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Abstract

We present the Hierarchical AI-Meteorologist, an LLM-agent
system that generates explainable weather reports using a hi-
erarchical forecast reasoning and weather keyword genera-
tion. Unlike standard approaches that treat forecasts as flat
time series, our framework performs multi-scale reasoning
across hourly, 6-hour, and daily aggregations to capture both
short-term dynamics and long-term trends. Its core reason-
ing agent converts structured meteorological inputs into co-
herent narratives while simultaneously extracting a few key-
words effectively summarizing the dominant meteorological
events. These keywords serve as semantic anchors for vali-
dating consistency, temporal coherence and factual alignment
of the generated reports. Using OpenWeather and Meteostat
data, we demonstrate that hierarchical context and keyword-
based validation substantially improve interpretability and ro-
bustness of LLM-generated weather narratives, offering a re-
producible framework for semantic evaluation of automated
meteorological reporting and advancing agent-based scien-
tific reasoning.

1 Introduction
Automating the interpretation of tabular, hourly weather
forecasts for specific locations remains a nontrivial chal-
lenge at the intersection of meteorology and data-to-text
generation. Prior works in weather Natural Language Gen-
eration (NLG), including the SumTime projects, established
the importance of content selection and lexical choice when
translating multivariate time series into coherent text con-
clusions and provided parallel ”data ↔ description” corpora
(Reiter et al. 2005; Belz 2005, 2008). In operational practice,
National Weather Service forecasters’ Area Forecast Discus-
sions (AFD) serve as reference texts that articulate causal
reasoning and confidence levels (National Weather Service
2010, 2024). Yet a gap persists between dense numerical
tables and human-readable reports, where causal links and
verifiability are critical.

Despite substantial progress in machine-learning-based
weather prediction, exemplified by recent systems targeting
medium-range horizons (Lam et al. 2023; Bi et al. 2023;
Rasp et al. 2024; Shi et al. 2025), a practical question arises:
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how can their tabular outputs be transformed into explain-
able and verifiable textual reports? In this paper we treat
such models purely as sources of forecast tables and inten-
tionally avoid the modeling details. Instead, our focus is on
the interpretation of these weather forecasts. Even apply-
ing LLMs and VLMs to meteorological tasks, from imagery
interpretation to risk communication (Lawson et al. 2025;
Franch et al. 2024; Jin et al. 2023; Chen et al. 2025), are not
able to provide multi-scale interpretations of numerical data
across several time resolutions at once. The need in inter-
pretation is especially relevant for medium-range horizons
beyond five days, where large tables of detailed data con-
found local fluctuations with dayly trends, requiring causal
interpretability and readability.

In this work, we introduce the Hierarchical AI-
Meteorologist, an LLM-agent pipeline that performs hier-
archical interpretation of forecast tables at three concurrent
levels: hourly (local dynamics), six-hourly (mesoscale pat-
terns and noise smoothing), and daily (persistent trends and
synoptic transitions). The resulting report is organized as
a single narrative with consistent events and explanations
across different levels. A key element of the proposed frame-
work is the synthesis of weather keywords, a compact set
of three to five terms or phrases that summarize dominant
weather states and their evolution for the target time inter-
val. For extraction and consistency control, we adapt ro-
bust keyword/keyphrase methods to the meteorological do-
main (Mihalcea and Tarau 2004). A second element is the
proof-block, a brief structured “evidential” insert enumer-
ating table-derived signals (pressure tendencies, wind shifts
and strengthening, daily temperature amplitudes, precipita-
tion duration and intensity) that support each generated key-
word. This coupling supplies semantic anchors and verifia-
bility since a stated event must manifest in observable ag-
gregates and patterns.

