ F which is the characteristic
function of a language L ∈ BQP as in Def. 10, and let Unif be the uniform distribution over the
x ∈ {0, 1}n. If there exists a verifiable identification algorithm AB for the uniform input distribution
Unif as given in Def. 7, then (L,Unif) ∈ HeurBPPNP.

Proof sketch. The full proof can be found in the Appendix E.1, here we outline the proof sketch. The
core idea is to show that if there exists an algorithm AB that satisfies Def. 7 for the concept class
F in the theorem, then there exists a polynomial time algorithm A′ which, using AB and an NP
oracle, takes as input any α ∈ {0, 1}m (which uniquely specifies a concept6) and outputs a dataset
of B-many inputs labeled by a concept f α̃ in agreement with fα under the PAC condition of Eq. 3.
We recall here that, given an error parameter ϵ and a random string r, the algorithm AB takes as
input any set T of B pairs (x, y) ∈ {0, 1}n × {0, 1} and, if and only if the set T is consistent with
one of the target concepts α, outputs with high probability a α̃ ∈ {0, 1}m close in PAC condition
to α. Note that the crucial “if and only if” condition stems directly from the ability of AB to detect
invalid datasets, as described in Def. 7. We can then leverage this to construct the algorithm A′

which correctly classifies the L language associated to fα. Specifically, on any input x ∈ {0, 1}n,
the algorithm A′ first inverts AB on the target α in order to obtain a dataset T = {(xℓ, yℓ)}Bℓ=1 of
B input points such that AB(T, ϵ, .) = α. This is possible by using an NP oracle to search for a
dataset T such that AB(T, ϵ, ·) = α, leveraging the efficiency of the algorithm AB . It then labels the
input x based on consistency with the training set T generated in the previous step. By selecting an
appropriate number of inputs B, it is possible to bound the probability that the dataset T is consistent
with a concept f α̃ heuristically close to the target fα, thereby bounding the probability that the label
assigned to x corresponds to fα(x).

In Appendix A.4, we observe that the verifiable identification task effectively captures the consistency
learning model commonly used in the literature. Another compelling reason to consider learning
algorithms within the verifiable case is that quantum learners can verify whether a dataset is valid for
a given α. Specifically, given an input dataset T , the quantum learning algorithm outputs the guessed
α and then can check whether every point in the dataset are correctly labeled by fα, similar to the
process for efficiently evaluable hypotheses. Assuming fα is quantum evaluable, and the dataset is
polynomial in size, the verification procedure runs in polynomial time. A following question is then

6We assume that each α provides an unambiguous specification of the concept fα (possibly as a quantum
circuit, i.e. that a quantum circuit can, given α, evaluate fα in polynomial time).
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whether in order to verify a dataset we necessarily need a quantum computer for the BQP functions
defined in Def. 10. We address this question in the following proposition, which asserts that for a
singleton concept class7, determining whether a dataset is valid is possible if the concept can be
evaluated in the class P/poly (see Def. 15 in Appendix B for a definition of P/poly).

Proposition 1 (Hardness of verification - singleton case). Let F = {f : {0, 1}n → {0, 1} }
be a singleton concept class. If there exists an efficient algorithm AB such that for every set
T = {(xℓ, yℓ)}Bℓ=1, with B polynomial in n, xℓ ∈ {0, 1}n such that xi ̸= xj ∀ i, j ∈ {1, ..., B} and
yℓ ∈ {0, 1}, satisfies the following:

• If ∃(xℓ, yℓ) ∈ T, yℓ ̸= fα(xℓ), AB(T ) outputs “invalid dataset”.

Then there exists a polynomial time non-uniform algorithm which computes f(x) for every x. In
particular, there exists an algorithm in P/poly which computes f(x).

Proof. For every input size n, let us take as polynomial advice the B − 1 samples TB−1 =
{(xℓ, f(xℓ))}B−1

ℓ=1 , for any sequence of different xℓ ∈ {0, 1}n. Then, on any input x ∈ {0, 1}n, the
algorithm in P/poly would run AB on the dataset Tx = {(x, 0)} ∪ TB−1 and decide x based on the
corresponding output of AB .

We specify that we require the inputs xℓ to be distinct in the training set T to strengthen the result
in Proposition 1. Without this condition, the result would be trivial, as one could provide AB with
B identical copies of (x, 0) as input and correctly decide each x using a polynomial-time uniform
algorithm by simply examining the corresponding output. In case of exponential-sized concept
classes containing a BQP function which uniquely labels a set of polynomial number of inputs, the
verifiability property of the identification algorithm can be used to prove that BQP is contained in the
class P/poly.

Theorem 4. Let F = {fα : {0, 1}n → {0, 1} | α ∈ {0, 1}m,m = poly(n)} be a concept class
such that there exists at least one function fα ∈ F that decides a language L ∈ BQP, and for which
there exists a polynomial-sized subset S ⊂ {0, 1}n such that fα is uniquely determined by its labels
on S. If there exists a verifiable identification algorithm AB as given in Def. 7, then BQP ⊆ P/poly.

Proof. For every input size n, let us take as polynomial advice the samples from the subset S
which uniquely determine fα and the corresponding labels, i.e. TS = {(xℓ, f(xℓ))}|S|

ℓ=1, such that
yℓ = fα(xℓ) for every xℓ ∈ S. We then consider exactly that dataset as advice and we label any new
input x ∈ {0, 1}n selecting the y ∈ {0, 1} which keeps the dataset valid. More precisely, on any
input x ∈ {0, 1}n, the algorithm in P/poly would run AB on the dataset Tx = {(x, 0)} ∪ TS and
label x so that the algorithm AB accepts the dataset.

5 HARDNESS RESULT FOR THE NON-VERIFIABLE IDENTIFICATION PROBLEM

We now present the main result of our paper, which establishes hardness for the non-verifiable
identification task under the assumption that it is solvable by an approximately correct algorithm.
The result applies to concept classes that either include c-distinct concepts, as defined in Def. 8 with
c ≥ 1

3 , or satisfy the average-case smoothness property given in Def. 6.

Theorem 5 (Hardness of the identification task - non verifiable case). Let F = {fα : {0, 1}n →
{0, 1} | α ∈ {0, 1}m} be a concept class containing at least a BQP function f as in Def. 10
associated to a language L ∈ BQP. Assume further that F is either a c-distinct concept class with
c ≥ 1/3 or an average-case-smooth concept class. If the non-verifiable identification task for F , as
defined in Def. 8, is solvable by a classically efficient approximate-correct identification algorithm

AB , then it follows that (L,Unif) ∈ HeurBPPNPNPNP

.
7A singleton concept class is a concept class that consists of only one concept.
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Proof sketch. The proof can be found in the Appendix F. The proof combines the intermediate result
in Theorem 11 with the result in Theorem 13 for the c-distinct concept classes or in Theorem 14 for
average-case-smooth concept classes. The intuition is the following. In Theorem 13 and Theorem 14
we show that for c-dinstict or average-case-smooth concept classes the existence of an approximate-
correct identification algorithm in Def. 8 allows for the construction of an identification algorithm
in the first level of the PH which is able to reject any dataset which contains a fraction of inputs
greater than 1

β not labeled by fα. Then in Theorem 11 we prove that if such an algorithm exists, then
on a given α we can invert it climbing up two more layers in the PH in order to obtain a dataset of
inputs mostly consistent with fα. Because each of these datasets will contain only a fraction of 1

β

inputs incorrectly labeled, we can guarantee that the fraction of misclassified inputs can be made

polynomially small. Thus we can evaluate fα in HeurBPPNPNPNP

.

A full scheme of the proof overview can be found in Figure1.

Figure 1: An overview of our proof strategy for the identification task.

In Appendix G.1 we provide an example of a natural c-distinct concept class with c ≥ 1
3 which then

satisfies the assumption of Theorem 10 and lead to the following final result.

Corollary 1 (Informal, see Theorem 15 for a formal version). There exists a natural learning problem
involving quantum functions for which there exist a quantum learning advantage for the identification
task (i.e. the target concepts are efficiently identifiable on a quantum computer but not on a classical
computer) unless BQP is in the (Heuristic) polynomial hierarchy.

The proof, along with the specific instance of the learning task that demonstrates the advantage, is
provided in Appendix G.1.

6 DISCUSSION

In this paper, we have demonstrated learning separations for the identification task in the case of
quantum target functions. A natural question is whether our results extend to existing, well-studied
learning tasks. In Appendix G, we examine in detail three scenarios where our results may be
applicable. First, we show that our theorems directly apply to the task of learning observables
introduced in (Molteni et al., 2024), for which a learning separation had previously been established
only at the evaluation stage and we outline a potential benchmark against a classical dequantized
algorithm. We then consider two physically relevant tasks—Hamiltonian learning and learning the
order parameter—that can naturally be formulated as identification problems. For these cases, we
precisely outline the current limitations of our results and what additional components would be
required for our techniques to apply.

9
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REPRODUCIBILITY STATEMENT

This manuscript presents exclusively theoretical results. To ensure reproducibility, we provide
fully detailed proofs of all theorems claimed in the main text, which are included in the Appendix.
Additionally, key proof ideas are outlined within the main body of the paper for further clarity.

REFERENCES

Scott Aaronson. Bqp and the polynomial hierarchy. In Proceedings of the forty-second ACM
symposium on Theory of computing, pp. 141–150, 2010.

Scott Aaronson. The equivalence of sampling and searching. Theory of Computing Systems, 55(2):
281–298, 2014.

Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In Proceedings
of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC ’11, pp. 333–342,
New York, NY, USA, 2011. Association for Computing Machinery. ISBN 9781450306911. doi:
10.1145/1993636.1993682. URL https://doi.org/10.1145/1993636.1993682.

Anurag Anshu, Srinivasan Arunachalam, Tomotaka Kuwahara, and Mehdi Soleimanifar. Sample-
efficient learning of quantum many-body systems. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 685–691. IEEE, 2020.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

Pablo Arrighi and Louis Salvail. Blind quantum computation. International Journal of Quantum
Information, 4(05):883–898, 2006.

Maria-Florina Balcan. Lecture notes in foundations of machine learning and data science, September
2015.

Alice Barthe, Michele Grossi, Sofia Vallecorsa, Jordi Tura, and Vedran Dunjko. Parameterized
quantum circuits as universal generative models for continuous multivariate distributions, 2024.

Mihir Bellare, Oded Goldreich, and Erez Petrank. Uniform generation of np-witnesses using an
np-oracle. Information and Computation, 163(2):510–526, 2000.

Andrej Bogdanov, Luca Trevisan, et al. Average-case complexity. Foundations and Trends® in
Theoretical Computer Science, 2(1):1–106, 2006.

Sergey Bravyi, Anirban Chowdhury, David Gosset, Vojt ěch Havlíček, and Guanyu Zhu. Quantum
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A RELATED WORKS

A.1 PREVIOUS RESULTS ON LEARNING SEPARATIONS FOR QUANTUM FUNCTIONS

The study of different types of learning separations in quantum machine learning was initiated
in Gyurik & Dunjko (2023), distinguishing between advantages in the identification step and those
arising solely from the evaluation of the target function. For BQP-complete functions, the authors
showed that learning separations straightforwardly follow under the assumption that there exists an
input distributionD and a BQP languageL such that (L,D) ̸⊆ HeurP/poly. This separation relied on
requiring the learning algorithm to evaluate the learned function on new inputs, thus considering the
evaluation step only. The paper left open the question of whether a stronger result could be established
by proving that even identifying the correct target function is classically hard for BQP-complete
concepts, which we address in this paper. In Molteni et al. (2024), stronger learning separations were
established for BQP functions under the widely studied assumption that BQP ̸⊆ P/poly (exactly,
not with respect to heuristic conditions as in Gyurik & Dunjko (2023)), by reverting to standard
PAC learning where the learning process must be successful for all input distributions (as opposed
to settings where the distribution is fixed). Additionally, there the authors proposed a quantum
algorithm capable of correctly identifying and evaluating the target concept in the nontrivial case
of a superpolynomially large concept class, as opposed to Gyurik & Dunjko (2023) where only
polynomially large classes were studied. However, even in this case, the learning separation was
demonstrated only for the evaluation step. Learning separations for superpolynomially large concept
classes were also presented in Yamasaki et al. (2023), though they are based on assumptions about
heuristic classes similar to Gyurik & Dunjko (2023) and were not focused on finding physically
motivated problems, which was instead the goal in Molteni et al. (2024). In Appendix G.1, we show
that our result directly applies to the physically relevant learning problem considered in Molteni et al.
(2024).

