HiFC: High-efficiency Flash-based KV Cache
Swapping for Scaling LLM Inference

1,2 3%

Inho Jeong Sunghyeon Woo!?* Sol Namkung! Dongsuk Jeon'f
ISeoul National University 2SK hynix *NAVER Cloud

Abstract

Large-language-model inference with long contexts often produces key—value
(KV) caches whose footprint exceeds the capacity of high-bandwidth memory on
a GPU. Prior LLM inference frameworks such as vLLM mitigate this pressure
by swapping KV cache pages to host DRAM. However, the high cost of large
DRAM pools makes this solution economically unattractive. Although offloading
to SSDs can be a cost-effective way to expand memory capacity relative to DRAM,
conventional frameworks such as FlexGen experience a substantial throughput
drop since the data path that routes SSD traffic through CPU to GPU is severely
bandwidth-constrained. To overcome these limitations, we introduce HiFC, a novel
DRAM-free swapping scheme that enables direct access to SSD-resident memory
with low latency and high effective bandwidth. HiFC stores KV pages in pseudo-
SLC (pSLC) regions of commodity NVMe SSDs, sustaining high throughput under
sequential I/O and improving write endurance by up to 8x. Leveraging GPU
Direct Storage, HiFC enables direct transfers between SSD and GPU, bypassing
host DRAM and alleviating PCle bottlenecks. HiFC employs fine-grained block
mapping to confine writes to high-performance pSLC zones, stabilizing latency and
throughput under load. HiFC achieves inference throughput comparable to DRAM-
based swapping under diverse long-context workloads, such as NarrativeQA, while
significantly lowering the memory expansion cost of a GPU server system by 4.5 x
over three years.

1 Introduction

Large language models (LLMs) have demonstrated state-of-the-art performance across a wide range
of tasks, including machine translation, code generation, and open-domain question answering
[, 12413114} 15]]. However, LLM services are often hindered by significant memory requirements due to
the storage of key—value (KV) caches [6}[7, 18, 9]. The size of this KV cache grows proportionally
with both the number of layers and the input sequence length, leading to substantial memory usage in
state-of-the-art LLMs. This issue becomes particularly pronounced in long-context scenarios, where
the cumulative KV cache can easily exceed the capacity of high-bandwidth memory (HBM) on a
GPU, resulting in out-of-memory errors or degraded throughput.

To overcome GPU HBM capacity limits, several LLM inference frameworks [7} 10, 11} [12]] swap or
offload KV cache blocks to host DRAM. However, provisioning and maintaining large DRAM pools
requires substantial capital investment, increases power consumption, and demands more intensive
cooling, ultimately inflating the cost for long-context inference deployments.

Attempts to leverage lower-cost, higher-capacity NVMe SSDs for KV cache offloading have also
been explored recently [[7, (10} [11} [13]. However, since GPUs lack a native NVMe interface, every

*Equal contribution.
"Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

DRAM Buffer GPU(HBM) KV Cache Blocks Performance and swap count comparison

------------------ 1 160 |
r - 160
% 140 |
Request 3 c 140
Q 120 -
Request_2 éot 120 g
100 {
Allocate & 1000
Request 1 free KV blocks 8 80 :
Request_0 -g_ o 80 g
Swap out =) 1 i : 60
HiFC KV Cache Blocks Seq_0 3 .| HiFC Ewapping 0
E 40 DRAM swapping 20
< —— HiFC swap count
5 =

~
o o

—=— DRAM swap count | | 20
10 20 30 40 50 60 70 80 90 100
Batch size

(a) HiFC handles GPU-to-Flash KV cache eviction and prefetch (b) Comparisons of throughput and total swap
operations without involving DRAM, enabling efficient block- counts between HiFC and DRAM swapping
level swap management during decoding. systems under increasing batch sizes.

Figure 1: HiFC workflow and performance. (a) HiFC decoding workflow: (1)—(3) prompts are
tokenized and sequences are allocated KV-cache blocks in HBM; (4) decoding produces additional
KV entries; (5) under HBM memory pressure, the scheduler selects a victim sequence and swaps
the victim sequence KV cache from HBM to Flash cache (FC); (6) the freed GPU KV blocks are
immediately reallocated to the next active sequence; (7) decoding of other sequences proceeds without
blocking. (b) Comparison of throughput and total swap counts between HiFC and DRAM
swapping systems under increasing batch sizes, showing that HiFC achieves comparable performance
to DRAM swapping.

Flash I/O transaction must traverse host DRAM and the PCle fabric, creating a severe bandwidth
bottleneck [13]]. Moreover, frequent, non-sequential writes increase Write Amplification (WA) [14],
which severely accelerates Flash wear and undermines device endurance under sustained operations.

In this paper, we propose HiFC (High-efficiency Flash Cache), a novel DRAM-free paradigm for
LLM inference that reduces the memory expansion cost without sacrificing inference throughput.
HiFC efficiently offloads the large volume of KV cache generated during LLM inference to Flash-
based storage, enabling effective reclamation of GPU HBM and improving sequence-level parallelism.
Fig. [Ta]sequentially illustrates how HiFC is utilized when the HBM capacity is insufficient during the
decoding phase. Specifically, HiFC leverages pseudo-SLC (pSLC) regions in Flash to deliver stable
high throughput under sequential I/O workloads, while simultaneously improving write endurance,
which is measured in total bytes written (TBW), by up to 8 x. HiFC further employs GPU Direct
Storage (GDS) [[15] to bypass host memory and eliminate PClIe bottlenecks. Finally, HiFC applies
fine-grained block mapping to confine writes to high-performance SLC zones. The proposed DRAM-
free architecture achieves comparable throughput even when batch size increases (Fig. [Tb) while
reducing memory expansion cost by 4.5, providing a scalable solution for demanding long-context
inference benchmarks such as LongBench [16]].

The main contributions of this work are as follows:

1. DRAM-Free Design. We show that large-scale LLM inference can be executed without
relying on host DRAM buffers for KV cache swapping, significantly reducing both upfront
memory provisioning costs and sustained system-level power consumption.

2. Optimized GPU-SSD Direct Swapping. By leveraging GDS and pSLC optimizations,
we enable direct and efficient data transfers between a GPU and a Flash-based KV cache,
bypassing the bottlenecks of host CPU and DRAM-based buffering.

3. Seamless Integration with vVLLM Framework. We demonstrate the successful integration
of HiFC into the vLLM inference engine. Experimental results confirm that our method can
be adopted in real-world frameworks without requiring architectural changes or compromis-
ing system stability, achieving a 4.5 x lower memory expansion cost and accommodating
4 x more requests without performance degradation compared to DRAM-based swapping.

2 Background

2.1 Importance of KV Cache Management in LLM Service

Inference in decoder-based LLMs consists of two distinct phases: the prefill phase and the decode
phase [17]]. In the prefill phase, the model processes the entire input prompt in parallel. At each
self-attention layer, the key and value vectors for all prompt tokens are stored, denoted as the KV
cache. In the decode phase, the model generates one token at a time. For each decoding step, cached
key and value vectors from prior tokens are reused to compute self-attention, enabling efficient
auto-regressive generation without reprocessing the full sequence at every step.

While this cache-based mechanism significantly improves computational efficiency during decoding,
a substantial amount of memory is required to store the KV cache. Specifically, the memory footprint
of the KV cache scales proportionally with the batch size, hidden size of the model, and the input
sequence length. As a result, scenarios involving large batch sizes or long input contexts can lead to
excessive memory usage and potential out-of-memory failures. For instance, serving the DeepSeek-
R1 model [5] with merely a few hundred tokens per request can consume hundreds of gigabytes
of GPU memory. Therefore, efficient KV cache management is critical for enabling scalable and
high-throughput LLM inference, particularly in long-context or multi-request serving environments.

2.2 Existing KV Cache Management Techniques

Early LLM serving systems managed the KV cache by pre-allocating a single contiguous GPU buffer
sized for maximum context length of each request. Since real sequences are usually shorter, this
approach suffers severe internal fragmentation; empirical reports show that only 20—-40% of the
reserved KV cache space contains useful data, while the rest is wasted [6]. Two complementary
techniques have emerged to overcome this limitation:

Offloading moves model weights or KV tensors out of GPU HBM to lower-tier devices (e.g., host
DRAM or SSD) and keeps them there for many decoding steps [7, 10} 18, 19,20}, 21} [22]]. FlexGen [7]
exemplifies this strategy: it treats GPU, CPU, and NVMe storage as a unified hierarchy, offloads
seldom-used layers or KV blocks, and compresses them to 4 bits to amortize I/O cost. This allowed a
single 16 GB GPU to run a 175B-parameter model at reasonable throughput. The trade-off is higher
latency whenever disk access is frequent, which can be unacceptable for interactive workloads.

