

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MODEL PARALLELISM WITH SUBNETWORK DATA PARALLELISM

Anonymous authors

Paper under double-blind review

ABSTRACT

Pre-training large neural networks at scale imposes heavy memory demands on accelerators and often requires costly communication. We introduce Subnetwork Data Parallelism (SDP), a distributed training framework that partitions a model into structured subnetworks trained across workers without exchanging activations. We study two complementary masking regimes: *backward masking*, which applies sparsity only in the backward step to retain unbiased gradients, and *forward masking*, which also removes parameters in the forward pass to deliver stronger efficiency gains while providing additional regularization. We further explore two subnetwork construction strategies: *neuron level* and *block level*, applied across both CNNs and transformers. In experiments spanning CNNs and transformers on CIFAR and ImageNet, as well as LLM pre-training on FineWeb, SDP reduces per-device memory usage by **30%-75%** while maintaining or improving performance. Notably, in FLOP-matched settings, forward masking can sometimes achieve better performance.

1 INTRODUCTION

The rapid scaling of deep neural networks has led to unprecedented progress across a wide range of domains, from computer vision (He et al., 2016a; Radford et al., 2021; Oquab et al., 2023; Kirillov et al., 2023; Shang et al., 2024) to natural language processing (Bommasani et al., 2021; Achiam et al., 2023; Touvron et al., 2023; Zhao et al., 2023a). Training such large models has necessitated distributed strategies like *data parallelism* (Li et al., 2020) and *model parallelism* (Shazeer et al., 2018; Shoeybi et al., 2019; Huang et al., 2019), each with trade-offs. Data parallelism, typically implemented as Distributed Data Parallel (DDP) (Li et al., 2020), replicates the model on each GPU and synchronizes gradients after every backward pass. While simple and widely used, it incurs high memory overhead from full replication and high communication cost during synchronization. Model parallelism (e.g., GPipe (Huang et al., 2019)) mitigates memory issues by splitting layers across devices but requires expensive high-bandwidth interconnects to communicate activations. Unlike data parallelism, where several methods reduce communication cost (Douillard et al., 2023; Wang et al., 2023), lowering activation bandwidth remains an open challenge. Moreover, pipeline approaches often suffer inefficiencies from idle waiting (pipeline bubbles).

In this work, we propose ***Subnetwork Data Parallelism (SDP)***, a complementary strategy to model parallelism that reduces per-node memory by distributing the training of model sub-components across nodes. Unlike pipelining, which splits computation into sequential stages, SDP assigns each worker a ***subnetwork***, a structurally complete portion of the model (e.g., removing rows and columns of a linear operator) that preserves a full path from input to loss, enabling independent gradient computation without exchanging activations. Each worker optimizes its subnetwork and synchronizes overlapping parameters through stepwise averaging.

We study two instantiations: (i) ***forward-masked subnetworks***, which remove both forward and backward computation for a subnetwork, reducing parameters, activations, and gradients for substantial memory savings; and (ii) ***backward-masked subnetworks***, where the forward pass uses the full model while masking is applied only in backpropagation, saving gradients and accumulators. The latter retains unbiased gradients and offers a theoretically grounded baseline, while the former provides a practical simplification that empirically improves stability and efficiency.

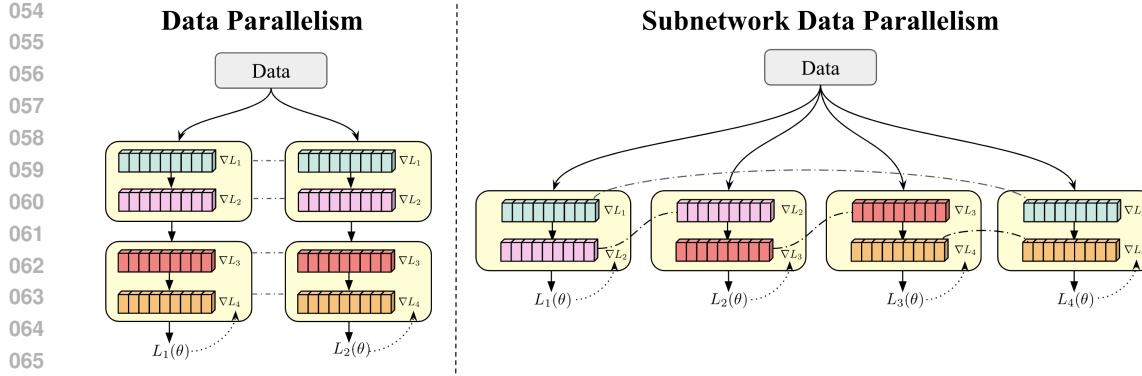


Figure 1: **Data Parallelism (DDP) vs. Subnetwork Data Parallelism (SDP).** *Left:* In data parallelism each GPU hosts a full replica, computes all layer gradients $\{\nabla L_1, \nabla L_2, \nabla L_3, \nabla L_4\}$, and all-reduces *all* parameters each step; per-GPU memory is approximately the full model (parameters + gradients + optimizer state + activations). *Right:* In SDP each GPU trains an end-to-end *subnetwork* (a subset of layers/neurons) with a local loss $L_k(\theta)$; only gradients of *shared* parameters are synchronized via masked averaging (dashed arcs). For a **coverage ratio** $C = p/n$ (each parameter resides on p of n GPUs), both memory and communication per GPU scale as $\approx C \times DP$, with no cross-GPU activation exchange. This enables fitting larger models or longer sequences under the same hardware budget and improves scalability when bandwidth or memory are bottlenecks; when $C = 1$ (all parameters on all GPUs), SDP reduces to standard DDP.

Rather than replicating or fully sharding the model, SDP distributes subnetworks across nodes so each device holds only a fraction of parameters (or gradients/accumulators for backward-masked). Subnetworks are trained independently and synchronized via parameter averaging, yielding a unified model. This significantly lowers memory usage while remaining compatible with intra-node data parallelism and existing systems-level model-parallel techniques.

Unlike pipelining, sharding, or tensor parallelism, our approach modifies the forward and backward computation. Its design rests on three observations. First, overlapping parameter assignments with periodic averaging maintain partial synchronization across workers; in forward masked subnetworks, each worker can be viewed as a replica constrained to remain similar through shared overlaps, akin to ensemble alignment strategies (Jolicoeur-Martineau et al., 2023a; Fournier et al., 2024). Second, in the backward masked regime, the forward pass uses the full model while sparsity is applied only during backpropagation. In this case, gradient estimates remain unbiased, and deviations from full DP are governed by mask connectivity, providing a principled baseline with theoretical guarantees. Third, subnetworks reduce per-iteration time thus decreased convergence rates (which we demonstrate theoretically) can be offset by increasing iterations in a FLOP-matched manner.

Our primary contributions in this work are:

- We propose a novel distributed training paradigm: **Subnetwork Data Parallelism (SDP)** enabling memory efficient distributed training. We provide a theoretical basis for our method linking the convergence in the backward masking case to a notion of a spectral gap.
- We explore two subnetwork construction strategies: (i) selecting subsets of neurons or channels, and (ii) removing entire layers (blocks) from the network, and compare them with standard Data Parallelism (DDP).
- We demonstrate that our approach achieves competitive performance on image classification tasks and large language model training, while substantially reducing per-device memory usage and synchronization overhead.

2 RELATED WORK

Pipeline parallelism: Pipeline parallelism reduces memory bottlenecks by splitting the model across devices. Huang et al. (2019); Rivaud et al. (2024) partition layers and pipeline micro-batches, while Mesh-TensorFlow (Shazeer et al., 2018) and Megatron-LM (Shoeybi et al., 2019) shard weights and activations within layers. These methods overcome memory limits but require high bandwidth

108 interconnects and still suffer from pipeline bubbles and load imbalance. Another line of work explores
 109 parallel layer training via auxiliary local losses (Belilovsky et al., 2020).
 110

111 **Fully Sharded and Zero Redundancy Approaches.** To reduce memory inefficiencies in data parallelism,
 112 methods like Fully Sharded Data Parallel (FSDP) (Zhao et al., 2023b) and ZeRO (Rajbhandari
 113 et al., 2020) partition parameters, gradients, and optimizer states across devices. These approaches,
 114 supported by frameworks such as DeepSpeed (Rasley et al., 2020), greatly lower per-device memory
 115 but still incur substantial communication, especially during gradient synchronization, leading to
 116 higher overhead and latency.
 117

118 **Ensemble Learning** Recent work (Fournier et al., 2024; Jolicoeur-Martineau et al., 2023b) shows
 119 the benefits of training multiple related models in parallel. Forward Subnetwork Masking can be seen
 120 as a similar framework, training diverse yet connected models while enforcing alignment, but with
 121 the added advantage of reduced per-iteration compute and memory.
 122

