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Abstract

Establishing sound experimental standards and rigour is important in any growing
field of research. Deep Multi-Agent Reinforcement Learning (MARL) is one such
nascent field. Although exciting progress has been made, MARL has recently
come under scrutiny for replicability issues and a lack of standardised evaluation
methodology, specifically in the cooperative setting. Although protocols have been
proposed to help alleviate the issue, it remains important to actively monitor the
health of the field. In this work, we extend the database of evaluation methodology
previously published by Gorsane et al. [2022] containing meta-data on MARL
publications from top-rated conferences and compare the findings extracted from
this updated database to the trends identified in their work. Our analysis shows that
many of the worrying trends in performance reporting remain. This includes the
omission of uncertainty quantification, not reporting all relevant evaluation details
and a narrowing of algorithmic development classes. Promisingly, we do observe
a trend towards more difficult scenarios in SMAC-v1, which if continued into
SMAC-v2 will encourage novel algorithmic development. Our data indicate that
replicability needs to be approached more proactively by the MARL community to
ensure trust in the field as we move towards exciting new frontiers.

1 Introduction

Figure 1: Recorded papers by
year in the meta-analysis on
evaluation methodologies in
cooperative MARL.

Multi-Agent Reinforcement Learning (MARL) is a rapidly growing
field that has gained more attention in recent years. However, similar
to other fields within machine learning, ensuring a high level of
scientific rigour and sound experimental methodology has become
difficult as algorithms become more complex and computational
requirements to perform experiments more extreme[Colas et al.,
2018, Henderson et al., 2018, Colas et al., 2019, Engstrom et al.,
2020, Jordan et al., 2020, Agarwal et al., 2022].

Gorsane et al. [2022] compiled a dataset of evaluation methodologies
used in deep cooperative MARL, from the first paper published in
January 2016 up until April 2022. The authors discovered some
worrying trends in research w.r.t the consistency of reported results.
As the number of publications grows in the coming years, it is
important to update this dataset with new publications and perform a continuous assessment of the
field. Although the original analysis of [Gorsane et al., 2022] highlighted many issues, there was
evidence of a more thorough evaluation beginning to gain traction in more recent years, with an
increase in the number of ablation studies and an upward trend in the use of uncertainty quantification.
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By supplementing this prior analysis with only 11 months of new data we show that these trends have
shifted significantly from the original findings.

The updated dataset contains an additional 29 papers published at top-rated conferences (e.g. NeurIPS,
ICLR, ICML etc.) during the period of April 2022 to December 2022 1.

2 Historical trends vs new data

Inconsistencies in performance and a lack of ablation studies. The analysis of recent data
indicates that the landscape of common algorithms has shifted greatly from historical analysis as
illustrated in figure 2. Previous historic algorithms like COMA [Foerster et al., 2018] and MADDPG
[Lowe et al., 2017] have lost popularity as baselines with none of the reviewed papers making use
of COMA and MADDPG used in only 25.8% of new publications vs a historical use of 35.2%. As
these methods are unable to achieve reasonable performance on current common benchmarks their
decline reflects researchers moving towards more modern baselines [Papoudakis et al., 2021]. Qmix
[Rashid et al., 2018] remains a strong baseline for newer cooperative MARL algorithms which take
inspiration from it. Importantly Qmix is still competitive with newer methods when parameterised
correctly and maintains relevance on modern benchmarks [Hu et al., 2021].

Despite the discovery of the effectiveness of Proximal Policy Optimisation (PPO) [Schulman et al.,
2017] to match the more complex value-decomposition methods in performance and sample efficiency
[Yu et al., 2021], Policy Gradient (PG) approaches still seem unpopular. With both the centralised
training and decentralised execution (CTDE) and decentralised training and decentralised execution
(DTDE) variants of the Advantage Actor-Critic (A2C) [Mnih et al., 2016], Independent Actor-Critic
(IAC) and Central-V [Foerster et al., 2018] not being present in newer publications. However multi-
agent PPO (MAPPO) was still used in 16.1% of the new papers and will hopefully gain traction
as a common baseline. Another notable development is the decline of Independent Learners (IL).
Although normally used as baselines, the findings in [Papoudakis et al., 2021] show that they are
important to assess the trade-offs that newer methods may have in certain settings.

