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Abstract

Physics-based hydrodynamic models provide accurate forecasts of sea surface ele-
vations and currents but are often too computationally demanding for real-time or
ensemble predictions. This study investigates linear reduced-order machine learn-
ing surrogates as efficient alternatives, focusing on methods to ensure temporal
stability in long-term forecasts. Two models are compared: a partly differen-
tiable approach based on proper orthogonal decomposition and linear regression
(PODLR), and a fully differentiable linear Koopman autoencoder (LKAE). The ef-
fects of eigenvalue constraints and temporal unrolling during training are evaluated
using a large-scale hydrodynamic dataset from the Øresund region. Results show
that PODLR suffers from severe stability issues, which are effectively mitigated
by eigenvalue constraints and temporal unrolling, achieving high accuracy relative
to the full hydrodynamic model. The LKAE is inherently stable, with tempo-
ral unrolling reducing forecast errors by nearly 50%. These findings highlight
that exploiting differentiable structures in machine learning surrogates enables
robust and computationally efficient hydrodynamic forecasting, allowing year-long
simulations to be performed within seconds.

1 Introduction

Predicting sea surface elevations and currents in coastal waters using physics-based numerical
modeling is a key tool for short-term emergency responses, such as evacuations, and long-term
planning, like the construction of protective infrastructure [1, 2, 3]. While physics-based models are
generally accurate, they can be computationally demanding, limiting their use for ensemble forecasts
for uncertainty quantification, climate scenario modeling as well as real-time predictions. This
motivates the development of data-driven and machine learning (ML) methods for producing efficient
surrogates of complex hydrodynamic models. Generally, we consider a nonlinear hydrodynamic
system described by the discrete, partly auto-regressive timestep

xk+1 = F(xk,u), k = 0, 1, ..., T − 1, (1)
where x is the system state, and u is a potential external input such as wind, and k is the discrete
time step. When such physical systems exhibit transient dynamics or depend on external inputs, they
can be particularly difficult to model. The auto-regressive timestep can lead to numerical instabilities
over time when approximated by a data-driven model. The reason is two-fold: 1) often trained on
one-step training data, the ML-model parameters are not adapted to a multi-step setting, and 2) there
is a distribution shift between training and testing data, because the attractors in the training data
don’t exactly coincide with those in the testing data. One approach to resolve this issue is to use
temporal unrolling during training, where the model is exposed to more of the transient dynamics
during training, in order to reduce the distribution shift [4]. Another approach for linear operators
involves constraining the magnitude of the operator eigenvalues to be numerically less than or equal
to one [5, 6]. These two approaches will be explored in this case study.
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1.1 Case study and objectives

This paper investigates temporally stable reduced order surrogate models for predicting sea surface
elevations and currents in the waters of Øresund between Denmark and Sweden. The data is produced
by a physics-based hydrodynamic numerical model solving the shallow-water equations [7]. The
model data appears on a flexible mesh in two spatial dimensions of appr. 3300 elements, with three
sea state variables, resulting in a state dimension of appr. 10000 with 30 minute time resolution. The
data is divided into a training and test set, consisting of a one-year forecast in the year 2021 and 2022,
respectively. The hydrodynamic model uses boundary conditions and wind as input, both of which
are assumed available in a modeling context and will therefore also be used as input to the surrogate.
The simulation time for one year of simulation using the hydrodynamic model was 18 minutes on a
NVIDIA A40 GPU.

Two types of ML-models will be investigated: A proper orthogonal decomposition (POD) with a
linear regression for temporal predictions (PODLR), and a Koopman autoencoder using a linear
neural autoencoder (LKAE). The Koopman Autoencoder (KAE) [8, 9] approximates a Koopman
invariant subspace enabling nonlinear dynamics to be represented by a linear operator, while also
reducing the dimensionality via the neural autoencoder. The LKAE parameters are all trainable
in a fully-differentiable end-to-end setting, whereas the PODLR uses a closed-form solution for
finding the latent space efficiently, while the regression model parameters are trainable. In this
context, differentiability is defined in terms of the ability to apply automatic differentiation across
the ML-model parameters for gradient-based optimization, meaning that the PODLR is only partly
differentiable. The main objective is to investigate the following two questions for the two models
with different differentiability properties:

1. What is the effect on long-term stability and accuracy of applying eigenvalue constraints for
the linear operators during training, and what is the effect of temporal unrolling?