The system operates on open data sources: hourly fore-
cast tables from OpenWeather (One Call 3.0) and climato-
logical background from Meteostat (monthly aggregates and
climate normals), enabling scalable application to diverse lo-
cations without model fine-tuning (OpenWeather 2025; Me-
teostat 2021, 2022). For the United States we additionally
consult AFD as a weak consistency reference without requir-
ing textual overlap (National Weather Service 2010, 2024).
On the LLM side, we rely on in-context serialization of nu-



merical data and prompts rather than task-specific training,
lowering deployment barriers and improving reproducibil-
ity.

This work makes the following key contributions:

• a hierarchical scheme for interpreting tabular forecasts
(hourly → six-hourly → daily) and composing a causally
consistent cross-scale narrative;

• the introduction of weather keywords as a semantic val-
idation layer and concise summary, linked to the data
through a structured proof-block;

• a practical, reproducible integration of open sources
(OpenWeather, Meteostat) and operational texts (AFD)
into an in-context LLM interpretation pipeline.

2 Related Work
LLM-agent systems for scientific reasoning. Recent
work has demonstrated the emergence of LLM-agent sys-
tems as a new paradigm for scientific reasoning. Early
systems such as AutoGPT (Significant-Gravitas 2023) and
MetaGPT (Hong et al. 2023) introduced autonomous multi-
agent collaboration frameworks, while AutoGen (Wu et al.
2024) formalized conversational agent orchestration for
complex analytical tasks. In scientific domains, ChemCrow
(M. Bran et al. 2024) and AI Scientist (Lu et al. 2024)
demonstrated how LLM agents can autonomously design
experiments, retrieve literature, and validate hypotheses.
These systems collectively illustrate the growing shift from
static language models to interactive, tool-augmented scien-
tific agents capable of structured reasoning and knowledge
generation.

LLMs in meteorology and weather forecasting. Recent
work has begun leveraging LLMs to translate structured me-
teorological data into human-interpretable weather narra-
tives and interactive tools. For example, ECMWF’s DestinE
chatbot (ECMWF 2025) to make high-resolution weather
and climate data accessible via conversational interfaces,
CLLMate (Li et al. 2024) to enable event-based forecasting
of weather and climate phenomena in text form, and GPT-
based forecasting (Franch et al. 2025) to perform precipita-
tion nowcasting by tokenizing radar imagery and generating
ensemble forecasts via language-model driven frameworks.
More recent works have explored LLM-agent frameworks
that integrate iterative querying, reflection, and domain-
specific validation to improve the scientific accuracy and ro-
bustness of weather reports (Varambally et al. 2025).

3 Methodology
Data acquisition. All inputs are assembled by the non-
LLM Assistant block. Location metadata includes city, ad-
ministrative region, country, elevation above mean sea level,
and an optional short description from Wikipedia when
available. Climatological context (an example depicted in
Fig.3 in SM) is retrieved primarily from Meteostat (monthly
aggregates and climate normals); when Meteostat is un-
available, we fall back to an ERA5-based monthly cli-
matology on a 0.25◦ grid with nearest-neighbor extrac-
tion for the requested point. For each location there are

Figure 1: Overall architecture of the Hierarchical AI-
Meteorologist combining three key blocks (Assistant, Me-
teorologist, Writer) to automatically generate coherent
weather reports.

monthly {Tmin,Tmax,Ptot} (minimum/maximum air tem-
perature and total precipitation). Hourly forecasts are ob-
tained from OpenWeather One Call (time grid ∆t = 1 h)
and include forecast timestamp, categorical weather condi-
tion, near-surface air temperature T [◦C], feeling temper-
ature Tfeel [◦C], dew point Td [◦C], relative humidity RH
[%], wind speed U [m s−1], wind direction θ [deg], wind
gust G [m s−1], liquid/solid precipitation amount P [mm],
and horizontal visibility Vis [m]. To improve textual outputs
downstream, a compact weather category is also assigned
via rule-based thresholds consistent with OpenWeather con-
dition codes.

