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ABSTRACT

The proliferation of face forgeries has increasingly undermined confidence in the
authenticity of online content. Given the rapid development of face forgery gen-
eration algorithms, new fake categories are likely to keep appearing, posing a
major challenge to existing face forgery detection methods. Despite recent ad-
vances in face forgery detection, existing methods are typically limited to binary
Real-vs-Fake classification or the identification of known fake categories, and are
incapable of detecting the emergence of novel types of forgeries. In this work,
we study the Open Set Face Forgery Detection (OSFFD) problem, which de-
mands that the detection model recognize novel fake categories. We reformu-
late the OSFFD problem and address it through uncertainty estimation, enhancing
its applicability to real-world scenarios. Specifically, we propose the Dual-Level
Evidential face forgery Detection (DLED) approach, which collects and fuses
category-specific evidence on the spatial and frequency levels to estimate pre-
diction uncertainty. Extensive evaluations conducted across diverse experimen-
tal settings demonstrate that the proposed DLED method achieves state-of-the-art
performance, outperforming various baseline models by an average of 20% in
detecting forgeries from novel fake categories. Moreover, on the traditional Real-
versus-Fake face forgery detection task, our DLED method concurrently exhibits
competitive performance.

1 INTRODUCTION

Deepfakes, which use deep learning techniques to generate or modify faces and voices, continue to
rapidly increase in both sophistication and accessibility. The diversity of deepfake forgeries (Kor-
shunova et al., 2017; |[Karras| [2017; |Shen & Liul |2017;|S1arohin et al.,[2019) causes different visual
artifacts to appear in the generated deepfakes, making deepfake detection increasingly difficult. Ac-
cording to a survey by Mirsky et al. (Mirsky & Lee, 2021)), existing face deepfake forgeries can
generally be organized into four categories: Face Swapping (FS), Face Reenactment (FR), Entire
Face Synthesis (EFS), and Face Editing (FE). As new generation methods continue to emerge, it is
likely that novel categories of facial deepfakes will be developed.

Despite progress in deepfake detection under closed set scenarios (Yan et al., [2023bj |Qian et al.,
2020;|Gu et al., 2022} N1 et al., [2022), where both training and testing data contain the same known
fake forgeriesﬂ these methods have yet to fully address the challenge of generalizing to unseen fake
forgeries. Some studies (Wang et al., 2020; |Cao et al., [2022; [Nadimpalli & Rattani, 2022} [Zhuang
et al.| 2022} [Sun et al.| 2023)) have proposed mechanisms to improve generalization to unseen forg-
eries. However, their overall performance remains suboptimal, and they fail to detect the emergence
of novel fake categories.

In this paper, we study the Open Set Face Forgery Detection (OSFFD) problem to address this
issue. OSFFD was proposed in (Diniz & Rocha, |2024; Zhou et al., 2024), but it remains an under-
explored problem. Traditional deepfake detection and attribution tasks either distinguish between
real and fake images or assign forgeries to predefined categories. In contrast, OSFFD determines

'In this paper, we define “fake forgeries” as specific deepfake methodologies, and “fake categories” as the
broader groups to which these methodologies belong; e.g., FSGAN (Nirkin et al.,2019) is the fake forgery and
Face Swapping is its according fake category.
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whether a given face belongs to a novel fake category, while simultaneously performing multiclass
classification among real and known fake categories. The difference among these settings is shown
in Figure [I] The aforementioned studies approached the OSFFD problem by training models on
labeled data for seen classes (real and known fake categories), and unlabeled data for novel fake
categories. This setup has practical limitations as data from a novel fake category would not be
integrated into datasets immediately after its proliferation. In this paper, we reformulate the OSFFD
problem by restricting model training to only real and known fake categories, which enhances the
real-world applicability of OSFFD.