A.2 PREVIOUS RESULTS ON HARDNESS OF THE IDENTIFICATION TASK

Hardness results for the identification step are already known for certain tasks and it is important to
highlight why the proof strategies used in those cases do not apply to the learning task considered in
this paper, which involves quantum functions. In particular, hardness results for identification are
already known in the context of learning DNF formulas (Kearns & Vazirani, 1994) and for specific
cryptographic functions, such as modular exponentiation (Gyurik & Dunjko, 2023) and discrete cube
root (Jerbi et al., 2024). In all of these examples, a key element underlying the hardness proofs is the
existence of a representation of the target functions that allows efficient computation of properties of
interest. In the case of learning DNF formulas, (Kearns & Vazirani, 1994) showed that DNF formulas
cannot be learned in the proper PAC setting—that is, given samples of variable assignments along
with their evaluations under a DNF formula, it is not possible to reconstruct the original formula.
While the proof in (Kearns & Vazirani, 1994) reduces the problem of learning DNF formulas to the
NP-complete problem of graph coloring, the following argument provides what we see as an intuitive
explanation of how the key element mentioned above plays a role in the proof. It is well known
that checking the satisfiability of CNF formulas is NP-hard, whereas for DNF formulas this task
is classically easy. Moreover, since DNF formulas are universal for Boolean functions, any CNF
formula can be equivalently expressed as a DNF8. Of course, the transformation from CNF to DNF is
itself NP-hard. However, if DNF formulas were learnable in the proper PAC sense, then a classical
learner could, given samples from any target CNF, reconstruct the equivalent DNF representation and
thereby decide satisfiability efficiently.

In the case of cryptographic functions the existence of an easy-to-compute representation implies
a mapping between two representations of the same set of functions: one that is computationally
intractable and another that is classically efficient to compute. If identifying the target concept in
the second representation were classically efficient, it would also allow the evaluation of the target
function in its hard-to-compute representation. Examples of this are provided in (Kearns & Valiant,
1994; Gyurik & Dunjko, 2023) based around the discrete cube root function which is intractable given
the input, but has an equivalent representation as modular exponentiation by some (hard-to-compute)
exponent. Furthermore, in the case of cryptographic functions, thanks to the additional property

8Note that in general the conversion requires an exponential size DNF. This is the reason why our intuition
cannot be trivially sharpened into a proof.
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of random generatability, a classical algorithm could easily generate labeled data and solve the
identification problem using the hypothesis class corresponding to the easy-to-compute representation
of the function. Once the correct concept is identified, the algorithm could then evaluate it, thereby
violating the cryptographic assumptions of the considered set of functions.

For the BQP-complete functions analyzed in this paper, our findings on the hardness of random
generatability already rule out the possibility of employing similar proof techniques to establish the
hardness of identification. Finally, we observe that our proof does not rely on the existence of a simple
representation for the target BQP functions. Rather, in our case, we directly tackle the property of
the learning algorithm to find the label from data, by exploiting the fact this can be “inverted” in the
PH. This approach is then really relying on the strongest properties of quantum functions as it could
not work for cryptographic functions which typically are in the PH.

A.3 RELATION TO PREVIOUS WORKS ON HARDNESS OF SAMPLING

In the work Aaronson (2014) the authors showed an equivalence between sampling and searching
problem. In particular, they showed that if classical computers could solve every search problem
quantum solvable, then classical computer could also sample from the output distribution of any quan-
tum circuit. While this might seem related to our results about the hardness of random generability of
quantum functions in Section 3, we note that the problems addressed are fundamentally different. In
particular, our results on classical intractability do not regard the whole class of distribution realizable
by quantum circuits (i.e, SampBQP), nor do we make claims about the hardness of that class. We
only consider the distributions given by the tuple (x, f(x)) with f the characteristic function of a
BQP language. Such distributions do not constitute the whole of the class SampBQP, and thus the
capacity to classically sample from them does not straightforwardly imply the capacity to compute
(all) quantum functions. Indeed, because we are considering a much more restricted sampling capa-
bility, our results are in fact weaker. We do not claim that sampling from these distributions would
imply FBQP = FBPP. Instead, we show a weaker result: if a classical algorithm could sample pairs
(x, f(x)), then it would imply that BQP ⊆ HeurBPPNP.

A.4 CONSISTENCY MODEL LEARNING

As argued in the text, the ability of the learning algorithm to detect invalid dataset is crucial in
the construction of proof of Theorem 9 for the verifiable identication task. Although it is a strong
assumption (which we will remove in Section 5 for certain families of concept classes) we can still
argue that the verifiable case of Def. 7 is of interest. An important reason is that Def. 7 perfectly
captures the framework of learning in the consistency model present in the literature Balcan (2015);
Schapire (2008); Mohri (2018); Kearns & Vazirani (1994). In Kearns & Vazirani (1994), a concept fα
is defined to be consistent with a dataset Tα = {(xℓ, yℓ)}Bℓ=1 if yℓ = fα(xℓ) for every ℓ = 1, ..., B.
Based on that, we give the following definition of learning in the consistency model framework, which
includes the ability of the learning model to distinguish invalid datasets. As we explain below, this
assumption aligns with the general case found in the literature Kearns & Vazirani (1994); Schapire
(1990); Mohri (2018), where only efficient hypothesis classes are considered.

Definition 9 (Consistency model learning Balcan (2015); Schapire (2008)). We say that an algorithm
A learns the class F = {fα : {0, 1}n → {0, 1} | α ∈ {0, 1}m,m = poly(n)} in the consistency
model if, given any set of labeled examples T , the algorithm produces a concept f ∈ F that is
consistent with T , if such a concept exists, and outputs “there is no consistent concept” otherwise.
The algorithm runs in polynomial time (in the size of T and the size n of the examples).

Given the definition of learning in the consistency model in Def. 9, it is clear that an algorithm AB

solves the identification task in Def. 7 for a given concept class F if and only if it learns F in the
consistency model.

B DEFINITIONS FROM COMPLEXITY THEORY

To enhance readability, we provide a glossary of the most commonly used symbols in this paper.
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Symbol Meaning
fα(x) Concept function parameterized by α
F Concept class (set of labeling functions F = {fα | α ∈ {0, 1}m} )
D Distribution over input space of bitstrings x ∈ {0, 1}n
Unif Uniform distribution over input space of bitstrings x ∈ {0, 1}n
BQP Class of decision problems solvable by a quantum computer in polynomial time with bounded error
NP Class of decision problems verifiable in polynomial time
PH Polynomial Hierarchy
PNP Class of problems solvable in P with access to an NP oracle
HeurBPP Class of problems heuristically solvable in BPP
HeurBPPNP Class of problems solvable in HeurBPP with access to an NP oracle

HeurBPPNPNPNP

Class of problems solvable in HeurBPP with access to an NPNPNP

oracle

Table 1: Glossary of commonly used symbols and complexity classes.

B.1 TOOLS FROM COMPLEXITY THEORY

All our hardness results are based on the assumption that the class BQP is not contained in (a low
level of) the polynomial hierarchy (PH). See Appendix C for arguments supporting this assumptions.
Specifically, given a BQP language L, we define a function f which “correctly decides” L as follows.
Definition 10 (BQP function f ). We refer to a function f : {0, 1}n → {0, 1} as a BQP function if
there exists a language L ∈ BQP such that f is its characteristic function. In particular:

f(x) =

{
f(x) = 0 if x /∈ L
f(x) = 1 if x ∈ L . (9)

Where, as previously said, we use f to refer to a uniform family of functions, one for each input
size. In our hardness results, we assume the existence of a BQP language L such that, under the
uniform distribution Unif over inputs x ∈ {0, 1}n, the pair (L,Unif) is not contained in HeurBPP
with access to NP oracles in the PH. We next provide a precise definition for the complexity class
HeurBPP (for more details see Bogdanov et al. (2006)). To define heuristic complexity classes,
we first need to consider the so-called distributional problems (which should not be confused with
learning distributions in the context of unsupervised learning).
Definition 11 (Distributional problem). A distributional problem (L,D) consists of a language
L ⊆ {0, 1}∗ and a family of distributions D = {Dn}n∈N such that supp(Dn) ⊆ {0, 1}n.

We are now ready to provide a precise definition of the class HeurBPP.
Definition 12 (Class HeurBPP). A distributional problem (L,D) is in HeurBPP if there exists a
polynomial-time classical algorithm such that for all n and ϵ ≥ 0:

Prx∼D

[
Pr[A(x, 01/ϵ) = L(x) ≥ 2

3

]
≥ 1− ϵ, (10)

in the above the inner probability is taken over the internal randomization of AB .

Finally, we observe that by slightly modifying the proofs in the theorems, our hardness results will
also hold under a similar but distinct assumption. Specifically, in Appendix F we will prove our
hardness results under the assumption that there exists a classically samplable distribution UnifLP

such that (PromiseBQP,UnifLP
) is not contained in HeurBPP with access to NP oracles in the PH.

B.2 PROMISE PROBLEMS

We note that our results can also be proven under similar but different assumptions. In particular,
by slightly modifying the proofs our main hardness results hold even under the assumption that
PromiseBQP problems cannot be solved in HeurBPP with access to NP oracles. We now provide
the necessary definitions to prove these versions of our results, which we will do in the following
sections. We notice that, unlike BQP, the class PromiseBQP allows for complete problems. We note
that complete problems for PromiseBQP are known to emerge in a number of physical processes, we
list few of them in Appendix G.4
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Definition 13 (PromiseBQP function f ). We refer to a function f : {0, 1}n → {0, 1} as a
PromiseBQP function if there exists a language with a promise LP = (Lyes,Lno) ⊂ {0, 1}n in
PromiseBQP such that f is the characteristic function of LP . In particular:

f(x) =

{
f(x) = 0 if x /∈ Lyes

f(x) = 1 if x ∈ Lyes
. (11)

Additionally, we say that f is a BQP-complete9 function if the associated language L is complete for
PromiseBQP.

Notice that for a PromiseBQP function f , f(x) = 0 both if x belongs to the NO subset of the
promise, i.e. x ∈ Lno, and if x does not belong to the promise subset at all, i.e. x ̸∈ Lyes ∪ Lno. In
general the promise subset Lyes ∪ Lno contains an exponentially small fraction of all the possible
input x ∈ {0, 1}n and consequently f = 0 for the majority of x ∈ {0, 1}n. This means that
correctly evaluating f on average over the input, for instance under the uniform distribution over
all x ∈ {0, 1}n, becomes trivial unless the error is exponentially small. We refer to Gyurik &
Dunjko (2023) for a more detailed discussion on this. We will prove our hardness results by showing
that a classical machine with access to an NP oracle can achieve achieve average-case correctness
for evaluating a PromiseBQP function f with respect a given input distribution. For PromiseBQP
functions, to ensure the task remains non-trivial, we will state our hardness results with respect to the
input distribution UnifLP

which is defined as the uniform distribution over a subset of the promise set
of input x ∈ Lyes ∪Lno. In our hardness results, we assume the existence of a PromiseBQP complete
language LP such that there exists a distribution UnifLP

of hard-to-evaluate but classically samplable
instances.
Definition 14 (Distribution UnifLP

). Let LP = (Lyes,Lno) be a PromiseBQP complete language.
We call UnifLP

, if it exists, the uniform distribution over a subset Π ⊂ Lyes ∪ Lno such that the
following holds:

• UnifLP
is efficiently classically samplable.

For our results in Theorem 2 and Theorem 12 and 9 we will then assume the existence of a
PromiseBQP language LP for which there exists a UnifLP

such that (LP ,UnifLP
) is not contained

in HeurBPP with access to NP oracles in the PH.

B.3 ADVICE CLASSES

In this section we provide further useful definitions. We first define the complexity class P/poly
which appears in Proposition 1 and Theorem 4.
Definition 15 (Polynomial advice Arora & Barak (2009)). A problem L : {0, 1}∗ → {0, 1} is in
P/poly if there exists a polynomial-time classical algorithm AB with the following property: for
every n there exists an advice bitstring αn ∈ {0, 1}poly(n) such that for all x ∈ {0, 1}n:

AB(x, αn) = L(x). (12)

We also provide the definition of the class BPP/sampBQP, which will appear in Theorem 6.
Definition 16 (BPP/sampBQP). A problem L : {0, 1}∗ → {0, 1} is in BPP/sampBQP if there exists
a polynomial-time quantum algorithm S and a polynomial-time classical randomized algorithm A
such that for every n:

• S generates random instances x ∈ {0, 1}n sampled from the distribution Dn.

