
Early Failure Detection in Autonomous Surgical
Soft-Tissue Manipulation via Uncertainty Quantification

Jordan Thompson, Ronald Koe, Anthony Le, Gabriella Goodman, Daniel S. Brown, and Alan Kuntz

Fig. 1: Overall pipeline and experimental setup. We sense a point cloud of the current geometry of the tissue using the Segment Anything Model (SAM) [23]
to segment RGBD images of the scene. SAM takes as input the RGB components of the image along with a query point on the desired segmented object.
The resulting segmentation mask is then converted into a point cloud using the depth component of the image along with the camera’s intrinsic matrix to
give the three-dimensional geometry of the tissue. The current geometry, coupled with the goal geometry and manipulation point, are passed as input to a
deep ensemble of DeformerNet [50] models to predict a robot action Â (homogeneous transformation matrix) and an uncertainty estimate u. Using u, we
determine if it is safe for the daVinci Research Kit (dVRK) robot to take action Â. If yes, the robot takes action Â, and the process repeats. Otherwise, the
system requests a human to intervene and complete the task. We perform human interventions using the surgeon-side dVRK manipulators for teleoperation.

Abstract—Autonomous surgical robots are a promising solution
to the increasing demand for surgery amid a shortage of surgeons.
Recent work has proposed learning-based approaches for the au-
tonomous manipulation of soft tissue. However, due to variability
in tissue geometries and stiffnesses, these methods do not always
perform optimally, especially in out-of-distribution settings. We
propose, develop, and test the first application of uncertainty
quantification to learned surgical soft-tissue manipulation policies
as an early identification system for task failures. We analyze two
different methods of uncertainty quantification, deep ensembles
and Monte Carlo dropout, and find that deep ensembles provide
a stronger signal of future task success or failure. We validate
our approach using the physical daVinci Research Kit (dVRK)
surgical robot to perform physical soft-tissue manipulation. We
show that we are able to successfully detect out-of-distribution
states leading to task failure and request human intervention
when necessary while still enabling autonomous manipulation
when possible. Our learned tissue manipulation policy with
uncertainty-based early failure detection achieves a zero-shot
sim2real performance improvement of 47.5% over the prior state
of the art in learned soft-tissue manipulation. We also show that
our method generalizes well to new types of tissue as well as to
a bimanual soft-tissue manipulation task.

I. INTRODUCTION

Autonomous surgical robots have the potential to help
solve the growing disparity between the population’s need
for surgery and the number of available surgeons [55, 5].
However, surgical robot learning and automation is particularly
challenging due to the nuanced and risk-sensitive nature of the
tasks, the partially observable and deformable nature of the
environment, and the scarcity of available data. In particular,
because autonomous surgical system failures can be detrimen-
tal to patient health, it is crucial that these autonomous systems
take into account uncertainty so that the system can safely cede
control to the surgeon before causing any harm. Thus, we aim
to develop an autonomous surgical soft-tissue manipulation
system that is capable of reasoning over predictive uncertainty
to detect task failure early in the robot’s operation (see Fig. 1).

In doing so, our goal is to mitigate the risk of system failures
while still offloading the work of soft-tissue manipulation to
the robot, whenever it is safe to do so.

Our main goal is to enable uncertainty-based task failure
prediction in the domain of soft-tissue manipulation. To this
end, we build on recent advances in robot learning for de-
formable object manipulation. In particular, we focus on the re-
cently proposed, state-of-the-art DeformerNet framework [50]
which uses large-scale self-supervised training in simulation
to learn a closed-loop policy for manipulating deformable
objects to desired goal geometries. While DeformerNet has
been shown to perform well on in-distribution tissue, inter-
human variability can lead to erroneous outputs, which can
pose a safety risk. We propose to address this issue through
quantifying the predictive uncertainty of DeformerNet.

One of the major obstacles when applying robot learning to
surgical domains is the inability to do online learning in the
real world. While we can collect demonstrations offline [40,
51, 12, 54] and can train policies in simulation [56, 36, 21, 46],
offline imitation learning leads to compounding errors [43]
and the sim2real gap is especially difficult to overcome for
the types of deformable manipulation that are common in
surgery [16]. Enabling a surgical robot to preemptively detect
task failures addresses these challenges by enabling a human to
correct the robot during real-world execution, thus preventing
failures while also enabling the robot to potentially use human
interventions to continually improve its policy and world
model. While there has been prior work on interactive imita-
tion learning and human interventions [22, 53, 48, 30, 18, 8],
to the best of our knowledge, we are the first to study robot-
requested interventions on the kinds of complex deformable
object manipulation tasks common in surgical robotics.