123 **SWARM Learning** SWARM (Ryabinin et al., 2023) addresses model parallelism limits by assigning
 124 multiple devices to each pipeline stage and routing samples efficiently. In contrast, it still requires
 125 activation communication over potentially low-bandwidth links, whereas our subnetwork approach
 126 reduces all communication to parameters or gradients while maintaining only data parallelism across
 127 nodes.
 128

129 **Federated Learning and Dropout-Based Subnetwork Training.** Federated learning frame-
 130 works (Konečný et al., 2016) train models across decentralized data sources, often addressing
 131 the non-iid challenge. Several works explore training subnetworks per device in this setting (Caldas
 132 et al., 2018; Horvath et al., 2021; Guliani et al., 2022; Wen et al., 2022; Alam et al., 2022), but with
 133 different goals and methodology. These focus on reducing communication and device compute,
 134 whereas our aim is to lower memory requirements, critical for training large models on memory
 135 limited GPUs. Communication load, by contrast, is well studied and can be mitigated through
 136 multi-step training and compression methods (Reddi et al., 2021; Douillard et al., 2023; Wang et al.,
 137 2023).
 138

139 FedRolex and HeteroFL vary model size across clients to address device heterogeneity in compute and
 140 memory, assigning subnetworks via channel-level dropout. Our work instead targets a homogeneous
 141 setting, aiming to lower per-node memory through a more general subnetwork assignment strategy.
 142 Moreover, while these methods operate under privacy and heterogeneity constraints, often leaving
 143 each client with only small datasets, we assume each worker can access the full dataset. This avoids
 144 issues of heterogeneity or overfitting.
 145

146 In these works, assigned masks are dynamic which adds significant communication and coordination
 147 overhead in a non-federated setting where wall-clock time is critical. Yuan et al. (2019) studied
 148 dynamic non-overlapping subnetworks with local SGD, whereas our fixed masks simplify the system
 149 and enable efficient forward and backward strategies. The overlapping nature of fixed subnetworks is
 150 key: shared assignments keep parameters aligned through averaging, and our analysis shows that
 151 convergence quality degrades with reduced overlap. Moreover, while Yuan et al. (2019) focused on
 152 MLPs, our method scales to standard architectures for image classification and large-scale language
 153 pre-training.
 154

155 To the best of our knowledge, no related work in distributed subnetwork training considers masking
 156 only the backward pass, which retains many of the benefits of subnetworks. Fagnou et al. (2025)
 157 examined skipping backward blocks in residual networks to speed up training, but did not address
 158 distributed settings or memory reduction in the FLOP-matched regime.
 159

160 3 METHOD

161 We introduce a distributed training framework that enhances memory efficiency in gradients, activa-
 162 tion, and weight storage by defining a communication pattern between workers and model parameters.
 163 First we describe a generic multi-worker masking framework which considers fixed masks on pa-
 164 rameters, gradients or both in the forward and backward pass of training. Then we specialize this to
 165 structured masks that yield benefits in memory and per-iteration speed.
 166

162 3.1 FORWARD AND BACKWARD MASKING
163

164 **Gated coordinates.** Consider a distributed setting with n workers (GPUs). Let J be an index set of
165 *coordinates* of the model; we use “coordinate” to refer to an index of the parameter vector θ and,
166 by the same index set, the corresponding coordinate of its gradient $\nabla_\theta \mathcal{L}$. Each coordinate $j \in J$
167 is assigned to a subset of workers, with overlaps allowed. This assignment is encoded by a binary
168 masking matrix $\mathbf{m} \in \{0, 1\}^{n \times |J|}$, where $m_{i,j} = 1$ means worker i is responsible for coordinate
169 j . Using this mask, we define the *gated parameters* by elementwise multiplication with the global
170 parameter vector:
171

$$\forall i \leq n, \forall j \in J, \quad (\mathbf{m} \odot \theta)_{i,j} \triangleq m_{i,j} \theta_j. \quad (\text{gate})$$

172 Let $d_j \triangleq \sum_{i=1}^n m_{i,j}$ denote the degree of coordinate j ; we assume $d_j \geq 1$ for all $j \in J$.
173

174 Given per-worker gradients $\mathbf{g}_1, \dots, \mathbf{g}_n \in \mathbb{R}^{|J|}$, we define the *gated average* for $j \in J$ as the
175 columnwise average over assigned workers:
176

$$\mathbf{m}(\mathbf{g}_1, \dots, \mathbf{g}_n)_j \triangleq \frac{1}{\sum_{i=1}^n m_{i,j}} \sum_{i=1}^n m_{i,j} (\mathbf{g}_i)_j = \frac{1}{d_j} \sum_{i=1}^n m_{i,j} (\mathbf{g}_i)_j. \quad (\text{average})$$

177 We interpret \mathbf{m} as the adjacency of a bipartite graph between coordinates $\{1, \dots, |J|\}$ and workers
178 $\{1, \dots, n\}$. In practice, we require each coordinate to be assigned to at least one worker ($\min_j d_j \geq 1$)
179 and encourage balanced worker degrees $\sum_j m_{i,j}$ to avoid load imbalance. In particular, this shows
180 that $\bar{\mathbf{m}}(\mathbf{1}, \dots, \mathbf{1}) = \mathbf{1}$. We therefore assume the corresponding bipartite graph is connected, which
181 enforces agreement among the workers and is necessary for convergence (Nabli & Oyallon, 2023).
182

183 To compare masked averaging to the full-data case, let \mathbf{m}^{uni} denote the uniform assignment with
184 $\mathbf{m}_{i,j}^{\text{uni}} = 1$ for all $i \leq n, j \in J$. We view both averaging operators as acting columnwise; write $\|\cdot\|$
185 for the Euclidean norm on $\mathbb{R}^{|J|}$, and use $\sum_{i=1}^n \|\mathbf{g}_i\|^2$ to denote the squared Frobenius norm of the
186 stacked gradients. Define the spectral gap
187

$$\rho \triangleq \sup_{\sum_{i=1}^n \|\mathbf{g}_i\|^2 \leq 1, \bar{\mathbf{m}}^{\text{uni}}(\mathbf{g}_1, \dots, \mathbf{g}_n) = 0} \|\bar{\mathbf{m}}(\mathbf{g}_1, \dots, \mathbf{g}_n)\|, \quad (1)$$

188 i.e., the largest singular value of $\bar{\mathbf{m}}$ restricted to the subspace orthogonal to the uniform direction.
189

190 **Proposition 1** (Deviation bound under backward masking). *Let $\rho \geq 0$ be the spectral gap defined
191 above. Then for any collection of vectors $\mathbf{g}_1, \dots, \mathbf{g}_n \in \mathbb{R}^{|J|}$,*
192

$$\|\bar{\mathbf{m}}^{\text{uni}}(\mathbf{g}_1, \dots, \mathbf{g}_n) - \bar{\mathbf{m}}(\mathbf{g}_1, \dots, \mathbf{g}_n)\|^2 \leq \rho^2 \sum_{i=1}^n \|\mathbf{g}_i\|^2. \quad (2)$$

193 **Forward and Backward Masking** We assume that we have access to two masks $\mathbf{m}_{\text{fwd}}, \mathbf{m}_{\text{bwd}}$. At
194 step t , worker i draws a mini-batch $\mathcal{B}_i^{(t)}$ using a forward mask \mathbf{m}_{fwd} . The forward pass evaluates the
195 loss at
196

$$\theta_i^{(t)} = (\mathbf{m}_{\text{fwd}} \odot \theta^{(t)})_i, \quad \mathbf{g}_i^{(t)} = \nabla_\theta \mathcal{L}(\theta_i^{(t)}; \mathcal{B}_i^{(t)}).$$

197 Note at this stage, that if $(\mathbf{m}_{\text{fwd}})_{i,j} = 0$ then $(\mathbf{g}_i^{(t)})_j = 0$. The backward pass applies the backward
198 aggregation mask on the resulting gradients \mathbf{m}_{bwd} componentwise:
199

$$\hat{\mathbf{g}}^{(t)} = \bar{\mathbf{m}}_{\text{bwd}}(\mathbf{g}_1^{(t)}, \dots, \mathbf{g}_n^{(t)}),$$

200 followed by the optimizer update
201

$$\theta^{(t+1)} = \theta^{(t)} - \text{OptUpdate}(\hat{\mathbf{g}}^{(t)}, \mathbf{s}).$$

202 We consider two variants of this under the Subnetwork DP framework
203

- 204 • *Forward-masking*: $\mathbf{m}_{\text{fwd}} = \mathbf{m}$ and $\mathbf{m}_{\text{bwd}} = \mathbf{m}$. The model is evaluated at masked
205 parameters; activations are gated and memory-saving, but gradients reflect this masked
206 forward.
- 207 • *Backward-masking*: $\mathbf{m}_{\text{fwd}} = \mathbf{m}^{\text{uni}}$ and $\mathbf{m}_{\text{bwd}} = \mathbf{m}$. The model is evaluated at full $\theta^{(t)}$ (no
208 forward bias); sparsity appears only in backprop/aggregation.