Hierarchical temporal aggregation. To support multi-
scale interpretation while controlling context length, the As-
sistant block forms two groups of aggregates over non-
overlapping windows W ∈{6h, 1d}:
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and is stored for 6-hour windows; for daily windows we omit
θ̄1d to avoid misleading circular averages. Dew point and
visibility are aggregated as means; winds are summarized
by mean and (optionally) maxima. Thus each 6-hour record
contains {T , Tmax, Tmin, RH, U , θ̄, P }; each daily record
mirrors this set except for wind direction.



Report formation and output structure. The Meteorol-
ogist agent uses available context and generates a structured
analysis with four fields: summary (multi-paragraph nar-
rative grounded in the supplied tables), proof (a compact
evidential rationale that points to table-derived patterns such
as pressure tendencies, wind shifts/strengthening, daily tem-
perature amplitudes, and precipitation duration/intensity),
keywords (a list of 3-5 weather descriptors summarizing
dominant states and transitions over the forecast horizon),
and optional warnings (flagging anomalous or hazardous
conditions). The downstream Writer agent adapts this anal-
ysis to the user’s domain and style preferences and returns a
JSON report over REST with a minimal, explicit format. A
typical response includes

• header:{title, information} for location-
aware titling and a brief preamble,

• analysis:{summary, proof, keywords,
warnings} ,

• context:{mode, daily, six hour,
hourly, climatology, location} show-
ing the actually used tables.

This representation makes the narrative consistent because
every declared keyword is expected to be supported by
at least one entry in the proof block and by observable
aggregates in the corresponding tables.

Next, we describe the proposed framework in terms of
the data-processing pipeline, the construction of multi-level
context, and the two-step reasoning procedure (Meteorolo-
gist → Writer). Illustrative diagram of the overall architec-
ture and of context flows between agents are provided in the
Figure 1 with the main blocks and agent links.

3.1 System overview
The pipeline follows a microservice (RESTful) paradigm.
The external-data processing block Assistant collects and
normalizes location-specific inputs across meteorology, cli-
matology, and geodata, then builds aggregates (6-hour and
daily windows), and packages one of two context modes
(baseline or hierarchical). The Meteorologist block is an
LLM agent with a structured output (summary, proof,
keywords, warnings) that interprets tabular data and
captures causal relations. The Writer block is an LLM agent
for post-editing to the target domain style and report format;
it does not alter the factual basis produced by the Meteo-
rologist agent, but adapts it to the user’s stylistic request,
returning a JSON report together with the context, targeted
to the user domain (risk analysis, energy, extreme weather).

3.2 Input collection and normalization (Assistant)
Location. We extract city name, administrative region,
country, elevation above the mean sea level. When avail-
able, a concise Wikipedia description is included in the re-
port preamble.

Climatology. The primary source is Meteostat (monthly
aggregates and normals). When services are unavailable,
the system returns back to monthly ERA5 climatology on

a 0.25◦ grid with nearest-neighbor extraction at the query
point. For each month we store {Tmin,Tmax,Ptot}.

Hourly forecast. From OpenWeather (One Call 2.5) we
use table data with ∆t = 1 h consisting a timestamp,
categorical “weather icon/state”, T (air temperature), Tfeel

(feels-like), Td (dew point), RH (relative humidity), U (wind
speed), θ (wind direction), G (gust), P (precipitation), and
Vis (visibility). To enhance textual outputs we addition-
ally assign a compact weather category based on threshold
rules consistent with OpenWeather codes, i.e., derived from
thresholded assessments of the meteorological variables.

3.3 Multi-level aggregation and context modes
To enable interpretation at multiple time scales while con-
trolling context length, the Assistant aggregates over non-
overlapping windows W ∈ {6h, 1d} using means/minima/-
maxima for T , means for RH and U , sums for P . Wind di-
rection is averaged on the circle and stored only for 6-hour
windows. The resulting modes are:

• Baseline Context: location and climatology plus the full
hourly table (short-range forecasts, no hierarchy).