• A receives as input T = {(xi, L(xi)) | xi ∼ Dn}poly(n)i=1 and satisfies for all x ∈ {0, 1}n:

Pr
(
A(x, T ) = L(x)

)
≥ 2

3
, (13)

where the probability is taken over the internal randomization of A and T .
9It is known that BQP do not have complete problems. Here, we will abuse notation and actually refer to

PromiseBQP problems.
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C EVIDENCE THAT BQP ̸⊂ PH

In this section, we provide a brief discussion on the primary assumptions underlying our work,
which are derivatives and versions of BQP ̸⊂ PH. The first main result in this direction is given
in (Aaronson, 2010), where an oracle separation between the relational version of the two classes
was proven. Specifically, Aaronson proved that the relation problem Fourier Fishing, a variant of
the Forrelation problem, exhibits an oracular separation FBQPA ̸⊂ FBPPPHA

. In the same paper
Aaronson motivated the study of oracle separation for BQP and PH as lower bounds in a concrete
computational model, claiming them as a natural starting point for showing evidence of BQP ̸⊂ PH.
Almost ten years later, in the remarkable work (Raz & Tal, 2022), the authors managed to prove an
oracle separation for the decision versions of the classes. Namely they proved the existence of an
oracle A such that BQPA ̸⊂ PHA. Although an unconditional proof of separation between BQP
and PH is not likely to appear anytime soon10, the assumption BQP ̸⊂ PH is generally considered
reasonable.

Most of the results in this paper furthermore rely on the assumption that BQP languages cannot
be decided correctly on average by algorithms in HeurBPP, even when given access to oracles for
the polynomial hierarchy. This is a stronger assumption than simply BQP ̸⊂ PH, but we believe
not unreasonable. However, we note that a workaround would be possible by requiring a stronger
notion of learnability, in particular by moving from the less common setting of distribution-specific
PAC of Def. 3 to “standard” PAC, where the learner is required to output a consistent hypothesis for
every input distribution. In this case, for any given input x, one can apply the classical identification
algorithm to a distribution concentrated solely on x. To evaluate the target concept on this input, the
same strategy used in the proof of Theorem 11 can be employed: namely, inverting the identification
algorithm (which now works for the distribution focused on x) within PH. This would enable
evaluation of the target function at any point x, contradicting the assumption that BQP ̸⊆ PH.

If we choose to remain within the distribution-specific PAC setting, we however believe our assump-
tions are still widely accepted. Some evidence in this direction comes from sampling problems, where
the proof of the best-known separation of SampP and SampBQP (Aaronson & Arkhipov, 2011;
Marshall et al., 2024) is identical for the heuristic case and produces the same collapse. To be more
exact, suppose that SampBQP can be decided in some heuristic level of the polynomial hierarchy,
follow the proof of (Aaronson & Arkhipov, 2011) for a heuristic-equivalent theorem until we get
to the definition of (Heur)GPE±, at which point we note that the preexisting definition of GPE±
is already heuristic, so our HeurGPE± is equal to GPE±. Therefore, assuming that SampBQP is
in some heuristic level of the sampling analogue of the polynomial hierarchy would still imply the
collapse of the standard polynomial hierarchy to some level (standard assumptions from quantum
supremacy arguments notwithstanding).

From these arguments, however, no analogous claims regarding the decision (and distributional)
variants BQP and Heur PH can be proven using known techniques. For this reason, we stand by the
following careful claim: there is no reason to believe that BQP is in Heur PH (relative to relevant
distrubutions).

As a final remark, we do highlight that our results do not require considering the whole PH. Specifi-
cally it is important to note that for the hardness of random generatability of quantum functions in
Section 3 we only need to assume that BQP is not in the second level of the PH, while the assumption
extends up to the fourth level for the hardness of the identification problem in Section 5.

D PROOFS REGARDING RANDOM GENERATABILITY

D.1 HARDNESS OF RANDOM GENERATABILITY BASED ON THE ASSUMPTION
BPP/sampBQP ̸⊆ BPP

In this section, we demonstrate that achieving exact random generatability for quantum functions
would lead to BPP /sampBQP ⊆ BPP. Similar to Theorem 1, we show here classical hardness of
the task defined in Def. 1 for quantum functions, though based on a different complexity-theoretic
assumption. The proof is straightforward and relies on the idea that if a classical machine could

10Note that any proof of BQP ̸⊂ PH would immediately imply the hard-to-prove claim that BQP ̸= BPP.
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efficiently generate samples for any quantum function, passing those samples as advice would offer
no additional advantage.

Theorem 6 (Exact RG implies BPP /sampBQP ⊆ BPP). If BPP /sampBQP ̸⊆ BPP, then there
exists a quantum function f : {0, 1}n → {0, 1} as given Def. 13 which is not exact random verifiable
as in Def. 1 with a classical algorithm A.

Proof. Suppose ∀f in Def. 13 there exists a randomized algorithm Af such that Af (r) →
(x, f(x)) with x ∼ Unif({0, 1}n), for r sampled uniformly at random. Then every function
g ∈ BPP/sampBQP can be computed in BPP by first generating the samples (x, g(x)) usingAg .

We now argue that the hypothesis of the Theorem 6 are indeed reasonable. Indeed, a separation
between the class BPP and BPP /sampBQP can be proven if we assume the existence of a sequence
of quantum circuits {Un}n, one for each size n, such that the Z measurement on the first qubit is
hard to decide classically. A proof idea for the following theorem is stated in Huang et al. (2021),
and we include here the whole proof for completeness.

Theorem 7 (BPP /sampBQP ̸⊂ BPP, unless BPP = BQP for unary languages). If there exists
a uniform sequence of quantum circuits {Un}n, one for each size n = 1, 2, ... such that the Z
measurement on the first qubit is hard to decide classically, then BPP /sampBQP ̸⊂ BPP.

Proof. As shown in Huang et al. (2021), such a sequence of circuits would define a unary language

LBQP = {1n | ⟨0n| (Un)
†ZUn |0n⟩ ≥ 0} (14)

that is outside BPP but inside BQP. The authors then consider a classically easy language Leasy ∈
BPP and assume that for each input size n, there exists an input an ∈ Leasy and an input bn ̸∈ Leasy.
Then it is possible to define a new language:

L =

∞⋃
n=1

{x | ∀x ∈ Leasy, 1
n ∈ Lhard, |x| = n} ∪ {x | ∀x ̸∈ Leasy, 1

n ̸∈ Lhard, |x| = n} . (15)

For each size n, if 1n ∈ LBQP, L would include all x ∈ Leasy with |x| = n. If 1n ̸∈ Lhard, L would
include all x ̸∈ Leasy with |x| = n. By definition, if we can determine whether x ∈ L for an input x
using a classical algorithm (BPP), we could also determine whether 1n ∈ LBQP by checking whether
x ∈ Leasy. However, this must be impossible as we are assuming that LBQP cannot be decided
classically. Hence, the language L is not in BPP. On the other hand, for every size n, a classical
machine learning algorithm can use a single training data point (x0, y0) to decide whether x ∈ L by
what said above.

We note here that the existence of unary languages in BQP but not in BPP is a well believed
assumption.

D.2 PROOFS OF THE THEOREMS FROM THE MAIN TEXT CONCERNING THE HARDNESS OF
RANDOM GENERATABILITY

In this Section we provide the proves about hardness of random generability based on the fact
that BQP is not in the PNP or HeurBPPNP. We provide here an intuition on how the proofs work.
Suppose there exists an efficient classical algorithm that samples pairs (x, f(x)) at random, where
x D for some D. Then, for every sampled (xr, f(xr)) there must exist a random string r such that
the algorithm, when run with randomness r, outputs that pair. Given any input x, we could then
search for such an r using an NP oracle (since the algorithm is efficient), and once the correct r is
found, we could evaluate the randomized algorithm on that random string to obtain f(x). This would
imply that f(x) is classically computable with the help of an NP oracle, contradicting our complexity
assumptions.
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D.2.1 HARDNESS OF EXACT RANDOM GENERATABILITY

Theorem 1 (Exact Random generatability implies BQP ⊆ PNP). Let f = {fn}n∈N be a family of
BQP functions as in Def. 10. If there exists a classical randomized poly-time uniform algorithm that
generates samples (x, fn(x)) correctly with probability 1 as in Def.1, with x ∼ Unif({0, 1}n), then
PNP contains BQP.

Proof. The existence of a randomized poly-time algorithm which satisfies Theorem 1 is equivalent
to the existence of a uniform family of poly-sized algorithms C(r) such that a random choice of
r ∈ {0, 1}poly(n) outputs a tuple (x, f(x)) uniformly at random, i.e. :

C = {C(r) | r ∈ {0, 1}poly(n)} (16)

Then, for every x there exists at least one rx such that C(rx) = (x, f(x)). In particular, for a given x
a PNP machine can in polynomial time find a corresponding rx. Consider the set

P (C̃) = {(u, x) | ∃v ∈ {0, 1}∗ s.t. C̃(uv) = x} (17)

where C̃ is the same family of algorithms C except that the last bit of the output (i.e., the value f(x))
is omitted and C̃(r) ∈ C̃. Then (u, x) is in P (C̃) if and only if u is a prefix of some rx inverse of
x with respect to C̃. Clearly P (C̃) is in NP as a correct u ∈ {0, 1}∗ can be verified in polynomial
time as also the family C̃ consists of polynomial sized algorithms. Then we can run the following
algorithm in PNP:

Algorithm 1 Prefix Search Algorithm
1: function PREFIXSEARCH(x)
2: u← ε; ▷ where ε denotes the empty string
3: for |r| times do
4: if (u1, x) ∈ P (C̃) then u← u1 else u← u0
5: end if
6: end for
7: return u
8: end function

As for every x there exists at least one corresponding rx, the above algorithm always succeeds in
finding a correct rx. Once the string rx is found, the P machine can run C on that string and evaluate
f(x). Since f(x) can decide an arbitrary BQP language by Def. 10, it follows that PNP can also
correctly decide every x ∈ {0, 1}n.

D.2.2 HARDNESS OF APPROXIMATE RANDOM GENERATABILITY

In this and the following sections, our proofs concerning the hardness of the approximate random
generatability and of the identification task will rely on a well-known result about sampling witnesses
of an NP relation using an NP oracle. Specifically, the authors of Bellare et al. (2000) showed that
for a given NP language L and relation R, where L = {x | ∃w such that R[x,w] = 1}, it is possible
to uniformly sample witnesses w from the set Rx = {w | R[x,w] = 1} for any x ∈ L. Since this
result will be central to all our subsequent proofs, we include the main theorem from Bellare et al.
(2000) here for reference.
Theorem 8 (Theorem 3.1 in Bellare et al. (2000)). Let R be an NP-relation. Then there is a uniform
generator for R which is implementable in probabilistic, polynomial time with an NP-oracle.

For convenience, we also report here the definition of approximate random generatability of Def. 2 in
the main text.
Definition 17 (Approximate random generatability (Def. 2 in the main text).). Let f = {fn}n∈N be
a uniform family of functions, with fn : {0, 1}n → {0, 1}. f is approximately random generatable
under the distribution D if there exists an efficient non-uniform (randomized) algorithm A such that
given as input a description of fn for any n, a random string r and an error value ϵ, outputs:

A(fn, ϵ, r) = (xr, fn(xr)) (18)
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with (xr, fn(xr)) ∼ πf
ϵ (D) when r is sampled uniformly at random from the distribution of all

the random strings. In particular, πf
ϵ (D) is a probability distribution over {0, 1}n × {0, 1} which

satisfies: ∥πf
ϵ (D)− πf (D)∥TV ≤ ϵ, where πf (D) is the same distribution defined in Def. 1.

We can now state our hardness result for the approximate case of random generatability.
Theorem 2 (Approximate Random generatability implies (BQP,Unif) ∈ HeurBPPNP). Let f =
{fn}n∈N be a family of BQP functions which is the characteristic function of a language L ∈ BQP
as in Def. 10, and let Unif be the uniform distribution over {0, 1}n. If there exists a polynomial
time algorithm A which satisfies Def. 2 for the uniform input distribution Unif, then (L,Unif) ∈
HeurBPPNP.

Proof. The proof follows from the proof of Theorem 1. We will present the proof under the
assumption of a distribution UnifLP

, as defined in Def. 14, and a PromiseBQP-complete language
LP such that (LP ,UnifLP

) ̸⊆ HeurBPPNP. The proof then generalizes straightforwardly to the case
where we assume (L ∈ BQP,Unif) ̸⊆ HeurBPPNP, simply by considering the uniform distribution
Unif over all inputs x ∈ 0, 1n instead of UnifLP

.

