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Abstract—In data centers, to verify the feasibility of coupling,
and efficiency of network device configuration, huge effort has
been put into network simulation and emulation. While emulation
with VM is greatly limiting the scalability, simulation also
suffers from a lack of fidelity to the devices it models. We
confirm this problem by conducting test of single-machine em-
ulation/simulation, discovering large scalability gap in between.
To further identify the bottleneck of emulation scalability, we
delve into two major aspects: virtual network interfaces and
process isolation. We find out that the disproportional size of
unnecessary NICs, redundant encapsulation / decapsulation via
kernel network stack, and process switching overhead are the
major causes of this problem. Observing that containers has
gradually become the de facto way of distributing open source
/ proprietary routing software suite, we proposed NetEmos,
a single process, scalable network emulation operating system
with zero modification to containerized routing software suites.
NetEmos stripes the socket functionality from kernel to user
space, leading to effortless manipulation of emulation network
traffic, lowering the spacial complexity from factorial to linear.
Also, NetEmos combines the functionality of multiple process into
a group of threads, significantly lowers the TLB flush / cache
invalidation rate. Benchmark experiments show that NetEmos
successfully scaled container-based network emulation, making
it approaches the limit of inaccurate simulators while maintaining
its fidelity.

Index Terms—operating system, routing software, container,
network emulation.

I. INTRODUCTION

IN today’s digital era, data centers play a pivotal role in sup-
porting the ever-increasing demands of modern applications

and services. [1] Data centers rely heavily on network devices,
such as routers, to efficiently manage and route network traffic.
Traditionally, these routers have been proprietary hardware
devices, manufactured by companies like Cisco and Huawei.
However, with the rise of software-defined networking (SDN)
[2], [3] and network function virtualization (NFV) [4], there is
a growing need to emulate these network devices in a software
environment.

Network emulators has been constantly emerging to
fit into different requirements for configuration validation.
Those emulators are majorly divided into 3 catagories: First
is production-ready, VM based emulators: CrystalNet [5],
CloudSim [6]; second is container-based, fully-isolated net-
work emulators: [7]–[9]; there are also emulators utilizing
Linux network namespaces [10]: Mininet [11], Core [12], [13];
finally Simulation-based emulators: [8], [11], [14]–[29]

Network emulators often grapple with two primary chal-
lenges that impact their effectiveness. Firstly, many emulators
face issues related to the isolation of virtual machines, leading

to a lack of scalability or demanding substantial computing
resources. Secondly, the reliance on idealized models within
these emulators tends to overlook the nuanced implementation
differences found in proprietary software.

In response to these challenges, the rise of Docker con-
tainers has significantly reshaped the landscape of network
emulation. Docker containers provide a lightweight and ef-
ficient alternative to traditional virtual machines, addressing
the scalability concerns faced by emulators. The container-
ization approach ensures improved isolation between network
elements while minimizing redundant kernel space usage, thus
offering a more resource-efficient solution. This is exemplified
in emulators like Containerlab [8], which leverages Docker
containers for rapid and streamlined network test environment
deployment.

Despite the advancements brought about by Docker con-
tainers in network emulation, scalability remains a persistent
challenge. Our team conducted a comprehensive study to as-
sess the limitations of container-based emulators, specifically
employing Docker and custom network configurations using
veth-pair (§III). The focus of our investigation was to scruti-
nize the upper threshold of nodes that can be effectively run
on a single host—a crucial parameter for assessing scalability.

The results of our study revealed that the scalability of
container-based emulators, while an improvement over tradi-
tional virtual machines, is still constrained. Our investigation
into the limitations of container-based emulators pinpointed
several key factors contributing to scalability challenges. As
shown in Fig. 1, chief among these factors are the dispropor-
tional size of unnecessary Network Interface Cards (NICs),
redundant encapsulation/decapsulation processes via the kernel
network stack, and the overhead associated with process
switching.

In this paper, we propose NetEmos (§IV), an x86-64 operat-
ing system based on the Linux Kernel dedicating to container-
based network emulation. In response to the identified chal-
lenges, our solution simplifies the manipulation of emulation
network traffic, introducing a more efficient paradigm that
significantly reduces the spatial complexity from factorial to
linear. By relocating socket functionality to user space, our
solution streamlines the emulation process, enhancing overall
performance and scalability.