Swapping, on the other hand, evicts and restores data on demand in small pages or sequence-level
blocks [16, 123} 124]]. For instance, PagedAttention in vLLM [6] splits KV cache of each request into
uniform blocks of 16—128 tokens. When HBM fills up, selected blocks are temporarily moved to
DRAM and fetched back as soon as the request resumes. Uniform page size drives internal and
external fragmentation below 5%, and the scheduler caps the swapped volume at the HBM cache
size to bound latency. Consequently, vLLM can serve many concurrent requests with long contexts
while maintaining low tail latency. In addition, vLLM integrates PagedAttention with block-level
KV virtualization and a BlockTable to eliminate fragmentation [10]. During decoding, an LRU-plus
priority policy selects victim sequences for asynchronous swap-out to DRAM without pausing GPU
execution [25]. A prefetch queue performs swap-in with a single synchronization before kernel
launch, enabling a pipelined Running—Swap-Out—Swap-In design that sustains high tensor utilization
and throughput [26]. A broader overview of approaches using Computational Storage Devices
(CSDs) [13] and techniques targeting larger-scale scenarios in KV cache management [27, 28] is
provided in Appendix [A]

3 HiFC Architecture

3.1 Motivation and Design Challenges of DRAM-Free Systems

As discussed in Section[2.2] offloading KV caches to host DRAM or SSD [6l[7]] is a common approach
to alleviating GPU memory pressure during long-context LLM inference. While offloading KV cache
blocks to host DRAM can mitigate the limited capacity of GPU HBM, this approach incurs high
operational cost and remains insufficient for memory-intensive workloads such as long-sequence
processing or agentic Al, where a large amount of KV cache is required. Alternatively, offloading
to commodity NVMe SSDs can reduce infrastructure cost and provide better memory scalability,

KV Block Manager
________ Scheduler Worker(GPU)
. i >
: i
: i Running / Cache Engine
! 1 Swapped GPU-FC Swapping Engine

v , DDR DDR
| T
CPU Block FC Block ﬁ
Allocator Allocator ssSD 5‘*‘)
lash cac

(F| he)

Figure 2: HiFC extends Block Manager of vLLM by integrating a FC block allocator, enabling
direct GPU-SSD KV cache swapping without relying on host DRAM. The scheduler manages KV
block placement based on sequence execution states, and the CUDA-based cache engine leverages
GDS to provide an optimized data path between SSD and GPU HBM.

enabling support for larger KV caches and longer contexts. However, this strategy introduces
severe throughput degradation, as each I/O must still traverse host DRAM and the PCle bus. Under
bandwidth-limited conditions, this indirect data path significantly impairs decoding performance [[13].

These limitations motivate the design of a DRAM-free offloading architecture that bypasses interme-
diate memory staging and enables direct, high-bandwidth data transfer between GPUs and SSDs. This
architecture avoids cumulative latency and bandwidth bottlenecks inherent in existing approaches,
while simplifying the overall system design and reducing operational cost.

However, realizing this architecture faces several critical technical challenges. First, SSDs typically
offer lower I/O throughput than DRAM, particularly under fragmented or random access patterns,
making it difficult to sustain high performance during inference. Second, Flash memory suffers from
limited endurance; frequent small writes increase WA and accelerate device wear-out, degrading
long-term reliability. Third, traditional offloading paths rely on CPU DRAM as an intermediate
buffer, which introduces additional PCle transfers and redundant memory copies, leading to increased
latency and inefficient resource utilization.

3.2 HiFC: High-efficiency DRAM-Free Flash Cache Architecture

In Section[3.1} we analyzed the necessity and challenges of building DRAM-free systems. In this
section, we propose HiFC, a first DRAM-free design that eliminates the need for host DRAM in
KV cache management. HiFC enables a scalable and cost-effective DRAM-free inference stack
without compromising throughput or reliability. HiFC achieves these improvements through three
tightly integrated components: (1) a Flash cache (FC) block allocator for direct SSD-based KV cache
allocation, (2) a Flash-aware block management algorithm to maximize the performance and lifespan
of the Flash storage, and (3) a GDS-accelerated cache engine for efficient KV cache swapping
between GPU and SSD.

Flash Cache Block Allocator. HiFC extends the vLLM memory allocator by introducing FC
blocks alongside the existing GPU and CPU blocks. During the decoding phase, when GPU memory
is exhausted, existing KV cache blocks are swapped out to FC blocks to free up memory. These
FC blocks are managed by the FC block allocator, which applies a block append policy to generate
sequential I/O workloads on the SSD. All blocks are of a fixed size (e.g., 32—128 tokens) to maintain
compatibility with block-level scheduling of vVLLM and minimize fragmentation.

Flash-Aware Block Management. Unlike DRAM or GPU memory, SSDs are highly sensitive to
random access and block reuse patterns. To address this, the FC block allocator employs a Flash-
aware block allocation strategy that ensures the sequential physical placement of KV blocks, thereby
reducing internal fragmentation and minimizing WA. Specifically, the module allocates the blocks
evicted to Flash in physical order and manages them with a simple append policy that avoids reusing
stale logical addresses. This sequential access pattern improves throughput and significantly extends

SSD lifespan [29], achieving a WA factor below 1.02, compared to 1.4 in conventional SSD usage
scenarios. These results are validated in Section

GPU-Flash Cache Swapping Engine. To maximize throughput and eliminate intermediate buffer-
ing, HiFC directly transfers GPU-resident KV tensors to SSD using GDS [[15] with byte-level offsets
following the scheme in Appendix [B|for efficient I/O dispatch. To this end, we integrate a Flash
cache swapping functionality into the vLLM cache engine. To further enhance 1/O efficiency, HiFC
leverages multi-threaded 1/0O scheduling (up to 16 threads) [L0] and the direct reuse of tensors as
4KB-aligned GDS buffers [30]. This design sustains a throughput of over 4.7 GiB/s in the pSLC
region of SSD, ensuring reliable KV cache swapping operations. As a result, KV swapping with
HiFC achieves LLM inference performance comparable to that of DRAM-based approaches, which
is validated by our results in Section[5.1]

HiFC Architecture and Operation. This combination of techniques establishes an efficient and
scalable DRAM-free memory hierarchy, balancing cost, capacity, and performance for long-context
LLM inference. At its core, HiFC replaces the CPU block allocator used by vLLM with a dedicated
Flash Cache block allocator, which incorporates Flash-aware block management. This enables a
dynamic swapping mechanism: during the decoding stage, when GPU memory becomes scarce, the
scheduler identifies a victim sequence group and instructs the worker to initiate a swap-out. The
cache engine of worker executes this operation, utilizing a custom CUDA kernel to transfer KV cache
data directly to SSD via GDS for maximum throughput. Once sufficient GPU memory is reclaimed,
the scheduler directs the worker to swap the swapped sequence group back into GPU memory. As
illustrated in Fig. 2] this entire data flow facilitates direct GPU-HIiFC KV cache transfers, completely
bypassing the host DRAM.

4 Memory Expansion Cost Estimation

To evaluate the long-term cost-effectiveness of different KV cache storage mediums, we compute the
memory expansion cost over a 3-year deployment using Eq. (I)), which is based on the Total Cost
of Ownership (TCO) model. The cost consists of two components: the capital expenditure (CapEx)
required to provision the storage capacity, and the operational expenditure (OpEx) determined by
sustained power consumption, datacenter power usage effectiveness (PUE), and regional electricity
cost, with all costs denominated in USD.

EnergyCost
MemExpCost = CapEx + (Power X 24 % 365 x Years x PUE x nergyos) (1)

1000

Table 1: Three-year memory expansion cost comparison across memory types.