Our main contributions are as follows: (1) We develop
and study the first real-world surgical robotic system capable
of uncertainty quantification and early task failure detection



during soft-tissue manipulation. (2) We extend and analyze
two potential methods for quantifying predictive uncertainty
during learned soft-tissue manipulation: deep ensembles and
Monte Carlo dropout. We provide empirical evidence that
ensembles provide more accurate uncertainty estimates and
that using the slope of the ensemble variance rather than the
raw variance more accurately discriminates between successful
and unsuccessful tissue manipulation actions. (3) Across 40
real-world tissue manipulation trials, we show that our ap-
proach improves zero-shot sim2real performance of more than
47% when compared with DeformerNet by itself, the prior
state-of-the-art approach for deformable tissue manipulation.
Concretely, our method achieves a 95% system success rate
compared with DeformerNet achieving 47.5% system success
rate without our method. Further, our learned thresholds for
failure detection successfully generalize to out-of-distribution
tissue and to new tasks unseen during training and calibration.

II. RELATED WORK

A. Soft Tissue Manipulation

Much work has investigated automated tissue manipulation
during surgery [4]. Several data-driven approaches have been
proposed to learn soft tissue manipulation [41, 47, 38, 42, 50].
These learning-based approaches are made possible by tak-
ing advantage of recent advancements in high-fidelity de-
formable object simulation [9, 19, 28]. Other work has shown
success in using model-independent deformation estimation
techniques [1]. Our method primarily draws on the recently
proposed DeformerNet framework [50]. DeformerNet takes
a self-supervised learning approach to the problem of soft
tissue manipulation. Given the current geometry of the ob-
ject, the grasping point, and the desired geometry of the
object, DeformerNet has been shown to have state-of-the-art
performance for a variety of deformable object geometries
and tasks [50]. However, as we show in our experiments,
DeformerNet sometimes fails due to out-of-distribution in-
puts or bad grasp points. By quantifying the uncertainty in
DeformerNet’s predictions, we enable informed early failure
detection, taking an important step toward safe autonomy in
soft-tissue surgical manipulation tasks.

B. Uncertainty Quantification

Uncertainty quantification for deep neural networks has
been studied in recent years as a way to aid in the safe
design and implementation of deep learning systems [15]. We
study and compare the efficacy of ensembles and Monte Carlo
dropout for uncertainty quantification for deformable robot
manipulation tasks with a focus on soft-tissue manipulation.
Ensembles are an approach by which multiple models are
used in concert to make predictions and have been shown to
improve overall model performance [27, 13]. Uncertainty is
typically quantified using ensembles by measuring the variance
in the ensemble’s outputs [37, 25].

Monte Carlo dropout is another technique utilized for
uncertainty estimation in deep neural networks [33, 6]. By
extending dropout to the inference phase and making multiple

inference passes through the network with different dropout
instantiations, Monte Carlo dropout can be used to generate
a distribution of outputs. Unlike ensembles, which require
training multiple independent models, Monte Carlo dropout
leverages the same trained model for inference, eliminating
the need for repeated training [29].

By analyzing the distribution from an ensemble or Monte
Carlo dropout, uncertainty metrics such as entropy or variance
across predictions can be computed, providing insights into the
model’s confidence and reliability [45, 31].

C. Human Interventions for Robot Policies

Offline learning from human demonstrations is a common
approach for robot learning [40, 17, 2, 34, 3, 20, 35]; however,
while learning from offline data has shown success in some
domains [10, 49, 14, 7], executing policies learned from
offline data is known to lead to suboptimal behavior due to
compounding errors [43, 26], something that is unacceptable
in surgical robotics. To remedy this problem, it is common
practice to give control to a human supervisor who can provide
an intervention. There are two strategies for deciding when to
pass control from the autonomous agent to the human. In the
first paradigm, the human decides when to intervene [22, 48,
30]. However, this imposes a large burden on the supervisor
since it requires a human to continuously monitor the robot and
relies on the human accurately predicting what the robot will
do next. In the second paradigm, the robot actively requests
human interventions [32, 53, 18, 8]. Similar to our approach,
prior methods of this type typically use some form of novelty
or uncertainty estimation when deciding to cede control to the
human. However, prior work has focused mainly on simulated
tasks with simulated human supervisors and simple control
or manipulation tasks. By contrast, we study the efficacy of
uncertainty quantification when deployed on a surgical dVRK
robot performing complex, deformable tissue manipulation in
the real world with access to real human interventions.

