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Abstract

Aligning pretrained language models (LMs) is a complex and resource-intensive
process, often requiring access to large amounts of ground-truth preference data and
substantial compute. Are these costs necessary? That is, it is possible to align using
only inherent model knowledge and without additional training? We tackle this
challenge with ALIGNEZ, a novel approach that uses (1) self-generated preference
data and (2) representation editing to provide nearly cost-free alignment. During
inference, ALIGNEZ modifies LM representations to reduce undesirable and boost
desirable components using subspaces identified via self-generated preference pairs.
Our experiments reveal that this nearly cost-free procedure significantly narrows the
gap between base pretrained and tuned models by an average of 31.6%, observed
across six datasets and three model architectures. Additionally, we explore the
potential of using ALIGNEZ as a means of expediting more expensive alignment
procedures. Our experiments show that ALIGNEZ improves DPO models tuned
only using a small subset of ground-truth preference data.

1 Introduction

Large language model (LMs) alignment involves the use of complex and expensive pipelines [1, 2, 3].
Usually at least two critical components are needed: (1) collecting human preference data, and (2)
modifying pretrained model weights to better align with these preferences. Some pipelines involve
more complexity (e.g., RLHF trains a reward model on the human preference data and uses it for
PPO-based model optimization). Such approaches face substantial scalability challenges: collecting
human preference data is costly and time-intensive, and as model sizes increase, the computational
requirements for fine-tuning are likely to become prohibitive.

A prospective way to bypass the need for human preference data is to exploit knowledge already
contained in the pretrained model weights. This idea is motivated by evidence suggesting that
alignment merely reveals knowledge and capabilities acquired during pretraining [4, 5]. This notion
has led to a growing body of literature achieving impressive results using signal contained in pretrained
models for fine-tuning [6, 7, 8, 9], largely or totally sidestepping human annotation.

Next, to achieve free alignment, we must additionally obviate the need for fine-tuning. Instead, we
propose to replace it with a form of representation editing that does not require computing gradients
or even optimizing a proxy loss at all. Existing representation editing approaches [10, 11, 12] rely
on access to ground truth data, which does not account for the unique challenges of using only
signals from pretrained models. These signals are often noisier and more limited compared to
human-annotated data [13, 14, 15, 16], necessitating a more tailored approach.

This work puts together these two pieces to explore the feasibility of free self-alignment. We align
pretrained LMs to human preferences using only the knowledge from the model itself, without
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additional training or fine-tuning. We introduce ALIGNEZ, a novel approach designed for this setting.
Using the pretrained model’s own generated preference pairs, ALIGNEZ identifies the subspaces
within the model’s embedding spaces that correspond to helpful and non-helpful responses. During
inference, we surgically modify the model’s embeddings by boosting the components from the helpful
subspaces and neutralizing those from the non-helpful ones.

With this nearly cost-free procedure, we effectively narrow the performance gap between pretrained
and aligned models by 31.6% across three model architectures and six datasets. Additionally, we
explore the potential of ALIGNEZ to expedite more expensive alignment processes. Our experimental
results demonstrate that ALIGNEZ improves upon models trained using DPO [3] with only a small
subset of ground-truth preference data.

Our work suggests that models may be effectively steered, without additional training or
supervision. Using the strategies we have developed, we envision the possibility of new
techniques that go far beyond alignment as it exists today, tackling such areas as fine-grained
and real-time personalization, that are currently beyond the reach of existing methods.

2 ALIGNEZ: (Almost) Free Alignment of Language Models

We are ready to describe the ALIGNEZ algorithm. First, we query a base pretrained LM to generate
its own preference data. Using this self-generated data, the identify the subspaces in the LM’s
embedding spaces that correspond to helpful and harmful directions for alignment. During inference,
we modify the LM embeddings using these identified subspaces, steering the model to generate
outputs that better align with human preferences.

2.1 Self-generated Preference Data

First, we extract the human preference signal from the base LLM by querying it to generate its own
preference data. Given a dataset D of N queries, for each query qi, we first ask the base LM (denoted
as ω) to describe characteristics of answers from a helpful agent (chelpi ) and a malicious agent (charmi ).
Next, we pair each query with its corresponding characteristics: (chelpi , qi) and (charmi , qi). We then
prompt the LM to generate responses conditioned on these characteristics, resulting in self-generated
preference pairs for each query, denoted as (phelpi , pharmi ). By applying this procedure to all N
samples in the dataset, we obtain self-generated preference data pairs Phelp and Pharm. Note that
we do not perform any prompt tuning, instead relying on a fixed set of prompt templates.