Consider the same families of algorithms C and C̃ introduced in the proof of Theorem 1. The existence
of an algorithm A as in Def. 2 guarantees the existence of such families C and C̃. Let W = {ri}Mi=1

be a set of M random strings ri ∈ {0, 1}|r|, with |r| = poly(n) and consider the set:

P (C̃,W ) = {x ∈ {0, 1}n | ∃r ∈ {0, 1}|r| s.t. C̃(r) = x & r ̸∈W} (19)

If the set W has a size M = poly(n) then P (C̃,W ) can be decided in NP since both the conditions
C̃(r) = x and r ̸∈ W can be verified in polynomial time. Theorem 8 from Bellare et al. (2000)
guarantees the existence of an algorithm AR such that, given the NP relation R : C̃(r) = x and an
input x, outputs, with high probability, a sample r such that C̃(r) = x uniformly at random among
all the witnesses of x. Then the following algorithm runs in PNP.

1: function MULTIPREFIXSEARCH(x)
2: r ← ε ▷ where ε denotes the empty string
3: W = {r}
4: for poly(|x|) times do
5: r ← AR[x]
6: W =W + {r}
7: end for
8: for i : 1 < i < |W | times do
9: return ri ∈W

10: end for
11: end function

Where we denote as AR[x] the algorithm in Bellare et al. (2000) which uniformly samples wit-
nesses for the relation R : C̃(r) = x corresponding to the input x. On an input x, the algorithm
MultiPrefixSearch outputs a list of polynomial different random strings {rix}i (if they exists)
for which C̃(rix) = x ∀i, sampled uniformly at random among all the random strings associated to
x. We now construct the following algorithm A′ acting on input x. Specifically, on any x ∈ {0, 1}n,
A′ first applies the algorithm MultiPrefixSearch(x), then either:

• If MultiPrefixSearch(x) outputs an empty string, then the algorithm assigns a random
value to f(x)

• Otherwise, the algorithm computes the lables A(rix) = (x, f(x))rix for any of the random
strings outputted by MultiPrefixSearch(x). It then assigns to x the label determined
by the majority vote among all the f(x)rix values obtained.

Now we show that the above algorithm A′ is able to classify the language L correctly on average
with respect to the uniform input distribution. More precisely, for each x consider the sets RT

x =

19
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{rx | A(rx) = (x, y) with y = f(x)} and RF
x = {rx | A(rx) = (x, y) with y = f(x)⊕ 1}. Also,

let Rtot be the set of all the random strings of the algorithm A, clearly |Rtot| =
∑

x∈{0,1}n |RT
x |+

|RF
x |. Notice that |RT

x |/|Rtot| precisely represents the probability that the classical algorithm
A outputs the pair (x, f(x)). Similarly, the probability that A outputs a tuple containing x is
|Rtot(x)|/|Rtot| where |Rtot(x)| = |RT

x |+ |RF
x |.

By definition of difference in total variation between two distributions, i.e. ∥p−q∥TV = 1
2

∑
x |p(x)−

q(x)|, we have the following relation between the distribution πϵ generated by A and the target
distribution UnifLP

({0, 1}n) × f(UnifLP
({0, 1}n)) uniform over the input of the promise of the

language L:

∥πϵ −UnifLP
({0, 1}n)× f(UnifLP

({0, 1}n))∥TV =
1

2

∑
x∈P

∣∣∣∣ |RT
x |

|Rtot|
− 1

|P |

∣∣∣∣+ 1

2

∑
x∈P

|RF
x |

|Rtot|

+
1

2

∑
x̸∈P

|RT
x |+ |RF

x |
|Rtot|

,

(20)

where P = Lyes ∪ Lno ⊂ {0, 1}n denotes the set of x belonging to the promise of for the language
L. We now bound the number of x ∈ P for which the probability of A computing incorrectly them
exceeds 1/3, specifically we are interested in the size of the set Xwrong such that:

Xwrong =

{
x ∈ P | |RT

x |
|Rtot(x)|

≤ 2

3

}
. (21)

From Eq. (20), it follows:

∥Lϵ −Unif({0, 1}n)× f(Unif({0, 1}n))∥TV ≥
1

2

∑
x∈P

∣∣∣∣ |RT
x |

|Rtot|
− 1

|P |

∣∣∣∣ (22)

≥ 1

2

∑
x∈Xwrong

∣∣∣∣ 2
3 |Rtot(x)|
|Rtot|

− 1

|P |

∣∣∣∣ (23)

∼ 1

2

∑
x∈Xwrong

∣∣∣∣23 1

|P |
− 1

|P |

∣∣∣∣ (24)

=
1

2

|Xwrong|
3 · |P |

, (25)

where we used the fact that as the output distribution Lϵ is close in TV with the uniform distribution
over the x ∈ {0, 1}n (and the corresponding labels y = f(x)), then |Rtot(x)|

|Rtot| = 1
|P | + δx with the

constraint
∑

x |δx| ≤ ϵ. We can then assume δx << ϵ, and therefore neglect it in the derivation above.
From Eq. (25), it directly follows that |Xwrong| ≤ 6ϵ · |P | and therefore the fraction of x ∈ |P | for
which A outputs the correct label with a probability less than 2/3 is approximately 6ϵ.

Then, the algorithm A′, with a NP oracle, correctly decides in BPP at least a fraction 1− 6ϵ of all
the possible x ∈ {0, 1}n. When x are sampled uniformly, algorithm A′ is therefore able to decide
the language L in HeurBPPNP with respect to the distribution UnifLP

uniform over the set of x
belonging to the promise.

Corollary 2. The expectation value sampling (EVS) generative model, as defined in Barthe et al.
(2024) is classically intractable.

Proof. To not detract from the main topic we just provide a quick proof sketch. By intractable we
mean that there cannot exist a classical algorithm which takes on input an arbitrary polynomial
sized EVS M specified by its parametrized circuit (see Barthe et al. (2024)) and outputs an ϵ
approximation of the distribution outputted by M . To prove this we note that for any BQP function
f : {0, 1}n → {0, 1} we can construct a poly-sized EVS which produces samples of the form
(x, f(x)), where x is an n-bit bitsting sampled (approximately) uniformly (or according to any
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desired classically samplable distribution). There are many ways to realize this: the easiest is to
coherently read out the bits of input random continuous-valued variable using phase estimation (for
this, this variable x is uploaded using prefactors 2k for each bit position k), forwards this to part of
the output, and in a parallel register computes f(x) and outputs that as well. This is a valid EVS, and
sampling from it is equivalent to random generatability for the BQP function f . This then implies
(LP ,UnifLP

) ∈ HeurBPPNP.

We provide here an example of a 0.5-distinct concept class, which therefore satisfies the condition of
Theorem 13, where the concepts are all (Promise−)BQP complete functions.

Definition 18 (0.5-distinct concept class with BQP concepts). Let f be a PromiseBQP complete
function as in Def. 13 on input x ∈ {0, 1}n. Then for any f there exists a concept class F containing
2n PromiseBQP-complete concepts defined as:

F = {fα : {0, 1}n → {0, 1} | α ∈ {0, 1}n} (26)
fα : x→ f(x)⊕ (α · x) (27)

where α · x is the bitwise inner product modulo 2 of the vectors α and x.

Clearly for any α1, α2 ∈ {0, 1}n, α1 ̸= α2, it holds that fα1(x) ̸= fα2(x) on exactly half of the
input x, also they are all PromiseBQP complete functions as by evaluating one of them we can easily
recover the value of f(x).

E PROOFS OF THE THEOREMS CONCERNING THE IDENTIFICATION TASK

E.1 PROOF OF HARDNESS FOR THE IDENTIFICATION TASK IN THE VERIFIABLE CASE

Theorem 3 (Identification hardness for the verifiable case ). Let F = {fα : {0, 1}n → {0, 1} | α ∈
{0, 1}m,m = poly(n)} be a concept class such that there exists a fα ∈ F which is the characteristic
function of a language L ∈ BQP as in Def. 10, and let Unif be the uniform distribution over the
x ∈ {0, 1}n. If there exists a verifiable identification algorithm AB for the uniform input distribution
Unif as given in Def. 7, then (L,Unif) ∈ HeurBPPNP.

Proof. In this proof, we consider any training set T = {(xℓ, yℓ)}Bℓ=1 as a sequence of concateneted
bitstrings, i.e. T = x1y1x2y2...xByB︸ ︷︷ ︸

B(n+1) bits

. Let X = {xℓ}Bℓ=1 be a set of B inputs xℓ ∈ {0, 1}n. We

define the following set:

P (AB , ϵ, B) = {(X,α) | ∃Y ∈ {0, 1}B , r ∈ {0, 1}poly(n) s.t. AB(TX,Y , ϵ, r) = α }, (28)

where Y = {yℓ}Bℓ=1 is a collection of labels yℓ ∈ {0, 1} such that TX,Y = {(xℓ, yℓ)}Bℓ=1. We are also
going to assume that for a given α and ϵ, the number of training sets for which there exists an r such
thatAB(T, ϵ, r) = α is greater than 0 and the majority of them are dataset labeled accordingly to one
concept α̃ which is ϵ-close to α in PAC condition. The set P (AB , ϵ, B) contains then all the tuples
(X,α) which satisfy the relation R : AB(TX,Y , ϵ, r) = α. Since AB runs in polynomial time (for
ϵ ∼ 1

poly(n) and B ∼ poly(n)), the relation R belongs to NP. Theorem 8 from Bellare et al. (2000)
guarantees the existence of an algorithm AR such that given the NP relation R : AB(TX,Y , ϵ, r) = α
outputs on input (X,α) a tuple (Y, r) = AR[(X,α)] which satisfies AB(TX,Y , ϵ, r) = α, uniformly
at random among all the possible tuples (Y, r) which satisfies R.

We can now construct an algorithm A′ which, using a NP oracle and the algorithm AR in Bellare
et al. (2000), evaluates any concept fα with an average-case error of at most ϵ′ under the uniform
distribution over inputs x ∈ {0, 1}n. In other words, the algorithm A′ satisfies satisfies the heuristic
condition in Eq. (10) with respect the target function fα. Firstly, since we are considering the
verifiable case, we can implement the following function which, given a dataset consistent with one
of the concept, tells if the label of an input x ∈ {0, 1}n is consistent with the dataset or not.
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1: function CHECK(x, ϵ, T )
2: if AB({(x, 0)} ∪ T, ϵ, r0) =“invalid dataset”
3: return 1
4: else return 0
5: end function

We can now construct the algorithm A′. Fix a desired average-case error ϵ′. First consider an
identification algorithm AB in Def. 7 which runs with ϵ and δ such that ϵ = ϵ′

2 (1 − δ). Using the
algorithm AB and the algorithm R given in Bellare et al. (2000), we can construct the following
algorithm A′ which runs in polynomial time using an NP oracle.

1: function A′(α, x, ϵ,B)
2: step 1. Sample B inputs X = x1, x2, ..., xB from the uniform distribution Unif.
3: step 2. (Y, r)← AR[(X,α)]
4: step 3. Construct TX,Y by assigning each label in Y to the corresponding point in X .
5: step 4. return y ←CHECK(x, ϵ, TX,Y ).
6: end function

The labels produced by A′ ensure that all inputs in {(x, y)} ∪ TX,Y are consistent with at least one
concept labeled by α̃. We will now demonstrate that the concept f α̃ is, with probability greater than
2/3, heuristically close to the target α, meaning that:

Ex∼Unif({0,1}n)||f α̃(x)− fα(x)|| ≤ ϵ′. (29)

In Step 2 of the algorithm A′, the labeling Y = {yℓ}Bℓ=1 is chosen such that AB , given the dataset
TX,Y and parameter ϵ, outputs α with a probability greater than 0. Specifically, the dataset is sampled
uniformly at random from all possible datasets satisfying this condition. The probability that an
outputted dataset TX,Y is consistent with a concept f α̃ that is not ϵ′-close to fα (as defined by
Eq. (29)) depends on both the inputs in X and the failure probability δ of the algorithm AB . For
simplicity, we initially neglect the failure probability δ of AB . Even in this case, the dataset TX,Y

could still be consistent with a concept f α̃ far from fα if both fα and f α̃ agree on all the B inputs
in X . By setting ϵ = ϵ′/2, the fraction of inputs on which a concept f α̃ (not satisfying Eq. (29))
disagrees with a concept that is ϵ-close to fα is at least ϵ. If at least one of those inputs is in X , then
such f α̃ cannot be outputted by R[P (AB , ϵ, B), (X,α)] (we are still assuming the algorithmAB has
a zero failure probability, i.e. δ = 0). The probability that a random x lies in a fraction ϵ of all the
x ∈ {0, 1}n is clearly ϵ. It follows that the probability of selecting B random inputs where at least
one shows a disagreement between a concept that is ϵ-close to fα and a concept that is more than ϵ′
away from fα is:

1− (1− ϵ)B (30)

We want to bound this probability such that is above 2
3 . In order to obtain that, we need to extract a

number B of inputs greater than:

(1− ϵ)B ≤ 1

3
(31)

B log(1− ϵ) ≤ − log 3 (32)
−2ϵB ≤ − log 3 (33)

B ≥ log 3

2ϵ
(34)

Where we used the fact that for ϵ ≤ 0.7, −2ϵ ≤ log(1− ϵ). Therefore, by selecting B ∼ 1
ϵ (noting

that the ϵ has to scale as ϵ ∼ 1
n for the algorithm A to remain efficient), we can ensure with a

probability greater than 2/3 that the dataset TX,Y produced in Step 2 of A′ is consistent only with
concepts that are ϵ′-close to the target α. We now take into account the failure probability of the
algorithm AB . Because of this, it is still possible that there exists a random string r0 such that,
for a dataset TX,Y consistent with a concept f α̃ that is more than ϵ′ away from fα, the algorithm
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A(TX,Y , ϵ, r0) outputs α, regardless of the B inputs in the dataset. This happens with a probability
δ over all the possible datasets. We can then take into account this probability of failure by asking
that the probability in Eq. (30) is above 2

3(1−δ) . With this modification, the bound on the number of
inputs B becomes:

B ≥ log 3 + 2δ

ϵ
(35)

Notice that for δ, ϵ ≈ 1
n the above quantity is still polynomial in n.