To maximize the capacity of the system, we implement
NetEmos with a single process approach (§V). This consolida-
tion proves instrumental in significantly lowering the Transla-
tion Lookaside Buffer (TLB) flush and cache invalidation rate.
The execution of our solution involves the interpretation and
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Fig. 1. Traditional containerized network emulation process

loading of executables in ELF format by a singular process.
This process serves as the central orchestrator, responsible
for seamlessly handling the relocation of symbols related
to socket system calls, such as socket, from the standard
C library (libc) [30]. During the executable loading phase,
our approach meticulously identifies and relocates all relevant
symbols, ensuring that when these system calls are invoked
within the program, our custom code executes to deliver the
intended functionality.

We rigorously evaluated the effectiveness of our solution by
subjecting it to comprehensive tests against simulation-based
configuration validation tools, such as Batfish [31], [32]. The
results demonstrated a remarkable enhancement in scalability,
aligning closely with simulation-based approaches. Notably,
our solution not only achieved comparable scalability but
also maintained superior accuracy in the emulation of routing
tables.

This validation process reaffirms the robustness of our
solution, showcasing its ability to seamlessly integrate with
and surpass existing tools in the domain of configuration vali-
dation. The subsequent sections will provide detailed insights
into the testing methodology, results, and implications of this
comparative evaluation.

II. BACKGROUND

In this section, we briefly describe the need of network
emulation in data centers.

A. Data Center Networking Architecture
Initially, data centers predominantly emphasized managing

north-south traffic, employing the conventional spine-leaf ar-
chitectures as their foundational framework [33]. However,
with the ascendancy of cloud computing as the prevailing
paradigm within data center operations, the significance of
east-west traffic has surged, progressively constituting over
70% of the overall data center network traffic. This evolution
necessitates denser networks, accompanied by an augmented
demand for Layer-3 switching capacity [33]. A sample data
center topology configuration is shown in Fig. 2.

In response to this shifting landscape, the Border Gateway
Protocol (BGP), traditionally utilized for routing on the Inter-
net, has extended its domain of application to become a pivotal
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Fig. 2. Sample data center network topology configuration

protocol within data centers. This adaptation is especially
prominent as systems have been purposefully designed to
integrate and optimize BGP functionalities for data center
environments [34]. For example, DigitalOcean have imple-
mented BGP as an integral part of their data center fabric
[35]. BGP’s ability to efficiently handle dynamic and scalable
routing within the data center network makes it a suitable
choice for managing the surge in east-west traffic.

B. Containerized Network Devices

Proprietary network devices from companies like Cisco
[36] and Huawei have long been the backbone of enterprise
networks. These network devices are typically built as special-
ized hardware devices that implement routing protocols and
provide advanced features for efficient data transmission. In
recent years, these vendors have started shipping their routing
software in the form of Docker images. [8] Containerization
enables the deployment of router software on standard server
hardware, decoupling the software from the underlying hard-
ware.

In addition to proprietary routing software, there is a
significant presence of open-source routing software in the
networking industry. Projects like Quagga [37], FRRouting
[38], and Open vSwitch [39] provide routing and switching
capabilities that can be utilized in emulated network devices.
Emulating network devices with open-source routing software
allows for greater customization, interoperability, and flexibil-
ity in network deployments.

III. CONTAINER SCALABILITY ISSUE

Although the evolution of containerization does provide
more scalability compared to network of virtual machines,
the essence of isolation brought by containers yields great
overhead in the situation. In the following, we make an
alternative network emulator based on Docker and use it to
test the limitation of containerized network emulation1.

On the same testbed, we tested the memory utilization
and maximum number of nodes a system can emulate. We
build a fat-tree topology for the representatives of emulation

1Source code available at https://github.com/xxx/xxx.

https://github.com/xxx/xxx
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Fig. 3. Demonstration of different fat trees.

and simulation. We make a working config set for core,
aggregation and edge switches that uses BGP to establish
routing table. Of any scenario below occurs, we consider the
emulation / simulation is a failure:

1) The system runs out of memory and is killed by the OS.
2) Any host of the system cannot ping one of all other

hosts.
We run the setup, until failure, to see the maximum scala-

bility of one solution. The results are shown in Table I.