2. Do the effects differ for a fully differentiable model as opposed to a partly differentiable
model?

Constraining eigenvalues of the linear operators is a hard constraint on the numerical auto-regression
performed by the ML-surrogate, which ensures numerical stability. On the other hand, temporal
unrolling is an implicit approach that exposes the models to longer series of the transients while
training, which is expected to improve both numerical stability and accuracy.

The key contribution in this study is the exploration of techniques for differentiable reduced order
ML-models that can improve stability in long-term forecasting with application in many areas.
However, the practical application to emulate a large-scale hydrodynamic model underlines the
potential in utilizing exactly these techniques for ensuring more reliable data-driven surrogate models
for producing fast forecasts. To our knowledge, no similar study has been conducted previously for
this or similar hydrodynamic applications.

2 Methodology

For a discrete time step k, the sea states can be represented by xk ∈ RNx , and correspondingly the
external inputs (boundary conditions and wind) can be represented by uk ∈ RNu . We now seek to
determine a surrogate model on the form:

xk+1 ≈ Φ2L(Φ1xk,Ψuk,Ψuk+1), k = 0, 1, ..., T − 1 (2)

where Φ1 and Φ2 are linear mappings of x to and from a latent space of reduced dimension, Ψ maps
the external inputs to a latent space, and L : RNx̃+2Nũ → RNx̃ is a linear regression model mapping
the states from one time step to the next, using an external input with both a lagged and a lead input,
uk and uk+1. In this case, L is simply an (Nx̃ + 2Nũ)×Nx̃ matrix, where the latent dimensions
are Nx̃ = 15 and Nũ = 50.

Training of PODLR: The POD modes correspond to the right singular vectors of X =
[x1,x2, ...,xM ], where M is the number of time steps in the training data. They are found us-
ing a randomized singular value decomposition algorithm. Since the modes are orthonormal they
are easily invertible, and Φ2 = Φ−1

1 = ΦT
1 . The linear regression is simply a matrix of trainable

parameters as described for the LKAE below with α1 = 0.
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Figure 1: RMSE of a 1-year forecast in the test period with PODLR (left) and LKAE (right). The
suffix ’Eig’ means eigenvalue constraints, and ’TU’ means temporal unrolling.

Training of LKAE: The autoencoders are linear neural networks without activation functions and
with biases, and the linear regression is simply a linear layer in the middle. The time-steps are treated
as the samples and the optimization is based on one-step predictions as a default. The optimization is
performed in a PyTorch framework using the Adam optimizer, and it aims at minimizing the loss
function:

L = α1Lrecon + α2Lpred, (3)

where Lrecon is the mean squared error (MSE) of the reconstruction Φ2Φ1xk compared to xk,
Lpred is the MSE of the prediction (2) compared to xk+1, and αi, i = 1, 2 are the weights, in this
implementation set to 1. A validation set is used for early stopping.

Eigenvalue constraints: The eigenvalues are soft-constrained by adding the penalty α3Lλ to the loss
term (3), where Lλ is calculated using the ReLU function: Lλ =

∑NL

i=1 ReLU(|λi| − 1), where NL

is the dimension of the latent space (usually very small) and λi is the ith eigenvalues of the Koopman
operator, L, in (2). α3 is set to 1. The penalty sums together the moduli of all eigenvalues larger than
1, pushing the eigenvalues below 1, ensuring temporal stability. In practice, all trained operators in
this study have eigenvalues below 1, when α3 = 1.0

Temporal unrolling (TU): When applied, the optimization is based on several auto-regressive time-
steps performed in the latent space, and the loss (3) is based on all time-steps. This way, the parameter
optimization with backpropagation will be based on a gradient unrolling through the temporal steps.
There is a trade-off between the accuracy achieved from exploring more unrolled time-steps and the
stability of the computed gradients. The batch-size is set to the TU-length, such that one iterative
forecast is performed per batch.

Model assessment: The predictive performances of the models are assessed by the
root-mean-squared-error (RMSE) across time (1 year of forecast) and space given by√

1
NxT

∑Nx

i=1

∑T
j=1(Xi,j − X̂i,j)2, where X̂i,j is the surrogate approximation of the sea state in the

ith spatial element at time step j. The standard deviation on the absolute errors across space and time
is also included in the results.

3 Results and discussion

The optimal temporal unrolling length is determined by testing lengths from 5 time steps up to 160.
The error of the one-year forecast (evaluated in the training period) decreases for increasing unrolling
length, but reaches a saturation point around 20 to 40 time steps. An unrolling length of 40 is chosen
for the results presented here.