Metric DRAM Enterprise SSD HiFC (ours) | Saving
Capacity 128 GiB 1.92TiB 1 TiB -
CapEx $433 $270 $118 3.6x
Power 64 W 82W 5W 12.8x
3-year Cost $614 $303.6 $136 4.5%

Table [T summarizes the 3-year memory expansion cost for three KV cache storage configurations:
DRAM (DDR4), enterprise-grade TLC-based SSD, and HiFC (pSLC SSD). The HiFC configuration
achieves a 3.6 x reduction in capital expenditure and a 12.8 x lower power consumption compared to
DRAM. This results in a total memory expansion cost of only $136, which is 4.5 x lower than the
DRAM-based approach. Further details, including projections for future price changes, are provided
in Appendix [C Directly utilizing the TLC region of commercial SSDs introduces performance
degradation and reduced endurance, leading to cost-inefficiency. HiFC addresses this problem by
selecting commercial SSDs that support a pSLC region and operating exclusively within that region,
which constitutes 20% of the total capacity in the selected SSDs. This approach extends the drive’s
lifespan by up to 8 x and ensures stable performance. The details of the lifespan are provided in

Appendix D]

5 Experiments

To ensure consistent and accurate performance benchmarking, we first selected the DeepSeek-
R1-Distill-Qwen-32B (DS-Qwen-32B) model [5) [31] and conducted measurements under fixed
configurations. To validate the robustness and general applicability of HiFC, we then extended
our evaluation to include diverse models and datasets, with these results presented in Section @
In particular, we leveraged the micro-benchmarking utilities provided by the vLLM framework to
construct precise execution scenarios and evaluate inference performance quantitatively. The detailed
hardware, software, and workload configurations for all experiments are provided in Appendix [E]

5.1 Performance and KV Cache Swapping Comparison

140 50

I 0
& 120 20 @ 80
c 5 40
Li100 = e .
] 153 O 60 3
s e 300
£ o =
) v e v
3 [} 3 [}
Q 60 10 Q.40 ©
< ; _g’ 20 ;
g’ 40 HiFC swapping n 3 (7]
2 DRAM swapping 5 © 20 10
£ 20| —— HiFC swap count <
[l —s=— DRAM swap count =

° 1000 2000 3000 5000 10000 15000 ° 0 1000 2000 3000 5000 10000 15000 °

Input sequence length Output sequence length
(a) The output sequence length is fixed at 1k. (b) The input sequence length is fixed at 1k.

Figure 3: Performance and swap count comparison of HiFC and DRAM swapping on DS-Qwen-
32B with a batch size of 10. (a) As input length grows, throughput for both methods decreases, while
swap counts peak around 3k tokens. Both methods show very similar trends. (b) As output length
grows, throughput decreases at longer sequence lengths (after 5k), while the swap count steadily
increases.

We trigger swap operations by progressively increasing both input and output sequence lengths and
compare their impact on system performance. Fig. [3|presents a comparative analysis of KV cache
swap performance between HiFC and DRAM under various input and output configurations, where
the throughput achieved by both memory types remains comparable. In Fig.[3a] as the input length
increases, more KV cache is generated during the prefill phase, but fewer sequences remain active
in the decoding stage, reducing effective concurrency and thus throughput. This also leads to fewer
swap events.

In contrast, Fig. [3bldemonstrates that increasing output length expands KV cache during the decoding
phase, allowing for higher concurrency initially. However, as output grows, swap activity surges,
while throughput gradually decreases after Sk tokens. Even under this I/O-heavy condition, HiFC
achieves near-identical throughput to DRAM, validating its ability to sustain high throughput while
maintaining comparable latency, also confirmed by our detailed analysis in Appendix [F}

5.2 Scalability in Hardware Topologies

To evaluate hardware scalability, we tested HiFC under various GPU-to-SSD ratios. In multi-GPU
setups, the pSLC space for the KV cache is partitioned and assigned evenly to each GPU, mirroring
the cache management strategy in vVLLM. This approach supports flexible deployment topologies,
including:

* 1:1 (GPU:SSD) - A baseline configuration for standard workstations.
* N:1 - Multiple GPUs sharing a single SSD, optimizing for cost-efficiency.

* N:N - Multiple GPUs paired with multiple SSDs (e.g., in a RAID configuration) to maximize
both computational performance and I/O bandwidth.

We evaluated the scalability of HiFC across different GPU-SSD topologies using the DeepSeek-R1-
Distill-Llama-8B model on two A100 GPUs. The workload consisted of a batch size of 200 from the

GovReport dataset (8k input length on average) with a fixed 1k output length. The request size was
calculated based on an average context length of 9k.

Table 2: Performance across different GPU-SSD topologies.

Setting DRAM / pSLC Size Cached requests Throughput (tokens/s)
GPU+DRAM 50GiB 51 172
GPU+SSD (1:1) 200 GiB 206 182
GPU+SSD (2:1) 200 GiB 206 (103 + 103)* 367
GPU+SSD (2:2) 400 GiB 412 (206 + 206)* 364

(*) Using Data Parallelism, each GPU processes an equal number of requests.

The results in Table 2] demonstrate strong scaling capabilities of HiFC. First, it was observed that
the HiFC configuration with GPU:SSD = 1:1 achieves comparable performance to the GPU+DRAM
baseline. We then scaled the system using Data Parallelism (DP). In 2:1 configuration, the batch was
split across both GPUs, achieving a 2 x performance increase relative to the baseline. Notably, no I/O
bottleneck was observed. Finally, the 2:2 configuration, also operating in the DP mode, maintained
this 2 x performance gain while simultaneously doubling the total cached request capacity. This N:N
setup similarly demonstrated no I/O bottlenecks, confirming HiFC’s ability to scale efficiently.

5.3 Robustness across Diverse Models and Datasets

Beyond hardware scaling, we validated performance of HiFC in more realistic scenarios. While
our primary experiments used a fixed model and context length for fair comparison, real-world
deployments must handle diverse workloads. We therefore conducted additional tests using multiple
popular open-source models (DeepSeek-Llama-8B [32]], DeepSeek-Qwen-14B [33]], and Mistral-
7B [34]) and datasets with context lengths ranging from a few hundred to over 18k tokens.

As shown in Table[3] HiFC maintains performance similar to DRAM-based swapping across all tested
models and datasets. The measured throughput difference remains negligible, with HiFC performing
within 1-2% of DRAM, and in some cases even outperforming it. These results underscore the
reliability and efficiency of HiFC in practical, diverse inference environments.

Table 3: Measured throughput (tokens/s) on diverse models and datasets.

Model KV Swap Qasper GovReport NarrativeQA
(avg. 3.6k length) (avg. 8.7k length) (avg. 18.4k length)

DS-Llama-8B DRAM 302.0 172.0 95.1

HiFC 301.3 182.3 95.8
DS-Qwen-14B DRAM 176.4 100.9 46.4

HiFC 175.3 103.5 46.6
Mistral-7B DRAM 281.0 163.0 416.1*

HiFC 275.2 162.0 406.8*

(*) Some requests truncated due to Mistral-7B’s 32k context-length limit.

5.4 Impacts of KV Swapping on Throughput

Fig. @ illustrates how the vVLLM scheduler determines swap events based on the available GPU KV
cache budget. We fixed the batch size to 20 and increased the number of concurrently pipelined
sequences to examine the emergence and impact of swap behavior. Experiments were conducted on
an NVIDIA A100 80 GiB GPU, where 90% of the memory (71 GiB) was allocated: 61 GiB to model
weights, 0.97 GiB to activation buffers, and the remaining 9.1 GiB to KV cache.

Based on our theoretical model, when the context length is 5k tokens, the total KV cache footprint
exceeds 9.1 GiB beyond 8 concurrent sequences, triggering Flash swap operations. As shown in
Fig.[] swap events for both HiFC and the DRAM baseline begin precisely at this threshold. Although
swap counts increase with additional sequences, throughput in both systems continues to increase

25 25
140
"m‘ 140 Tl;
@ a
g 120 20 g 120 20
- -
% 100 £ % 100 £
s 59 s 59
= 80 v w 80 v
H g i g
< 60 10 B < 60 10 g
= n = n
3 40 3 40
e 5 e 5
£ 20 Output TPS £ 20 Output TPS
= HiFC swap count = DRAM swap count
0 123456 7 8 91011121314151617181920 0 0 123456 7 8 91011121314151617181920
Max number of sequences Max number of sequences
(a) HiFC swapping. (b) DRAM swapping.

Figure 4: Performance and swap count trend of HiFC and DRAM swapping. Each sub-figure
shows the average output throughput and the number of swapping event as the max number of
sequences increases for the DS-Qwen-32B model, with context length = 5k, batch size = 20, block
size = 32, and 100 GiB of dedicated swap space for KV cache for both methods.

before saturating at 12 sequences. This indicates that the swap overhead is effectively absorbed,
demonstrating that using HiFC does not negatively impact inference performance compared to
DRAM, as both methods become compute-bound, instead of I[/O-bound.

This observation is explained by the increasing slack introduced by deeper sequence pipelining. Each
additional sequence widens the pipeline’s scheduling window, enabling the system to overlap HiFC
I/O latency with computation. Appendix [G] analyzes this effect in detail, showing how pipeline-
induced throughput gaps provide sufficient stall budget to hide swap delays, resulting in stable
performance even under high swap frequency.

5.5 Validating KV Block Management

Allocation KV Block Numbers

= 3000 Append End number|

g Left Append . o

g 2500 Table 4: Achieving near-ideal WAF with HiFC

g 2000 swapping.