DeepFake Detection | DeepFake Attribution | Open Set Face Forgery Detection (Ours)

To address the OSFFD problem, we formulate it - . | "
as an uncertainty estimation issue that assesses . p—
the confidence of model predictions based on the — Z< }Mwe‘ Hm@ o
evidence collected from the data. During train- a2 A o { ’
ing, the model is exposed to known fake cat- @ ’ ® S
egories and learns to assign low uncertainty to
these samples. At test time, samples from un-
known categories are expected to yield high un-

Figure 1: Comparison with existing settings. Dif-
ferent from DeepFake Detection (a) and Attribution

certainty scores, facilitating their detection.

In this paper, we propose a novel Dual-Level Ev-
idential face forgery Detection approach, DLED,

(b), Open Set Face Forgery Detection (c) aims to
identify whether a forgery originates from a novel
fake category or not while simultaneously perform-
ing multiclass classification among real and known

that simultaneously identifies emerging, un- fake categories.

known fake categories and performs multiclass classification among real and known fake categories.
To enable novel category recognition, DLED leverages Evidential Deep Learning (EDL) (Sensoy
et al., 2018} [2020; |Shi et al., 2020) for classification and uncertainty estimation. However, unlike
conventional open set classification, OSFFD operates on structured facial imagery whose spatial
semantic patterns alone are insufficiently discriminative (Wang et al., | 2020). Accordingly, DLED
augments these cues with complementary low-level frequency artifacts, yielding a more effective
application of EDL. Because both sources are informative, detection decisions should reflect their
joint support. To this end, we introduce an uncertainty-guided evidence fusion mechanism grounded
in Dempster’s combination rule (Sentz & Ferson, 2002), enabling DLED to integrate evidence on
both the spatial and frequency levels into a unified, comprehensive uncertainty estimate. Further-
more, we propose an improved uncertainty estimation approach to enhance the model’s capability
to detect novel fake, as the original EDL formulation can be affected by evidence from irrelevant
classes, resulting in suboptimal uncertainty quantification.

Compared with existing face forgery detection methods, a key advantage of our DLED model lies
in its ability to promptly detect newly emerging fake categories and avoid misclassification, without
relying on any prior knowledge of these categories. While existing deepfake detection algorithms
can be adapted to be feasible in the OSFFD problem, e.g., one-class detectors (Shiohara & Yamasakil,
2022; |[Khalid & Wool, [2020; |[Larue et al.l [2023) can combine with a separate multiclass classifier,
they often struggle to balance between accurate novel category detection and effective multiclass
classification. In addition, our methodology is grounded in principled reasoning, offering clear
interpretability for the OSFFD results.

In summary, our contribution is three-fold:

* We reformulate the Open Set Face Forgery Detection (OSFFD) problem, eliminating the
reliance on unlabeled data from novel fake categories during model training, making it
more applicable in real life.

* We propose leveraging EDL to treat the OSFFD as an uncertainty estimation problem, en-
abling the model to determine whether a face image originates from a novel fake category.

* We propose the DLED approach, which aggregates and fuses evidence on both the spatial
and frequency levels to estimate prediction uncertainty. Extensive empirical results validate
its effectiveness and demonstrate its superiority over various baseline models.

2 RELATED WORK

Deepfake Detection. A wide range of deepfake detection approaches have been studied in the
literature (Huang et al.l 2022). Most existing methods (Sun et al.| [2022; N1 et al.| [2022; |[Zhuang
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let all 2022 [Cao et al 2022) leverage spatial patterns to detect manipulation artifacts, while oth-
ers (Luo et al, 2021} |Gu et all, 2022}, [Zhang et al., 2019) exploit discrepancies in the frequency
domain to reveal forgery traces. Some studies also (Tan et all, [2024; Wang et al, [2023D}; (Guillaro
2023) integrated features from complementary modalities, such as noise patterns, to further
distinguish fake faces. One-class anomaly detection methods (Khalid & Wool, 2020} [Shiohara &
Yamasakil, 2022} [Larue et al.,[2023)) treat real faces as the positive class and all other data as anoma-
lous outliers, training the model exclusively on the positive class to distinguish between real and
fake faces. Recent works (Ojha et al.} 2023} [Khan & Dang-Nguyen| [2024) find that the pretrained
CLIP 2021) model performs well on unseen forgeries. Based on this finding, several
recent works (Liu et al., 2024bifd; [Yang et al., [2025)) designed diverse adaptations for CLIP to en-
hance its detection capabilities. However, these approaches are limited by their exclusive focus on
Real-vs-Fake classification, which overlooks the differences among different fake categories.