III. PROBLEM DEFINITION

Given a learned surgical robot policy, πrobot, for soft-
tissue manipulation, we wish to develop an early identification
system to determine whether the robot should execute its
policy autonomously or request an intervention from a human
supervisor. Following prior work on deformable tissue manip-
ulation [50], we assume access to a partial-view point cloud
of the current geometry of the soft tissue to be manipulated
as well as a goal point cloud that defines how the soft-tissue
should be manipulated.

The meta policy πmeta chooses whether to execute the
learned robot policy or to hand over control to a human
supervisor and can thus be represented as a binary classifier,
πmeta : O → {0, 1}, where O is the observation space. A true
positive (TP) is when the robot correctly requests an interven-
tion and would have failed if it had operated autonomously,
a false positive (FP) is when the robot wrongly asks for an
intervention when it would have succeeded autonomously, a
false negative (FN) is when the robot does not ask for an



intervention and fails at the task, and a true negative (TN) is
when the robot does not request an intervention and succeeds
at the task autonomously.

Because we are focused on surgical robotic applications,
we are most concerned with failures. Thus, we want to
minimize failures associated with false negatives. However,
this is not the only source of potential failures—we also want
to minimize false positives. False positives may also lead to
failure because they unnecessarily distract a human expert and
waste time that could be spent addressing other concerns (e.g.,
assisting a different patient or robot) and preventing other
failures. Thus, given a cost of failure cf , we want to find
the following meta policy:

π∗
meta = argmin

πmeta

E[cf · FN + cf · P (failure|FP) · FP], (1)

where P (failure|FP) is the probability of a failure occurring
somewhere else due to the human supervisor being unnec-
essarily distracted or burdened. Since cf > 0, we can just
minimize FN+P (failure|FP)·FP. We do this by learning the
optimal classification threshold for πmeta using a calibration
set [11, 24, 39] to appropriately tradeoff between FN and FP.
Note that the appropriate tradeoff will depend on the particular
context and will be problem dependent.

IV. METHODOLOGY

A. DeformerNet

For this work, we modify and endow the DeformerNet
framework [50] with uncertainty awareness and the ability to
preemptively detect task failures conditioned on that uncer-
tainty. DeformerNet is a deep learning based shape-servoing
model for manipulating deformable objects. The model takes
as input the current geometry Pc and goal geometry Pg of
the deformable object as partial-view point clouds along with
the manipulation point m on the object. The model then
predicts an action Â as a homogeneous transformation matrix

for the robot’s end-effector, Â =

[
R̂ p̂
0 1

]
, where R̂ and

p̂ are the predicted change in end-effector orientation and
position respectively. DeformerNet is a closed loop control
method that reasons over the deformable object’s geometry
and the goal shape’s geometry leveraging encoders based on
PointConv [52]. DeformerNet is trained in a self-supervised
fashion using large-scale simulated data. In simulation, given
a manipulation point m on a deformable object with current
geometry Pc, a random homogeneous transformation matrix
A is applied to the robot’s end effector. The geometry of
the deformable object is then sensed and is used as a self-
supervised goal, Pg . DeformerNet is trained to predict the
homogeneous transformation that led to Pg over a data set
consisting of instances of the following form: (Pc,Pg,m,A).

B. Uncertainty quantification

We aim to augment the DeformerNet model with uncertainty
quantification to enable early task failure detection. To this
end, we propose the use of a deep ensemble consisting of

multiple DeformerNet models. Each model predicts a change
in position and orientation of the robot’s end effector that will
deform the object being manipulated toward the goal shape.
At inference time, the positional component p̂ of the deep
ensemble’s prediction is computed by averaging the positional
component of the individual models,

p̂ =
1

N

N∑
i=1

p̂i , (2)

where N is the number of models in the ensemble, and p̂i is
the positional output of model i.