TABLE I
SCALABILITY OF EMULATION / SIMULATION

System Memory
usage/GiB

Memory usage
per node/MiB

Maximum
nodes

Docker [40] 17.0 103.6 168
Batfish [32] 46.2 89.6 528

A. Analysis

As shown in Table I, it can be seen that when the memory
usage of a single node is similar, Batfish [32] significantly
increases the number of nodes that can be run on a single
machine. However, Docker cannot continue to enumerate even
if the memory is not full, indicating that the bottleneck of
containerized emulation is in the kernel layer, acknowledging
that the user space usage of docker is not high.

The subdued usage of Docker emulation, both CPU and
memory, indicates that the emulation solution cannot reach its
maximum scalability due to poor emulation efficiency.

1) CPU Usage: The subdued CPU usage can be attributed
to frequent TLB flushes and cache invalidation, shedding light
on the intricacies of resource utilization in container-based
emulation.

In our emulation scenario, consider the frequent establish-
ment and destruction of network topologies. Each change may

necessitate adjustments in memory mappings, leading to TLB
flushing. As a consequence, the CPU spends cycles reloading
the TLB, diverting computational resources from other tasks.
Also, where multiple threads or processes handle network-
related tasks, such as routing updates, cache invalidation
becomes significant [41]. For instance, if one thread updates
routing information, other threads’ caches must be invalidated
to ensure they fetch the latest data. This synchronization
process incurs overhead, contributing to lower overall CPU
usage.

Frequent TLB flushing and cache invalidation introduce de-
lays and extra computational steps, reducing the efficiency of
CPU utilization. The CPU spends more time managing these
housekeeping tasks rather than executing the core processing
tasks efficiently. Consequently, the observed lower CPU usage
in container-based emulation can be attributed to the overhead
introduced by these operations, impacting the overall system
performance.

2) Memory Utilization: In the context of single-host em-
ulation scalability, memory utilization emerges as a critical
factor. While this limitation holds true for traditional solutions
like Batfish and VM, container-based emulation in our testbed
faces challenges in scaling beyond 224 nodes, despite a
theoretical limit of around 1000 nodes as depicted in Fig. 7b.

Due to the temporal usage of Batfish [32] and docker in
Appendix B, ee infer that the primary constraint for container-
based emulation lies in the redundant Layer-2 emulation
facilitated by Veth pairs. These pairs, while essential for es-
tablishing network links, incur substantial CPU overhead. This
observation aligns with the theoretical constraint on memory
usage, suggesting that the intricacies of Layer-2 emulation,
particularly in the context of Veth pairs, play a pivotal role
in limiting the scalability of container-based emulation on a
single host.

In the context of our emulation system, the use of Veth pairs
is integral for establishing Layer-2 network links between em-
ulated nodes. However, this seemingly straightforward process
incurs a substantial overhead due to the following reasons:

1) Redundant layer-2 emulation
2) Kernel network stack processing

IV. SINGLE NODE MINIMIZATION

In this section, we introduce the basic idea to mitigate the
problem, and the architecture of our design.

A. Basic Idea

We use FRR as an entry point of our design. As described in
ContainerLab [8], the container image of proprietary routing
softwares like Cisco IOS [36], Nvidia Cumulus Linux [42],
and other open-source solutions like SONiC [43] use similar
architecture of FRR:

• Docker init process serves as the initialization process
responsible for generating isolated namespaces. All other
processes within the system are descendants of this
crucial initiation process.



(a) FRR (b) NetEmos Node
Fig. 4. Organization of a single FRR node’s daemons, and the injection places in solution. (a) FRR original organization. (b) places of interception

• Daemons is the core components handling routing tasks.
Each daemon is assigned a specific functionality, encom-
passing these constitutional daemons:

– Routing protocol softwares
– Routing / forwarding information base integration
– Interfacing

• Unix Socket Communication, inter-process communi-
cation (IPC) among the routing software suites primarily
occurs through Unix domain sockets. This communi-
cation method bypasses the protocol stack, enhancing
performance in the exchange of information between
processes.

Illustrated by the Free Range Routing (FRR) [38] example
in Fig. 4a, a node typically opens sockets for communication.
These sockets form the backbone of both internal and external
communication, influencing major scalability challenges such
as Veth pair usage, redundant kernel network stacks, and cache
invalidation. Moreover, the integration of Routing/Forwarding
Information Base (RIB/FIB) functionality, initially requiring
a dedicated process per node, can be consolidated into one
process to reduce memory consumption.