209 Choosing $\mathbf{m}_{\text{fwd}} = \mathbf{m}^{\text{uni}}$ keeps activations identical across workers and removes deviation due to
210 masked aggregation governed by the spectral gap ρ .
211

216 **Deviation under Backward-masking.** With Backward-masking, define
 217

$$218 \quad \hat{\mathbf{g}}^{(t)} = \bar{\mathbf{m}}(\mathbf{g}_1^{(t)}, \dots, \mathbf{g}_n^{(t)}), \quad \mathbf{g}_{\text{uni}}^{(t)} = \bar{\mathbf{m}}^{\text{uni}}(\mathbf{g}_1^{(t)}, \dots, \mathbf{g}_n^{(t)}).$$

219 By Proposition 2,
 220

$$221 \quad \|\hat{\mathbf{g}}^{(t)} - \mathbf{g}_{\text{uni}}^{(t)}\|^2 \leq \rho^2 \sum_{i=1}^n \|\mathbf{g}_i^{(t)}\|^2. \quad (3)$$

224 **Convergence in the L -smooth case (Backward-masking, simple).** Assume $f : \mathbb{R}^{|J|} \rightarrow \mathbb{R}$ is
 225 L -smooth. In the backward-masked (BM) setting we take
 226

$$227 \quad \mathbf{m}_{\text{fwd}} = \mathbf{m}^{\text{uni}}, \quad \mathbf{m}_{\text{bwd}} = \mathbf{m},$$

228 so the forward pass is unmasked and only the backward/aggregation is masked. Each worker i
 229 computes a stochastic gradient $\mathbf{g}_i^{(t)}$ at $\boldsymbol{\theta}^{(t)}$ with
 230

$$231 \quad \mathbb{E}[\mathbf{g}_i^{(t)} | \boldsymbol{\theta}^{(t)}] = \nabla f(\boldsymbol{\theta}^{(t)}), \quad \mathbb{E}[\|\mathbf{g}_i^{(t)} - \nabla f(\boldsymbol{\theta}^{(t)})\|^2 | \boldsymbol{\theta}^{(t)}] \leq \sigma^2,$$

233 and we aggregate by masked averaging
 234

$$235 \quad \hat{\mathbf{g}}^{(t)} = \bar{\mathbf{m}}(\mathbf{g}_1^{(t)}, \dots, \mathbf{g}_n^{(t)}).$$

237 Let $\mathbf{g}_{\text{uni}}^{(t)} = \bar{\mathbf{m}}^{\text{uni}}(\mathbf{g}_1^{(t)}, \dots, \mathbf{g}_n^{(t)})$ and define the masking error $\boldsymbol{\delta}^{(t)} \triangleq \hat{\mathbf{g}}^{(t)} - \mathbf{g}_{\text{uni}}^{(t)}$. By linearity of
 238 expectation, both $\hat{\mathbf{g}}^{(t)}$ and $\mathbf{g}_{\text{uni}}^{(t)}$ are unbiased for $\nabla f(\boldsymbol{\theta}^{(t)})$ under BM. The update is
 239

$$240 \quad \boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta \hat{\mathbf{g}}^{(t)}.$$

241 **Theorem 1** (SGD rate under Backward-masking). *If f is L -smooth and $\eta \leq \frac{1}{2L(1+n\rho^2)}$, then for any
 242 $T \geq 1$,*

$$244 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(\boldsymbol{\theta}^{(t)})\|^2 \leq \frac{2(f(\boldsymbol{\theta}^{(0)}) - f^*)}{\eta T} + 2L\eta \left(\frac{\sigma^2}{n} + n\rho^2\sigma^2 \right),$$

246 where $f^* \triangleq \inf_{\boldsymbol{\theta}} f(\boldsymbol{\theta})$ and ρ is the spectral gap of the masking operator.
 247

248 3.2 SUBNETWORK DATA PARALLELISM WITH STRUCTURED MASK CONSTRUCTION

250 Our framework instantiates **Subnetwork Data Parallelism (SDP)** by employing *structured masks*,
 251 which remove entire parameter groups including parameters, gradients, accumulators, and activations
 252 from each worker. This yields substantial memory savings and per-iteration speedups, offsetting
 253 slower convergence while preserving the efficiency benefits of subnetworks. We introduce two
 254 strategies for instantiating subnetworks: **Neuron-Level SDP (N-SDP)**, based on dropout (Srivastava
 255 et al., 2014) for fully connected and convolutional layers, and **Block-Level SDP (B-SDP)**, inspired
 256 by stochastic depth (Huang et al., 2016) for residual architectures.
 257

258 **Neuron-Level SDP (N-SDP).** Through **N-SDP** we instantiate subnetworks by selectively removing
 259 neurons in fully connected layers (or channels in convolutional layers). For two successive layers
 260 (W^l, W^{l+1}) with $W^l : \mathbb{R}^{d_{l-1}} \rightarrow \mathbb{R}^{d_l}$, dropping outputs of layer l naturally removes the corresponding
 261 inputs of layer $l+1$. For simplicity, we restrict to *forward masking*, where the same mask is applied
 262 in both directions ($\mathbf{m}_{\text{fwd}} = \mathbf{m}_{\text{bwd}} = \mathbf{m}$; see Section 3.1). Applying m^l to layer l thus induces a
 263 consistent m^{l+1} on layer $l+1$. As a result,

$$264 \quad (\mathbf{m}^l \odot W^l, W^{l+1}) \quad \text{and} \quad (\mathbf{m}^l \odot W^l, \mathbf{m}^{l+1} \odot W^{l+1})$$

265 produce identical outputs. For example, if $W^l, W^{l+1} \in \mathbb{R}^{d \times d}$ and we mask a subset $J_{\text{mask}} \subset$
 266 $\{1, \dots, d\}$ of output neurons, then setting
 267

$$268 \quad m_{jk}^l = 0, \quad j \in J_{\text{mask}}, k \in \{1, \dots, d\}, \quad m_{kj}^{l+1} = 0, \quad j \in J_{\text{mask}}, k \in \{1, \dots, d\},$$

269 ensures that both layers remain consistent under the masking operation.

270 **Block-Level SDP (B-SDP).** Here, subnetworks are formed by removing entire blocks, particularly
 271 in architectures with skip connections. Let the model have L blocks $\{B^1, \dots, B^L\}$ with parameters
 272 $\theta^{(l)}$. Each block has a binary mask $m^{(l)} \in \{0, 1\}$ denoting whether it is active. When $m^{(l)} = 0$, the
 273 block is skipped and its parameters excluded. In residual architectures (e.g., ResNets), this reduces to
 274 the identity mapping via the skip path, ensuring valid representations even when blocks are dropped.
 275 Formally, for a residual connection of the form

$$276 \quad B^{(l)}(\mathbf{x}) + \mathbf{x},$$

278 the masked computation at block l is
 279

$$280 \quad \hat{B}^{(l)}(\mathbf{x}) = m^{(l)} B^{(l)}(\mathbf{x}) + \mathbf{x}. \quad (4)$$

282 We also consider the more general case of *backward masking*, where $\mathbf{m}_{\text{fwd}} = \mathbf{m}^{\text{uni}}$ and $\mathbf{m}_{\text{bwd}} = \mathbf{m}$
 283 as explained in Section 3.1. We refer this instantiation as **B_b-SDP** where the block may be active
 284 during the forward pass but omitted during the backward pass.

286 **Memory, compute, and communication cost** Let N be the total parameter count and $\mathcal{C} \in (0, 1]$ the
 287 per-worker density (fraction of coordinates selected by the mask). Consider bf16 parameters (2 bytes),
 288 fp32 gradients (4 bytes), and Adam accumulators in fp32 (8 bytes), standard DP requires $\approx 14N$
 289 bytes per-worker. In *Forward masking*: only the $\mathcal{C}N$ coordinates materialize parameters, gradients,
 290 and accumulators, using $\approx 14\mathcal{C}N$ bytes; activations and compute also scale $\approx \mathcal{C}$ for structured
 291 masks (channel/block level). In *Backward masking*: the full forward is computed, but gradients and
 292 accumulators are stored only for the $\mathcal{C}N$ active coordinates, giving $(2 + 12\mathcal{C})N$ bytes. Activations
 293 scale $\approx \mathcal{C}$. Block forward masking illustrated in Figure 1 and compared with DDP pipelining.