For every input x, the algorithm A′ outputs, with probability greater than 2
3 , a label y ∈ {0, 1} that

aligns with one of the concepts f α̃ satisfying Eq. (29), i.e., concepts that are ϵ′-close to fα. The
maximum number of inputs x ∈ {0, 1}n that the algorithm can consistently misclassify is bounded
above by ϵ′. This corresponds to the scenario where all ϵ′-close concepts disagree with α on the same
subset of inputs.

As discussed in Appendix B.2, we state here the second version of our result on the hardness of the
verifiable identification task. In this version, we assume the existence of an input distribution UnifLP

as in Def. 14 and a PromiseBQP language LP such that (LP ,UnifLP
) ̸⊆ HeurBPPNP.

Theorem 9 (Identification hardness for the verifiable case - second version). Let F = {fα :
{0, 1}n → {0, 1} | α ∈ {0, 1}m,m = poly(n)} be a concept class such that there exists a fα ∈ F
which is the characteristic function of a language LP ∈ PromiseBQP as in Def. 10, and let UnifLP

be the input distribution defined in Def. 14. If there exists a verifiable identification algorithm AB for
the input distribution UnifLP

as given in Def. 7, then (LP ,UnifLP
) ∈ HeurBPPNP.

Proof. The proof proceeds in direct analogy to the proof of Theorem 9. The only change regards the
first step in Algorithm A′. Specifically, instead of sampling the inputs X = x1, x2, ..., xB uniformly
at random, now the algorithm A′ will sample them from the distribution UnifP . We note that, by
Def. 14, UnifP is assumed to be classically efficiently samplable.

F PROOFS OF HARDNESS FOR THE IDENTIFICATION TASK IN THE
NON-VERIFIABLE CASE

In this section we provide the full proof of our main result in Theorem 10. As outlined in the proof
sketch in the main text, the proof is a combination of two other theorems that we also state and
prove here. We first restate the main theorem, including both the possible assumptions- average case
hardness of evaluating BQP or PromiseBQP languages- together.
Theorem 10 (Hardness of the identification task - non verifiable case). Let F = {fα : {0, 1}n →
{0, 1} | α ∈ {0, 1}m} be a concept class containing at least a BQP (PromiseBQP) function f as
in Def. 10 (as in Def. 13) associated to a language L ∈ BQP (LP ∈ PromiseBQP). Assume further
that F is either a c-distinct concept class with c ≥ 1/3 or an average-case-smooth concept class. If
the non-verifiable identification task for F , as defined in Def. 8, is solvable by an approximate-correct

identification algorithm AB (Def. 19), then it follows that (L,Unif) ∈ HeurBPPNPNPNP

(respectively,

(LP ,UnifLP
) ∈ HeurBPPNPNPNP

).

Proof. The proof combines the intermediate result in Theorem 11 (or Theorem 12) with the result in
Theorem 13 for the c-distinct concept classes or in Theorem 14 for average-case-smooth concept
classes. Specifically, Theorems 13 and 14 show that if an approximate-correct algorithm exists for a
concept classF satisfying Def. 5 or Def. 6, then there exists an approximate-verifiable algorithm forF
running in NP. Therefore, as a consequence of the intermediate result in Theorem 11 (Theorem 12), it

follows that if such approximate-verifiable algorithm would exist, then (L,Unif) ∈ HeurBPPNPNPNP

((LP ,UnifLP
) ∈ HeurBPPNPNPNP

). This comes from selecting A = NP in Theorem 11

In the following two subsections we will provide the proof of the results used in the proof of
Theorem 10.
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F.1 HARDNESS OF APPROXIMATE-VERIFIABLE IDENTIFICATION TASKS

We first present an intermediate result, which concerns the hardness of the approximate-verifiable
identification task. We define the approximate-verifiable task an identification task where the learning
algorithm can reject datasets which contains more than a fraction β of inputs incorrectly labeled.
Definition 19 (Identification task - approximate-verifiable case). Let F = {fα : {0, 1}n →
{0, 1} | α ∈ {0, 1}m} be a concept class. An approximate-verifiable identification algorithm is a
(randomized) algorithm Aβ

B such that when given as input a set T = {xℓ, yℓ}Bℓ=1 of at least B pairs
(x, y) ∈ {0, 1}n × {0, 1}, an error parameter ϵ > 0 and a random string r ∈ R, it satisfies the two
following properties:

• Soundness If Aβ
B(T, ϵ, r) = α then there exists a subset T ′ ⊂ T , with |T ′| ≥ (1 − 1

β )B

such that yℓ = fα(xℓ) for all the (xℓ, yℓ) ∈ T ′. In case there does not exist a subset T ′ ⊂ T
of (1 − 1

β )B inputs consistent with any one of the concepts, then Aβ
B outputs “invalid

dataset”.

• Completeness If T = {(xℓ, yℓ)}ℓ and yℓ = fα(xℓ) for all (xℓ, yℓ) ∈ T ′, then, for any
ϵ ≥ 1

3 and β ≥ 0, the following condition holds:

∃r s.t. Aβ
B(T, ϵ, r) = α.

In addition to being a proper PAC learner: if the samples in T come from the distribution D,
i.e. xℓ ∼ D, and there exists an α ∈ {0, 1}m such that T = {(xℓ, yℓ)}Bℓ=1, with xℓ ∼ D and
yℓ = fα(xℓ) ∈ {0, 1} then with probability 1− δ outputs:

AB(T
α, ϵ, r) = α̃, α̃ ∈ {0, 1}m, (36)

with the condition Ex∼D|fα(x)− f α̃(x)| ≤ ϵ.
We say that AB solves the identification task for a concept class F under the input distribution D if
the algorithm works for any value of ϵ, δ ≥ 0. The success probability 1− δ is over the training sets
T where the input points are sampled from the distribution D and the internal randomization of the
algorithm. The required minimum size B of the input set T is assumed to scale as poly(n,1/ϵ,1/δ),
while the running time of the algorithm scales as poly(B, n,β).

In the following theorem we prove hardness of the approximate-verifiable identification task. It will
be useful to state our result assuming that the approximate-verifiable algorithm lies in a generic
complexity class A and obtain hardness based on the assumption that BQP (or PromiseBQP in

the second version of the theorem) is not in HeurBPPNPNPA

. In case A = P, and the approximate-

verifiable algorithm is classically efficient, then HeurBPPNPNPA

= HeurBPPNPNP

.

Theorem 11 (Approximate-verifiable identification implies (BQP,Unif) ⊂ HeurBPPNPNP

). Let
F = {fα : {0, 1}n → {0, 1} | α ∈ {0, 1}m} be a concept class containing at least a BQP
function fα as in Def. 10 associated to a language L ∈ BQP. If for any β ≥ 0 there exists an
approximate-verifiable identification algorithm Aβ

B running in A for the input distribution Unif as in

Def. 19 then (L,Unif) ∈ HeurBPPNPNPA

.

Proof. Let the concept fα ∈ F be the BQP-function associated to a given BQP language. In this
proof we are considering training sets TX,Y = {(xℓ, yℓ)}Bℓ=1 as sequences of concatenated bitstrings,
i.e. TX,Y = x1y1x2y2...xByB︸ ︷︷ ︸

B(n+1) bits

where X = {x1, x2, ..., xB} and Y = {y1, y2, ..., yB}.

There are 2nB possible sets X = {xℓ}Bℓ=1 of B inputs x ∈ {0, 1}n. For any of these sets X , we can
construct a dataset TX,Y = {(xℓ, yℓ)}Bℓ=1 by assigning a set of labels Y = {yℓ}Bℓ=1 to the inputs in
X . We define now for each input x ∈ {0, 1}n the set Tα(x) containing all the datasets such that:

Tα(x) = {TX,Y = {(xℓ, yℓ)}Bℓ=1 | ∃r s.t. Aβ
B(TX,Y , r, 1/3) = α ∧ x ∈ X} (37)

Because of the soundness property of the algorithm Aβ
B in Def. 19, every set TX,Y ∈ Tα(x) will

have at least a fraction 1− 1
β of the x’s correctly labeled by fα. We can now construct a randomized
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algorithm Mα(Aβ
B , x, s) which, using the approximate-verifiable algorithm Aβ

B in Def. 19, on
input x sample one random dataset TX,Y from Tα(x) and label x accordingly to the label of the
corresponding y in TX,Y .

1: function Mα(Aβ
B , x, s)

2: step 1. Sample TX,Y from the set Tα(x) uniformly at random.
3: step 2. Output y from (x, y) ∈ TX,Y

4: end function

We first show that the algorithm Mα belongs to BPPNPNPA

if Aβ
B runs in A. In the algorithm Mα the

random string s determines the set TX,Y ∈ Tα(x) sampled. We then consider the following set:

P (AB , x) = {α ∈ {0, 1}m | ∃TX,Y s.t. TX,Y ∈ Tα
δ (x)}, (38)

The set P (AB , x) contains all α for which there exists a dataset TX,Y and a random string r such that
the identification algorithm Aβ

B in Def. 19 outputs α, i.e. Aβ
B(TX,Y , 1/3, r) = α, and x appears in

TX,Y . Deciding if an α belongs to P (Aβ
B , x) can be done in NPNPA

. The reason for that is that within
NPA it is possible to decide if a given TX,Y belongs to Tα(x) since the algorithm Aβ

B(TX,Y , r, 1/3)

runs in polynomial time. Therefore, the condition TX,Y ∈ Tα(x), which ensures that α ∈ P (Aβ
B , x),

can be verified in polynomial time with the help of an NPA oracle. We can then use Theorem 8
from Bellare et al. (2000) that guarantees the existence of an algorithm in BPPNP such that given any
NP relation outputs a witness for a given x uniformly at random. In particular, we apply Theorem 8
to sample a training set TX,Y from the set Tα(x) which can be regarded as witnesses for the relation

α ∈ P (Aβ
B , x). This allows to perform the first step of the algorithm Mα in BPPNPNPA

. We have

then proved that the algorithm Mα can be run in BPPNPNPA

.

We now show that the algorithm Mα(Aβ
B , x, s) can correctly evaluate the BQP function fα on a

large fraction of input points. In particular, we obtain that for any ϵ ≥ 0 the algorithm Mα is such
that:

Prx∼Unif{0,1}n

[
Prs[Mα(AB , x, s) ̸= fα(x)] ≥ 2

5

]
≤ ϵ. (39)

In other words, the fraction of inputs x ∈ {0, 1}n for which algorithm Mα misclassifies with
probability greater than 2/5 is less than ϵ. Let us first consider the set Tα(x) for a given x. Because
of the soundness property of the approximate-verifiable algorithm Aβ

B in Def. 19, in every dataset
TX,Y ∈ Tα(x) the number of inputs x ∈ X incorrectly labeled are at most 1

βB. Since in total
there can be 2nB different sets X , the maximum budget for incorrectly labeled inputs across all the
possible datasets is B

β 2
nB . The algorithm Mα will misclassify a point x with a probability greater

than 2
5 if the point appears with the incorrect label on more than 2

5 of the datasets TX,Y ∈ Tα(x).
The total number of possible sets X of B points which contains x is given by the total number of
possible datasets minus the number of datasets which do not contains x, i.e.