To implement this idea, we introduce the NetEmos operating
system, a solution that places control over all sockets in user
space, diverging from the traditional kernel-side approach.
This involves hijacking socket-related system calls to eliminate
reliance on the kernel network stack.

B. Details of NetEmos

In our proposed NetEmos operating system, the implemen-
tation involves intercepting specific socket-related system calls
to enhance efficiency and control. When a node necessitates
inter-node traffic, it initiates a call to socket(AF_INET).
At this point, our system hijacks the call, facilitating the
direct establishment of a communication channel between
the involved workers. Similarly, for intra-node (inter-process)
traffic, when a node invokes socket(AF_UNIX), we can
process it directly to circumvent context switching or pass
it to the kernel if needed. Additionally, when a node seeks

information about its Network Interface Controllers (NICs)
by calling socket(AF_NETLINK), we exploit this system
call interception to create distinct virtual network devices for
different nodes. This approach enables a fine-grained control
over network interactions, optimizing both inter-node and
intra-node communication within the emulation system.

The Linux kernel offers network namespaces as a feature,
allowing the creation of distinct network environments within
a single operating system. However, the limitation arises
from the smallest granularity being a process, preventing the
creation of separate namespaces within a process. Despite this
restriction, consolidating multiple processes into one yields
significant advantages, such as reducing the frequency of TLB
flushing and cache invalidation, leading to increased cache
hits. Our solution addresses this by combining multiple nodes
into a single process.

The implementation of the single-process idea is depicted in
Fig. 4a, comprising two crucial components: the hijacker and
the middleware. The hijacker primarily handles the direction
of inter-node traffic, while the middleware redirects RIB/FIB
integration to obtain routing information. Additionally, it
facilitates the standardization of RIB/FIB integrators across
all nodes. This dual-component structure ensures efficient
management of both inter-node communication and routing
information integration within a unified process.

The hijacker plays a central role in directing inter-node
traffic. Meanwhile, the middleware takes charge of redirecting
the RIB/FIB integration process, ensuring that routing infor-
mation is seamlessly acquired. This middleware functionality
proves instrumental in streamlining the RIB/FIB integrators,
creating a cohesive approach across all nodes in the system.
Together, these components contribute to the successful imple-
mentation of the single-process model, optimizing the handling
of inter-node communication and routing data integration. In
the overarching architecture of the NetEmos, as illustrated
in Fig. 5, a single-process model is realized, incorporating
the Linux kernel. This configuration eliminates the need for
TLB flushing within the system. The operating system, driven
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Fig. 5. The NetEmos operating architecture architecture.

by a solitary process, efficiently manages both inter-node
and intra-node (inter-process) communication through memory
sharing—considered the most effective means of information
exchange without introducing racing conditions.

Upon loading the emulation configuration, the OS operates
with only one process alongside the Linux kernel. Inter-
node and intra-node communications are seamlessly facili-
tated through memory sharing, optimizing the efficiency of
information transfer. Each node is equipped with a dedicated
buffer for sending routing information, and the received data
is never duplicated. This memory-sharing approach minimizes
the use of extra space, resulting in a linear (O(n)) allocation
and deallocation process. The architecture, characterized by its
streamlined communication and memory utilization, exempli-
fies the efficiency and scalability achieved by the NetEmos.

V. IMPLEMENTATION AND EVALUATION

In this section, we implemented a NetEmos prototype, and
compare it to the current solution: ContainerLab [8], our
container-based emulator (see Section §III) and Batfish [39].

A. Hijacking Implementation

To implement the single-process model, NetEmos employs
a process to interpret and load executables in the ELF format.
During the loading process, the system identifies all relocations
of symbols associated with socket-related system call wrap-
pers, such as socket, in the C library (libc). These symbols
are then relocated with custom entries in the program.

Essentially, when the loaded program invokes a socket-
related system call, such as socket(), the execution is
redirected to our custom code instead of the standard libc
functionality. This mechanism allows NetEmos to seamlessly
intercept and handle socket-related operations, enabling pre-
cise control over the networking functionalities within the user
space.