294 **Communication cost** Communication cost is also reduced under SDP. In ring all-reduce, each
 295 worker with N parameters sends and receives about $2N$ scalars per step, whereas SDP synchronizes
 296 only the $\mathcal{C}N$ active coordinates, reducing the cost to $\approx 2\mathcal{C}N$. When masks differ across workers,
 297 each parameter block is reduced only within its subset of workers; this holds for both forward and
 298 backward masking. Gradient compression schemes are well studied in data-parallel settings (Shi
 299 et al., 2019; Xu et al., 2021), offering additional savings, but efficient activation compression (e.g.,
 300 in pipelining or tensor parallelism) remains poorly understood. Thus, SDP can sometimes operate
 301 where bandwidth limits preclude other model-parallel methods, while standard techniques (tensor,
 302 sharding, pipelining, context) can still be applied within each SDP replica to further reduce memory
 303 for large models.

305 4 EXPERIMENTS

307 We now describe our experimental setup for our proposed **Subnetwork Data Parallelism (SDP)**
 308 framework on a number of tasks including CIFAR-10 / CIFAR-100 (Krizhevsky et al., 2009),
 309 ImageNet (Deng et al., 2009; Russakovsky et al., 2015), and LLM training on FineWeb dataset
 310 (Penedo et al., 2024). We shall release code for reproducibility at the time of publication.

312 For **N-SDP** we define *coverage ratio* (\mathcal{C}) as p/n , where p denotes the number of active workers (out
 313 of the total n workers/GPUs) that share a given parameter θ_j . This overlap quantifies the sparsity
 314 with which each subnetwork is trained across the n workers. For example, an overlap of $p/n = 6/8$
 315 means that for every parameter θ_j in the parameter vector θ , exactly 6 of the 8 workers participate in
 316 its training. By contrast, $p/n = 8/8 = 1$ corresponds to the standard data-parallel (DP) setup, where
 317 all workers contribute to the training of every parameter.

318 Similarly for **B-SDP** and **B_b-SDP** we define *active blocks* (\mathcal{A}) as b/d , where b denotes the number
 319 of active computational blocks (for example Basic Block in ResNets and Attention+MLP Block in
 320 Transformers) assigned to each worker out of the total d computational blocks in the model.

321 In all cases we either use standard hyperparameters for the task from the literature or tune the
 322 hyperparameters on DDP (e.g. for LLM experiments) and reuse the same on all SDP settings. We
 323 note that tuning hyperparameters for SDP can be a practical approach to further improve performance
 in practice.

324 Table 1: Top-1 test accuracy (%) (\uparrow) with **RN-18** and **WRN-18** using a cosine annealing scheduler across
 325 different coverage ratios (\mathcal{C}) comparing **N-SDP**, **B-SDP**, and **B_b-SDP** with standard DDP ($\mathcal{C} = 1$). Blue cells
 326 match or exceed DDP within error bars with $\mathcal{C} = 5/8$ giving 37.5% memory savings, while at extreme sparsity
 327 ($\mathcal{C} = 3/8$) **B_b-SDP** avoids performance collapse.

ResNet-18 (RN-18)							
Dataset	Masking	DDP ($\mathcal{C} = 1$)	$\mathcal{C} = 7/8$	$\mathcal{C} = 6/8$	$\mathcal{C} = 5/8$	$\mathcal{C} = 4/8$	$\mathcal{C} = 3/8$
CIFAR-10	N-SDP		92.81 ± 0.23	92.72 ± 0.23	92.49 ± 0.09	91.47 ± 0.29	22.56 ± 2.04
	B-SDP	92.45 ± 0.14	93.18 ± 0.16	92.89 ± 0.18	89.52 ± 0.16	84.72 ± 0.40	42.68 ± 2.09
	B_b-SDP	92.14 ± 0.14	91.33 ± 0.02	90.24 ± 0.04	88.80 ± 0.11	87.91 ± 0.29	
CIFAR-100	N-SDP		69.02 ± 0.14	68.42 ± 0.35	67.69 ± 0.59	65.20 ± 0.12	9.79 ± 2.51
	B-SDP	68.62 ± 0.01	70.14 ± 0.48	68.84 ± 0.28	54.27 ± 0.51	36.20 ± 0.01	7.03 ± 0.40
	B_b-SDP	67.33 ± 0.43	64.90 ± 0.24	61.87 ± 0.16	59.89 ± 0.35	58.73 ± 0.39	
WideResNet-18 (WRN-18)							
Dataset	Masking	DDP ($\mathcal{C} = 1$)	$\mathcal{C} = 7/8$	$\mathcal{C} = 6/8$	$\mathcal{C} = 5/8$	$\mathcal{C} = 4/8$	$\mathcal{C} = 3/8$
CIFAR-10	N-SDP		93.44 ± 0.03	93.33 ± 0.04	93.36 ± 0.21	92.98 ± 0.09	55.34 ± 5.65
	B-SDP	93.01 ± 0.08	93.78 ± 0.07	93.61 ± 0.01	91.54 ± 0.16	88.34 ± 0.15	58.06 ± 8.39
	B_b-SDP	92.65 ± 0.14	92.07 ± 0.10	91.24 ± 0.14	89.87 ± 0.43	88.28 ± 0.61	
CIFAR-100	N-SDP		68.80 ± 0.75	69.14 ± 0.11	68.96 ± 0.38	68.24 ± 0.03	44.74 ± 0.47
	B-SDP	69.12 ± 0.41	70.97 ± 0.41	68.27 ± 0.12	56.90 ± 0.31	42.23 ± 0.85	9.25 ± 0.53
	B_b-SDP	67.51 ± 0.28	65.37 ± 0.46	62.82 ± 0.14	61.05 ± 0.31	59.91 ± 0.29	

4.1 SDP WITH IMAGE CLASSIFICATION

4.1.1 RESNET-18 CNN ARCHITECTURE

Experimental Setup: We conduct experiments using ResNet-18 (He et al., 2016b) and its wider variant (Zagoruyko & Komodakis, 2016). We evaluate three *Subnetwork Data Parallel* (SDP) strategies: **N-SDP**, **B-SDP** and **B_b-SDP**, as described in Section 3.2. Experiments are performed under different \mathcal{C} by varying $p \in \{7, 6, 5, 4, 3\}$ on $n = 8$ GPUs. Since the ResNet-18 architecture contains $d = 8$ computational blocks, we similarly vary \mathcal{A} as $b \in \{7, 6, 5, 4, 3\}$. All experiments with the ResNet-18 architecture are trained with standard hyperparameters (Zhuang et al., 2022; Cho et al., 2025): an effective batch size of $\mathcal{B} = 512$, corresponding to 64 samples per GPU across $n = 8$ workers with a cosine annealing learning rate schedule for 200 epochs. Further details regarding hyperparameters are given in Appendix B.

To ensure fair comparison, we FLOP-match all configurations by extending the target schedule and proportionally the warmup. For **N-SDP** and **B-SDP**, this is done by scaling training epochs inversely with the number of active parameters (e.g., $\mathcal{C} = 4/8$ doubles the schedule). For **B_b-SDP**, we account for the higher backward cost, so the same setting ($\mathcal{A} = 4/8$) increases training iterations by $1.5 \times$.

Table 1 highlights the benefits of our proposed *Subnetwork Data Parallelism*. The primary advantage lies in reducing per-worker memory while retaining competitive accuracy. For example, with only 87.5% of parameters ($\mathcal{C} = 7/8$), both RN-18 and WRN-18 match or even surpass standard data parallelism (DDP) on CIFAR-10 and CIFAR-100, suggesting a regularization effect from subnetwork training in the forward masking case. Even at 50% parameters ($\mathcal{C} = 4/8$), performance remains competitive, particularly for **N-SDP**, while offering substantial memory savings. Across both models and datasets, performance degrades gracefully under reduced overlap, with WRN-18 showing greater robustness than RN-18 at high sparsity. Under severe sparsity ($\mathcal{C} = 3/8$), **B_b-SDP** clearly outperforms **N-SDP** and **B-SDP**, reaching 87.91% on CIFAR-10 and 58.73% on CIFAR-100, while the others collapse. Finally, repeating experiments with a linear scheduler yields consistent trends (Appendix E), underscoring the robustness of our framework.