Critically, we note that the base models for generating the preference data are not aligned or
instruction-tuned. Consequently, the resulting preference pairs may not always align with the
conditioning characteristics, introducing noise into the self-preference data. To address this challenge,
we tailor the embedding intervention in ALIGNEZ to accommodate this condition.

2.2 Finding Preference Directions

Next, using the noisy self-generated preference data, we identify the directions in the model embed-
ding space that correspond with human preferences. These directions, represented as vectors θ ∈ Rd

within ω’s latent space, can either (i) align with the helpful preferences Phelp, facilitating alignment
of the model’s generated sentences, or (ii) align with the harmful preferences Pharm, leading to
adverse effects on alignment [17] [18]. We denote these directions as θhelp and θharm, respectively.

SVD-Based Identification. Our approach for identifying these directions involves using singular
value decomposition (SVD) on the preference data embeddings. We extract the first eigenvector θ.
Intuitively, we view θ as the direction that best captures the underlying concepts. Let Φl represent
the function that maps an input sentence to the LM embedding space at layer l. For each pair
(phelpi , pharmi ), we obtain their corresponding representations Φl(p

help
i ) and Φl(p

harm
i ), which we

abbreviate as Φhelp
i,l and Φharm

i,l , respectively. To begin, we construct an embedding matrix for helpful

preferences, denoted as Hhelp
l , using these representations: Hhelp

l :=
[
Φhelp

i,l

∣∣∣. . .∣∣∣Φhelp
N,l

]T
. Similarly,
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Figure 1: ALIGNEZ Relative Improvement%. The y-axis shows the Relative Improvement%.
Values are recorded across six datasets (x-axis). We observe substantial improvements in the base
models, resulting in a narrower performance gap between the base models and the aligned versions.

we create the harmful preferences embedding matrix Hharm
l . Then, we proceed to identify the helpful

direction as the first eigenvector of Hhelp
l , obtained by SVD; θharml is defined similarly.

2.3 Alignment with Embedding Editing.

With the harmful and helpful subspaces θharml and θhelpl identified, we proceed to modify the LM
embeddings during inference. Given xl as the output of the MLP of layer l, the ALIGNEZ editing
process proceeds as follows:

x̂l ← xl −
⟨xl, θ

harm
l ⟩

⟨θharml , θharml ⟩
θharml and x̂l ← x̂l +

⟨x̂l, θ
help
l ⟩

⟨θhelpl , θhelpl ⟩
θhelpl .

In the first step, we use vector rejection to remove the influence of θharml from xl. In the second step,
we adjust the embedding by steering it towards the helpful direction θhelpl . We perform the edit at
every generation time-step.

3 Experiments

We evaluate the following claims about ALIGNEZ.

• Reduces alignment gap (Section 3.1). ALIGNEZ significantly reduces the performance gap
between the base model and aligned model without any additional fine-tuning and access to
ground-truth preference data.

• Expedites alignment (Section 3.2). ALIGNEZ expedites DPO alignment by improving models
that have been DPOed on only a small subset of ground-truth preference data.

Metrics. We follow the standard automatic alignment evaluation, using GPT-4 as a judge to compare
a pair of responses [19] and calculate the win rate (Win %) and lose rate (Lose %). To ensure a more
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% Net Win% (↑)
E H F D C Avg.

1% 2.1 4.7 2.4 3.6 2.0 3.0
5% 0.0 4.6 2.1 2.3 3.5 2.4
10% 2.9 3.1 1.0 2.0 3.0 2.4
25% 0.0 0.5 2.8 -0.7 2.1 0.9

Table 1: The column % is the percentage of data
used for DPO training.

Figure 2: ALIGNEZ improvement over DPO
models diminishes with increasing training size.

nuanced and unbiased evaluation, we employ the multi-aspect evaluation technique proposed in [5].
Rather than evaluating the overall quality of the generated text, we ask GPT-4 to assess it across five
aspects: Engagement (E), Helpfulness (H), Factuality (F), Depth (D), and Clarity (C). We use the
same prompt template as [5] and measure the following metrics:

1. Net Win% = Win% − Lose%: A model that produces meaningful improvement over the base
model will exhibit a higher win rate than lose rate, resulting in a positive net win percentage.