= 1500

8 1000 Metric Value WAF

o

> 500 Swap out +232.5GiB —

¥ o] St number Data Units Written ~ +487,595 1.02
° slﬁ,‘dlp“c‘i‘l.tzéﬁq&?ﬁcé"(’(’ 00 SSD Specification - 1.40

HiFC vs. SSD Spec. - -27%

Figure 5: Allocation patterns of KV blocks during
swap-out operations under different append strate-
gies.

Fig.[5]shows the index distribution of FC KV blocks during swap-out operations, illustrating how
different free block allocation strategies affect I/O behavior. When using the proposed append strategy,
FC KV blocks are allocated in a sequential manner, resembling a typical Least Recently Used (LRU)
pattern. In contrast, the left-append strategy yields a markedly different pattern: while the initial
500 swap-out events remain sequential, subsequent allocations become highly non-sequential. This
transition reflects a shift from a sequential to a random I/O access pattern.

Furthermore, Table [d compares the total write volume recorded during swap-out operations with the
actual data written to the SSD as reported by the SMART [35]] log. In our experiments, 487,595
data units (DUs) were written to the device, equivalent to 232.5 GiB (assuming 512kB per DU). This
volume corresponds to a WA factor of 1.02. These findings underscore the importance of sequential
block allocation not only for throughput but also for reducing unnecessary Flash wear. The detailed
equation is described in Appendix

Our evaluation of a commercial SSD quantifies the performance gap between sequential and random
I/0 workloads. The sequential access patterns achieve significantly higher throughput, confirming
that preserving the spatial locality of KV blocks is critical for maximizing HiFC’s performance. The
performance evaluation results are presented in Section

5.6 Impacts of Block Size on Swap Latency Hiding

KV swapping performance Swap count comparison Performance comparison
0
E . 14 E 140
_3 ‘:‘:' 12 3 120
= g 10 S 100
3 Vg : 80
e F]
'514 § 6 _g- 60
3 0 4 g’ 40
£’ HIFC (SSD) °
2 o 20
™ DRAM (DDR4) =
LT » o B35 2% e m es 1 2% T R R
Block size (tokens) Block size (tokens) Block size (tokens)
(a) KV swap throughput (GiB/s) (b) Swap event count (c) End-to-end throughput

Figure 6: Block size analysis demonstrating that HIFC matches DRAM’s end-to-end performance
(c), as the raw swap throughput gap (a) is effectively amortized by concurrency.

Fig.[6| compares the impact of block size on KV cache swapping performance for HiFC and DRAM
under a long-context workload (context length = 10k, batch size = 10). Fig. [6a]shows that both HIFC
and DRAM exhibit increasing swap throughput with larger block sizes, where DRAM consistently
achieves more than twice the throughput of HiFC. This trend is consistent with prior work such as
vLLM [6], which adopts 32-token blocks by default to balance swap cost and fragmentation under
paged attention. However, HiFC still achieves nearly identical end-to-end throughput, as shown in
Fig.

As shown in Fig. [6b] the number of swap events is dictated by the workload and block size, resulting
in an identical count for both HiFC and DRAM. This finding is crucial as it validates the end-to-end

performance comparison in Fig.[6c] We also observe that larger block sizes, such as 128 and 256, can
induce more swap events than the 64-token sweet spot, suggesting redundant swapping.

Fig. |6c|confirms that end-to-end throughput is improved modestly with larger block sizes, suggesting
that coarser-grained swapping has minimal adverse effects on inference performance. This finding
aligns with LMCache [25]], which also showed that grouping adjacent tokens in physically aligned
blocks improves overall throughput without harming latency, especially under decoding workloads.

Overall, these results suggest that the swapping performance gap between HiFC and DRAM does
not significantly affect either the swap frequency or end-to-end inference performance, as latency is
effectively amortized by concurrent sequence execution. By aligning the block size with the sweet
spot observed in Fig.[6b](e.g., 64 tokens), we can maximize swap efficiency without requiring manual
tuning for similar workloads.

5.7 1/O Throughput Comparisons

Table 5: Sustained GDS I/O throughput across workloads.
I/0 Workload LBA Range Min (GiB/s) Max (GiB/s) Avg (GiB/s)

SEQ WRITE 100 GiB 4.341 4.724 4.715
SEQ READ 100 GiB 4.985 4.988 4.987
RND WRITE 100 GiB 1.092 2.703 1.617
SEQ WRITE 900 GiB 1.416 1.841 1.689

Table [5] shows SSD performance benchmarks using the gdsio tool [15] to evaluate the effects of
different I/O types and LBA ranges. Sequential reads and writes within the pSLC region delivered
consistently high throughput, whereas random writes were significantly slower due to internal

mechanisms such as garbage collection and TLC migration. When the write workload exceeded the
pSLC capacity, performance degraded significantly. These findings suggest that structuring KV cache
access as sequential I/O is essential for achieving high-performance Flash cache swapping. When the
GPU’s compute throughput is sufficiently high, the overhead of KV cache swapping can emerge as a
bottleneck in the sequence pipelining process.

5.8 Scalability of KV Cache Initialization: HiFC vs. DRAM

Table 6: Comparisons of LLM session initialization time.

| KV Cache Size (GiB)

‘ 10 20 30 40 50 60 70 80 90 100
HiFC (s) 330 340 330 330 330 330 330 330 320 320
DRAM (s) 39.0 460 46.0 590 59.0 600 89.0 89.0 90.0 90.0

A (= DRAM-HiIFC) (s) 6 12 13 26 26 27 56 56 58 58

HiFC significantly reduces the initialization time of LLM inference sessions by eliminating the use
of DRAM for KV cache storage. Table[6|reports the LLM session initialization time across different
KV cache sizes (ranging from 10 GiB to 100 GiB) for two memory configurations: HiFC and DRAM.
HiFC shows a consistently low initialization latency around 32-34 seconds regardless of the KV
cache size. In contrast, DRAM-based initialization time increases significantly with cache size,
particularly beyond 60 GiB, reaching up to 90 seconds at 100 GiB. Notably, HiFC’s performance
advantage becomes more pronounced at larger cache sizes: at 100 GiB, the time gap between DRAM
and HiFC reaches 58 seconds, resulting in a 2.81x speedup (90.0s vs. 32.0s). This gap arises
because HiFC directly utilizes pre-generated Flash cache files, whereas the DRAM baseline must
allocate tensors for every KV block upon each initialization. These findings highlight the scalability
advantage of Flash-based KV cache initialization, making it a compelling solution for large-batch or
long-context LLM inference scenarios.

6 Limitation and Future Plan

While HiFC eliminates the need for DRAM and achieves cost-efficient scalability through direct
GPU-SSD I/O, several limitations remain. First, in short-context or latency-sensitive workloads, Flash
access latency may introduce delays in token processing. Second, in multi-GPU settings, efficient
bandwidth scheduling for shared Flash cache becomes increasingly critical to avoid contention.
Third, maintaining consistent SSD performance often requires domain-specific expertise in system
configuration and filesystem tuning, which may hinder practical deployment. As future work, we plan
to explore hybrid Flash-DRAM caching schemes that maintain stable performance across diverse
workloads, and to share resources and know-how for SSD optimization.

7 Conclusion

In this work, we introduced HiFC, a novel DRAM-free architecture designed to efficiently provide KV
cache memory expansion for large-context LLM inference. HiFC replaces conventional DRAM-based
swapping with a GDS-enabled SSD utilizing its pseudo-SLC region, thereby creating a direct GPU-
to-SSD data transfer pathway that eliminates intermediate host memory bottlenecks. Our experiments
demonstrated that HiFC maintains inference throughput comparable to traditional DRAM swapping
methods. In addition, our extended validation confirms this advantage holds across diverse models,
datasets, and even in multi-GPU scaling scenarios, highlighting HiFC’s robustness and general
applicability. Furthermore, for long-context and multi-batch scenarios, vLLM’s sequence pipelining
scheduler and HiFC’s optimized Flash cache worked in concert to effectively manage KV cache
swaps, thereby minimizing overhead. Simultaneously, substituting 128 GiB of DRAM with a 1 TiB
pSLC-configured SSD resulted in an approximately fivefold reduction in the three-year memory
expansion cost. Overall, HiFC provides an economically viable and efficient pathway to scalable
LLM inference, proving particularly beneficial for large-context and large-batch inference scenarios.

10

Acknowledgments and Disclosure of Funding

This work was supported in part by the Institute of Information and Communications Technology
Planning and Evaluation under Grant RS-2021-11211343, Grant IITP-2025-RS-2023-00256081, and
Grant RS-2024-00347394, and in part by the National Research Foundation of Korea under Grant
RS-2024-00408040 and Grant RS-2022-00144419. The authors would like to thank SK hynix for
financial support during Inho Jeong’s graduate studies and NAVER Cloud for valuable discussions.

References

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems (NIPS), pages 5998-6008, 2017.