(a) Algorithm usage from pre-2022 database (b) Algorithm usage from recent database

Figure 2: Number of occurrences of algorithms from historic and recent data

In the early years of MARL, there was naturally a high variance in results even when using the same
algorithm. Initially, standardised frameworks were uncommon and MARL algorithms suffered from
high implementation variance. Fortunately, MARL experienced some standardisation with the release
of the Starcraft Multi-Agent Challenge (SMAC) [Samvelyan et al., 2019] along with the EPyMARL
framework [Papoudakis et al., 2021]. Since then it has become and remains the most common
benchmark in cooperative MARL by a sizable margin as shown in Figure 5. However, even with this
framework and common testing environment, there was still a high variance in reported performance
as shown in 3a. From the most recent data, we can see from figure 3b that these trends persist. Seem-
ingly, variance has only reduced significantly in the ‘easy‘ category of scenarios like 8m which are
trivial for newer algorithms. In practice, this makes it very difficult to determine the true performance
gains of recently developed and future works against the historical baselines they aim to improve on.

1The updated dataset is available at:
https://drive.google.com/file/d/1psSUrS8ywPAJY1Qm4ySfTYcYYJs0TlLF/view?usp=drivelink
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(a) Performance spread for Qmix in SMAC from
historical data

(b) Performance spread for Qmix in SMAC from
recent publications

Figure 3: Performance spread for Qmix in SMAC

Tends in performance reporting. Metric reporting reached a promising peak of 75% in 2021 and
looked to be a rising trend over previous years. However, we see this drop to 63% in 2022 in figure
4a. This is alarming given the goal of using MARL in real-world settings where reliability is often
more important than absolute performance. Additionally, aggregation metrics are not present in 20%
of recent publications and with the computational complexity of modern MARL, it is very difficult to
evaluate over enough seeds to account for the variance in performance over different runs [Agarwal
et al., 2022].

(a) Historical tendencies for reporting evalua-
tion runs

(b) Historical tendencies for reporting uncer-
tainty metrics

(c) Aggregation function historical us-
age (d) Aggregation function recent publications

Environment usage trends. As mentioned previously, SMAC is the most popular environment
in MARL by a large margin followed by MPE which can be seen in figure 5. Evidence suggests
that these settings have both reached a point of being over-fit to[Papoudakis et al., 2021, Gorsane
et al., 2022] which makes determining algorithmic ranking difficult. Newer settings have generally
not gained much popularity and despite the insight RWARE and LBF were shown to provide on
MARL algorithms by [Papoudakis et al., 2021] recent data shows they are underutilised. However,
environment overfitting on SMAC may be naturally resolved as users move over to SMAC-v2 [Ellis
et al., 2022] which provides a new host of challenges through a well-understood interface.
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Figure 5: Historic environment usage trends from 2016 to 2022

SMAC categorises scenarios into ‘easy‘, ‘hard‘ and ‘super hard‘ difficulties. Over time, publications
have been able to render no in the ‘super hard‘ category as trivial to solve. Due to the large number
of scenarios in SMAC, authors will often use a subset of the scenarios to reduce compute time which
produces misleading aggregate performance[Gorsane et al., 2022]. A helpful development seen in
figure 6 is the reduction in the use of the ‘easy‘ scenarios as a focus on difficult challenges streamlines
the total set of evaluation scenarios required for comparative evaluation.

(a) Historic difficulty of SMAC scenarios
used in publications

(b) Recent difficulty of SMAC scenarios used
in publications

Figure 6: Percentage usage of different SMAC scenario difficulties

3 Conclusion

We compiled 29 papers from the latest MARL publications to extend the MARL publication database
to take into account recent development trends. With only 11 months of data, we can see marked
changes from historical data.

Despite a push for increased rigour, certain worrying historical trends are still prevalent in MARL
w.r.t replicability. Qmix, despite its longstanding use as a baseline, still shows large variance across
different publications, the details required to replicate evaluation methodologies are often unreported
and IL baselines are absent. Together, these issues make it difficult to get a true measurement of
algorithmic development against historic algorithms. Additionally, environmental usage also seems to
have not yet diversified and research is focused on SMAC and MPE. However, authors do seem to be
moving towards a more streamlined set of scenarios which will reduce computational overhead and
aid better evaluation. Given these trends, it is important that replicability is approached proactively
by the MARL community to ensure trust in the field is maintained as it grows.
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