At inference time, the orientation component of the deep
ensemble’s output is found by first computing the arithmetic
mean S of the set of rotation matrices produced by the
individual models of the ensemble, S = 1

N

∑N
i=1 R̂i. where

N is the number of models, and R̂i is the rotation matrix
output by model i. Matrix S, however, will almost certainly not
satisfy the constraints required to form a valid rotation matrix.
To obtain a valid rotation matrix, we take the singular value
decomposition, S = UDV′ and multiply U and V′ to obtain
a rotation matrix that minimizes the Euclidean norm to S and
is therefore the rotation matrix that minimizes the average
geodesic distance to each component rotation matrix [44]:

R̂ = UV′ . (3)

We compute the ensemble’s predictive variance for both
position and rotation individually. Positional variance is the
average squared distance to the deep ensemble’s positional
prediction (p̂ in Equation (2)) for each component network:

Var(p̂) =
1

N

N∑
i=1

∥p̂i − p̂∥2 . (4)

For rotational variance, we measure the average geodesic
distance to the ensemble’s predicted rotation matrix (R̂ in
Equation (3)):

Var(R̂) =
1

N

N∑
i=1

arccos
(Tr(R̂iR̂)− 1

2

)
. (5)

We define the predictive uncertainty of DeformerNet at
time-step t as a vector containing the change in both positional
and rotational variances from equations (4) and (5).

u(t) = [Var(p̂t)−Var(p̂t−1),

Var(R̂t)−Var(R̂t−1)]
(6)

While standard approaches to uncertainty quantification use
raw variance values as their uncertainty metric [18, 15, 25], we
find in our experiments that these raw variance values are not
good indicators for downstream task performance. However,
when we measure the slopes of these variance values over
subsequent time steps, we find a significantly stronger signal
of downstream task performance.



Fig. 2: Distributions of raw variance values (computed via Equations 4 and 5) and initial slopes (computed via Equation 6 at t = 1) for both
position and rotation across 30 trials at inference time on the dVRK surgical robot. We find that the distributions of raw variance values
for position and rotation across successful and failure trials only have Kullback-Leibler (KL) divergences of 0.357 and 0.507 respectively.
However, the initial slopes of the variance values have KL-divergence values of 3.107 and 4.078 respectively. We set a threshold value on
the slope of the initial positional and rotational variance values at -0.310 and -0.487 respectively as indicated by the red lines in the graphs.

C. Monte Carlo Dropout

We also investigate uncertainty quantification using Monte
Carlo dropout. Using stochastic dropout at inference time
allows us to sample from a distribution of potential changes
in end-effector pose. We then use equations (2) – (6) to get
the model predictions and variances.

V. PHYSICAL EXPERIMENTAL SETUP

We train a deep ensemble DeformerNet consisting of five
models. We use the source code and training and testing
datasets provided by Thach et al. [50], consisting of 11,566
training and 1,285 test examples of manipulations of a de-
formable box object. Following prior work [27, 25, 13], each
ensemble component model was trained using the same train-
ing dataset with different random weight initializations. We
train a Monte Carlo dropout version of the DeformerNet model
with dropout added to the last layer at varying levels of dropout
percentage: 25%, 50%, and 75%. We collect 100 samples from
the model to construct the predictive distributions.

The deep ensemble and the Monte Carlo dropout models are
implemented using a zero-shot sim2real framework. Trained
entirely on a simulated box-shaped deformable object, the
system is tasked with manipulating both ex vivo chicken
and bovine tissue of varying geometries. To generate goal
shapes for evaluation purposes only, using ex vivo tissue
we teleoperated the robot to manually manipulate the tissue
to a desired goal geometry. We then reset the system and
task the models with manipulating the tissue to the same
desired geometry (with no knowledge of how the shape
was generated). We use an Intel Realsense D405 camera for
tracking point cloud representations of the tissue geometry
both in goal generation for evaluation and during method
execution. We track the model variance as it manipulates the
tissue toward the goal shape and measure task success as
whether the model converges to the desired geometry. We
define a method termination criteria as when ∥p̂∥ < 0.001.
At this point, the method has effectively stopped moving the
robot’s end effector. We then compare the resulting tissue
geometry with the desired geometry to test for task success.
Figure 1 shows an image of the experimental setup. We use
the patient-side dVRK manipulator(s) to manipulate the tissue
both autonomously and by teleoperation.