[2] Justin Zhao, Timothy Wang, Wael Abid, Geoffrey Angus, Arnav Garg, Jeffery Kinnison, Alex
Sherstinsky, Piero Molino, Travis Addair, and Devvret Rishi. Lora land: 310 fine-tuned 1lms
that rival gpt-4, A technical report. CoRR, abs/2405.00732, 2024.

[3] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024.

[4] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, et al. Mixtral of experts. CoRR, abs/2401.04088, 2024.

[5] DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, et al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning.
CoRR, abs/2501.12948, 2025.

[6] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language
model serving with pagedattention. In Jason Flinn, Margo 1. Seltzer, Peter Druschel, Antoine
Kaufmann, and Jonathan Mace, editors, Proceedings of the 29th Symposium on Operating
Systems Principles, SOSP 2023, Koblenz, Germany, October 23-26, 2023, pages 611-626.
ACM, 2023.

[7] Sheng Shen, Zhenyu Zheng, Ji Lin, Yujia Qin, Yuxiang Hu, Jie Tang, and Song Han. Flexgen:
High-throughput generative inference of large language models with limited gpu memory. In
Proceedings of the 2023 ACM International Conference on Machine Learning (ICML), 2023.

[8] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao
Song, Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi Chen.
H20: heavy-hitter oracle for efficient generative inference of large language models. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine,
editors, Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurlPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023.

[9] June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang,
Se Jung Kwon, and Dongsoo Lee. No token left behind: Reliable KV cache compression via
importance-aware mixed precision quantization. CoRR, abs/2402.18096, 2024.

[10] Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia Zhang, Ammar Ahmad Awan, Cheng
Li, Du Li, Elton Zheng, Jeff Rasley, Shaden Smith, and Olatunji Ruwase. Deepspeed inference:
Enabling efficient inference of transformer models at unprecedented scale. arXiv preprint,
arXiv:2207.00032, 2022.

[11] Jianbo Wu, Jie Ren, Shuangyan Yang, Konstantinos Parasyris, Giorgis Georgakoudis, Ignacio
Laguna, and Dong Li. Lm-offload: Performance model-guided generative inference of large
language models with parallelism control. 2024.

[12] Cheng Luo, Zefan Cai, Hanshi Sun, Jingi Xiao, Bo Yuan, Wen Xiao, Junjie Hu, Jiawei Zhao,
Beidi Chen, and Anima Anandkumar. Headinfer: Memory-efficient LLM inference by head-
wise offloading. CoRR, abs/2502.12574, 2025.

11

[13] Xiurui Pan, Endian Li, Qiao Li, Shengwen Liang, Yizhou Shan, Ke Zhou, Yingwei Luo, Xiaolin
Wang, and Jie Zhang. Instinfer: In-storage attention offloading for cost-effective long-context
Ilm inference. https://arxiv.org/abs/2409.04992, 2024.

[14] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse, and Rina
Panigrahy. Design tradeoffs for ssd performance. In USENIX Annual Technical Conference,
pages 57-70, 2008.

[15] NVIDIA Corporation. Nvidia gpudirect storage. https://developer.nvidia.com/blog/
gpudirect-storage/, 2021. Accessed: 2025-05-14.

[16] Yushi Bai, Xin Ly, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao
Du, Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A
bilingual, multitask benchmark for long context understanding, 2023.

[17] Ajay Patel, Bryan Li, Mohammad Sadegh Rasooli, Noah Constant, Colin Raffel, and Chris
Callison-Burch. Bidirectional language models are also few-shot learners. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023.

[18] Xuanlin Jiang, Yang Zhou, Shiyi Cao, Ion Stoica, and Minlan Yu. NEO: Saving gpu memory
crisis with cpu offloading for online LLM inference, 2024.

[19] Yi Xiong, Hao Wu, Changxu Shao, Ziqing Wang, Rui Zhang, Yuhong Guo, Junping Zhao,
Ke Zhang, and Zhenxuan Pan. Layerkv: Optimizing large language model serving with
layer-wise KV cache management, 2024.

[20] Keivan Alizadeh, Seyed Iman Mirzadeh, Dmitry Belenko, S. Khatamifard, Minsik Cho, Carlo
C. Del Mundo, Mohammad Rastegari, and Mehrdad Farajtabar. LLM in a flash: Efficient large
language model inference with limited memory. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (ACL), pages 1256212584, Bangkok, Thailand,
2024. Association for Computational Linguistics.

[21] Aditya Dhakal, Pedro Bruel, Gourav Rattihalli, Sai Rahul Chalamalasetti, and Dejan Milojicic.
LLM serving with efficient KV-cache management using triggered operations. In Cray User
Group Conference (CUG), 2024.

[22] Yupeng Tang, Runxiang Cheng, Ping Zhou, Tongping Liu, Fei Liu, Wei Tang, Kyoungryun
Bae, Jianjun Chen, Wu Xiang, and Rui Shi. Exploring CXL-based KV cache storage for LLM
serving. NeurIPS 2024 ML for Systems Workshop, 2024.

[23] Foteini Strati, Sara Mcallister, Amar Phanishayee, Jakub Tarnawski, and Ana Klimovic. Déjavu:
KV-cache streaming for fast, fault-tolerant generative LLM serving, 2024.

[24] Jie Ye, Bogdan Nicolae, Anthony Kougkas, and Xian-He Sun. Uncover the overhead and
resource usage for handling KV cache overflow in LLM inference. In Supercomputing 24
Poster Proceedings, 2024.

[25] Xiang Fu, Yao Zhang, Haoran Zhu, et al. Lmcache: Generative inference with disk-efficient
caching for large language models. arXiv preprint arXiv:2309.00278, 2023.

[26] Shou Xu, Siyuan Luo, Jiasi Li, et al. Flashinfer: Efficient token-by-token inference of large
language models with cache optimization, 2023.

[27] Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren, Mingxing Zhang, Yongwei Wu,
Weimin Zheng, and Xinran Xu. Mooncake: Trading more storage for less computation — a
KVCache-centric architecture for serving LLM chatbot. In 23rd USENIX Conference on File
and Storage Technologies (FAST 25). USENIX Association, 2025.

[28] Ruihan Li, Shizhen Liu, Yuwei Yao, Xiang Huang, Wencong Wang, Felix Yu, and Ang Zhao.

Cachedattention: Cost-effective multi-turn Ilm serving via hierarchical kv cache. arXiv preprint
arXiv:2403.19708, 2024.

12

https://arxiv.org/abs/2409.04992
https://developer.nvidia.com/blog/gpudirect-storage/
https://developer.nvidia.com/blog/gpudirect-storage/

[29] Weimin Yao, Tao Xie, Fan Wang, and Zili Sun. Warm: write-hotness aware retention manage-
ment for flash-based storage systems. In 2014 IEEE 30th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1-10. IEEE, 2014.

[30] Yu Chen, Jian Tang, and Yang Liu. Efficient graph data loading via gpu direct storage for
large-scale gnn training. In Proceedings of the 42nd International Conference on Machine
Learning (ICML), 2025. To appear.

[31] DeepSeek Al. Deepseek-rl-distill-qwen-32b. https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-32B, 2024. Accessed: 2025-05-15.

[32] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
Foundation and Fine-Tuned Chat Models, 2023.

[33] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen Technical Report, 2023.

[34] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7B, 2023.

[35] NVM Express, Inc. NVM Express Base Specification Revision 2.0. Technical Standard, 2021.

[36] Bin Gao et al. Cost-efficient large language model serving for multi-turn conversations ith
cachedattention. In 2024 USENIX Annual Technical Conference (USENIX ATC 24), 2024.

13

https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B

A Comparisons with Recent Related Works

A.1 Comparison to InstInfer

While our main paper discusses related work in the context of general KV cache offloading strategies,
this section provides a detailed comparison with InstInfer [13], a concurrent work that also leverages
NAND Flash to extend the KV cache. While both HiFC and InstInfer share the goal of moving
beyond DRAM, they are built on fundamentally different design principles. InstInfer is a hardware-
specialized solution that relies on Computational Storage Drive (CSD) to perform in-storage attention
processing, thereby alleviating PCle bottlenecks. In contrast, HiFC is a general software solution
designed for broad adoption, utilizing commodity NVMe SSDs and GPUs within the popular vLLM
framework to maximize cost-efficiency and system compatibility. We summarize the key distinctions
across three axes: cost, performance characteristics, and system compatibility.

A.1.1 Cost and Accessibility

The primary difference in cost stems from the required hardware. HiFC is designed to work with
ubiquitous, off-the-shelf NVMe SSDs, whereas InstInfer necessitates specialized CSDs. As shown in
Table[7/} this leads to a significant disparity in initial hardware investment and accessibility, making
HiFC a more economically viable solution for immediate, large-scale deployment.