During the loading phase of executables within NetEmos,
an array of functions like socket() and related bind(),
listen(), connect(), send(), recv() undergo
interception and substitution by the trampoline. Notably, these

functions serve diverse purposes beyond mere socket opera-
tions, necessitating a meticulous record-keeping of file descrip-
tors by the trampoline to discern calls specifically involving
socket file descriptors.

One of the key challenges addressed by NetEmos during this
loading phase is the potential for symbol name clashes, espe-
cially when functions share identical names across different
executables. To circumvent this issue, NetEmos implements
a sophisticated symbol resolution mechanism in the form
of a Directed Acyclic Graph (DAG) forest loading. Each
executable forms an independent dependency DAG, fostering
a disentangled environment for symbol resolution. This ap-
proach enables trampolines and individual nodes to specify
their unique preload libraries, facilitating the coexistence of
nodes with similar semantics, even if sourced from different
libraries, and sharing symbols bearing identical names.

The symbol resolution process is outlined in Algorithm 1.
This algorithm ensures effective resolution of symbols during
the loading process, allowing the trampoline to intercept and
redirect function calls as needed.

Algorithm 1 Symbol Resolving

SYMBOL RESOLVE(s, l)
param s ∈ Σ: Symbol name
param l ∈ L: Library to search
returns n ∈ N ∪ {∅}: Symbol location

BEGIN
if s not defined in library l :

return ∅
n← resolved symbol s in library l
return n

END

Algorithm 2 Symbol Searching
SYMBOL SEARCH(s,H, h, P )
param s ∈ Σ: Symbol name
param H ⊆ Σ: Symbol set to be hijacked
param h : H → N: Hijacked symbol location
param P = (l, d) ∈ L× 2L: Library and its dependencies
returns n ∈ N ∪ {∅}: Symbol location

BEGIN
if s ∈ H :

return h(s)
n← SYMBOL RESOLVE(s, P.l)
if n ̸= ∅:

return n
for l′ ∈ P.d:

d′ ← LIB DEPS(l)
n← SYMBOL SEARCH(s,∅,∅, (l′, d′))
if n ̸= ∅:

return n
END



Fig. 6. VRF Translation.

where Σ is symbol set, L is library set.
To keep track of the opened sockets, and make sure that

each node have a isolated set of file descriptors, NetEmos use
a custom method called File Descriptor Translation. The file
descriptors returned by irrelevant system calls, for example
open(), is kept untranslated. On socket() syscall, tram-
poline requests a new null file descriptor from the kernel, and
keeps the necessary information in the socket file descriptor
table (in user space of trampoline).

To meticulously manage and isolate sets of file descrip-
tors for each node while tracking opened sockets, NetEmos
employs a proprietary approach known as File Descriptor
Translation:

When the socket() syscall is invoked, the trampoline
takes a strategic step by requesting a null file descriptor
directly from the kernel. Subsequently, it retains essential
information within the socket file descriptor table, residing
in the user space of the trampoline. This meticulous process
guarantees that each node possesses its dedicated and isolated
set of file descriptors, preventing unintended interference or
cross-contamination between nodes during the emulation pro-
cess.

B. RIB/FIB Aggregator Unification

The unification of the Routing Information Base (RIB) and
Forwarding Information Base (FIB) aggregator is achieved
through a noteworthy feature: a single Zebra (the RIB/FIB ag-
gregator of Zebra) has the capability to handle multiple Virtual
Routing and Forwarding (VRF) instances. This architectural
choice allows for the consolidation of routing information
across diverse VRFs within the context of a single Zebra entity.

In the emulation system, the proper modeling of Virtual
Routing and Forwarding (VRF) instances is a crucial aspect,
and this necessitates the implementation of a mechanism
called VRF Translation. Analogous to the previously discussed
File Descriptor Translation (Section §V-A), VRF Translation
ensures that VRF instances are appropriately modeled by the
system.

As illustrated in Fig. 6, VRF Translation mechanism guar-
antees that the translation of VRFs within the same node

is identical, facilitating coherent emulation within individual
nodes. Simultaneously, it ensures that VRFs utilized by differ-
ent nodes remain disjointed, preventing any unwanted overlap
or interference between emulation instances.