2nB − (2n − 1)B = 2nB − 2nB(1− 1

2n
)B ∼ B2n(B−1). (40)

Then, the maximum number nmax of different inputs x for which Prs[Mα(Aβ
B , x, s) ̸= fα(x)] ≥ 2

5
is

nmax
2

5
2n(B−1)B ≤ 1

β
B2nB (41)

which gives nmax ≤ 5
6β 2

n and therefore a fraction ϵ = 5
6β of misclassified inputs. By choosing β to

be sufficiently small (e.g., inverse polynomial in size), we can make the error ϵ in Eq. (39) arbitrarily
small.

When x comes from the uniform distribution over the set of allowed inputs, this means that:

Prx∼Unif{0,1}n

[
Prs[Mα(AB , x, s) ̸= fα(x)] ≥ 2

5

]
≤ ϵ
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and thus (L,Unif) = HeurBPPNPNPA

.

As it was the case for the previous results, we can show hardness for the approximate-verifiable
identification task based on the assumption that there exists a distribution UnifLP

and a PromiseBQP-
complete language LP not heuristically decidable given access to oracle in the PH.

Theorem 12 (Approximate-verifiable identification implies (PromiseBQP,UnifLP ) ⊂ HeurBPPNPNP

).
Let F = {fα : {0, 1}n → {0, 1} | α ∈ {0, 1}m} be a concept class containing at least
a PromiseBQP function f as in Def. 13 associated to a language LP ∈ PromiseBQP and let
UnifLP

be an associated input distribution as in Def. 14. If there exists an approximate-verifiable
identification algorithm AB running in A for the input distribution UnifLP

as in Def. 19 then

(LP ,UnifLP
) ∈ HeurBPPNPNPA

.

Proof. The argument proceeds in direct analogy to the proof of Theorem 11, the only change regards
the sets of trainingsets considered. In particular, we impose that the inputs xℓ in the training sets
Tα(x) of Eq. (37) comes from the input distribution UnifLP

. Since we assume efficient classical
samplability of UnifLP

in Def. 14, this condition can be enforced within polynomial time. The rest
of the proof follow the same steps as the proof of Theorem 11.

F.2 CONSTRUCTION OF AN APPROXIMATE-VERIFIABLE ALGORITHM IN THE PH

We now present the second part of results needed to complete the proof of Theorem 10. Specifically,
we show how to construct an approximate-verifiable algorithm which satisfies Def. 19 given an
approximate-correct algorithm which satisfies the non-verifiable task in Def. 8. We will show this
is possible by climbing up one layer in the PH for two types of concept classes: c-distinct and
average-case-smooth.

Theorem 13. If there exists an approximate-correct identification algorithm AB as in Def. 8 for a
c-distinct concept class F , with c ≥ 1/3, which works correctly for a dataset of size B, then there
also exists an approximate-verifiable algorithm Aβ

βB as in Def. 19 in NP which works correctly for a
dataset of size βB.

Proof. The proof works by explicitly constructing an algorithm Aβ
βB that is within NP and that,

given access to the approximate-correct algorithm AB in Def. 8, satisfies the condition in Def. 19
of approximate-verifiable identification algorithm. In particular, the main objective of the proof is
to show how an approximate-correct identification algorithm in Def. 8 can be used to construct an
algorithm in NP which satisfies the completeness condition of Def. 19. We first present the main steps
of the algorithm, then show that they can be performed within NP and finally check the correctness
of the algorithm.

First we notice the following. If there exists a learning algorithm AB which solves the identification
task in Def. 8 for the concept class F , then we can easily construct an algorithm ĀB that can solve
the identification task even for the concept class F̄ defined as follows:

F̄ = {f ᾱ : {0, 1}n → {0, 1} | ∀x ∈ {0, 1}n f ᾱ(x)⊕ 1 = fα(x) ∈ F} (42)

Specifically, the algorithm ĀB solves the identification task for the concept class F̄ by flipping the
labels of all points in the input dataset before applying AB .

We are now ready to describe the algorithm Aβ
βB . We notice that having access to the algorithm AB

in Def. 8 we can implement the following function which, given a dataset T = {(xℓ, yℓ)}βBℓ=1 of βB
inputs and a label α corresponding to one of the concept, detects if there is a subset TB of B of inputs
not consistent with α. Consider an algorithm AB as in Def. 8 and let ϵc be ϵc = min(ϵ1, ϵ2), with ϵ1
and ϵ2 the error values in the conditions of Eq. (56) and (57) of Def. 8. Then we define the check
function as follows.
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1: function CHECK(α, T )
2: for TB in T
3: for r in R
4: if ĀB(TB , ϵc, r) = ᾱ return “invalid dataset”
5: end function

The function check can be implemented by a polynomial time algorithm running in the second level
of the PH. In order to prove it, consider the following set:

S1(α, β) = {T = {(xℓ, yℓ)}βBℓ=1 | ∃r ∈ R, TB = {(xi, yi)}Bi=1, TB ⊂ T s.t. ĀB(TB , ϵc, r) = ᾱ }
(43)

The set S1(α, β) contains all the datasets T for which there exists at least one subset of B inputs TB
and a random string r ∈ R such that ĀB(TB , ϵc, r) = ᾱ. Note that for the property of Eq. (56) in
Def. 8 of approximate-correct identification algorithm, a dataset of βB inputs entirely consistent with
α is not contained in S1(α, β). On a given input dataset T = {(xℓ, yℓ)}βBℓ=1, the algorithm check
decides if the dataset T belongs to S1(α, β) or not. Deciding if a set T belongs to S1(α, β) can be
done in NP as a YES instance can be verified in polynomial time if AB runs in polynomial time.

We construct the algorithm Aβ
βB as follows.

1: function Aβ
βB(T, ϵ, r)

2: α← AβB(T, ϵ, r) ▷ with AβB the approximate-correct identification algorithm in Def. 8
3: if check(α, T ) = “invalid dataset”
4: return “invalid dataset”
5: else return α
6: end function

We now show that, for c-distinct concept classes with c ≥ 1/3, the algorithm Aβ
βB described

above rejects any dataset T = {(xi, yi)}βBi=1 with B or more inputs not labeled by fα. Thus, the
constructed Aβ

βB satisfies the soundness condition of the approximate-verifiable algorithm as in
Def. 19. First, if there exists a subset TB ⊂ T such that every point in it is labeled by f ᾱ, then
there exists a random string r and a value ϵ ≤ ϵ2 such that ĀB(TB , ϵ, r) = ᾱ′ with the condition
Ex∼Unif({0,1}n)|f ᾱ(x) − f ᾱ

′
(x)| < 1

3 . However, since by assumption all the concepts differ one
from each other on more than 1/3 of the inputs, then ĀB(TB , ϵ, r) = ᾱ. It follows that the function
check will successfully detect and discard any input dataset that contains B or more inputs not
labeled by α. Therefore, for any input dataset of βB or more inputs the algorithm Aβ

βB satisfies the
conditions in Def. 19 of approximate-verifiable algorithm.

As anticipated in the main text, we provide here an example of a 0.5-distinct concept class, which
therefore satisfies the condition of Theorem 13, where the concepts are all (Promise)BQP complete
functions.
Definition 20 (0.5-distinct concept class with BQP concepts). Let f be a PromiseBQP complete
function as in Def. 13 on input x ∈ {0, 1}n. Then for any f there exists a concept class F containing
2n PromiseBQP-complete concepts defined as:

F = {fα : {0, 1}n → {0, 1} | α ∈ {0, 1}n} (44)
fα : x→ f(x)⊕ (α · x) (45)

where α · x is the bitwise inner product modulo 2 of the vectors α and x.

Clearly for any α1, α2 ∈ {0, 1}n, α1 ̸= α2, it holds that fα1(x) ̸= fα2(x) on exactly half of the
input x, also they are all PromiseBQP complete functions as by evaluating one of them we can easily
recover the value of f(x).
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Theorem 14. If there exists an approximate-correct identification algorithm AB as in Def. 8 for
an average-case-smooth concept class F , which works correctly for a dataset of size B, then there
also exists an approximate-verifiable algorithm Aβ

βB as in Def. 19 in NP which works correctly for a
dataset of size βB.

Proof. The proof is analogous to the one of Theorem 13. In particular we again leverage the existence
of the algorithm ĀB to check if a dataset T = {(xi, yi)}βBi=1 of βB inputs contains a fraction of
B inputs not consistent with a previously outputted α. Since now the concept class satisfies the
condition in Def. 6, in order to check if a set TB of B inputs from T are labeled by f ᾱ is sufficient
to check if d(ĀB(TB , ϵ, r), ᾱ) ≤ 1/3, where d is the distance function in Def 6. By the second
property in Def. 8, if all the inputs in TB are consistent with f ᾱ, then there exists a r such that
d(ĀB(TB , ϵ, r), ᾱ) ≤ 1/3 for any ϵ ≤ ϵ2 in Def. 8. The proof then follows the same structure as that
of Theorem 13, with the only change being in the check function, which is now defined as follows.

1: function CHECK(α, T )
2: for TB in T
3: for r in R
4: if d(ĀB(TB , ϵc, r), ᾱ) ≤ 1/3 return “invalid dataset”
5: end function

G SOME IMPLICATIONS OF OUR RESULTS

In this section, we discuss the connections between our theoretical findings with other well-known
physically relevant tasks: Hamiltonian learning, the learning of parametrized observables and the
learning of order parameters. We also present a physically motivated concept class to which our
hardness results apply directly and where a quantum advantage is achieved. Moreover we provide a
list of example of physical processes which give rise to BQP functions and practical settings where
the identification task naturally arises.

For Hamiltonian learning, we clarify why an efficient classical algorithm for the identification task
remains feasible. We then show how our results demonstrate the hardness of the identification task in
learning parametrized observables. Finally, we discuss the connection to the task of learning of order
parameters and the potential for quantum advantages therein.

G.1 HARDNESS OF IDENTIFICATION FOR A PHYSICALLY MOTIVATED BQP-COMPLETE
CONCEPT CLASS

In the recent work Molteni et al. (2024) a physically motivated learning problem for which a learning
separation was proved. Importantly, the classical hardness for the task was achieved by considering
concepts being BQP-complete functions as in Def. 13 and then arguing that a classical learner would
not be able to evaluate such concepts unless BQP ⊂ P/poly. An interesting question is whether
the classical hardness could arise already from identifying the target concept that labels the data,
rather than only from evaluating it. Using the results in Section 5, we can answer this question in an
affirmative way for a subclass of problems for which the hardness of evaluation holds. Let us restate
the learning problem presented in Molteni et al. (2024) and show how our results in the previous
section apply to it. The learning problem considered is described by the following concept class:

FU,O = {fα(x) ∈ R | α ∈ [−1, 1]m} (46)

with: fα(x) : x ∈ {0, 1}n → fα(x) = Tr[ρH(x)O(α)]

O(α) =

m∑
i=1

αiPi.

Where ρU (x) is a “classically hard to compute” quantum state (i.e., certain properties of this state
are hard to compute) depending on x ∈ {0, 1}n. An example could be ρU (x) = U |x⟩ ⟨x|U† with
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U = eiHτ where H is a local Hamiltonian whose time evolution is universal for BQP Feynman
(1985). As each Pi represents a k-local Pauli string, the function fα is a BQP-complete function
for some values of α. For example, for the αZ which corresponds to O(αZ) = Z ⊗ I ⊗ ... ⊗ I
the function fαZ is exactly the function which corresponds to the time evolution problem in the
literature Kitaev et al. (2002), which is known to be universal for BQP. This already motivates
the classical hardness of the learning task under the assumption BQP ̸⊆ P/poly as the classical
learner is required to evaluate a correct hypothesis on new input data. We now argue that concept
classes of the kind FU,O are also not classically identifiable as in Def. 8. In order to show it, we will
consider a particular construction for the quantum states ρU (x) and observables O(α) such that the
corresponding concept class FU,O satisfies the definition of c-distinct concept class in Def. 5 with
c = 1/3.

It is important to note that in Molteni et al. (2024), a quantum learning algorithm was proposed that
solves the task by first identifying a sufficiently good α, and then evaluating the model using the
identified α. As such, the quantum algorithm also addresses the identification task. Furthermore, as
demonstrated in Molteni et al. (2024), the algorithm remains effective even in the presence of noise
in the training data.
Theorem 15. There exists a family of unitaries {U(x)}x and observables {O(α)}α such that the
corresponding concept class FU,O is not classically identifiable by an approximate-correct algorithm
as in Def. 8, but is identifiable by a quantum learning algorithm.