Across both ResNet variants, **N-SDP** remains stable down to ($\mathcal{C} = 5/8$), while **B-SDP** degrades earlier. **B_b-SDP** shows gradual decline but surpasses **N-SDP** under extreme sparsity, notably at ($\mathcal{C} = 3/8$). This advantage of backward masking at very low overlap is consistent with the observation in Sec 3 that it maintains an unbiased gradient estimate (but at a slower iteration level convergence). We attribute the advantage of forward masking at higher overlap to two factors: (1) it effectively trains multiple models in parallel, whose diversity improves performance when averaged (Fournier et al.,

378 Table 2: Top-1 test accuracy (%) (↑) with **Swin-T (Tiny)** across active blocks (\mathcal{A}) comparing **B-SDP** and
 379 **B_b -SDP** with DDP ($\mathcal{A}=1$). Blue cells match or exceed DDP within error bars with $\mathcal{A}=8/12$ giving 33.3%
 380 memory savings, while at extreme sparsity ($\mathcal{A}=5/12$) **B_b -SDP** avoids performance collapse.

Dataset	Masking	DDP ($\mathcal{A}=1$)	$\mathcal{A}=10/12$	$\mathcal{A}=9/12$	$\mathcal{A}=8/12$	$\mathcal{A}=6/12$	$\mathcal{A}=5/12$
CIFAR-10	B-SDP	90.66 ± 0.01	90.92 ± 0.11	90.63 ± 0.16	90.22 ± 0.04	86.86 ± 0.18	73.12 ± 0.96
	B_b-SDP		89.90 ± 0.16	89.14 ± 0.17	88.05 ± 0.17	85.56 ± 0.12	83.14 ± 0.14
CIFAR-100	B-SDP	64.76 ± 0.28	66.64 ± 0.31	66.24 ± 0.04	65.35 ± 0.53	50.15 ± 1.29	14.99 ± 0.05
	B_b-SDP		64.41 ± 0.27	64.10 ± 0.19	63.03 ± 0.10	60.14 ± 0.38	58.10 ± 0.68

388 Table 3: Top-1 test accuracy (%) (↑) with **Swin-T (Tiny)** on **ImageNet-1k** across active blocks ($\mathcal{A}=11/12$)
 389 comparing **B-SDP** and **B_b -SDP** with DDP ($\mathcal{A}=1$). Performance degradation is greater in **B_b -SDP** as compared
 390 to that in Block Masking **B-SDP**.

Dataset	Masking	DDP ($\mathcal{A}=1$)	$\mathcal{A}=11/12$
ImageNet	B-SDP		79.30
	B_b-SDP	81.01	77.78

395 2024; Jolicoeur-Martineau et al., 2023b; Douillard et al.); and (2) under FLOP matching, forward
 396 masking gains more training iterations than backward masking.

399 4.1.2 SDP WITH SWIN TRANSFORMER ARCHITECTURE

400 Motivated by the simplicity of **B-SDP** and **B_b -SDP** and the strong performance of **B_b -SDP** at low
 401 \mathcal{C} (as seen in Table 1), we compare them against the DDP baseline. We train Swin-T (Tiny) (Liu
 402 et al., 2021) with $d=12$ transformer blocks and evaluate subnetworks on CIFAR-10/100 by varying
 403 $b \in \{10, 9, 8, 6, 5\}$, with an effective batch size of $\mathcal{B}=512$ across $n=8$ workers. Further details
 404 regarding hyperparameters are given in Appendix C.

405 Table 2 reports Swin-T results with **B-SDP** and **B_b -SDP** on CIFAR-10/100. As in ResNet, per-
 406 formance stays stable for Swin-T as active blocks decrease: on CIFAR-10, accuracy remains near
 407 90% down to $\mathcal{A}=8/12$, dropping only beyond this (e.g., 86.86% at $\mathcal{A}=6/12$). On CIFAR-100,
 408 accuracy even improves by 2%, from 64.76% (12 blocks) to 66.64% (10 blocks). We also perform
 409 experiments on ImageNet (Table 3) which follows the same hyper parameters as Liu et al. (2021), at
 410 $\mathcal{A}=11/12$, **B-SDP** achieves 79.30% versus 77.78% for **B_b -SDP**, compared to the 81.01% baseline.
 411 We note that standard ImageNet training for Swin is in a long training regime of 300 epochs that
 412 may be well beyond compute-optimal, we hypothesize that the long schedule used in the ImageNet
 413 training results lead to saturation in performance and thus a larger number of iterations would be
 414 needed for **B_b -SDP** to fully converge. In the subsequent section we show that the method can scale to
 415 standard large training settings used in LLMs when compared to a compute optimal training regime.

416 Table 4: Validation loss (Val. Loss), Perplexity (PPL), and Relative memory (Rel-Mem) normalized to the
 417 DDP Baseline memory M for different \mathcal{A} . Overlaps in light blue indicate Val. Loss \leq DDP Baseline (and the
 418 corresponding perplexity), with $\mathcal{A}=3/12$ giving 75% memory savings

Metric	Masking	DDP ($\mathcal{A}=1$)	$\mathcal{A}=10/12$	$\mathcal{A}=8/12$	$\mathcal{A}=6/12$	$\mathcal{A}=5/12$	$\mathcal{A}=4/12$	$\mathcal{A}=3/12$
Val. Loss (\downarrow)	B-SDP	3.57	3.45	3.41	3.43	3.43	3.62	3.86
	B_b-SDP		3.47	3.45	3.45	3.46	3.48	3.54
PPL (\downarrow)	B-SDP	35.4	31.5	30.4	30.8	30.9	37.4	47.3
	B_b-SDP		32.0	31.5	31.5	31.9	32.4	34.5
Rel-Mem	B-SDP	M	$0.83M$	$0.67M$	$0.50M$	$0.42M$	$0.33M$	$0.25M$
	B_b-SDP		$0.87M$	$0.73M$	$0.60M$	$0.53M$	$0.47M$	$0.40M$

428 4.2 SDP WITH LARGE LANGUAGE MODELS (LLMs)

429 We evaluated SDP on a 134M LLaMA-style model (Grattafiori et al., 2024), trained with a 3B-token
 430 budget (according to the Chinchilla scaling laws (Hoffmann et al., 2022) for the DDP baseline) on
 431 the FineWeb dataset. Hyperparameters are reported in Appendix D. LLMs tend to have significant

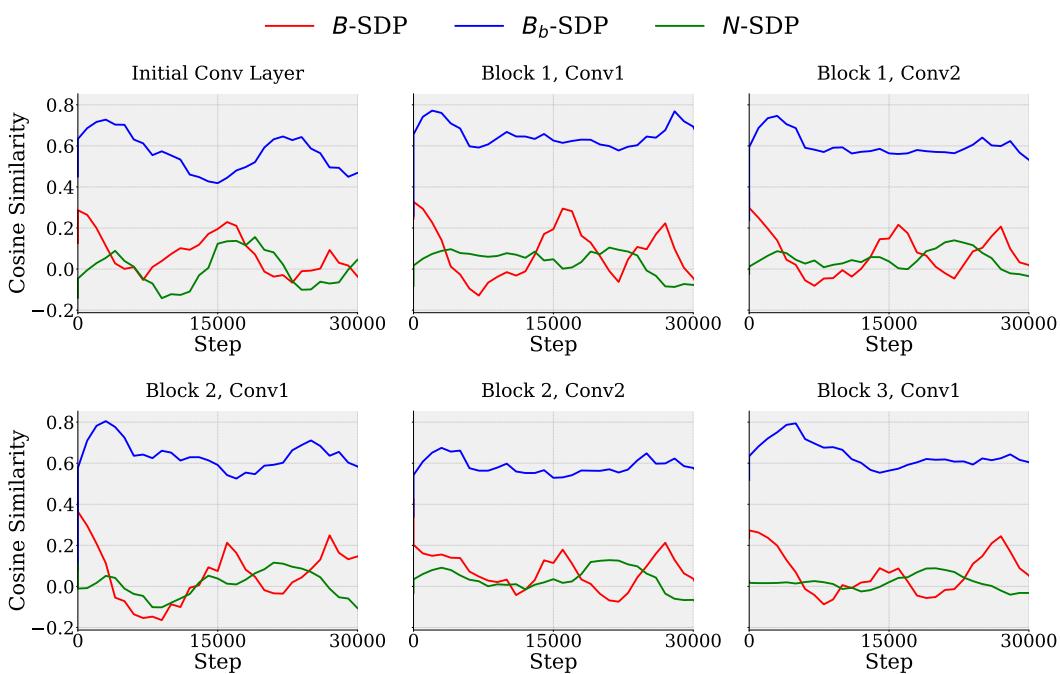


Figure 2: Cosine similarity between subnetworks with **N-SDP**, **B-SDP**, **B_b-SDP** and a full ResNet-18 model’s gradients, across various convolutional layers. The subnetworks constructed above have a *coverage ratio* ($C = 4/8$) for **N-SDP** and same *active blocks* ($\mathcal{A} = 4/8$) for **B-SDP** and **B_b-SDP**.