This approach to VRF Translation contributes to the overall
robustness and fidelity of the emulation system by accurately
representing and isolating VRF instances as they operate
across various nodes in the network emulation environment.
By enabling a single Zebra instance to efficiently manage mul-
tiple VRFs, the emulation system gains a streamlined and uni-
fied approach to RIB/FIB aggregation. This not only optimizes
resource utilization but also simplifies the overall management
and coordination of routing information within the emulation
environment. The consolidated handling of VRFs by a singular
Zebra instance exemplifies a strategic design decision aimed
at enhancing the efficiency and coherence of the emulation
system’s routing infrastructure.

C. Hierarchy

As shown in Fig. 5, the proposed solution involves a hier-
archical structure comprising five layers: Emulation Swarm,
Emulator Process, Node, Worker, and Thread. An Emu-
lation Swarm includes multiple hosts running the emulator
process. Each emulator process can consist of multiple nodes.
A node, in turn, can host multiple workers, and each worker
comprises multiple threads. This layered hierarchy is designed
to organize and manage the emulation environment efficiently.

1) Emulation Swarm: In the proposed architecture, an em-
ulation swarm is defined as a collection of hosts that execute
emulator processes. Each host within the swarm is capable of
handling local traffic. However, in cases where a host cannot
manage the traffic locally, it establishes communication with
other hosts in the same swarm through the network. This
distributed approach allows for efficient traffic handling and
resource utilization within the emulation swarm.

2) Emulator Process: In the proposed architecture, a emu-
lator process serves as an emulator for multiple network nodes.
The ideal scenario involves running only one emulator process
on a single host to maximize the scalability of the emulation.
Within the emulator process, a trampoline is responsible for
loading the executables from all nodes and initiating a main
thread for each of them.

It’s important to note that while nodes and workers, the
layers below the emulator process, are physically implemented
as groups of threads, they are conceptually treated as distinct
entities within the emulator process.

3) Node: In the proposed architecture, a node is essen-
tially a group of workers, collectively representing a single
network device. Each node within the emulation system is
designed to emulate specific network functionalities. Notably,
the key distinctions between nodes lie in the handling of
socket(AF_NETLINK) related system calls and the estab-
lishment of connections.

4) Worker: In the proposed architecture, a worker is es-
sentially a group of threads initiated by a single executable
file. This executable file serves as the emulation core for
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specific functionalities. Within a node, multiple workers may
be employed to manage distinct aspects of emulation, allowing
for a modular and scalable approach to handling various
network functionalities.

Theoretically, a worker can be shared among multiple nodes
as long as it doesn’t involve inter-node traffic, exemplified by
RIB/FIB aggregator in Section §V-B.

5) Thread: In the context of the proposed emulation ar-
chitecture, a thread represents the smallest schedulable unit
in the Linux operating system. Threads within a worker are
distinct units of execution, each designed to fulfill specific
tasks such as communication handling or logging. Physically,
these threads are tangible entities presented within the worker,
and their execution is orchestrated by the Linux scheduler.

D. Evaluation

To further test our system, we build a prototype of NetEmos
and use fat-tree topology to compare to containerized emula-
tion and Batfish [32].

A fat tree here has two parameters: the number of pods
n, and the number of leaves per pod m. By the context, the
topology is irrelevant except its number of nodes and edges.
The formula of the number of nodes and edges represented by
the parameters are:

|V | = 4mn (1)
|E| = mn(m+ n+ 1) (2)

When m ≈ n, |E| can be approached by |V | as:

|E| ≈ mn(2
√
mn+ 1) ≈ 1

2
|V |3/2 (3)

A proof of Equation 3 can be found in Appendix A. The
experiment aimed to assess various metrics, including topol-
ogy establishment time, route converging time, establishment
memory usage, and routing memory usage, with the objective
of deriving two comprehensive scores: spacial score and tem-
poral score. The spacial score is formulated to gauge memory
usage per node, as expressed in Equation 4, concurrently
elucidating the relationship between number of nodes and

TABLE II
SPATIAL AND TEMPORAL SCORE OF DOCKER, NETEMOS AND BATFISH

Type Spatial (Node/GiB) Temporal (Node/s)
Docker 7.6669 15.6217

NetEmos 24.3795 35.1218
Batfish [32] 29.0662 35.4476

memory consumption. Also according to Equation 3, it is an
rough estimation of edge-memory relevance.

s = E−1

[
dM

dn

]
≈

(∑
n∈N

(
maxn M

2n
+

avgnM

2n

))−1

(4)