Table 7: Cost and hardware comparison between HiFC and InstInfer.

Feature HiFC InstInfer

Required Hardware Commodity NVMe SSD CSD

Example Device NVMe Gen4 1TB SSD: ~$136 SmartSSD 4TB (used): ~$2,526

Implication Low cost and easy deployment Higher initial cost and hardware de-
pendency

A.1.2 Latency and Throughput Optimization

HiFC and InstInfer employ different techniques to manage I/O and optimize performance (Table [g).
HiFC focuses on hiding I/O latency through vLLM’s pipeline-aware scheduling and maximizes
bandwidth using GDS, which creates a direct data path between the GPU and SSD. Instlnfer,
leveraging the computational capabilities of CSDs, processes attention mechanisms directly on the
storage device to reduce the volume of data transferred over the PCIe bus. While InstInfer can achieve
high throughput by fully exploiting the CSD’s internal bandwidth, its performance is tightly coupled
to this specialized hardware. HiFC’s performance scales with more common components such as
SSD bandwidth and GPU DMA engines. A key operational difference is that HiFC swaps KV cache
blocks only when HBM capacity is exhausted, whereas in InstInfer’s design, the entire KV cache
resides in the CSD during inference.

Table 8: Comparison of performance optimization strategies.

Feature HiFC InstInfer
I/0 Optimization GPU Direct Storage (GDS) In-storage SparF Attention
Pipeline-aware scheduling Flash page-level data layout

KYV Cache Reduction Standard methods (GQA, FP8) SparF Attention (reduces transfer
size)

Performance Gains Comparable to DRAM (~2% diff.) Up to 11.1x throughput over Flex-
Gen (with CSD)

Swapping Behavior Swaps only when HBM is full Entire KV cache resides in CSD

14

A.1.3 System Compatibility and Generality

HiFC is architected as a software-level solution that integrates seamlessly into the widely-used
vLLM framework. This approach ensures broad compatibility with existing models, hardware
(any GDS-supported NVIDIA GPU and NVMe SSD), and deployment pipelines. InstInfer, being
hardware-dependent, requires a more specialized stack, including a modified version of the FlexGen
framework and specific drivers for CSDs (Table[9). Consequently, HiFC offers a more general and
readily deployable path to scaling inference services, whereas InstInfer provides a powerful but
specialized alternative for environments where CSDs are available.

Table 9: Comparison of system compatibility and ease of deployment.

Feature HiFC InstInfer

Framework Built on vLLM Modified FlexGen (CSD-specific)
Hardware Req. GDS-supported GPU + NVMe SSD CSD + compatible PCle infrastructure
Deployment Integrates into existing GPU services =~ Requires specialized hardware setup
Generality General-purpose software solution Specialized hardware-software co-

design

In conclusion, while InstInfer demonstrates excellent performance through hardware acceleration, its
adoption is constrained by the cost and availability of specialized CSDs. HiFC, in contrast, delivers a
cost-effective, hardware-agnostic, and easily deployable software solution that makes large-context
LLM inference practical for a wide range of existing and future systems.

A.2 Comparison with Other Offloading Systems: AttentionStore and Mooncake

Beyond InstInfer, other recent works such as AttentionStore [36]] and Mooncake [27] also address KV
cache scaling by offloading to external memory. While sharing the high-level objective of efficient
KV cache management, their architectural approaches and target use-cases differ significantly from
those of HiFC.

AttentionStore proposes a DRAM/SSD caching hierarchy optimized for multi-turn conversational
workloads, where DRAM serves as the primary cache to minimize latency-sensitive SSD access.
Mooncake introduces a disaggregated architecture for KV cache sharing across a cluster, primarily
targeting GPU efficiency in large-batch, offline inference scenarios.

In contrast, HiFC is designed as a DRAM-free online inference solution. It leverages GPU Direct
Storage (GDS) to create a direct data path between the GPU and a commodity SSD, a design
choice that maximizes I/O bandwidth and fully utilizes the SSD’s capacity. By tightly integrating
with vLLM’s pipeline scheduler, HiFC effectively hides the I/O latency of swapping, achieving
DRAM-comparable performance at a fraction of the cost. Table [10[summarizes the key architectural
differences.

Table 10: Architectural comparison with AttentionStore and Mooncake.

Feature AttentionStore Mooncake HiFC (ours)

Target Workload Multi-turn ~ conversa- Long-context, large- Long-context, large-
tion, online service batch, offline service batch, online service

Memory Hierarchy GPUs-[DRAM-SSDs] Multi-node: N x GPUs-SSDs (DRAM-

(GPU-DRAM-SSD) free)

Latency Handling Uses DRAM as a pri- Employs caching and Uses vLLM’s scheduler
mary cache to minimize batching to mitigate re- to hide SSD I/O latency,
I/O overhead from SSD mote memory access la- achieving DRAM-level
access. tency. performance.

15

B Determining Flash Cache Byte Offsets

The effectiveness of the append FC block allocation strategy is empirically evaluated in Section [5.3]
which demonstrates improved sequential I/O behavior under this design. To enable such behavior,
the FC byte offset should be carefully determined. While FC blocks are a logical construct for
managing the KV cache, actual storage on SSD requires computing the byte-level offset within the
Flash cache file. On the GPU, KV blocks are 4KB-aligned tensors. Aligning these logical blocks
with the SSD’s physical 4KB LBA (Logical Block Address) format is highly beneficial for I/O
performance and device lifespan. Therefore, our allocation strategy (HiFC) is designed to enforce
this 4KB alignment. To minimize runtime computation overhead, we precompute and store a lookup
table of KV-type-specific offsets for each layer. These offsets are then passed directly to the GDS
API for I/O dispatch. The equations below represent how those offsets are obtained.

B.1 Variable Definitions

e L: number of attention layers

* B: number of FC blocks per KV type per layer
* H: number of KV heads

¢ S: block size (tokens)

e D: head size

» T': data type byte size (e.g., 2 for FP16)

B.2 Byte Offset Calculation Equations

Single block size (bytes).
block_size_bytes = H x S x D x T 2)

Layer offset (bytes). This is the starting offset for a given layer /.
layer_offset = [x (2 x B X block_size_bytes), where0 <1< L 3)

Intra-layer KV type offset (bytes). This is the relative offset for the Key or Value block region
within a layer.

key_type_offset = k x (B x block_size_bytes), where k =0 O]
value_type_offset = v x (B x block_size_bytes), where v =1 (5)

Total byte offset per layer. This calculates the final absolute byte offset for the start of the
Key/Value cache region for a specific layer.

KeyOffset(l) = layer_offset + key_type_offset 6)
ValueOffset(l) = layer_offset + value_type_offset @)

As a concrete example, we apply the equations above to the DeepSeek-Qwen-32B model with
parameters: L = 64, B = 3200, H = 8,5 = 128, D = 128, and T = 2. Tableshows
the computed actual byte offsets (which correspond to KeyOffset(l) and ValueOffset(l)) and their
corresponding values in GiB for selected layers.

Table 11: FC byte offsets for selected layers.
Layer Key Block Offset (bytes) Value Block Offset (bytes) Start Offset (GiB)

0 0 838860800 0.00
1 1677721600 2516582400 1.56
2 3355443200 4194304000 3.12
62 104018739200 104857600000 96.88
63 105696460800 106535321600 98.44

16

C Memory Expansion Cost Analysis and Future Projections

To substantiate the paper’s cost reduction claims, this section provides a detailed memory expansion
cost analysis with explicit citations and examines projected market trends to evaluate the long-term
economic viability of the HiFC architecture.

C.1 Updated 3-Year Memory Expansion Cost Analysis (H2 2025)

For enhanced clarity and reproducibility, we have re-evaluated all cost parameters using updated
market data from the second half of 2025; the original paper used data from H1 2025. The updated
3-year memory expansion cost comparison is presented in Table[T2] All cited prices are derived from
publicly available sources to ensure the reproducibility of the analysis (e.g., Memory.NET, Amazon,
and the 2024 US Data Center Energy Usage Report).

Table 12: Updated 3-year memory expansion cost comparison based on H2 2025 market data.

Metric DRAM (DDR4) TLC SSD (Gend) HiFC (Gen4)
Capacity (GiB) 128 1920 1024
Price per GiB ($) 5.06 0.20 0.10
CapEx ($) 647 384 102
Power Draw (W) 24 8.2 5

PUE 1.3 1.3 1.3
Energy Cost ($/kWh) 0.1 0.1 0.1
3-year Cost ($) 729 465 120
Previous Comparison x4.5 x3.9 1.0
Updated Comparison x6.1 %x3.9 1.0

The updated analysis reveals that the 3-year memory expansion cost gap has widened, with the
DRAM-based solution now being 6.1 x more expensive than HiFC (previously 4.5x). This increase
is mainly due to recent DRAM price hikes, further strengthening the cost advantage of SSD-based
HiFC.