memory constraints in practice and thus SDP is a highly pertinent direction for reducing the per-node requirements. Our results are reported in Table 4. We compare **B-SDP** and **B_b-SDP** with standard DDP, running all setups in a FLOP-matched regime. Subnetwork Data Parallelism (SDP) consistently outperforms DDP in this setting. **B-SDP** with $\mathcal{A} = 8/12$ achieves the best results outperforming DDP, with lowest validation loss (3.41 vs. 3.57) and perplexity (PPL) (30.4 vs. 35.4) while using only **0.67M** memory relative to the full DDP baseline M . At extreme sparsity ($\mathcal{A} = 3/12$), **B-SDP** degrades sharply, whereas **B_b-SDP** remains stable and even surpasses DDP (Val. Loss = **3.54**, PPL = **34.5**). The results follow a similar pattern to our results on CIFAR-10: demonstrating both **B-SDP** and **B_b-SDP** can be effective at higher overlap with **B-SDP** actually improving performance while **B_b-SDP** showing better results than **B-SDP** at lower overlap.

4.3 QUANTITATIVE ANALYSIS

We study gradient alignment between the gradient that would be computed by the full model replica and the gradient produced by **N-SDP**, **B-SDP**, **B_b-SDP**. For **B-SDP** and **B_b-SDP**, only active blocks are compared; for **N-SDP**, only active parameters within each layer. Figure 2 shows alignment for ResNet-18 ($C = 4/8$) across convolutional layers. **B_b-SDP** maintains the highest cosine similarity (≈ 0.6) with the full model’s gradients, aligning with expectation that restricting modifications to the backward pass better still leads to unbiased gradient estimates as discussed in Section 3.1. By contrast, **B-SDP** and **N-SDP** show near-zero similarity, indicating stronger divergence from full-model gradients, especially in early layers. Notably despite poor alignment the performance of the models still does not collapse (e.g. is above 91% for **N-SDP**).

5 CONCLUSION

In this work we present a novel distributed training framework: **Subnetwork Data Parallelism (SDP)** that delivers **30%–75%** memory savings per device while maintaining or even improving accuracy over DDP. By combining forward and backward masking with structured subnetwork construction, SDP scales gracefully across CNNs, transformers, and LLM pre-training. These results highlight SDP as a practical path toward training larger models under limited memory budgets.

486 6 REPRODUCIBILITY STATEMENT

488 We have taken several steps to ensure the reproducibility of our work. In Section 4 we describe the
 489 exact models, datasets and hyperparameters used. Our exact codebase will be released at the time
 490 of publication. In addition, the main text and Appendix B, Appendix C and Appendix D include
 491 all relevant details and a description of our hyperparameter tuning procedures, ensuring that our
 492 experiments can be fully reproduced.

494 REFERENCES

496 OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
 497 cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, and Shyamal Anadkat et al.
 498 Gpt-4 technical report. 2023. URL <https://api.semanticscholar.org/CorpusID:257532815>.

500 Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. Fedrolex: Model-heterogeneous federated
 501 learning with rolling sub-model extraction. *Advances in neural information processing systems*,
 502 35:29677–29690, 2022.

504 Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of cnns.
 505 In *International Conference on Machine Learning*, pp. 736–745. PMLR, 2020.

507 Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
 508 Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
 509 ties and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.

510 Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar. Expanding the reach
 511 of federated learning by reducing client resource requirements. *arXiv preprint arXiv:1812.07210*,
 512 2018.

514 Yeseul Cho, Baekrok Shin, Changmin Kang, and Chulhee Yun. Lightweight dataset pruning without
 515 full training via example difficulty and prediction uncertainty. *arXiv preprint arXiv:2502.06905*,
 516 2025.

517 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 518 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 519 pp. 248–255. Ieee, 2009.

521 Arthur Douillard, Yani Donchev, J Keith Rush, Satyen Kale, Zachary Charles, Gabriel Teston,
 522 Zachary Garrett, Jiajun Shen, Ross McIlroy, David Lacey, et al. Streaming diloco with overlapping
 523 communication. In *Second Conference on Language Modeling*.

524 Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
 525 Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
 526 communication training of language models. *arXiv preprint arXiv:2311.08105*, 2023.

528 Erwan Fagnou, Paul Caillon, Blaise Delattre, and Alexandre Allauzen. Accelerated training through
 529 iterative gradient propagation along the residual path. *arXiv preprint arXiv:2501.17086*, 2025.

531 Louis Fournier, Adel Nabli, Masih Aminbeikokhti, Marco Pedersoli, Eugene Belilovsky, and Edouard
 532 Oyallon. Wash: Train your ensemble with communication-efficient weight shuffling, then average.
 533 *arXiv preprint arXiv:2405.17517*, 2024.

534 Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
 535 Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
 536 in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.

538 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 539 Al-Dahle, Aiesha Letman, and Akhil Mathur et. al. The llama 3 herd of models, 2024. URL
<https://arxiv.org/abs/2407.21783>.

540 Dhruv Guliani, Lillian Zhou, Changwan Ryu, Tien-Ju Yang, Harry Zhang, Yonghui Xiao, Fran oise
 541 Beaufays, and Giovanni Motta. Enabling on-device training of speech recognition models with
 542 federated dropout. In *ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech
 543 and Signal Processing (ICASSP)*, pp. 8757–8761. IEEE, 2022.

544 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
 545 human-level performance on imagenet classification. In *Proceedings of the IEEE international
 546 conference on computer vision*, pp. 1026–1034, 2015.

547 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 548 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 549 pp. 770–778, 2016a.

550 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 551 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 552 pp. 770–778, 2016b.

553 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 554 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
 555 Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

556 Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, and
 557 Nicholas Lane. Fjord: Fair and accurate federated learning under heterogeneous targets with
 558 ordered dropout. *Advances in Neural Information Processing Systems*, 34:12876–12889, 2021.

559 Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
 560 stochastic depth. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
 561 Netherlands, October 11–14, 2016, Proceedings, Part IV 14*, pp. 646–661. Springer, 2016.

562 Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen, HyoukJoong
 563 Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient training of giant
 564 neural networks using pipeline parallelism, 2019.

565 Alexia Jolicoeur-Martineau, Emy Gervais, Kilian Fatras, Yan Zhang, and Simon Lacoste-Julien.
 566 Population parameter averaging (papa). *arXiv preprint arXiv:2304.03094*, 2023a.

567 Alexia Jolicoeur-Martineau, Emy Gervais, Kilian Fatras, Yan Zhang, and Simon Lacoste-Julien.
 568 Population parameter averaging (papa). *arXiv preprint arXiv:2304.03094*, 2023b.

569 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 570 Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Doll r, and Ross Girshick.
 571 Segment anything. *arXiv:2304.02643*, 2023.

572 Jakub Kone n  et al. Federated optimization: Distributed machine learning for on-device intelligence.
 573 In *arXiv preprint arXiv:1610.02527*, 2016.

574 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

575 Shuo Li et al. Pytorch distributed: experiences on accelerating data parallel training. *Proceedings of
 576 MLSys*, 2020.

577 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 578 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the
 579 IEEE/CVF International Conference on Computer Vision (ICCV)*, 2021.

580 Adel Nabli and Edouard Oyallon. Dadao: Decoupled accelerated decentralized asynchronous
 581 optimization. In *International Conference on Machine Learning*, pp. 25604–25626. PMLR, 2023.

582 Maxime Oquab, Timoth e Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
 583 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao
 584 Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
 585 Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herv e Jegou, Julien Mairal, Patrick Labatut,
 586 Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
 587 2023.

594 Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
 595 Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at
 596 scale. *Advances in Neural Information Processing Systems*, 37:30811–30849, 2024.

597

598 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 599 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 600 Learning transferable visual models from natural language supervision. In Marina Meila and
 601 Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR, 2021. URL <http://proceedings.mlr.press/v139/radford21a.html>.

602

603

604

605 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
 606 toward training trillion parameter models. In *SC20: International Conference for High Performance
 607 Computing, Networking, Storage and Analysis*, pp. 1–16. IEEE, 2020.

608

609 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimi-
 610 zations enable training deep learning models with over 100 billion parameters. In *Proceedings
 611 of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pp.
 3505–3506, 2020.