VI. PHYSICAL SOFT-TISSUE MANIPULATION RESULTS

A. DeformerNet Performance Validation

a) In-Distribution Performance: In prior work, De-
formerNet has been shown to be capable of achieving 100%
success rates on in-distribution cases [50]. To validate that
our ensemble is capable of achieving similar performance, we
performed 20 in-distribution trials on ex vivo chicken mus-
cle tissue with optimal grasping points and goal geometries
that only required local control. Our ensemble successfully
manipulated the tissue in all 20 in-distribution trials. We
also performed this same experiment across 10 in-distribution
cases using the Monte Carlo dropout model. We find that
the Monte Carlo dropout version of DeformerNet fails to
complete the task in all cases. Thus, applying Monte Carlo
dropout at inference time severely hinders the performance
of DeformerNet. As a result, the following experiments are
performed solely using the deep ensemble.

b) Out-of-Distribution Performance: While Deformer-
Net has 100% task success on in-distribution cases, out-of-
distribution cases frequently result in task failure. We per-
formed 15 trials spanning 3 different out-of-distribution cases:
sub-optimal grasping points, non-local control, and out-of-
distribution tissue geometries. Sub-optimal grasping points can
occur when the robot grasps the tissue at a location that does
not optimally facilitate the manipulation of the tissue to the
goal. Non-local control cases occur when the requested goal
geometry requires more than one type of manipulation in
sequence, i.e. folding the tissue which requires first lifting an
edge then subsequently placing it back down elsewhere. Out-
of-distribution tissue geometries occur when the geometry of
the tissue being manipulated does not align with the tissue
geometries seen during model training. Our ensemble only
succeeded in 1 out-of-distribution geometry case while failing
in the remaining 14 cases. Due to the high variability and
lack of available data on surgical soft-tissue manipulation,
these out-of-distribution cases will inevitably occur in practice.
Thus, there is a great need to detect out-of-distribution cases
prior to the manipulation of the tissue.

B. Uncertainty Quantification

We collected 30 trials containing both in-distribution and
out-of-distribution cases of DeformerNet on ex vivo chicken



Intervention Requests
Chicken Tissue Bovine Tissue

Positional Rotational Both Positional Rotational Both

Yes No Yes No Yes No Yes No Yes No Yes No

Intervention Needed 10 1 9 2 10 1 9 1 10 0 10 0
Intervention Not Needed 3 6 5 4 6 3 1 9 3 7 3 7

TABLE I: Results from using variance slope thresholds for requests for human intervention on ex vivo chicken muscle tissue and ex vivo
bovine tissue across 40 trials. Placing a threshold on the change in positional variance gives an accuracy of 85% across ex vivo chicken
and bovine tissue with a false positive rate of 21.1% and a false negative rate of 9.5%. Using rotational variance, we achieve an accuracy
of 75% with a false positive rate of 42.1% and a false negative rate of 9.5%. Simultaneously thresholding position and rotation yields an
accuracy of 75% with a false positive rate of 47.4% and a false negative rate of 4.8%.

Fig. 3: False positive and negative rates on 20 ex vivo chicken tissue
trials for various positional and rotational slope thresholds. As the
thresholds are raised, the false positive rates decrease while the false
negative rates increase.

muscle tissue and measured the predictive variances across
the trajectories using Equations 4 and 5. Figure 2 shows the
distributions of these raw variance values for successful and
unsuccessful trials. We find that raw variance values are not
good indicators of task success, as there is no clear distinction
between the successful and unsuccessful trials.

Using our uncertainty definition from Equation 6, however,
we find that the slopes in the variance values at t = 1
provide a strong predictive signal of task success. We use
Kullback-Leibler (KL) divergence as a quantitative metric of
distribution difference. In the case of raw variance values,
we observe KL divergences of 0.357 and 0.507 for position
and rotation respectively. However, the slopes in variance at
t = 1 give KL divergences of 3.107 and 4.078 for position
and rotation respectively. These results demonstrate that in
successful cases, the positional and rotational variances tend
to decrease moreso than in failure cases at the initial time step.

a) Calibration of the Meta Policy: To detect task failures,
we set a threshold on the slope of the positional and rotational
variances at time-step 1 in the trajectories (u(1) from Eq. 6)
by calibrating to desired false positive and negative rates on
the above 30 trials (false positives are detecting task failure
in successful cases, false negatives are failing to detect task
failure when necessary). False positive and negative rates for
different threshold values on 20 test trials can be seen in Fig. 3.

b) Evaluation on Chicken Tissue: Placing thresholds at
-0.310 and -0.487 for the positional and rotational components

of u(1) respectively, we ran 20 trials on ex vivo chicken mus-
cle tissue. The system detects task failure when the specified
threshold is violated. Once the system detects task failure, the
human teleoperates the remainder of the task. The results of
these trials are summarized in Table I. When only using the
positional threshold, we successfully classified the success of
the task in 16 out of the 20 trials. In only 1 out of the 20
trials we did not detect a task failure. When only using the
rotational threshold, we successfully classified task success in
13 out of 20 trials while not detecting task failure in 2 of the
trials. When using a threshold on both position and rotation
simultaneously, we successfully classify task success in 13
trials and do not detect task failure in 1 trial.