• Hierarchical Context: location and climatology, a daily
table, and a 6-hour aggregate table for the location; when
the lead time H < 5 days, the hourly table is additionally
included. For H ∈ [5, 10] days the hourly grid is omit-
ted to save tokens and reduce LLM attention bias toward
large tables.

Both modes are serialized into a single payload and cached
(replay without repeated external API calls; ability to run
different “meteorologists” over the same frozen sample).

3.4 Stage 1: Interpreting tabular data
(Meteorologist)

Output schema. The agent uses available context and re-
turns a structured analysis consisting:

• summary — several paragraphs describing the weather
dynamics across the horizon, based on the supplied tables
(daily/6h/1h);

• proof — a compact block listing observable patterns
(pressure tendencies, wind shifts/strengthening, daily
amplitude of T , duration/intensity of precipitation, etc.)
that explain the observed events; the goal is to make the
report verifiable and explainable for meteorological ex-
perts;

• keywords — 3–5 weather keywords summarizing
dominant weather states and transitions over the time in-
terval (e.g., “cooling; brief rain; wind strengthening”).
Generation is performed by the LLM with a controlled
vocabulary and guidance to rely on aggregates; each key-
word is expected to correspond to at least one feature in
the proof;

• warnings — optional anomalous/hazardous phenom-
ena (strong winds, intense precipitation, icing, etc.) with
brief data-grounded justification, when the model flags
expected hazard.



3.5 Stage 2: Domain/style adaptation (Writer)
The Writer receives the structured analysis and user param-
eters (tone, length, application domain) and composes a re-
port with a predefined JSON structure consisting:

• header:{title, information} — a location-
aware title and short preamble;

• analysis:{summary, proof, keywords,
warnings?} — the substantive content forwarded
from the Meteorologist with minimal stylistic edits;

• context:{mode, daily, six hour,
hourly?, climatology, location} — an
echo block listing the tables actually used to generate the
text.

The Writer does not change facts from the Meteorologist. Its
primary role is to adapt exposition and layout to the target
user (e.g., power engineer, urban planner, agronomist).

3.6 RESTful integration and reproducibility
The part is split into two components: Analysis and Re-
port. Analysis accepts the serialized context and returns
the structured output from the Meteorologist. Report com-
poses the final report from the Writer. Caching of “raw”
and aggregated contexts (OpenWeather, Meteostat/ERA5)
enables reproducing reports when models and prompt tem-
plates change, without repeated network calls. Typical re-
liability elements include retries for external APIs, explicit
degradation codes (e.g., fallback to ERA5 climatology), val-
idation of input JSON, and completeness checks for required
fields prior to passing data to LLM agents.

3.7 Current limitations
The system does not perform separate “tabular reasoning”
with programmatic hypothesis testing; verifiability is real-
ized through the two-step textual rationale (summary +
proof) and its linkage to keywords. In the present ver-
sion, reports are returned as JSON, and interfaces are pro-
vided for attaching agent-based components for PDF/plot
generation via preconfigured environments and Python li-
braries.

4 Results
We demonstrate the system performance on four different
locations of distinct climate and weather behavior: Cork, Ire-
land (51.903614◦ N, −8.468399◦ E), Manila, Philippines
(14.5995◦ N, 120.9842◦ E), Chennai, India (13.0827◦ N,
80.2707◦ E), and Hai Châu, Da Nang, Vietnam (16.0472◦ N,
108.2200◦ E). In all cases the forecast horizon is ∼5–6 days
(120 hours) in late October, 2025. Reports are generated in
the hierarchical mode (daily + 6h; hourly rows added for
short sub-intervals). We evaluate three key characteristics of
report quality: (i) consistency of the summary with tabular
aggregates, (ii) alignment of keywords with observed pat-
terns, and (iii) adequacy of proof/warnings relative to
the given data and climatology.