Deepfake Attribution. The deepfake attribution task aims to identify the source of fake faces so
that models can provide persuasive explanations for the results of deepfake detection. However,
most of these methods (Wu et al.| 2024} [Huang et al., 2023}, [Yang et al, 2022} [Zhong et al., 2023)
are limited to the closed set scenario. Few methods have utilized the “open world” setting to track
unseen forgeries. The open-world GAN (Girish et al., 2021) method is designed to detect images
generated by previously unseen GANSs, but its framework does not extend to other manipulations
such as face editing. Another work, CPL 2023), introduced a benchmark which encom-
passes a broader array of unseen forgeries derived from multiple known categories. However, this
setting relies on access to unlabeled data from such forgeries during training and does not determine
whether a given forgery originates from a novel category, thereby limiting its practical applicability.
Although recent works (Wang et al., 20244} [2023a)) introduced open set classification for forgeries,
their settings do not differentiate between unseen forgeries originating from known categories and
those from entirely novel categories, nor can they determine whether a face is real or fake.

Open Set Recognition. Open Set Recognition is a well-defined task that recognizes known classes
and differentiates the unknown. The pioneering work (Scheirer et al.,[2012)) formalized the definition
and introduced a “one-vs-set” machine based on binary SVM. Prototype learning and metric learning

methods (Chen et all, [2021}; [Yang et all, [2020; [Zhang & Ding}, 2021)) have been applied to identify

the unknown by keeping unknown samples at large distances to prototypes of known class data.

Recently, uncertainty estimation methods (Wang et all, 2021} [Bao et all, 2021}, [Fan et al 2024}
2023) using Evidential Deep Learning (EDL) have shown promising results on open set recognition

problems. EDL (Sensoy et al,[2018};[2020; Shi et al,[2020) works well to quantify model confidence

and prediction uncertainty, exhibiting high efficacy in handling unseen data types, and it has been
further broadened to encompass multi-view classification (Han et al.,[2020; [Huang et al., 2024). To
the best of our knowledge, this paper is the first to integrate EDL into the OSFFD problem.

3  OPEN SET FACE FORGERY DETECTION
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As depicted in Figure 2] Open Set Face Forgery
Detection (OSFFD) addresses a practical problem:
leveraging knowledge from seen classes (i.e., real
faces and faces from known fake categories) to clas-
sify a given face as either belonging to a seen class or
to the newly emerging, unseen fake category. In the
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OSFFD. Real faces and fake faces from the seen
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distribution (OOD) generalization, which target binary real-vs-fake discrimination on unseen testing
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samples. As a result, they neither support multiclass classification nor distinguish novel fake cate-
gories, rendering them unsuitable for OSFFD. One alternative is a two-stage pipeline that first par-
titions samples into seen versus unseen class via OOD detection (Khalid & Woo, [2020; [Shiohara &
Yamasakil 2022)) and then applies a face-forgery classifier to seen classes; but this decoupled design
optimizes different training objectives across stages and offers limited theoretical interpretability.
Additionally, existing open set recognition (OSR) methods (Zhang & Xiang, 2023} [Lang et al.,
2024) could hardly perform well when directly applied to OSFFD as the data in OSFFD consist
of highly structured facial imagery that requires additional mechanisms to extract discriminative
representations. Therefore, novel algorithms need to be developed to address the OSFFD problem.

Formulation. Given a labeled training set Dg = {(x;,;)}, consisting of M labeled sam-
ples from K seen classes comprising the Real class and N known fake categories (i.e., K =
N+ 1,y € {1,...,K}) and a test set Dy containing samples from the face class set
{R,F1,....,Fn,Fny1,...,Fntu}, where U is the number of unknown fake categories, we de-
note the embedding space of class k € [1, K] as P, and its corresponding open space as Oy,. The
open space is further divided into two subspaces: the positive open space from other known classes
O} and the negative open space O} ® that represents the remaining infinite unknown region.