To align with the requirements of configuration validation,
the temporal score assesses performance per node, specifically
quantifying the time taken for the entire experiment per node.
In order to capture the nuanced performance distinctions
associated with processes utilizing multiple CPU cores, we
introduce the concept of a parallelogram penalty for scenar-
ios involving multi-core usage. The evaluation of the temporal
score is delineated by the following formula:

t = E−1

[
pp ·

dT

dn

]
≈

(
pp ·

∑
n∈N

(
te + tr

n

))−1

(5)

where pp is parallelogram penalty, represented by total CPU
usage; te is establishment time; tr is route converging time.

To gain a deeper insight of the architectures and what
is happening underneath, we use FRRouting [38] as the
routing software in Docker emulation, NetEmos emulation,
and corresponding configuration schema for Batfish emulation.

The result of the experiment is shown in Fig.7, and the final
scores are listed in Table II.

As shown in Fig. 7, efficient routing information exchange
in Batfish relies on a routing calculation schema that prioritizes
time efficiency at the cost of increased space consumption, as
indicated by both Fig. 7a and Fig. 7b. In routing scenarios, the
memory usage experiences a substantial surge, reaching four
times the idle state, exemplified in these figures.



In Fig. 7a, containerized emulation bases on Docker ex-
hibit significant spacial overhead attributable to redundant
processes, TLB switches and Veth pairs. Notably, the memory
usage of VMs surpasses that of Batfish during active routing.

Thanks to the adoption of single-process emulation, NetE-
mos brings about a notable enhancement in scalability.

In Fig. 7b, NetEmos performs exceptionally, with the mem-
ory usage’s growth rate similar to Batfish’s, and far less
maximum usage.

In comparison to traditional simulation solutions like Bat-
fish, NetEmos offers greater fidelity and a more general
solution. Regardless the fidelity improvement, NetEmos shows
similar scalability just like simulators.

VI. RELATED WORKS

Some work has been done to minimize VM-based emulation
to achieve greater scalability.

VM Based Emulators: A VM-based network emulator in-
volves the use of virtual machines (VMs) to replicate and
simulate network environments. GNS3 [13] continues to be
a popular network emulation tool, delivering new versions
regularly. Recognized for emulating networks of commer-
cial and open-source router. CrystalNet [5] is a VM-based,
production-ready emulator. It uses BGP safe boundary to
determine the emulation scale, and utilizes VXLAN as the tool
to scale greatly. Colosseum [24]provides open-source wireless
software for wireless network emulation. Based on standard
PC hardware and radios.

Container-based Emulators: A container-based network
emulator utilizes containerization technology, such as Docker,
to emulate network environments. Containers are lightweight,
standalone, and portable units that encapsulate software and
its dependencies. Containerlab [8] is a dynamic, open-source
network emulator that swiftly constructs network test environ-
ments using a DevOps-style workflow. Mininet is a widely
used network emulator for research and education in Software
Defined Networking [11]. It remains actively maintained, with
minor development observed on its GitHub repo. Tinet [29]
is a container-based network emulator supporting a simple
YAML config file for virtual network construction.

Simulators: A network simulator, irrespective of the un-
derlying technology (VM or container), is a tool that models
the behavior of a network by simulating the interactions and
communication between network entities. Unlike emulators
that replicate real-world components, simulators may use
mathematical models and algorithms to predict how a network
will behave under specific conditions. EVE-NG [44] Com-
munity Edition receives ongoing updates, offering a network
emulator supporting virtualized commercial router images and
open-source routers. Although focusing on the commercial
EVE-NG product. Kathara is the next evolution in network
emulation by the original developers of Netkit [45]. Supporting
Docker and Kubernetes, Kathara facilitates network emulation
scenarios across various operating systems and environments.
CrowNet [26] is an open-source simulation environment mod-
eling pedestrians using wireless communication. CupCarbon

[27] simulates wireless networks in cities and integrates data
from OpenStreetMap. MimicNet [9] is a network simulator
using machine learning to estimate large data center network
performance, was released in July 2019.

VII. CONCLUSION

In our exploration of network emulation challenges within
data centers, we compared the limitations of virtual machine
(VM) emulation and simulation methods. Our investigation
uncovered significant scalability constraints in VM-based em-
ulation and fidelity issues in simulation approaches. To identify
the bottlenecks affecting emulation scalability, we delved into
the aspects of virtual network interfaces and process isolation.