C.2 Projected Memory Types and Price Trends (2025-2027)

We further analyzed projected price trends for key components to determine if HiFC’s cost benefits
would shrink, persist, or grow. Table|13|summarizes these projections.

Table 13: Price trends for key hardware components.

Component 2025 (Current) 2027 (Proj.) Price Trend

GPU (GB200) $30K-$35K $20K-$25K Remains high due to demand
DDR5 DRAM (128 GiB) $1,050-$1,200 $800-$950 Decrease as adoption grows
Data Center SSD $350-$420 $250-$300 Steady decline with oversupply
pSLC SSD (1 TB) $95-$120 $75-$100 Remains cost-effective
High-Perf. SSD $3,000+ $1,500-$2,000 Decrease as GDS adoption grows

The market analysis indicates that HiFC’s cost advantage is likely to become even more significant
over the coming years. While next-generation GPUs require expensive DDRS memory, its price is
projected to decrease more slowly than that of data center SSDs. HiFC capitalizes on this trend by
using cost-effective SSDs for temporary KV cache, avoiding high-cost memory.

The updated market data confirms that HiFC’s cost claims remain valid and that its cost benefits are
even more pronounced in the current market environment. Future price projections reinforce this
conclusion, demonstrating that HiFC provides a practical, economical, and forward-looking solution
for large-scale LLM inference deployments.

17

D Total Bytes Written (TBW) Enhancement via pSLC SSD

A consumer-grade NVMe Gen4 SSD employs a dynamic pSLC caching mechanism to accelerate
write throughput. The total available SLC cache size is approximately 200 GiB. In this experiment,
we consider a constrained usage pattern where only a fixed 200 GiB logical block range within the
dynamic SLC cache is used exclusively for sequential write and read operations. Since the precise
SSD lifetime depends on product-specific warranty policies and variations in internal technology, this
analysis uses program/erase (P/E) cycles to provide an approximate lifespan estimation.

Official Endurance. According to the datasheet, the SSD-A 1 TB model guarantees 750 TBW
(terabytes written) over its lifetime. This figure is based on the assumption of uniform usage across
all NAND blocks in TLC mode, with an endurance of approximately 3,000 (P/E) cycles per cell.

SLC Mode Endurance. In pseudo-SLC mode, only 1 bit per cell is programmed, which significantly
improves endurance to approximately 30,000 P/E cycles per cell:

Egrc = 30,000, Errc = 3,000. 8)

Let Clyse = 200 GiB be the capacity of the fixed SLC region used. Then, the theoretical maximum
TBW under this scenario is:

TBWgrc = Esrc X Cuse = 30,000 x 200 GiB = 6,000 TiB. ©)]
This calculation assumes an ideal WA factor of 1. As demonstrated in Section[5.5] HiFC’s sequential
append strategy achieves a WA close to 1.0, so it is omitted from this theoretical calculation.
Comparison to Official TBW. When compared to the vendor-guaranteed endurance:
TBWsLc 6,000
TBWogiciar 750

This indicates that the SSD can withstand 8 x more data writes in an SLC-only usage pattern than
under the default TLC-mode assumption, assuming minimal cache folding and ideal sequential /O
behavior.

8 x . (10)

Table 14: Endurance comparison across different NAND usage modes.

Usage Mode P/E Cycles TBW (TiB) TBW Multiplier
Official Spec (TLC, full drive) 3,000 750 1x
Theoretical Max (TLC, full drive) 3,000 3,000 4x
SLC-only (200 GiB region) 30,000 6,000 8%

These findings confirm that selectively operating within the SLC cache region of the SSD-A signifi-
cantly improves write endurance. The result is particularly useful for long-lived Al inference caches
and KV swap storage systems with highly localized access patterns.

The SLC-Only endurance mode shown in Table[I4]is directly incorporated into the HiFC configuration,
enabling significantly higher write durability. This configuration is analytically modeled in Eq.
of Section] and serves as the basis for the memory expansion cost estimation results summarized
in Table[I} By leveraging the high-cycle SLC region for KV swap traffic, HiFC achieves sustained
endurance gains critical for long-lived inference workloads.

D.1 Empirical Endurance Analysis and Lifetime Validation

To assess the long-term viability of HiFC, we conducted an endurance test to predict the operational
lifetime of the underlying SSD. The primary metric for SSD longevity is Total Bytes Written (TBW),
which specifies the total amount of data that can be written to the drive before it is likely to fail.

D.1.1 Experimental Setup and Lifetime Formula

The endurance test was conducted using the following configuration:

18

GPU: NVIDIA A100 (80 GiB)

SSD for HiFC: 1TB (pSLC mode, 200 GiB capacity, 6,000 TBW rating)
» Dataset: GovReport (avg. 8.7k sequence length)

* QOutput length: 1k tokens

The predicted lifetime in years is calculated based on the drive’s rated pSLC TBW and the empirically
measured daily write volume, as shown in Equation [T1]

SLC TBW (TiB
Lifetime (years) = P> (1iB) . (11)
Total KV Written per Day (TiB) x 365

D.1.2 Results and Key Findings

The key metrics derived from the endurance test are presented in Table[T5]

Table 15: SSD endurance test results and lifetime prediction under a sustained workload.

Metric Value
Swap-out count (writes) 28
Avg. KV size (MiB) 984
KV size per test (GiB) 26
Total test time (s) 1,097
Tests per day (extrapolated) 78
Total KV written per day (TiB) 1.98
pSLC TBW rating (TiB) 6,000
Predicted Lifetime (years) 8.3

The analysis predicts that under our sustained test conditions, the SSD utilized by HiFC would last
for approximately 8.3 years. This operational lifespan significantly exceeds the typical expected
service life of GPUs used for LLM inference, which is often estimated to be around 3 years. This
result implies that for every three GPU replacement cycles, the SSD would only need to be replaced
once. Therefore, HiFC not only provides a cost-effective solution for memory expansion but also
demonstrates exceptional long-term endurance, ensuring that the storage component does not become
a frequent point of failure or replacement in a production environment.

19

E Experimental Environments

E.1 Performance and KV Cache Swapping Test Environment

Table 16: Hardware and software configuration used in our experiments.

System & Hardware
Server / CPU Dell PowerEdge R750xa, 2 x Intel Xeon Silver 4310

GPU 2 x A100 (80 GiB)

Memory 256 GiB DDR4

(oM Ubuntu 22.04.5 LTS

System Storage ~ Samsung PM893, 7.68 TB SATA eSSD

Flash cache SSD, 1 TB NVMe Gen4 (pSLC cache: 200 GiB)
Software & LLM Model

Baseline vLLM v0.6.6

CUDA Toolkit 12.3

PyTorch 2.5.1

GDS Release 1.8.1.2
LLM Model DeepSeek-R1-Distill-Qwen-32B

E.2 Diverse Models and Datasets Test Environment

Table 17: Experimental setup for mixed workload validation.

Item Specification

Models DeepSeek-Llama-8B, DeepSeek-Qwen-14B,
Mistral-7B

Datasets Qasper (avg. 3.6k), GovReport (avg. 8.7k),
NarrativeQA (avg. 18.4k)

Block size 64 tokens

Output length 1k

E.3 Validation Environment for WAF

Table 18: Validation environment and test workloads.
Model & HiFC setting

Model DeepSeek-R1-Distill-Qwen-32B
Max Model Length 10,000 tokens

HiFC Space 100.0 GiB

Number of SSDs 1

Test workload

Input sequence length 5,000 tokens
Ouput sequence length 5,000 tokens
Request 50

20

F Latency Impact Analysis of HIFC Swapping

A critical consideration for swapping-based approaches is the potential introduction of unacceptable
I/0O latency, which could be problematic in latency-sensitive serving systems. This section evaluates
HiFC’s swapping mechanism under a heavy request load to quantify its impact on end-to-end
throughput and request latency.

As with any swapping mechanism, moving KV cache from GPU HBM to another memory tier
introduces some overhead. In vLLM, this is handled through two primary strategies: Recompute,
which avoids I/O but incurs additional computation, and Swapping. To maintain low latency, the
vLLM scheduler preemptively sacrifices a few requests to free up HBM, thereby preventing overall
service delays. HiFC adopts this same scheduling logic, allowing it to hide most of the swap latency
through pipeline overlapping.