Figure 1 shows the RMSEs ± standard deviations of the one year test forecast for the two models for
each sea state, with "U velocity" and "V velocity" being the u- and v- components of the currents
in vector form, that is u = s cos(θ) and v = s sin(θ), when s is the current speed and θ the current
direction. The errors are given in the original state units, meters for the surface elevations and meters
per second for the currents. For reference, the mean and (maximum-minimum) values for the states
are 0.14 (3.0) m, -0.0 (2.2) m/s and 0.019 (2.9) m/s, respectively. For one model, the patterns across
states are more or less the same and will be described together. The leftmost dot describes the model
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without any additions (note that PODLR is unstable, and is therefore not present in the figure), the
next dot is the model with eigenvalue constraints, the third is with temporal unrolling and the last is
with both.

The basic LKAE is more stable than PODLR: Different initializations were tested for both models,
and the LKAE was found in all cases to converge to a stable temporal operator with numerical values
of the eigenvalues below 1. On the other hand, there are severe stability issues for PODLR. This is
also the case, when the linear regression is found by least squares linear regression. The end-to-end
differentiable training of LKAE, together with the separation of reconstruction and prediction errors
in (3) ensures that the model adapts to a latent space where the dynamic is linear. This is different
from the partially differentiable PODLR, where the latent space is fixed.

Using eigenvalue constraints improves stability in PODLR: Controlling the magnitude of the
eigenvalues ensures a stable model, which also has decent accuracy, with a RMSE of 0.042 m, 0.021
m/s and 0.037 m/s for the three state variables. For LKAE, the eigenvalue constraint makes no
difference, since the model is already stable.

Temporal unrolling improves accuracy in LKAE and stability in PODLR: The RMSE approxi-
mately halves across states, when temporal unrolling is used in LKAE, e.g. from 0.033 m to 0.017 m
for surface elevation. For PODLR, temporal unrolling has the same effect as eigenvalue constraints:
it improves stability in the linear regression, so that the PODLR surrogate is stable for a forecast of
an entire year, despite that the temporal unrolling length was only 40 time steps (20 hours). This
indicates, that the model is exposed to enough of the temporal dynamic during training, and this
shows the advantage of a differentiable linear regression over a closed-form solution.

There is no remarkable effect of using both: There are only slight improvements for PODLR and
no visible improvement for LKAE when both temporal unrolling and eigenvalue constraints are used.

While especially the accuracy improvements with temporal unrolling for LKAE are significant, a
caveat of the method is that it is more computationally expensive to train, e.g. 200 vs. 740 seconds for
100 epochs (NVIDIA L4 GPU). The reason is the iterative predictions during training that cannot be
parallelized in the same way as a batch-wide one-step prediction. Further, the gradient computation
is more expensive. As opposed to this, the eigenvalue constraint does not increase the computational
cost; since the latent dimension is small, the computation of eigenvalues is negligible in terms of
costs. Therefore, combined with the results in Figure 1, it would be preferable to only use eigenvalue
constraint for PODLR, whereas for LKAE the temporal unrolling is attractive due to the accuracy
improvements, especially since temporal unrolling affects only training, not inference.

The main goal of the data-driven surrogate model is to accelerate forecasts. The PODLR and
LKAE were chosen for their simplicity and lightweight design, yielding fast training and near-instant
inference. Their small latent spaces enable rapid predictions, with most computational cost coming
from the encoder–decoder transformations. Both models can complete a one-year forecast in seconds
on a laptop CPU, including projection to and from latent space. Combined with their low errors, this
makes them well-suited for ensemble and climate scenario forecasts.

4 Conclusion

This case study examined the effects of eigenvalue constraints and temporal unrolling during training
of linear reduced-order machine learning (ML) surrogates of a hydrodynamic model. The objective
was to improve the temporal stability of long-term forecasts of sea surface elevations and currents
by comparing a partly differentiable ML-model based on proper orthogonal decomposition and
linear regression (PODLR) with a fully differentiable linear Koopman autoencoder (LKAE). The
PODLR exhibited severe stability issues due to its fixed autoencoder component, but both temporal
unrolling and eigenvalue constraints substantially improved its stability and maintained high accuracy
relative to the hydrodynamic model. In contrast, the LKAE was inherently more stable and did not
benefit from eigenvalue constraints, although temporal unrolling reduced forecast errors by nearly
half. These findings demonstrate that exploiting the differentiable structure of ML-based surrogates
enables techniques than enhance long-term stability and reliability. Such approaches have significant
potential in hydrodynamic modeling, where surrogates like PODLR and LKAE can produce year-long
forecasts within seconds, opening the door to ensemble-based simulations and efficient long-term
climate scenario analyses.
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