Cork, Ireland (fall transition in a mild coastal climate).
The summary (Fig.4a in SM) effectively captures a smooth
cooling trend within forecast: daytime maxima decrease
from ≈14.4–15.5◦C early in the window to ≈10–11.7◦C by
October, 23–24; relative humidity often exceeds 80%; pre-
cipitation is intermittent and light (daily total up to 5.4 mm
on October, 23). Winds are moderate (2–7.8 m s−1) with a
shift from S to W–NW, interpreted as passage of a weak
frontal disturbance. The generated keywords keywords =
cooling trend, light rain, moist conditions, frontal passage,
autumn transition compactly reflect the dominant evolu-
tion and are supported by aggregates of T (declining max-
ima), RH (elevated means), P (small totals), and the wind-
direction shift. The narrative is readable with no false
alarms; warnings did not trigger.

Manila, Philippines (persistent tropical regime with
coastal influence). The report (Fig.4b in SM) describes
identified climatologically typical warm and humid condi-
tions: maxima ≈27.6–31.8◦C, minima ≈25.4–26.9◦C; hu-
midity 66–90%; precipitation infrequent and light (daily
usually < 5 mm); winds light to moderate, predominantly
E–SE, commonly < 4 m s−1. keywords = light rain, sta-
ble conditions, marine influence, warm anomaly, clear sky
are consistent with small rainfall totals, weak winds,
and a coastal regime; a local ambiguity may arise for
warm anomaly when maxima are slightly below the clima-
tological mean—this highlights sensitivity of the keyword
to the chosen reference and thresholds. Otherwise, agree-
ment between daily/6-hour aggregates and the summary is
stable. warnings are not flagged, which perfectly corre-
sponds to a non-extreme scenario.

Chennai, India (transition from humid/windy to cooler
and drier). The data in report ((Fig.4c in SM)) show grad-
ual cooling and a reduction in rainfall toward the end of
the window: maxima fall from ≈30.7◦C (October, 21) to
≈25.3◦C (October, 24), minima from ≈26.6◦C to ≈23.4◦C;
humidity remains high (73–92%). Wind speeds increase
from ≈3.3 to > 10 m s−1 by October, 24 with direction
shifting from E toward NW, interpreted as influence of
a frontal-like process. Rainfall is substantial early (up to
27.7 mm daily on October, 20) with subsequent tapering.
The system generates the following keywords keywords
= heavy rain, frontal passage, strong wind, overcast, sta-
ble conditions capturing a transition regime in the weather
(“humid and windy” → “cooler and drier”); the proof
block correctly relates these tags to elevated early P totals,
rising U and a θ shift, and to decreasing daily T maxima.

Hai Châu (Da Nang, Vietnam; intense rainfall and wind
with active warnings). The summary in Fig.2 describes
persistently high humidity and frequent precipitation, with
an extreme daily total on October, 23 P > 130 mm and
increased wind speeds up to 9.2 m s−1. A strong wind-
direction shift (tens of degrees) is observed along with atmo-
sphere temperatures “below the climatological maximum”
for October, followed by a gradual decrease of rainfall and
wind to October, 25. The generated warnings field is trig-
gered, providing a valuable information about a risk of lo-



Figure 2: An example of generated report by reasoning on forecasting data with extreme events. The system automatically
provides a brief summary, keywords and warnings for anticipated events.

calized flooding due to increased above the climatological
average daily total rain rate. The corresponding keywords
are keywords = heavy rain, strong wind, frontal passage,
overcast, unstable airmass; the proof provides informa-
tion about very high RH (up to 96%), the extreme daily P ,
strengthening U , and a θ shift, making this case illustrative
for validating hazardous events in the tropics.