For a single class k, the samples D% € P, D?k € 07, and Dy € O}°® are positive training data,
negative training data and potential unknown data respectively. Then, we could use a simple binary
classification model Wy (2) — {0, 1} to detect unseen classes (Chen et all, 2021 and optimize the
model by minimizing the expected risk R*:

argmin R* = R.(¥y, Py UOR*) + a - Ry(Wy, O7°®), (1)

Wy

where « is a positive constant, R is the empirical classification risk on the known data, and R, is
the open space risk (Scheirer et al.,2012)). R, measures the likelihood of labeling unknown samples
as either known or unknown classes, expressed as a nonzero integral function over the space O, :

Jopes Ui (x)dx
Ry (U, 008) = 0 "7
* 7 Jruo, Yr@)dz

The more frequently the negative open space O, “® is labeled as positive, the higher the associated
open space risk.

2

We extend single-class detection to the multiclass OSFFD setting by integrating multiple binary clas-
sification models W, using a one-vs-rest strategy. With Eq. |1} the overall expected risk is computed

as the sum over all seen classes: Zszl RF. This is equivalent to training a multiclass classifi-

cation model F = ®(¥y, ..., Vk) for K-class classification, where ®(-) denotes the integration
operation. The overall training optimization objective is formulated as:
K
arg min{R.(F, Dg) +a~ZRO(}', Dy)}, 3)
k=1

which demands the model to minimize the combination of the classification risk on seen classes and
the open space risk on unseen classes. Therefore, our goal is to train a multiclass classification model
F(+), parameterized by 6, on K seen classes to accurately classify faces as either real or belonging to
one of the known fake categories, while simultaneously detecting novel fake categories as a distinct
(K + 1) class. We further formulate OSFFD as an uncertainty estimation problem: the model
F : X — (g,4) outputs a predicted category label § € {1,..., K} and its associated predictive
uncertainty «. If the predictive uncertainty exceeds the class-specific threshold 7, i.e., @ > 75, the
predicted label is deemed unreliable and the instance is assigned to the novel fake category.

4 METHODOLOGY

To solve the formulated uncertainty estimation problem, we utilize established techniques such as
MaxLogit and Evidential Deep Learning.

Plug-in OSR Techniques. Maximum Softmax Probability (Hendrycks et al.,[2019) and MaxLogit
(Wang et al.| 2022)) detectors are two widely used plug-in OSR techniques, which utilize the max-
imum Softmax probabilities and the maximum logits as the model prediction confidence with no
extra computational costs.
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Figure 3: Overview of DLED. DLED collects and fuses evidence from both the spatial and frequency domains
to estimate prediction uncertainty. Our improved uncertainty estimation 4 is applied to achieve better detection
performance. Fy represents the N-th fake category and K is the total known class number. If the uncertainty
for the given sample is larger than the computed threshold, its label will be reassigned to the novel fake category.
In the evidence illustration, we present a demonstration of a three-class classification scenario (K = 3).

Evidential Deep Learning. Evidential Deep Learning (EDL) is an effective technique that performs
multiclass classification and uncertainty modeling by introducing the framework of Dempster-Shafer
Theory (Sentz & Ferson, [2002) and subjective logic (Jgsang, [2016). For a K-class classification
problem, given a sample x and a model F parameterized by 6, the predicted evidence is given by
e = h(F(z;0)) € RX, where h is an evidence function. With total strength S = Zszl ay, where
a = eg + 1, the predicted probability for class k is pr, = a4 /S and the prediction uncertainty
w is calculated as u = K/S. EDL has been useful to detect data from unknown classes in prior
literature (Bao et al.,2021;|Zhao et al., 2023 Yu et al.,[2024; |Wang et al.,[2024b; [Peng et al.| [2025)).
These literature motivates us to develop a EDL-based algorithm to detect novel deepfake categories.
Compared with plug-in OSR techniques, EDL provides a more principled uncertainty estimation.