The key idea of the proof is to construct a particular family of quantum states ρU and observables
O such that the corresponding concept class in Eq. (46) contains c-distinct concepts with c ≥ 1/3.
We achieve this by leveraging the Reed-Solomon code to construct functions that differ from each
other on at least 1/3 of all the input x. As this is still an instance of the same category of concept
classes as studied in Molteni et al. (2024), the quantum learning algorithm from this work will solve
the identification task, and also the corresponding evaluation task.

We give here the complete proof of Theorem 15.

Proof. Let us first introduce the set of 3n classical functions {fj}3nj=1 defined as follows:

fj(x) =

{
fj(x) = 0 if x /∈ Lj

fj(x) = 1 if x ∈ Lj
. (47)

Where Lj = {xj ,xj+1, . . . ,xj+2n/3n} denotes the j-th block, a contiguous subset of 2n

3n elements
selected from the set of all possible x ∈ {0, 1}n, according to a predefined order. We then consider
the Reed-Solomon code Wicker & Bhargava (1999) RS(3|k|, |k|) defined over a field with q = 2m

elements which maps a message k of length |k| into a codeword of length 3|k|. Let us consider m and
|k| such that n = |k| ·m. In this way the minimum distance between two different codewords is lower
bounded by d ≥ 3|k| − k + 1 ≥ 2|k|+ 1 ≥ |k|. This corresponds to a Hamming distance greater
than dH ≥ |k| ·m between the bitstring representation of codewords corresponding to two different
messages k and k′. Next, we define the function g : {0, 1}n → {0, 1}3n as the function which
maps the bitstring representation of the message k into the bitstring representation of its codeword
of the previously introduced RS(3|k|, |k|) code. In this way, dH(g(k), g(k′)) ≥ n for every k ̸= k′,
where dH(g(k), g(k′)) stands for the Hamming distance between the 3n-bits given by the function g.
Consider now the family of 2n functions {hk}2

n

k=1 defined as:

hk(x) =

3n∑
j=1

[g(k)]j · fj(x) (48)

It is clear that for different k each function hk will differ from the others on at least 2n

3 distinct values
of x ∈ {0, 1}n. We now want to implement the functions hk in the form of the concepts in FH,O.
We can do so by considering a register of 3n× n qubits. On each of the 3n registers the function fj
in Eq. (47) is implemented by measuring the Z observable on the first qubit after having prepared a
corresponding state ρj(x). In particular the unitary U is the tensor product of each Uj acting on the
j-th register of n qubits, with j = 1, 2, ..., 3n. Each Uj is such that:

fj(x) = ⟨x|U†
jZ1Uj |x⟩ (49)
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where Z1 represent the Z Pauli operator acting on the first qubit of the j-th register. We note that since
classical computations are in BQP such a unitary always exists. Let us consider then the following
circuit composed of 3n+ 1 register of n qubit each. On the first register the input dependent state
|x⟩ undergoes an arbitrary BQP computation and the observable Z is measured on the first qubit.
The other registers implement the functions fj as described above. As they are classical functions,
they can also be implemented quantumly. Next we define the required set of observables {O(α)}α
defined as:

O(α) = Z1 ⊗
3n∑
j=1

αjZnj+1, (50)

where Zi represents the Pauli string consisting of identity operators on all qubits except for the Z
matrix acting on the i-th qubit. Each concept in fα ∈ F is now expressed as fα = Tr[ρ(x)O(α)],
where ρ(x) represents the quantum state formed by the tensor product of the previously described
3n+ 1 registers, and O(α) is defined as in Eq. (50). Specifically, ρ(x) is defined as follows:

ρ(x) =

3n+1⊗
j=1

ρj(x), ρj =

{
if j = 1: ρ1(x) = |ψ⟩ ⟨ψ|1 with |ψ⟩ = UBQP |x⟩
if j ̸= 1: ρj(x) = |ψ⟩ ⟨ψ|j with |ψ⟩ = Uj |x⟩

. (51)

where UBQP represents any arbitrary BQP computation while {Uj}j are the unitaries associated to
the functions fj as defined in Eq. (49).

If we now consider the concept class

F = {fα | fα = Tr[ρ(x)O(α)], α = g(k) ∀k ∈ {0, 1}n}, (52)

where the functions fα and g are defined as above, we obtain a concept class F such that for any pair
of different α1,α2 the corresponding concepts differ on at least 2n/3 different inputs x ∈ {0, 1}n.
Therefore the constructed concept class is a c-distinct concept class as in Def. 5, with c = 1/3.
We can then apply our Theorem 13 and construct an approximate-verifiable algorithm from an
approximate-correct identification algorithm as in Def. 8 which correctly solves the identification
task for F by using an NP oracle. Moreover, as there is at least a PromiseBQP complete concept for
α = 011, for Theorem 11 if there exists an approximate-verifiable algorithm which runs in the second
level of the polynomial hierarchy then BQP would be contained in the fourth level of the PH. We
can therefore conclude that the constructed concept class F is not learnable even in the identification
sense with an approximate algorithm which satisfies Def. 8.

We note here that, although the task defined by the concept class in Eq.( 46) is general and include
many physical scenarios as motivated in Molteni et al. (2024), the specific choice of unitaries
{U(x)}x and observables {O(α)}α used in the proof of Theorem 15 is purely technical, intended to
ensure the concept class is 1/3-distinct.

G.2 HAMILTONIAN LEARNING

Hamiltonian learning is a well-known problem which, arguably surprisingly, admits an efficient
classical solution. Moreover, the Hamiltonian learning problem can be easily framed as a standard
learning problem within the PAC framework, revealing clear connections to the identification task
discussed in this paper. Although the underlying concepts may initially seem inherently quantum, the
existence of an efficient classical algorithm for solving the problem raises the question of why our
hardness results do not extend to this setting. In its main variant, the task involves reconstructing an
unknown Hamiltonian from measurements of its Gibbs state at a temperature T . Specifically, given
an unknown local Hamiltonian of the form H(λ) =

∑
i λiPi, the goal of the Hamiltonian learning

procedure is to recover λ from measurements of its Gibbs state ρ(β,λ) at temperature T :

ρ(β,λ) =
eβH(λ)

Tr[eβH(λ)]

where β = 1
T . In Anshu et al. (2020), the authors proposed a classical algorithm capable of recovering

the unknown Hamiltonian parameterized by λ using a polynomial number of measurements of the
11We do note that, even for most values of α ̸= 0, we still expect the corresponding concepts to be

PromiseBQP-complete.
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local Pauli terms {Pi}i that constitute the target Hamiltonian H(λ) =
∑

i λiPi. In Haah et al.
(2024), an also time-efficient algorithm was proposed. The above task can be reformulated as an
identification problem by considering the following concept class:

Fβ = {fλ(x) ∈ R | λ ∈ [−1, 1]m} (53)

with: fλ(x) : x ∈ X ⊆ {0, 1}n → Tr[ρ(β,λ)O(x)]

O(x) =

poly(n)∑
i=1

xiPi.

Then given polynomially many training samples of the kind T = {(xℓ, f
λ(xℓ))}ℓ it is possible to

recover the expectation values of the local Pauli terms {Pi}i and therefore the identification problem
can be solved using the learning algorithm in Haah et al. (2024) for learning the vector λ.

We now provide a list of incompatibilities between the task of Hamiltonian learning and the identi-
fication task considered in our results, and examine them to try to find the crux of the reason why
Hamiltonian learning remains classically feasible.

• Hamiltonian learning is a regression problem. It is important to highlight that the concepts
in Eq. (53) are not binary functions, as they are in our theorems, but rather form a regression
problem. We note that this categorical difference alone is also not the end of the explanation.
It is in fact possible to “binarize” the concepts in the following way:

fλ(x, i) : (x, i) ∈⊆ {0, 1}n × {0, 1}logn → bin
[
Tr[ρ(β,λ)O(x)], i

]
(54)

where bin
[
y, i

]
returns the i-th bit of y. A Hamiltonian learning algorithm can still be

used to determine the unknown λ. This can be done, for example, by considering an input
distribution that focuses on exploring the most significant bits of the extreme inputs where
the observable O(x) reduces to a single Pauli string, specifically inputs x ∈ {0, 1}n with
Hamming weight 1.

• The concepts are not BQP-hard. The concepts in Fβ , binarized as in Eq. (54), involve
measurements performed on Gibbs states. For large values of β, these states closely
approximate ground states, which might suggest a connection to tasks where quantum
computers are expected to outperform classical ones. However, regardless of how hard
it is to estimate expectation values from cold Gibbs states, it is important to clarify that
each concept is associated with a fixed Gibbs state, and the input x ∈ {0, 1}n simply
determines the observable being measured. This is similar to the “flipped concepts” case
studied in Molteni et al. (2024). It is easy to see that a P/poly machine can compute these
concepts given the expectation values of the (polynomially many) Pauli strings {Pi}i as
advice, due to the linearity of the trace. Thus, the concepts we have here are somewhere
in the intersection of P/poly and BQP-like problems (depending on what temperature
Gibbs states we are dealing with, let us call the corresponding class A, where A could be
QXC Bravyi et al. (2024) ). However, even this is not sufficient to full explain the apparent
gap between our no-go results and the efficiency of Hamiltonian learning. In our proofs we
worked towards the (unlikely) implication that BQP was not in a heuristic version of a level
of the PH. Here, we can construct fully analogous arguments and obtain the implication
that, e.g., P/poly∩A is in PH, and we also have no reason to believe this to be true. Indeed,
proving that this inclusion holds would, to our understanding, constitute a major result in
quantum complexity theory. The reasons why the no-go’s do not apply are more subtle still.

• Hamiltonian learning algorithm doesn’t satisfy the assumptions of the right type of
identification algorithm. It is clear that the Hamiltonian learning algorithm does not
satisfy the conditions of an approximate-verifiable algorithm in Def. 19, as it fails to detect
datasets that do not contain enough inputs labeled by a single concept - it always outputs
some guess for the Hamiltonian. However we could again try to circumvent this issue by
employing the constructions from Theorem 13 or Theorem 14, to construct approximate-
verifiable identification algorithm somewhere in the PH, which would again suffice for a
likely contradiction. However, it is important to note that in normal Hamiltonian learning
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settings neither of the two Theorems apply. The theorems require that concept class must
either consist of sufficiently distinct concepts (Def.5) or exhibit average-case smoothness
(Def.6). On the face of it, neither of these conditions seem to hold for the concept class in
Eq. (53), and it is not clear how one would go about attempting to enforce them. This final
point is in our view at the crux of the difference between the settings where our no-go’s
apply and Hamiltonian learning.

While we leave the investigation of the hardness of the Hamiltonian learning task as a potential
direction for future work, already at this point an interesting observation emerges. It is a natural
question if the conditions of the two Theorems 13 and 14 could be relaxed and generalized, which
would lead to the hardness of identification for broader classes of problems. Due to the analysis of
the Hamiltonian learning case we see that if one could generalize the settings to the point they apply
to Hamiltonian learning, since Hamiltonian learning is classically tractable, this would imply very
surprising results in complexity theory (see second bullet point above). We see it more likely that this
is a reason to believe the range of generalization of the settings where identification is intractable is
more limited and will not include the standard settings of Hamiltonian learning.

G.3 THE CASE OF LEARNING OF ORDER PARAMETERS

Another physically meaningful problem that can be framed as an identification task is learning the
order parameter that distinguishes between different phases of matter. Consider, for example, a family
of Hamiltonians {H(x)}x parametrized by vectors x ∈ [−1, 1]m, where the corresponding ground
states exhibit distinct phases depending on the value of x. In many cases, such as symmetry-breaking
phases, there exists a local order parameter of the form O =

∑
i αiPi, whose expectation value on a

given ground state reveals the phase to which it belongs to. The task is to learn the order parameter
from a collection of samples {(ρ(xℓ), yℓ)}ℓ, where each ρ(xℓ) represents the ground state of the
Hamiltonian H(xℓ), and yℓ denotes the label identifying its associated phase. We can formalize the
problem by considering the following concept class:

Fα = {fα(x) ∈ R | α ∈ [−1, 1]m} (55)

with: fα(x) : x ∈ X ⊆ {0, 1}n → Tr[ρ(x)O(α)]

O(α) =
∑
i

αiPi.