Comparative analysis and observed model behavior.
(1) Hierarchical presentation (daily + 6h) improves narrative
coherence: for Cork and Chennai locations, the daily trend
in T is clearly separated from intraday variability, while in
Da Nang a large daily extreme is not “lost” amid numerous
hourly rows. (2) The keywords–proof coupling simpli-
fies evaluation: for each location, keywords are supported
by aggregates (P , U , θ, T , RH); in Manila, borderline val-
ues for warm anomaly indicate that thresholds and/or ref-
erence normals may require refinement for the tropics. (3)
warnings in those locations were triggered only in the
presence of explicit extreme conditions (Da Nang), consis-
tent with the rule design requiring large deviations from cli-
matology and/or exceeding the predefined P and U thresh-
olds. (4) The content of the summary remains aligned
with threshold-based weather labels in the forecast tables
and no false descriptions are observed, and “frontal” tags
(frontal passage) correlate with wind shifts and the phase
structure of precipitation.

Overall, these demonstrated cases show that hierarchical
context, combined with controlled keywords and the evi-
dential proof insert, yields readable and verifiable reports
for a ∼5–6 day horizon across diverse climate zones, from
mild coastal transition patterns to typical tropical regimes in
the weather with extreme rainfall events.

5 Future Work
The system can be further improved along three potential
directions:
1. AFD-style benchmark and auto-correction. A NOAA

AFD–inspired corpus pairing forecast tables with fore-
caster discussions and an error taxonomy (false/missed
events, wrong trend sign, keyword–aggregate mis-
match, over/under-warning) can sufficiently enhance
the model performance. Additionally, a critic–corrector
loop will compare summary/keywords/proof with
daily/6h/1h aggregates and apply minimal changes
(rephrase the trend description, change/remove key-
words, improve the warning), exposed as lightweight
Validator/Editor services on the current REST architec-
ture.

2. Ensemble-aware interpretation. We will augment the
context with distribution tables (mean/median, p10–p90,
spread, exceedance fractions) such that reports can
include probability-tagged keywords (e.g., heavy rain
[40–60%]), enclose trends under large spread, and add
graded warnings. This opens ways for new experi-
ments with the model, its probabilistic calibration and
decision evaluation.

3. ReAct tooling for targeted validation. An aggregate-
level detector will flag uncertain and dangerous events
(extreme P , abrupt wind shifts, keyword–data worry).
A ReAct agent (Yao et al. 2022) will then hypoth-
esize, zoom to hourly rows for the flagged win-
dow, query diagnostics (gradients, run-lengths, gust
quantiles) or fallback climatology, and minimally up-
date proof/keywords/warnings. Tools include
aggregate-checker, hourly-fetch, threshold-tester, and
climatology-lookup.



Together, these improvements aim to make the AI-
Meteorologist framework self-correcting, ensemble-aware,
and able to manage with uncertain intervals on demand
while preserving the current microservice/REST architec-
ture.

6 Conclusion
Our experiments show that encoding forecast context at mul-
tiple temporal scales and linking concise, data-grounded
keywords to an evidential proof block materially improves
the usability and verifiability of LLM-generated weather
narratives. Across four geographically and climatologically
distinct case studies (Cork, Manila, Chennai, Da Nang) we
found systm improved performance in (i) narrative–table
consistency, (ii) keyword–aggregate alignment, and (iii) the
relevance of proof/warning items—most notably, the system
flagged and justified a hazardous rainfall/wind episode in
Da Nang while avoiding false alarms in non-extreme cases.
Importantly for environmental applications, the hierarchical
context also reduced token-bias toward noisy hourly rows,
helping the system separate daily variability from persistent,
decision-relevant trends.

While the developed system already demonstrates strong
promise, several clear and readily actionable enhancements
can further strengthen its operational value. It can be fur-
ther improved by complementing the existing text-based
verification with programmatic checks, localizing keyword
thresholds to improve tropical and regional sensitivity, and
incorporating ensemble and uncertainty information to pro-
duce probability-aware summaries. Concrete next steps in-
clude building an AFD-style benchmark and critic–editor
loop, adding ensemble-aware, probability-tagged keywords,
and deploying ReAct-style tooling for targeted aggregate
checks. These improvements will accelerate the system’s
capabilities from a reproducible research prototype into an
operational, self-checking pipeline for explainable meteoro-
logical reporting.