Challenges in applying EDL. In our approach, we employ EDL to collect evidence for face forgery
detection. However, leveraging EDL to address the OSFFD problem meets the following challenges:

1) How to collect sufficient evidence in the OSFFD problem? Unlike conventional open set image
classification, face forgery detection involves highly structured facial imagery. As a result, off-the-
shelf EDL do not directly carry over to OSFFD with satisfactory performance. To bridge this gap,
we extract evidential cues at two complementary levels: high-level semantic signals in the spatial
domain and low-level artifacts in the frequency domain.

2) How can we achieve a comprehensive integration of collected complementary evidential cues?
As both sources carry informative evidence, detection decisions should account for their joint con-
tribution. The key challenge, therefore, is integrating the two independent uncertainty estimates
into one well-calibrated and comprehensive metric. We address this issue by proposing a novel
uncertainty-guided evidence fusion mechanism.

5 DuAaL LEVEL EVIDENCE COLLECTION

Overview. To address the OSFFD problem, we propose the Dual-Level Evidential face forgery
Detection (DLED) approach, which is exhibited in Figure 3} DLED exploits EDL through a dual-
level evidential architecture that captures category characteristics of facial imagery across spatial
and frequency domains, yielding sufficiently discriminative evidence. It addresses the evidence
aggregation challenge with an uncertainty-guided fusion mechanism and further incorporates an
uncertainty-improvement procedure to enhance the reliability of the resulting estimates. Together,
these components enable DLED to detect novel fake categories by quantifying classification un-
certainty across complementary levels and determining whether an existing prediction should be
reassigned to the novel category.
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Spatial and Frequency Evidence. Our DLED model addresses the evidence collection problem
by extracting cues at two complementary levels: high-level spatial semantic signals and low-level
frequency artifacts. Face forgeries generally fall into several common categories (FS, FR, EFS, and
FE) based on their characteristics in the context of human visuals (Mirsky & Lee, [2021). We refer
to these characteristics as deepfake category semantics, which is neglected by most existing works.
Exploiting these semantics, the model can discern subtle differences among fake categories. To
leverage both contextual and visual deepfake semantics, we employ the CLIP (Radford et al., [2021)
architecture, a vision-language model designed to align image and text representations in a shared
semantic space. Given an input image and the class textual descriptions, we then calculate the logit
mass m; for class ¢. In contrast to standard open set classification, relying solely on visual semantics
fails to capture the structure of forgery images. We thus leverage low-level artifacts in the frequency
domain as a complementary source of evidence. Specifically, for each input image, we obtain its
frequency map by applying the Fast Fourier Transform and shifting the resulting spectrum to center
the low-frequency components, thereby making them more prominent. To extract evidence from
these complementary domains, we employ two parallel CLIP pipelines, each with a dedicated im-
age encoder and text encoder. Since CLIP is not explicitly trained to capture forgery image patterns,
particularly in the frequency domain, we adapt it by fine-tuning the encoders along with the text
prompts while freezing all other pretrained parameters. For text prompts, we employ Context Op-
timization (Zhou et al.,[2022)), which augments class tokens with learnable prompt vectors to yield
stronger context embeddings. For image and text encoders, we integrate LoRA (Hu et al., 2022)
layers into them, which enhance the model’s understanding of deepfakes while not adding any addi-
tional parameters during testing. Although we have two parallel branches for spatial and frequency
level representations, we reduce memory consumption by sharing their pretrained parameters.

Evidential Uncertainty Estimation. Our DLED model detects novel fake categories through ev-
idential uncertainty estimation using Evidential Deep Learning (EDL) (Sensoy et al.l |2018) in an
end-to-end manner grounded in solid theoretical principles. EDL employs deep neural networks to
output the parameters of a Dirichlet distribution over class probabilities, which is then used for both
class prediction and uncertainty estimation. This process can be regarded as an evidence collection
process. By leveraging EDL, our method quantifies the uncertainty associated with each prediction
to assess its reliability. If the uncertainty is high, the model will reclassify the input as belonging to
the novel class, thereby enabling the identification of faces from previously unseen fake categories.