612

613 Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
 614 Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In *International
 615 Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=LkFG31B13U5>.

616

617 Stéphane Rivaud, Louis Fournier, Thomas Pumir, Eugene Belilovsky, Michael Eickenberg, and
 618 Edouard Oyallon. Petra: Parallel end-to-end training with reversible architectures. *International
 619 Conference on Learning Representations*, 2024.

620

621 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
 622 Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
 623 Large Scale Visual Recognition Challenge, January 2015. URL <http://arxiv.org/abs/1409.0575> [cs].

624

625 Max Ryabinin, Tim Dettmers, Michael Diskin, and Alexander Borzunov. Swarm parallelism: Training
 626 large models can be surprisingly communication-efficient. In *International Conference on Machine
 627 Learning*, pp. 29416–29440. PMLR, 2023.

628

629 Jinghuan Shang, Karl Schmeckpeper, Brandon B. May, Maria Vittoria Minniti, Tarik Kelestemur,
 630 David Watkins, and Laura Herlant. Theia: Distilling diverse vision foundation models for robot
 631 learning. In *8th Annual Conference on Robot Learning*, 2024. URL <https://openreview.net/forum?id=y1ZHvlwUcI>.

632

633 Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool,
 634 Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, et al. Mesh-tensorflow: Deep
 635 learning for supercomputers. *Advances in neural information processing systems*, 31, 2018.

636

637 Shaohuai Shi, Xiaowen Chu, Ka Chun Cheung, and Simon See. Understanding top-k sparsification
 638 in distributed deep learning. *arXiv preprint arXiv:1911.08772*, 2019.

639

640 Mohammad Shoeybi et al. Megatron-lm: Training multi-billion parameter language models using
 641 model parallelism. *arXiv preprint arXiv:1909.08053*, 2019.

642

643 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 644 Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine
 learning research*, 15(1):1929–1958, 2014.

645

646 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 647 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023. URL <https://arxiv.org/abs/2302.13971>.

648 Jue Wang, Yucheng Lu, Binhang Yuan, Beidi Chen, Percy Liang, Christopher De Sa, Christopher
 649 Re, and Ce Zhang. Cocktailsdg: Fine-tuning foundation models over 500mbps networks. In
 650 *International Conference on Machine Learning*, pp. 36058–36076. PMLR, 2023.

651

652 Dingzhu Wen, Ki-Jun Jeon, and Kaibin Huang. Federated dropout—a simple approach for enabling
 653 federated learning on resource constrained devices. *IEEE wireless communications letters*, 11(5):
 654 923–927, 2022.

655

656 Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
 657 procedure in timm. *arXiv preprint arXiv:2110.00476*, 2021.

658

659 Hang Xu, Chen-Yu Ho, Ahmed M. Abdelmoniem, Aritra Dutta, EH Bergou, Konstantinos Karat-
 660 senidis, Marco Canini, and Panos Kalnis. Grace: A compressed communication framework for
 661 distributed machine learning. In *Proc. of 41st IEEE Int. Conf. Distributed Computing Systems
 (ICDCS)*, 2021.

662

663 Binhang Yuan, Cameron R Wolfe, Chen Dun, Yuxin Tang, Anastasios Kyrillidis, and Christopher M
 664 Jermaine. Distributed learning of deep neural networks using independent subnet training. *arXiv
 preprint arXiv:1910.02120*, 2019.

665

666 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *arXiv preprint arXiv:1605.07146*,
 667 2016.

668

669 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
 670 Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv
 preprint arXiv:2303.18223*, 2023a. URL <https://arxiv.org/abs/2303.18223>.

671

672 Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
 673 Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data
 674 parallel. *arXiv preprint arXiv:2304.11277*, 2023b.

675

676 Donglin Zhuang, Xingyao Zhang, Shuaiwen Song, and Sara Hooker. Randomness in neural network
 677 training: Characterizing the impact of tooling. *Proceedings of Machine Learning and Systems*, 4:
 316–336, 2022.

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A THEORETICAL ANALYSIS
703704 **Proposition 2** (Deviation bound under masking). *Let $\rho \geq 0$ be the spectral gap defined above. Then
705 for any collection of vectors $\mathbf{g}_1, \dots, \mathbf{g}_n \in \mathbb{R}^{|J|}$,*
706

707
$$\|\bar{\mathbf{m}}^{\text{uni}}(\mathbf{g}_1, \dots, \mathbf{g}_n) - \bar{\mathbf{m}}(\mathbf{g}_1, \dots, \mathbf{g}_n)\|^2 \leq \rho^2 \sum_{i=1}^n \|\mathbf{g}_i\|^2. \quad (5)$$

708
709

710 *Proof.* Assume $|J|=1$ (the general case follows by summing the per-coordinate bounds). In this
711 case, the averaging operators are linear forms $\mathbb{R}^n \rightarrow \mathbb{R}$ with $\bar{\mathbf{m}}(1, \dots, 1) = \bar{\mathbf{m}}^{\text{uni}}(1, \dots, 1) = 1$.
712 For any $v \in \mathbb{R}^n$, write $v = \alpha \mathbf{1} + u$ with $u \perp \mathbf{1}$. Then $(\bar{\mathbf{m}} - \bar{\mathbf{m}}^{\text{uni}})v = \bar{\mathbf{m}}(u)$ since $\bar{\mathbf{m}}^{\text{uni}}(u) = 0$. By
713 definition of ρ , $|\bar{\mathbf{m}}(u)| \leq \rho \|u\| \leq \rho \|v\|$, which gives the claim after squaring. \square
714715 **Theorem 2** (Nonconvex rate under BM). *If f is L -smooth and $\eta \leq \frac{1}{2L(1+n\rho^2)}$, then for any $T \geq 1$,*
716

717
$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(\boldsymbol{\theta}^{(t)})\|^2 \leq \frac{2(f(\boldsymbol{\theta}^{(0)}) - f^*)}{\eta T} + 2L\eta \left(\frac{\sigma^2}{n} + n\rho^2\sigma^2 \right),$$

718

719 where $f^* \triangleq \inf_{\boldsymbol{\theta}} f(\boldsymbol{\theta})$ and ρ is the spectral gap of the masking operator.
720721 *Proof (two steps).* (1) *Descent lemma.* By L -smoothness,
722

723
$$f(\theta^{t+1}) \leq f(\theta^t) - \eta \langle \nabla f(\theta^t), \hat{\mathbf{g}}^{(t)} \rangle + \frac{L\eta^2}{2} \|\hat{\mathbf{g}}^{(t)}\|^2.$$

724

725 Taking $\mathbb{E}[\cdot | \theta^t]$ and using $\mathbb{E}[\hat{\mathbf{g}}^{(t)} | \theta^t] = \nabla f(\theta^t)$,

726
$$\mathbb{E}[f(\theta^{t+1}) | \theta^t] \leq f(\theta^t) - \eta \|\nabla f(\theta^t)\|^2 + \frac{L\eta^2}{2} \mathbb{E}\|\hat{\mathbf{g}}^{(t)}\|^2.$$

727

728 (2) *Second moment of the masked estimator.* Decompose $\hat{\mathbf{g}}^{(t)} = \mathbf{g}_{\text{uni}}^{(t)} + \boldsymbol{\delta}^{(t)}$. Then
729

730
$$\mathbb{E}\|\hat{\mathbf{g}}^{(t)}\|^2 \leq 2\mathbb{E}\|\mathbf{g}_{\text{uni}}^{(t)}\|^2 + 2\mathbb{E}\|\boldsymbol{\delta}^{(t)}\|^2.$$

731

732 Unbiasedness gives $\mathbb{E}\|\mathbf{g}_{\text{uni}}^{(t)}\|^2 \leq \|\nabla f(\theta^t)\|^2 + \sigma^2/n$. For the masking term, Proposition 2 yields
733

734
$$\mathbb{E}\|\boldsymbol{\delta}^{(t)}\|^2 \leq \rho^2 \sum_{i=1}^n \mathbb{E}\|\mathbf{g}_i^{(t)}\|^2 \leq \rho^2 \sum_{i=1}^n (\|\nabla f(\theta^t)\|^2 + \sigma^2) = \rho^2 (n\|\nabla f(\theta^t)\|^2 + n\sigma^2).$$

735

736 Therefore

737
$$\mathbb{E}\|\hat{\mathbf{g}}^{(t)}\|^2 \leq 2\left(\|\nabla f(\theta^t)\|^2 + \frac{\sigma^2}{n}\right) + 2\rho^2(n\|\nabla f(\theta^t)\|^2 + n\sigma^2),$$