Collectively, this positions our Hierarchical AI-
Meteorologist as a reproducible, explainable bridge between
numerical forecasts and environmental decision-support. It
offers interpretability, scientific rigor, and deployability for
stakeholders in climate resilience, emergency management,
and resource planning.

7 Acknowledgements
The work of I. Makarov was supported by the Min-
istry of Economic Development of the Russian Federa-
tion (agreement No. 139-10-2025-034 dd. 19.06.2025, IGK
000000C313925P4D0002).

References
Belz, A. 2005. Corpus-driven generation of weather fore-
casts. In Proc. 3rd Corpus Linguistics Conference.

Belz, A. 2008. Automatic generation of weather forecast
texts using comprehensive probabilistic generation-space
models. Natural Language Engineering, 14(4): 431–455.

Bi, K.; Xie, L.; Zhang, H.; Chen, X.; Gu, X.; and Tian, Q.
2023. Accurate medium-range global weather forecasting
with 3D neural networks. Nature, 619(7970): 533–538.
Chen, J.; Zhou, P.; Hua, Y.; Chong, D.; Cao, M.; Li, Y.;
Chen, W.; Zhu, B.; Liang, J.; and Yuan, Z. 2025. Cli-
mateIQA: A New Dataset and Benchmark to Advance
Vision-Language Models in Meteorology Anomalies Anal-
ysis. In Proceedings of the 31st ACM SIGKDD Conference
on Knowledge Discovery and Data Mining V. 2, 5322–5333.
ECMWF. 2025. Development Seed to create a climate
and weather chatbot in DestinE. “News” article on the
Destination Earth website. https://destine.ecmwf.int/
news/development-seed-to-create-a-climate-and-weather-
chatbot-in-destine/?utm source=chatgpt.com (accessed:
2025-10-22).
Franch, G.; Tomasi, E.; Wanjari, R.; Poli, V.; Cardinali, C.;
Alberoni, P. P.; and Cristoforetti, M. 2024. GPTCast: a
weather language model for precipitation nowcasting. arXiv
preprint arXiv:2407.02089.
Franch, G.; Tomasi, E.; Wanjari, R.; Poli, V.; Cardinali, C.;
Alberoni, P. P.; and Cristoforetti, M. 2025. GPTCast: a
weather language model for precipitation nowcasting. Geo-
scientific Model Development, 18(16): 5351–5371.
Hong, S.; Zhuge, M.; Chen, J.; Zheng, X.; Cheng, Y.; Wang,
J.; Zhang, C.; Wang, Z.; Yau, S. K. S.; Lin, Z.; et al. 2023.
MetaGPT: Meta programming for a multi-agent collabora-
tive framework. In The Twelfth International Conference on
Learning Representations.
Jin, M.; Wang, S.; Ma, L.; Chu, Z.; Zhang, J. Y.; Shi, X.;
Chen, P.-Y.; Liang, Y.; Li, Y.-F.; Pan, S.; et al. 2023. Time-
llm: Time series forecasting by reprogramming large lan-
guage models. arXiv preprint arXiv:2310.01728.
Lam, R.; Sanchez-Gonzalez, A.; Willson, M.; Wirnsberger,
P.; Fortunato, M.; Alet, F.; Ravuri, S.; Ewalds, T.; Eaton-
Rosen, Z.; Hu, W.; et al. 2023. Learning skillful medium-
range global weather forecasting. Science, 382(6677):
1416–1421.
Lawson, J. R.; Trujillo-Falcón, J. E.; Schultz, D. M.; Flora,
M. L.; Goebbert, K. H.; Lyman, S. N.; Potvin, C. K.; and
Stepanek, A. J. 2025. Pixels and predictions: potential of
GPT-4V in meteorological imagery analysis and forecast
communication. Artificial Intelligence for the Earth Sys-
tems, 4(1): 240029.
Li, H.; Wang, Z.; Wang, J.; Wang, Y.; Lau, A. K. H.; and
Qu, H. 2024. CLLMate: A Multimodal Benchmark for
Weather and Climate Events Forecasting. arXiv preprint
arXiv:2409.19058.
Lu, C.; Lu, C.; Lange, R. T.; Foerster, J.; Clune, J.;
and Ha, D. 2024. The ai scientist: Towards fully au-
tomated open-ended scientific discovery. arXiv preprint
arXiv:2408.06292.
M. Bran, A.; Cox, S.; Schilter, O.; Baldassari, C.; White,
A. D.; and Schwaller, P. 2024. Augmenting large language
models with chemistry tools. Nature Machine Intelligence,
6(5): 525–535.
Meteostat. 2021. Meteostat API: Monthly Data.