Specifically, for each of the spatial and frequency branches with classification logits mass m, our
approach calculates the corresponding evidence e = h(m) using an evidence function A(-) that
guarantees e to be non-negative. During the training phase, to facilitate evidence collection, we
independently apply the following EDL loss to each branch:

K

Leprle,y) =Y yr(logS —log(ex + 1)), )
k=1

where S = Zk ar and o = e + 1, denoting the total strength of the Dirichlet distribution
governed by {a1, . x}, and y is the one-hot K -class label. We also apply AvU regularization (Bao
et al., 2021; [Hammam et al., |2022)) to each branch for uncertainty calibration. The EDL loss and
AvU regularization minimize R. and R, in Eq. [3]separately.

Test-time Evidence Fusion. To address the integration problem, we design a uncertainty-guided
test-time evidence fusion mechanism. During model inference, according to EDL (Sensoy et al.,
2018)), the probabilities of different classes (belief masses) and the overall uncertainty mass can be
calculated by by, = e;/S and u = K/S. The K belief mass values and the uncertainty v are all

non-negative and follow the sum-to-one rule: Zszl b +u = 1. With this approach, we can get the
belief and uncertainty for each branch.
Our DLED model collects two independent sets of probability mass M* = {{b;}< u®} and

Mf = {{bi}kK:17 u'} from the spatial and frequency domains. Inspired by previous works (Han
et al., 20205 2022), we apply the Dempster’s combination rule (Sentz & Ferson, [2002) to get the

joint detection probability mass set M in the following manner: M = M* @ M/. The specific
calculation rules for belief mass and uncertainty mass are formulated as

Zk = ’y(bibi + biuf + bius)7 U= ’yusuf, 5)
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where v = 1/(1— 32, b; bf ) is the scaling factor, normalizing the mass fusion to mitigate the
effects of conflicting information between the spatial mass and frequency mass. With this newly

obtained joint detection mass M, the joint evidence and the parameters of the Dirichlet distribution
are calculated as follows:

K _ - ~ ~ ~
Sif, er =br xS, and ap =e; + 1. (6)

For a test sample ¢, the model prediction pi, for class k is computed as p}, = &, /S".

Improved Uncertainty Estimation. Considering 7 = K/S and S = Zszl (ér + 1), after dividing
numerator and denominator by K, the uncertainty can be expressed as

1
1+ £ S e k)

which indicates that the uncertainty is assessed using the average evidence across all K classes.
Therefore, when the input data shows high evidence from irrelevant classes, the estimated uncer-
tainty will be overestimated resulting in a sub-optimal estimation. To solve this problem, we propose
an improved uncertainty estimation by replacing the average evidence with maximum evidence:

1 1

1+ max{er .k} - max{aq, K}

u

)

=

®)

where {€1 .. i} represents the set of K fused evidences. Our improved uncertainty measure offers
the advantage of being less affected by low-evidence classes while retaining a normalized range be-
tween 0 and 1 for better human understanding. Moreover, it directly reflects the model’s confidence
in the predicted class. We recalculate the uncertainty u with Eq. [8] after the evidence fusion to get
better detection performance.

To determine if a face image belongs to an unseen fake category, our model compares its uncertainty
4 with the uncertainty threshold for its predicted class. If the uncertainty falls above the threshold,
the model reassigns the label to the novel category.

Table 1: Comparisons of model performance with diverse baseline methods implemented by ourselves for the
OSFFD problem. We use different data configurations for the seen and unseen fake categories. For “FS”, “FR”,
and “EFS”, we let each fake category be the unseen category and let the left two be seen categories. For “FE &
SM”, we take FS, FR and EFS as seen categories and let FE and SM be the unseen categories. The best results
are highlighted in bold.