2. Relative Improvement%:
Net Win ours− base

Net Win aligned− base
× 100

This metric evaluates how much ALIGNEZ improves alignment of the base pretrained model, relative
to the aligned model. A value of 0% means ALIGNEZ offers no improvement over the base model,
while 100% means ALIGNEZ matches the performance of the aligned model. Positive percentages
between 0% and 100% indicate that ALIGNEZ narrows the performance gap between the base and
aligned models, and a negative percentage indicates a performance decline from the base model.
While we do not expect ALIGNEZ to consistently outperform the aligned models, we anticipate a
positive Relative Improvement% metric. This would indicate that ALIGNEZ effectively brings the
base model’s performance closer to that of the aligned model without incurring additional costs.

3.1 Reducing Alignment Gap

Setup. All experiments use frozen LLM weights, with no additional training of these weights.

Results. Our results are shown in Figure 1. We observe consistent positive Relative Improvement%
across datasets and model architectures. This validates our claim that ALIGNEZ reduces the
alignment gap between base models and their aligned versions, occasionally even surpassing the
performance of the aligned models. Remarkably, these improvements are achieved without access to
ground truth preference data or any additional fine-tuning. In cases where ALIGNEZ does not yield
improvements, such as with the Llama2 model on the vicuna dataset, we investigate the essential
conditions for improvement in Appendix A.6.2.

3.2 Expediting Alignment

Setup. We perform DPO fine-tuning on the Mistral-7b-base model using the UltraFeedback-
binarized dataset [20, 21] and do evaluation on the test set.

Results. Our results are shown in Table 1. ALIGNEZ enhances the alignment of models tuned
using DPO on a small subset of ground truth preference data, indicated by the positive Net Win%.
This confirms our claim that ALIGNEZ expedites DPO alignment. In Figure 2, we observe that
the improvement provided by ALIGNEZ diminishes as the percentage of training data increases,
which is expected since the benefit from DPO itself grows with more training data. This result
highlights ALIGNEZ’s potential to provide additional alignment gains when only a limited amount
of ground-truth preference data is available.
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A Appendix / supplemental material

A.1 Glossary

A.2 Dataset Details

To evaluate ALIGNEZ’s generalization capability across diverse tasks and topics while keeping
evaluation affordable, we use the helpfulness slice of the just-eval-instruct dataset [5]. This
dataset is a diverse collection of queries created by sampling and merging several datasets. Specifically,
we use the helpfulness slice, which combines (1) AlpacaEval [22] (including helpful-base,
koala, vicuna, open-assistant (oasst), and self-instruct), and (2) MT-Bench [19]. We
report ALIGNEZ’s performance on these individual slices.
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Symbol Definition

D Dataset of queries
qi Sample query
ω Language Model
l Language model layer index
chelpi Characteristic of helpful answer
chelpi Characteristic of harmful/unhelpful answer
phelpi Helpful preference sample
Phelp Self generated helpful preference data
Pharm Self generated harmful/unpreferred preference data
θhelp Subspace of helpful preference samples
θharm Subspace of harmful/unpreferred preference samples
Φhelp

i,l Embedding of phelpi in layer l of ω, abbreviation of Φl(p
help
i )

Φharm
i,l Embedding of pharmi in layer l of ω, abbreviation of Φl(p

harm
i )

Hhelp
l Embedding matrix stacked from Φhelp

i,l

Hharm
l Embedding matrix stacked from Φharm

i,l

V0,∗ First row of the right unitary matrix
xl output of MLP at layer l
x̂l MLP output after ALIGNEZ embedding edit

Table 2: Glossary of variables and symbols used in this paper.

A.3 DPO Training details

Dataset DPO experiment were trained on binarized UltraFeedback dataset [20, 21].

Computing resources Experiment training on 1%, 5%, 10% and 25% of the dataset were run on
an Amazon EC2 Instances with eight Tesla V100-SXM2-16GB GPUs.