c) Generalization to Bovine Tissue: To test the general-
ization of our method to new tissue types, we ran 20 trials
on ex vivo bovine tissue with no re-calibration of the chosen
thresholds. The results for the bovine tissue are summarized
in Table I. We successfully classify task completion in 18
and 17 of the trials for positional and rotational intervention
respectively while only failing to detect a task failure in 1 of
the positional intervention trials. When using both thresholds,
we successfully classify task completion in 17 trials and never
fail to detect a task failure.

Across all 40 physical trials, the baseline DeformerNet
failed to reach the desired geometry in 52.5% of trials. With
the introduction of uncertainty thresholds, we successfully
reduced the system failure rate to 5% while using either
positional or rotational thresholds constituting a 47.5% im-
provement over base DeformerNet while still allowing au-
tonomous manipulation in approximately 78.9% of the trials
for position, 57.9% of the trials for rotation, and 52.6% of the
trials for both. Figure 4 shows examples of both successful
and failed manipulations with and without human intervention.
We see that we are successfully able to enable autonomous
tissue manipulation when appropriate while preventing system
failures by requesting human intervention when necessary.

d) Task Generalization: We also tested our method’s
ability to generalize to new tasks by applying our thresholds
to a bimanual shape-servoing task. In this task, the left patient-
side manipulator of the dVRK is always teleoperated by the
human while the right patient-side manipulator is controlled
via our DeformerNet ensemble. The human operator is given
control of the automated arm when an uncertainty threshold is



Fig. 4: Example soft-tissue manipulations with and without requests
for human intervention. The images show the view of the RealSense
camera at subsequent steps of the trajectory. The point clouds show
the corresponding current (black) and goal (red) geometries of the
tissue while the grasp point on the tissue is shown as a blue dot.
(Top) A successful manipulation where human intervention was
not requested. (Middle) A successful manipulation where human
intervention was requested. (Bottom) A failed manipulation where the
trajectory from the middle panel is allowed to complete autonomously
instead of having a human intervene.

violated. Similarly to the single-arm task, example bimanual
soft-tissue manipulations can be seen in Fig. 5. Across 10 trials
with positional interventions, we achieved a 100% system
success rate with a false positive rate of 66.6% and a false
negative rate of 0% (7 requested interventions while only 1
intervention was necessary). Using rotational interventions, we
again achieved a 100% system success rate with 0% false
positive and negative rates (1 requested intervention in a case
where it was necessary). These results show that while our
rotational threshold was transferable to this new task with
no necessary recalibration, our positional threshold is overly
conservative in this new task and would need to be recalibrated
to achieve similar performance to the single-arm task.

VII. CONCLUSION

Robot learning for the autonomous completion of surgi-
cal tasks is a particularly challenging domain due to data

Fig. 5: Example bimanual soft-tissue manipulations. The images
show the view of the RealSense camera at subsequent steps of
the trajectory. The point clouds show the corresponding current
(black) and goal (red) geometries of the tissue while the grasp
point on the tissue is shown as a blue dot. The left patient-side
manipulator of the dVRK is always teleoperated by a human while
the right patient-side manipulator is autonomously controlled by
DeformerNet; however, the right patient-side manipulator can request
a human to teleoperate when needed. (Top) A successful manipulation
where human intervention was not requested. (Middle) A successful
manipulation where human intervention was requested. (Bottom) A
failed manipulation where the trajectory from the middle panel was
instead allowed to complete the task autonomously despite requesting
human intervention.

scarcity, out-of-distribution observations, and safety concerns.
To address this challenge, we introduce a novel framework
for the safe implementation of an autonomous soft-tissue
manipulation system for uncertainty quantification and early
failure detection. We apply our method on the dVRK surgical
robot system for a soft-tissue manipulation task using both in-
and out-of-distribution ex-vivo tissue types and demonstrate
with high accuracy the ability to request interventions in cases
that would have otherwise failed. In the future we plan to
study bi-directional human-robot hand-offs during soft tissue
manipulation as well as study when humans feel confident
ceding control back to the robot and how to visualize model
uncertainty to enhance interpretability and trust.
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