Meteostat. 2022. Meteostat API: Climate Normals.
Mihalcea, R.; and Tarau, P. 2004. Textrank: Bringing order
into text. In Proceedings of the 2004 conference on empiri-
cal methods in natural language processing, 404–411.
National Weather Service. 2010. The Area Forecast Discus-
sion (AFD). Product purpose and structure.
National Weather Service. 2024. National Weather Service
Web API Documentation.
OpenWeather. 2025. OpenWeather API Guide.
Rasp, S.; Hoyer, S.; Merose, A.; Langmore, I.; Battaglia,
P.; Russell, T.; Sanchez-Gonzalez, A.; Yang, V.; Carver, R.;
Agrawal, S.; et al. 2024. WeatherBench 2: A benchmark
for the next generation of data-driven global weather mod-
els. Journal of Advances in Modeling Earth Systems, 16(6):
e2023MS004019.
Reiter, E.; Sripada, S.; Hunter, J.; Yu, J.; and Davy, I. 2005.
Choosing words in computer-generated weather forecasts.
Artificial Intelligence, 167(1-2): 137–169.
Shi, J.; Shirali, A.; Jin, B.; Zhou, S.; Hu, W.; Rangaraj, R.;
Wang, S.; Han, J.; Wang, Z.; Lall, U.; et al. 2025. Deep
learning and foundation models for weather prediction: A
survey. arXiv preprint arXiv:2501.06907.
Significant-Gravitas. 2023. AutoGPT. https://github.com/
Significant-Gravitas/AutoGPT. Version v0.6.33, accessed:
2025-10-22.
Varambally, S.; Fisher, M.; Thakker, J.; Chen, Y.; Xia, Z.;
Jafari, Y.; Niu, R.; Jain, M.; Manivannan, V. V.; Novack, Z.;
et al. 2025. Zephyrus: An Agentic Framework for Weather
Science. arXiv preprint arXiv:2510.04017.
Wu, Q.; Bansal, G.; Zhang, J.; Wu, Y.; Li, B.; Zhu, E.; Jiang,
L.; Zhang, X.; Zhang, S.; Liu, J.; et al. 2024. Autogen: En-
abling next-gen LLM applications via multi-agent conversa-
tions. In First Conference on Language Modeling.
Yao, S.; Zhao, J.; Yu, D.; Du, N.; Shafran, I.; Narasimhan,
K. R.; and Cao, Y. 2022. React: Synergizing reasoning and
acting in language models. In The eleventh international
conference on learning representations.



Supplementary Material

Figure 3: Schematic representation of the contextual weather data provided to the system as input for hierarchical report gener-
ation.
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Figure 4: Illustrative examples of generated weather reports for three different geographic locations, demonstrating the system’s
ability to tailor narratives to regional weather conditions.
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