Hyperparameters The hyperparameters we used consist of 1 training epoch, a gradient accumula-
tion step of 1, a learning rate of 5e − 5, a max grad norm of 0.3, a warmup ratio of 0.1 (based on
[23]), a precision of bfloat16, a memory saving quantize flag of "bnb.nf4", a learning rate scheduler
type of cosine, and an optimizer of AdamW [24] (based on [25]). We applied PEFT [26] method to
model training with hyperparameters of a r of 256, a α of 128, a dropout of 0.05 and a task type of
causal language modeling (based on [23, 25]). A batch size of 16 is used to train the 1%, 5%, 10%
and 25% data experiment. A batch size of 20 is used to train the full data experiment.

A.4 Layer Selection Pseudocode

Below is the pseudocode for layer selection. We select layers that have low average LCCS , by
heuristically select the layers before the running mean increases significantly.

def s e l e c t _ l a y e r s ( l a y e r s _ l o s s ) :
s o r t e d _ i d x = np . a r g s o r t ( l a y e r s _ l o s s )
l a y e r s _ l o s s _ s o r t e d = l a y e r s _ l o s s [ s o r t e d _ i d x ]
running_mean = [ ]
f o r i in range ( 1 , l e n ( s o r t e d _ i d x ) ) :

l o s s e s = l a y e r s _ l o s s _ s o r t e d [ s o r t e d _ i d x [ : i ] ]
running_mean . append ( np . mean ( l o s s e s ) )

d i f f s = np . d i f f ( np . a r r a y ( running_mean ) )
s t o p _ e d i t _ i d x = np . argmax ( d i f f s ) . f l a t t e n ( ) [ 0 ]
l a y e r s _ t o _ e d i t = l a y e r s _ l o s s _ s o r t e d [ : s t o p _ e d i t _ i d x ]
re turn l a y e r s _ t o _ e d i t
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Dataset Model Net Win% (↑)
E H F D C Avg.

Vicuna Llama2-base 10 3 3 7 10 6.6
Koala Llama3-base 8 12 1.3 5.3 6.7 6.6

Table 3: Compatibility with prompting-based methods.

Figure 3: Net win% (blue, top row) correlation with self-generated data quality (orange, bottom row).
Left to right: Mistral, Llama2, Llama3.

A.5 Prompt Template

Following is the prompt template used to query the base LM to generate preference samples:

Generating helpful samples characteristics: [QUERY]. You are a helpful assistant.
Your answer to this query should:

Generating harmful/unpreferred sample characteristics: [QUERY]. Pretend you are a
malicious and useless assistant. Your answer to this query should:

A.6 Extra Experimental Results

A.6.1 Compatibility with Prompting Techniques

We also investigate the adaptability of ALIGNEZ when combined with other cost-effective alignment
techniques, such as prompting [5].

Setup. We use the URIAL prompt proposed in [5] as a prefix for every query and record the
performance both with and without ALIGNEZ applied. This prompt consists of manually crafted
set of in-context learning examples designed to mimic the style of high-performing models such as
ChatGPT and other advanced aligned LLMs.

Results. Table 3 demonstrates that ALIGNEZ enhances performance beyond what is achieved by
using the prompting technique alone, as indicated by the positive Net Win%. This confirms our
claim that ALIGNEZ is compatible with prompting techniques and shows its versatility to be
used in combination with other cost-effective alignment methods.
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A.6.2 When is Self-Alignment Possible?

We study whether the quality of self-generated data can predict if using ALIGNEZ leads to model
improvement. To assess the data quality, we measure the generalization ability of classifiers trained
on the self-generated data.

Setup. We train logistic regression classifiers on the embeddings of the self-generated data to
predict the labels associated with the data and record the test performance. Additionally, we use an
off-the-shelf sentence embedder to remove the influence of model embedding quality. The reported
values are averaged across five independent runs.

Results. Figure 3 shows that the average Net Win% achieved by ALIGNEZ generally correlates
with the adjusted classifier accuracy. This supports our claim that self-generated data provides a
signal about the model’s ability to self-align. This correlation is particularly strong for the Mistral
model. For the Llama3 and Llama2 models, the trend is mostly consistent, with some exceptions
being the koala dataset on Llama3 (leftmost point) and the self-instruct dataset on Llama2
(rightmost point).

Extending this approach may offer a quick and effective method for selecting data suitable for
alignment. This is crucial, as extensive research has shown that the composition and quality of
training data are critical to the resulting model’s performance [27, 28, 29].
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