Learning the correct order parameter from ground states labeled by their phases can be framed as a
machine learning task, where the goal is to identify the underlying labeling function. Specifically,
given training data of the form T = {(xℓ,Tr[ρ(xℓ)O(α∗)])}ℓ, the objective is to recover the
correct parameter α∗ that enables accurate labeling of the ground state ρ(xℓ) corresponding to the
Hamiltonian H(xℓ). In other words, the task reduces to identifying the correct order parameter
O(α∗). In this setting, the value Tr[ρ(xℓ)O(α∗)] acts as a phase indicator. For instance, in systems
exhibiting two distinct phases, the sign of Tr[ρ(xℓ)O(α∗)] serves to distinguish between them. In
case the ground states of the Hamiltonian family {H(x)}x are computable in BQP, then the quantum
algorithm from Molteni et al. (2024), which solves the identification task for the concept class in
Eq.(46), can also be employed to solve the learning problem defined in Eq.(55), thus enabling the
recovery of the correct order parameter. In the general case, however, the concepts in Eq. (55) compute
expectation values on ground states, a task that for a general local Hamiltonian is in QMA-hard, but
the situation is actually more involved.

First, we note that the closely related task learning of phases of matter given the shadows of the
ground states - so where the data consists of pairs (σ(ρ(x)), phase(x)), where σ(·) denotes the
classical shadow of a state, and “phase” assigns a binary label specifying the phase - is classically
easy, even for many topological phases of matter Huang et al. (2022). In this case, the task is to
assign the correct phase to a new datum which is a shadow of a new state given as σ(ρ(x)). This is
different from the setting we consider here, where we explicitly deal with the specification x of the
Hamiltonian; that is, pairs (x, phase(x)) 12. While Huang et al. (2022) also shows how mappings
x→ σ(ρ(x)) can be classically learned as long as the Hamiltonians specified by all x are within the

12Also, the setting in Huang et al. (2022) do not explicitly find the observable, which is the order parameter,
although we suspect this can be computed from the hyperplane found by the linear classifier.
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same phase, the identifying of phases requires the crossing of the phase boundaries, and it is not clear
how the approaches could be combined.

To analyze the perspectives of classical intractability and then quantum tractability of this task from
the lens of the work of this paper, we analyze the key criteria. First, for our hardness results to
apply at all, the concepts in the concept class should be sufficiently hard, in a complexity-theoretic
sense. That is, the functions that we consider x→ Tr[ρ(x)O(α)] should be classically intractable,
yet quantum easy. In general, this is easy to achieve: by using the standard Kitaev circuit-to-
Hamiltonian constructions we can construct Hamiltonians whose ground states encode the output
of arbitrary quantum circuits (here encoded in x), as was used in Molteni et al. (2024). However,
from the perspective of phases of matter identification, it is important to notice that such BQP−hard
Hamiltonians are critical: they have an algebraically vanishing gap, and it is an open question whether
in this sense BQP−hard Hamiltonians could be gapped at all González-Guillén & Cubitt (2018). At
least in the cases of conventional phases of matter (symmetry breaking, even topological), the phases
are typically characterized by a constant gap. This suggests that the “hard computations" could only
be happening at (or increasingly close to) the phase boundary.

However, we are also reminded that the observable we need to ultimately measure has a meaning: it
is the order parameter. This has an interesting implication. We are interested in the setting where
the function x → Tr[ρ(x)O(α)] corresponds to, intuitively, the characteristic function of some
BQP(-hard) language L. But since this function is also the order parameter, the yes instances of the
language (x ∈ Lyes) must correspond to Hamiltonians in one phase, whereas the no instances must
correspond to the other. This observation allows for a simple cheat, as it highlights the importance of
the mapping x→ H(x), which we have the freedom to specify. One can conceal all the hardness in
this map and simply choose it such that H(x) is some Hamiltonian in one phase for x ∈ Lyes, and in
another for the rest. This is of course unsatisfactory as it involves a highly contrived parametrization.

For natural, smooth parametrizations of the Hamiltonian space, we do need to worry about the
constant gap property and so it is not clear whether hard functions emerge in standard settings. If,
however, we move to more exotic systems, e.g. general critical systems, systems with complex
non-local order parameters13 and dynamic phases of matter, it becomes more likely that the right
theoretical conditions arise even with natural parametrizations.

The hardness of the concepts will ensure the hardness of evaluation-type tasks which is the first step.
To achieve the hardness of identification, we need more, i.e., either c-distinct concepts or a smooth
family. Learning of order parameters is a closely related task to the learning of observables, and as
we discussed in Section G.1, for this more general case it is possible to construct cases that satisfy
all the desired assumptions. Whether similar conditions will also be met for some natural settings
involving exotic (or standard) phases of matter remains a target of ongoing research.

G.4 PRACTICAL RELEVANCE OF OUR RESULTS

Although our definition of BQP-complete functions in Def. 13 may seem abstract and distant from
what it can be found in practical experiment, we remark that many relevant physical processes have
been demonstrated to be BQP-complete. For example, estimating expectation values on time-evolved
states is shown to be BQP-complete for many physical Hamiltonians :

• Various variants of the Bose-Hubbard model Childs et al. (2013).

• Stoquastic Hamiltonians Janzing & Wocjan (2006).

• Ferromagnetic Heisenberg model Childs et al. (2013).

• The XY model Piddock & Montanaro (2015).

• Estimating the scattering probabilities in massive field theories Jordan et al. (2018),
(more precisely, estimating the vacuum-to-vacuum transition amplitude, in the presence of
spacetime-dependent classical sources, for a massive scalar field theory in (1 + 1) dimen-
sions).

• Simulation of topological quantum field theories Freedman et al. (2002).

13Note that we could encode universal quantum computations in complex enough global measurements.
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On top of those, problems from other fields as quantum chemistry and topological data analysis have
been proven to be BQP complete, for example:

• Electronic structure problem O’Gorman et al. (2021) for quantum chemistry.

• Computing the persistence of Betti numbers Gyurik et al. (2024)

Any learning problem related to these processes involves BQP-complete functions, to which our
results apply.

In addition to the task of learning an order parameter, we highlight several other scenarios that can be
naturally modeled within our framework of the identification task.

• First, beyond the case of exactly identifying an unknown order parameter, our framework
also applies when the order parameter is known but the corresponding observable is not
directly implementable. In such situations, our approach enables the identification of a
suitable "proxy" observable that captures the relevant information.

• When considering unitarily parameterized observables, time evolution under a parameterized
Hamiltonian can be viewed as part of the measurement process. This allows our framework
to encompass cases in which parts of the quantum dynamics are unknown, even though
the final measurement setup is fixed, thus covering a broader class of partially unknown
observables.

• Identifying an unknown measurement is also crucial in experimental settings where in-
complete device characterization means the actual measurements performed may deviate
from the intended ones. This is especially relevant in quantum computing, where noise and
imperfections in measurement devices are common, making it important to understand and
mitigate their impact.

• Finally, we note that the problem of learning an unknown measurement has been extensively
studied in the literature under the name of quantum measurement tomography Luis &
Sánchez-Soto (1999); Lundeen et al. (2009), further underscoring the practical relevance of
this task.

G.5 BENCHMARKING AGAINST CLASSICAL METHODS

In Appendix G.1, we describe an example of identification task that is classically hard yet solvable
by quantum computers. It is natural to ask how the theoretical guarantees manifest when actually
solving the task on quantum and classical devices. However, it is important to emphasize that
implementing this for BQP-complete functions and, more importantly, benchmarking it against the
best classical learning algorithms in a provably rigorous way presents distinct challenges. Specifically,
the identification task requires the learner to take an entire dataset as input and output only the
description of the labeling function. It is unclear how classical methods could perform such training
or which loss function would be appropriate. One possible approach is to design the learning
algorithm so that a tentative labeling function is tested by evaluating it on different inputs and
comparing the results with the training data. However, this would require the target functions to be
classically computable, which is ruled out by our focus on BQP-complete functions. Ultimately, the
desired algorithm should be analogous to Hamiltonian learning, where, given a complete dataset
of expectation values, the output is a description of the unknown Hamiltonian. Our theoretical
results rule out the possibility of the existence of this kind of algorithm for learning problems
involving BQP-complete functions. Thus, the most promising approach for designing a classical
algorithm is to dequantize the procedure in Appendix G.1 for the identification of the observable.
This, however, would require a highly efficient simulator for quantum computations, with runtime
scaling as poly(n) + 20.23tt3w3 (where t is the number of T-gates and w the number of measured
qubits). In particular, this implies a scaling as poly(n) + 20.3t. For simulation problems with around
300 qubits, and assuming a linear number of T-gates in the qubit count (which is reasonable for the
BQP-hard computations we are interested in our results), this already yields around 210 ∼ 1031

classical steps, clearly infeasible, while a fault-tolerant quantum computer could handle the task
without difficulty.
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H DISCUSSION ON THE ASSUMPTIONS OF THE APPROXIMATE-CORRECT
ALGORITHM

For convenience, we report here the definition of approximate-correct algorithm stated in the main
text in Def. 8.
Definition 21 (Identification task - non verifiable case ). Let F = {fα : {0, 1}n → {0, 1} | α ∈
{0, 1}m} be a concept class. An approximate-correct identification algorithm is a (randomized)
algorithm AB such that when given as input a set T = {(xℓ, yℓ)}Bℓ=1 of at least B pairs (x, y) ∈
{0, 1}n × {0, 1}, an error parameter ϵ > 0 and a random string r ∈ R satisfies the definition of a
proper PAC learner (see Def. 4) along with the following additional properties:

1. If for any α all the (xℓ, yℓ) ∈ T are such that yℓ ̸= fα(xℓ) then there exists an ϵ1 such that
for all ϵ ≤ ϵ1 and all r ∈ R:

AB(T, ϵ1, r) ̸= α. (56)
Therefore, for no dataset the algorithm can output a totally wrong α, i.e. an α inconsistent
with all the inputs in the dataset.

2. If T = {(xℓ, yℓ)}Bℓ=1 is composed of different inputs xℓ and if there exists an α such that the
corresponding labels follow yℓ = fα(xℓ) for all (xℓ, yℓ) ∈ T , then there exists a threshold
ϵ2 such that for any ϵ ≤ ϵ2 there exists at least one r ∈ R for which:

AB(T, ϵ2, r) = α2 (57)

With the condition: Ex∼Unif({0,1}n)|fα(x)− fα2(x)| ≤ 1
3 .

Therefore, if the dataset is fully consistent with one of the concept α, then there is at least
one random string for which the identification algorithm will output a α̃ closer than 1

3 in
PAC condition to the true labelling α.

We say that AB solves the identification task for a concept class F under the input distribution D if
the algorithm works for any value of ϵ, δ ≥ 0. The required minimum size B of the input set T is
assumed to scale as poly(n,1/ϵ,1/δ), while the running time of the algorithm scales as poly(B, n).
Moreover, the ϵ1 and ϵ2 required values scale at most inverse polynomially with n.

We observe that an approximate-correct algorithm is, by definition, a proper PAC learner as in Def. 4,
and thus guarantees a hypothesis with accuracy within ϵ = 1

poly(n) . In addition to this, we also
require it satisfies the two extra conditions specified above. Although the two additional conditions
are introduced for technical reasons required by our proof strategy, they are also designed to reflect
what one would reasonably expect from any practical learning algorithm. The first property ensures
that if the input dataset consists entirely of inputs labeled differently from a given concept, then the
algorithm will not output that concept—meaning it is never “totally incorrect”. The second property
concerns the case where all points in the input dataset are labeled consistently with a particular
concept. In this case, the algorithm is required to output a concept that is “close” in the PAC sense for
at least one random string, regardless of the distribution from which the training set was drawn. We
therefore view the two conditions as natural and well-motivated requirements for a learning algorithm.
Moreover, while the second property closely resembles the condition for proper PAC learning in
Definition 4—with the key difference being that the training set need not be drawn from a specific
distribution—we present a simple example of a concept class where a proper PAC learner would also
satisfy the first property with high probability. Consider a concept class F = {f0, f1} consisting of
two functions such that f0(x) ̸= f1(x) for every x ∈ {0, 1}n. In this case, any dataset that does not
contain inputs labeled by f0 is fully consistent with f1, and vice versa. As a result, a proper PAC
learner would, with high probability, output the concept consistent with the dataset, rather than the
one that is entirely incorrect. This simple scenario changes in the presence of a larger concept class.
When multiple concepts are involved, a dataset that is totally inconsistent with one concept may still
not be fully consistent with any other. In such cases, a proper PAC learner, without the additional
assumption from Def. 8, has no guarantees on the concept outputted.
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