Our findings underscored issues such as oversized unnec-
essary NICs, redundant encapsulation/decapsulation through
the kernel network stack, and process switching overhead,
all of which contribute significantly to the scalability prob-
lem in emulation. Recognizing the widespread adoption of
containers for distributing routing software suites, we intro-
duced NetEmos. NetEmos is presented as a scalable network
emulation operating system designed for seamless integration
with containerized routing software suites, requiring zero
modifications.

We achieve scalability in NetEmos by transitioning socket
functionality from the kernel to user space, streamlining
emulation network traffic manipulation, and reducing spatial
complexity from factorial to linear. Additionally, our system
consolidates the functionality of multiple processes into a
group of threads, leading to a substantial decrease in TLB
flush and cache invalidation rates. Benchmark experiments
demonstrate NetEmos’ successful scalability in container-
based network emulation, bringing it close to the limits of
less accurate simulators while maintaining high fidelity.

APPENDIX

A. Proof of Equation 3

The following a proof to formal representation of Equation
3: 1

4 |V |
3/2 is a second-order approachment of |E| at input

space n = m, or

lim
n→∞

(
|E|

|V |3/2/4

∣∣∣∣
m=n

)
= 1 (6)

∀d ̸= 0, lim
n→∞

(
∇⊤|E|d

∇⊤
(
|V |3/2/4

)
d

∣∣∣∣∣
m=n

)
= 1 (7)

First is the proof of Equation 6. As replacing |V |, |E| with
parameters m,n, the proof is obvious:



lim
n→∞

(
|E|

|V |3/2/4

∣∣∣∣
m=n

)
= lim

n→∞

mn(m+ n+ 1)

(4mn)3/2/4

∣∣∣∣
m=n

= lim
n→∞

n2(2n+ 1)

8n3/4

= lim
n→∞

2n3 + n2

2n3

= 1

The gradient of |E| respect to (m,n) is:

∇n,m|E|

=

[
∂

∂m
mn(m+ n+ 1),

∂

∂n
mn(m+ n+ 1)

]⊤
=
[
2mn+ n2 + n, 2mn+m2 +m

]⊤
The gradient of 1
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3/2 respect to (m,n) is:
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4
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[
∂
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(4mn)3/2,

∂
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(4mn)3/2

]⊤
= 3

[
m1/2n3/2,m3/2n1/2

]⊤
When m = n, Equation 7 can be transformed to:

lim
n→∞

(
∇⊤|E|d

∇⊤
(
|V |3/2/4

)
d

∣∣∣∣∣
m=n

)

= lim
n→∞

(
(3n2 + n)dm + (3n2 + n)dn

3n2dm + 3n2dn

)
= lim

n→∞

(
3n2(dm + dn) + n(dm + dn)

3n2(dm + dn)

)
= lim

n→∞

3n2 + n

3n2
if dm + dn ̸= 0

= 1

If dm + dn = 0, there is ∇⊤|E|d = ∇⊤ (|V |3/2/4) d = 0,
the approachment still holds. Q.E.D.

A better unbiased approachment exists that works for any
n:

|E| = e′v(|V |) =
1

4
|V |3/2 + 1

4
|V | (8)

It satisfies second-order unbiased approachment:

|E||m=n =

(
1

4
|V |3/2 + 1

4
|V |
)∣∣∣∣

m=n

∇|E||m=n = ∇
(
1

4
|V |3/2 + 1

4
|V |
)∣∣∣∣

m=n

however, Equation 8 has no simple inverse (the inverse is
Equation 9), making it not as practical as Equation 3.

e′v
−1

(x) =
1

3

(
C − 24x− 1

C
+ 1

)
(9)

C =
3

√
216x2 + 24

√
3(27x4 − x3)1/2 − 36x+ 1

B. Temporal Usage of Batfish and Docker

As shown in Fig. 8, efficient routing information exchange
in Batfish relies on a routing calculation schema that prioritizes
time efficiency at the cost of increased space consumption, as
indicated by both Fig. 8a and Fig. 8b. In routing scenarios, the
memory usage experiences a substantial surge, reaching four
times the idle state, exemplified in these figures.
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