F.1 Experimental Setup
The evaluation was conducted using the following configuration:

* GPU: NVIDIA A100 (80 GiB)

* Model: DeepSeek-R1-Distill-Llama-8B

* HBM KV size: 4 GiB (starvation condition for recompute and swapping)
» Dataset: THUDM/LongBench/gov_report_e (avg. 8K sequence length)
SSD for HiFC: 1TB (pSLC 200 GiB)

F.2 Evaluation Results

We compared HiFC against a GPU-only baseline and a DRAM-based swapping system. The GPU-
only configuration quickly ran into Out-of-Memory (OOM) errors under the immense request load,
highlighting the necessity of a memory expansion strategy. The performance comparison is detailed
in Table

Table 19: Performance comparison of memory management strategies under a heavy, latency-sensitive
request load.

GPU only DRAM-based HiFC

Metric Recompute Swapping Swapping
HBM for KV cache (GiB) 4 4 4
KV cache size (GiB) 4 (OOM) 50 200
Output tokens/s 179 172 182
Avg. latency (s/request) 5.5 5.8 5.4

F.3 Observations and Conclusion

The results in Table [T9] shows that HiFC provides superior performance, achieving 5% higher
throughput (182 vs. 172 tokens/s) and 7% lower average latency (5.4 s vs. 5.8 s) compared to the
DRAM baseline. This is possible because HiFC successfully hides swap latency through vLLM’s
I/O-computation overlapping and avoids the DRAM contention bottleneck (a source of tail latency)
by using a dedicated GDS I/O path. These findings provide strong evidence that HiFC’s design
is highly effective for latency-sensitive inference, preventing SSDs from becoming a performance
bottleneck.

21

G Pipeline-Aware Model of Swap Overhead

Pipeline-induced throughput gap. Under deep pipelining, the realised throughput TPS. often
falls short of the ideal value TPS;gea; = RUNgeq TPSingle. We define the per-second throughput deficit

Atps = TPSigea — TPSiest (= 0). (12)
Let Tj, be the mean per-token pipeline latency (e.g., 45 ms in our measurements). The deficit
translates into a stall budget that the pipeline can tolerate without additional loss of throughput:

Tgap = ATPS Tiat- (13)

Flash-swap latency. Swapping Nsy,p victim blocks of By, tokens each incurs

Nswap Bsize Stok
)
BWFriash

where T}y is a constant software overhead, sk the memory footprint per token, and BWgy,q, the
sequential bandwidth of the SSD.

,Ij%wap = Thx + (14)

Visibility criterion. Swap overhead is visible only if it exhausts the stall budget:

visible <= Ty > Tep (otherwise hidden). (15)

Empirical verification. Table [20| summarises a representative run with a 32-MiB block size (128
tokens). Although a 29-block swap adds 266 ms of Flash latency, the pipeline already exhibits a 46
tokens s~ deficit, yielding a Toap =2.07s (Eq. (I3))); inevitably, the swap latency is absorbed and no
additional performance drop is observed.

Table 20: Pipeline gap—based swap-visibility analysis.
Timestamp RUNgq Arps Tiap (mS) Tiyap (ms) Eq. Visible

22:26:45 1 0 0 - false No
22:27:21 7 12 540 - false No
22:27:45 11 44 1980 - false No
22:27:51 13 46 2070 266 false Hidden

This pipeline-aware model generalises the single-sequence criterion and explains why Flash swapping
remains performance-neutral under deep batching and long-context workloads.

22

H Analysis of Write Amplification Factor (WAF)

We analyze the Write Amplification Factor (WAF) of HiFC to evaluate its impact on SSD endurance.
WAF is a critical metric for Flash-based storage, defined as the ratio of data physically written to
the NAND Flash memory to the data written by the host system. A lower WAF signifies greater [/O
efficiency and contributes to a longer device lifespan.

We calculate the empirical WAF using metrics from the device’s SMART (Self-Monitoring, Analysis,
and Reporting Technology) logs, as summarized in Table 21} The host writes correspond to the
“Swap out” volume, while the NAND writes are derived from “Data Units Written,” which the device
reports in 512 kB units.

Table 21: Host write volume vs. actual NAND write volume during the vLLM swapping test.

Source Metric Value
vLLM (Host Writes)
Block Size 32 MB
Swap Out Count 7,440
Swap Out Size 232.5GiB

SSD SMART (NAND Writes)
Data Units Written (End)* 238,896,067
Data Units Written (Start)* 238,408,472
Data Units Written (Diff)* 487,595
Total NAND Write Size 232.5GiB

The WAF is computed by dividing the total bytes written to NAND by the total bytes written from
the host, as shown in Eq. (T6).

NAND Writes (B) 487,595 x 512 x 1,000
AF = = ~ 1.02 16
W Host Writes (B) 7,440 x 32 x 10242 0 (16)

The resulting WAF of 1.02 is exceptionally low, indicating that for every 1.02 bytes written to the
physical NAND Flash, 1.00 byte was requested by the host. This value is 27% lower than the SSD’s
own specification of 1.4, which represents a typical WAF for random read/write workloads. This
demonstrates that the large, sequential write patterns generated by HiFC are highly beneficial for the
endurance and longevity of the underlying Flash storage.

23

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses several limitations of the proposed HiFC system. In par-
ticular, the effectiveness of the Flash cache depends on the SSD’s endurance characteristics,
including susceptibility to internal operations such as garbage collection and TLC-to-pSLC
migration. The experiments were conducted under controlled SSD configurations with
pSLC mode, and real-world deployments may encounter variance in I/O throughput and
durability. Additionally, while the evaluation demonstrates HiFC’s effectiveness across
several models (including DS-Qwen-32B, DS-Llama-8B, DS-Qwen-14B, and Mistral-7B),
further validation on more diverse and significantly larger-scale architectures (e.g., 100B+
parameters) would strengthen its generalizability.es and larger model scales would strengthen
generalizability.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

24

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All mathematical formulations and assumptions for performance modeling are
clearly stated and derived in the main text.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed hardware, software, and benchmarking configura-
tions needed to reproduce the core results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

25

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the complete code and benchmark scripts necessary to accurately
reproduce our experimental results. The raw experimental data and logs presented in this
paper are also included.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experiments include full details on block sizes, token lengths, models, and
system parameters.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [NA]

Justification: Statistical significance is not applicable as the study is based on deterministic
system performance benchmarks rather than stochastic processes.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies the hardware configuration, including GPU/CPU specs
and memory, for all experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work complies with the NeurIPS Code of Ethics throughout the design,
implementation, and evaluation process.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

27

https://neurips.cc/public/EthicsGuidelines

10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both the positive impacts of improving LLM scalability
and the implications of hardware-dependent cost trade-offs.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No high-risk models or datasets are released; safeguards are not applicable.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All reused datasets and frameworks are properly credited with appropriate
licensing.

28

13.

14.

15.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the assets creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new datasets or pretrained models.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human participants or crowdsourcing were involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

29

paperswithcode.com/datasets

Justification: This study does not involve human subjects and does not require IRB approval.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Large Language Models (LLMs) were used during the writing and editing

process to refine the presentation of technical content. However, they were not used to
generate, simulate, or analyze core methodological components or experimental results.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

30

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Importance of KV Cache Management in LLM Service
	Existing KV Cache Management Techniques

	HiFC Architecture
	Motivation and Design Challenges of DRAM-Free Systems
	HiFC: High-efficiency DRAM-Free Flash Cache Architecture

	Memory Expansion Cost Estimation
	Experiments
	Performance and KV Cache Swapping Comparison
	Scalability in Hardware Topologies
	Robustness across Diverse Models and Datasets
	Impacts of KV Swapping on Throughput
	Validating KV Block Management
	Impacts of Block Size on Swap Latency Hiding
	I/O Throughput Comparisons
	Scalability of KV Cache Initialization: HiFC vs. DRAM

	Limitation and Future Plan
	Conclusion
	Comparisons with Recent Related Works
	Comparison to InstInfer
	Cost and Accessibility
	Latency and Throughput Optimization
	System Compatibility and Generality

	Comparison with Other Offloading Systems: AttentionStore and Mooncake

	Determining Flash Cache Byte Offsets
	Variable Definitions
	Byte Offset Calculation Equations

	Memory Expansion Cost Analysis and Future Projections
	Updated 3-Year Memory Expansion Cost Analysis (H2 2025)
	Projected Memory Types and Price Trends (2025-2027)

	Total Bytes Written (TBW) Enhancement via pSLC SSD
	Empirical Endurance Analysis and Lifetime Validation
	Experimental Setup and Lifetime Formula
	Results and Key Findings

	Experimental Environments
	Performance and KV Cache Swapping Test Environment
	Diverse Models and Datasets Test Environment
	Validation Environment for WAF

	Latency Impact Analysis of HiFC Swapping
	Experimental Setup
	Evaluation Results
	Observations and Conclusion

	Pipeline-Aware Model of Swap Overhead
	Analysis of Write Amplification Factor (WAF)