738

739 and plugging into step (1) gives
740

741
$$\mathbb{E}[f(\theta^{t+1})] \leq \mathbb{E}[f(\theta^t)] - \left(\eta - L\eta^2(1+n\rho^2)\right) \mathbb{E}\|\nabla f(\theta^t)\|^2 + L\eta^2\left(\frac{\sigma^2}{n} + n\rho^2\sigma^2\right).$$

742

743 Choose $\eta \leq \frac{1}{2L(1+n\rho^2)}$ so the coefficient on $\mathbb{E}\|\nabla f(\theta^t)\|^2$ is at least $\eta/2$, telescope over $t = 0, \dots, T-1$, and divide by T to obtain the claim. \square
744746 B HYPERPARAMETERS FOR RESNET-18 ARCHITECTURE
747748 All CIFAR-10 and CIFAR-100 experiments in Table 1 and Table 5 are conducted with standard
749 hyperparameters (Zhuang et al., 2022; Cho et al., 2025; Rivaud et al., 2024; Wightman et al., 2021)
750 an effective batch size of $B = 512$, using 64 samples per GPU across $n = 8$ workers. The baseline
751 configuration ($C = 1$) is trained for standard 200 epochs. The ResNet experiments employ two
752 learning rate schedules. The first is a cosine annealing schedule with $\eta_{\text{max}} = 0.2$ and $\eta_{\text{min}} = 0.002$,
753 combined with a linear warm-up over the first 5% of training iterations to improve convergence
754 stability. The second follows the multi-step linear schedule of Goyal et al. (2017), where the learning
755 rate is reduced by a factor of 0.1 at predefined milestones. For CIFAR-10, these milestones are at 50%
and 75% of the total training iterations, while for CIFAR-100 they occur at 30%, 60%, and 80%. The

756 ResNet experiments with ImageNet-1k use the standard training hyper parameters for ImageNet-1k
 757 with ResNet. Namely, a base learning rate of 0.1, paired with SGD along with a multi-step linear
 758 scheduler with milestones at 30%, 60% and 90%. An effective batch size of $\mathcal{B} = 256$, using 32
 759 samples per GPU across $n = 8$ workers.

760 The ResNet experiments use group normalization layers instead of batch normalization layers with 2
 761 groups across all experiments, ensuring that normalization is computed only over active parameters
 762 in the subnetwork configurations. Additionally, we adopt a modified Kaiming initialization (He
 763 et al., 2015), recalculating the fan-out based on the number of active (unmasked) output units. This
 764 adjustment prevents overestimation of activation variance that can occur with standard initialization
 765 when masking is applied.

767 C HYPERPARAMETERS FOR SWIN-T ARCHITECTURE

769 For the experiments on the CIFAR10 and CIFAR100 datasets, we use an effective batch size of
 770 $\mathcal{B} = 512$ across $n = 8$ workers, training with the AdamW optimizer with momentum for 400 epochs
 771 in the baseline DP setting. For configurations with higher sparsity, the training epochs are increased
 772 proportionally to ensure FLOP matching, as described in the previous section. As with ResNet-18, we
 773 adopt a cosine learning rate schedule with linear warm-up over the first 5% of iterations, with a peak
 774 learning rate of $\eta_{\max} = 0.0002$ and a minimum learning rate of η_{\min} tending to 0. The experiments
 775 carried out on ImageNet use an effective batch size of $\mathcal{B} = 1024$ across $n = 8$ workers, along with
 776 an AdamW optimizer paired with a weight decay of 0.05 and a cosine annealing scheduler with
 777 $\eta_{\max} = 0.001$ and η_{\min} tending towards zero. A linear warmup is also applied to the learning rate
 778 scheduler for the first 6.67% of epochs. In the case of $\mathcal{A} = 1$, the first 20 epochs out of 300 epochs
 779 are used as linear warm up.

781 D HYPERPARAMETERS FOR LLM ARCHITECTURE

783 We evaluated SDP on a 134M LLaMA-style model (Grattafiori et al., 2024), trained with a 3B-token
 784 budget (according to the Chinchilla scaling laws (Hoffmann et al., 2022) for the DDP baseline) on
 785 the FineWeb dataset. Training is performed with 7 workers and a global batch size of 920K tokens
 786 (sequence length 2048), using the LLaMA-2 tokenizer with a 32K vocabulary. Optimization follows
 787 AdamW with learning rate 8e-4 and a fixed weight decay of 0.1, and a cosine learning rate schedule
 788 with 10% warmup (from 10% of peak LR). As in other FLOP-matched settings, the number of steps
 789 in the cosine scheduler is extended accordingly. We note as well that due to compute constraints
 790 the learning rate used for all settings has been tuned for the DDP case and thus in practice SDP can
 791 potentially perform better.

792 E RESNET-18 SDP WITH MULTI-STEP LINEAR SCHEDULER

795 Table 5 presents the results comparing block masking and neuron masking when using a linear
 796 multi-step scheduler. We observe consistently superior performance with the **N-SDP**, especially
 797 at higher sparsity. For example, on CIFAR-100 with ResNet-18 and **N-SDP** at a coverage ratio of
 798 $\mathcal{C} = 4/8$, the accuracy achieved with linear scheduling is 58.34%, whereas **B-SDP** yields a significant
 799 degradation, reaching 40.30%. Additionally, we find that the cosine scheduler delivers even higher
 800 performance at the same coverage for both 1x and 2x model sizes. These observations demonstrate
 801 that the effectiveness of the masking techniques is robust across different learning rate schedules and
 802 architectures, underscoring their scheduler-agnostic nature.

810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826

827 Table 5: Top-1 test accuracy (%) with **RN-18** and **WRN-18** using a multi-step linear scheduler across different
 828 coverage ratios (\mathcal{C}) comparing **N-SDP**, **B-SDP**, and **B_b-SDP** with standard DDP ($\mathcal{C} = 1$). Blue cells
 829 match or exceed DDP within error bars, while at extreme sparsity ($\mathcal{C} = 3/8$) **B_b-SDP** avoids performance collapse.

ResNet-18 (RN-18)							
Dataset	Masking	DDP ($\mathcal{C} = 1$)	$\mathcal{C} = 7/8$	$\mathcal{C} = 6/8$	$\mathcal{C} = 5/8$	$\mathcal{C} = 4/8$	$\mathcal{C} = 3/8$
CIFAR-10	N-SDP		93.14 ± 0.28	92.95 ± 0.24	92.23 ± 0.24	91.25 ± 0.26	80.93 ± 2.87
	B-SDP	92.41 ± 0.08	93.18 ± 0.13	92.64 ± 0.32	90.35 ± 0.13	84.01 ± 0.95	39.35 ± 0.55
	B_b-SDP		91.62 ± 0.13	91.50 ± 0.37	89.61 ± 0.23	87.94 ± 0.53	82.18 ± 0.43
CIFAR-100	N-SDP		65.64 ± 0.48	65.76 ± 0.82	64.95 ± 0.45	58.34 ± 1.57	50.00 ± 0.09
	B-SDP	65.02 ± 0.16	67.56 ± 0.47	65.81 ± 0.14	56.52 ± 1.84	40.30 ± 0.47	8.39 ± 1.25
	B_b-SDP		61.80 ± 0.24	60.33 ± 0.37	58.08 ± 0.06	55.30 ± 0.71	55.16 ± 1.03

WideResNet-18 (WRN-18)							
Dataset	Masking	DDP ($\mathcal{C} = 1$)	$\mathcal{C} = 7/8$	$\mathcal{C} = 6/8$	$\mathcal{C} = 5/8$	$\mathcal{C} = 4/8$	$\mathcal{C} = 3/8$
CIFAR-10	N-SDP		93.47 ± 0.37	93.97 ± 0.10	93.74 ± 0.14	92.51 ± 0.07	88.23 ± 2.19
	B-SDP	92.26 ± 0.55	93.66 ± 0.25	93.28 ± 0.11	91.19 ± 0.24	86.90 ± 0.99	41.11 ± 1.03
	B_b-SDP		91.95 ± 0.93	91.79 ± 0.25	90.04 ± 0.19	89.20 ± 0.11	86.20 ± 0.38
CIFAR-100	N-SDP		69.86 ± 0.27	68.91 ± 0.21	66.20 ± 0.21	63.71 ± 0.63	58.02 ± 0.59
	B-SDP	69.19 ± 0.09	69.26 ± 0.42	68.04 ± 0.10	59.44 ± 1.01	44.82 ± 1.56	6.94 ± 0.95
	B_b-SDP		66.93 ± 0.12	64.44 ± 0.10	62.27 ± 0.59	58.52 ± 0.35	55.51 ± 0.20

847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863