Methods FS FR EFS FE & SM Avg

C Acc DR Acc DR Acc DR Acc DR Acc DR
Two-stage OC-FakeDect (Khalid & Woo0l2020] 58.16 14.68 60.69 11.43 56.14 9.01 56.74 11.67 57.93 11.70
SBI (Shiohara & Yamasak1| 2022} 65.15 1.07 64.19 3.00 61.24 0.91 62.27 0.66 63.21 1.41
Xception (Rossler et al.|2019] 64.60 23.90 53.51 29.06 57.62 22.70 55.28 29.04 5175 26.17
SPSL (Liu et al.|[2021 65.07 16.71 54.10 18.93 59.67 18.12 60.02 25.98 59.71 19.93
CNN-based + OSR SIA (Sun et al. 2022} 62.09 13.59 54.62 13.36 56.85 10.99 56.29 22.53 57.46 15.12
UCF (Yan et al.J[2023a] 65.08 0.30 50.98 0.20 52.95 1.28 52.69 1.80 55.42 0.89
NPR (Tan et al.|2024] 75.37 17.37 64.63 6.75 70.43 4.36 71.45 29.20 70.47 14.42

CLIP Closed Set Finetuning 67.24 \ 65.19 \ 64.53 \ 66.24 \ 65.80 \
CLIP Zero-Shot (Radford et al.;2021} 52.30 0.81 50.36 0.26 46.01 0.38 47.62 0.25 49.07 0.43
CLIP-based + OSR UnivFD (Ojha et al.}[2023] 68.81 3.88 64.00 248 63.21 0.73 66.34 8.22 65.59 3.83
CLIPing (Khan & Dang-Nguyen/2024] 66.44 14.38 62.41 6.09 61.29 4.92 66.26 19.27 64.10 11.16
D* (Yang et al.]2025] 70.46 8.14 64.71 8.90 61.65 1.17 66.33 8.26 65.79 6.62
Ours 71.37 33.61 66.83 34.92 75.52 34.71 74.48 82.18 72.05 46.35

6 EXPERIMENTS

Datasets. To evaluate model performance on the OSFFD problem, we conducted experiments using
the comprehensive dataset DF40 (Yan et al., [2024b). DF40 collects fake faces from four distinct
categories (“Face Swapping”, “Face Reenactment”, “Entire Face Synthesis”, and ‘“Face Editing”)
and includes a total of 40 diverse forgeries. Additionally, we introduced data from two ‘““Stacked
Manipulation” (SM) forgeries (He et al., [2021)), in which techniques from multiple fake categories
are applied within a single image. We treat these SM forgeries as an auxiliary fake category.

Evaluation Protocols. In OSFFD problem, the training set comprises real faces and fake faces
from multiple known fake categories, while the test set additionally includes samples from unknown
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fake categories. To evaluate the model’s performance, we first adopted the leave-one-out strategy in
which one fake category from FS, FR, or EFS was withheld during training and treated as an unseen
category during testing. Subsequently, all three fake categories (FS, FR, and EFS) were included as
seen classes, and the model was evaluated on a test set containing additional forgeries from FE and
SM, representing novel fake categories. As for the evaluation metric, we employed the multiclass
classification Accuracy (Acc) and the Detection Rate (DR), where DR refers to the recall of the
unseen fake categories.

We compared our DLED method with the following baseline methods. 1) Two-stage baselines: We
introduced a second training stage for one-class out-of-distribution (OOD) detection methods: OC-
FakeDetect (Khalid & Woo, [2020) and SBI (Shiohara & Yamasakil, |2022), in which an additional
closed set multiclass model is independently trained to further classify the seen classes. For fair
comparison, we used CLIP as the multiclass model’s backbone and finetuned it in the closed set
manner with the cross-entropy loss; 2) CNN-based baselines: Xception (Rossler et al.,[2019), SPSL
(L1u et al., 2021)), SIA (Sun et al., [2022), UCF (Yan et al., [2023a), and NPR (Tan et al.| [2024);
3) CLIP-based baselines: Zero-shot CLIP (Radford et al., 2021)) and three established methods
UnivFD (Ojha et al.,2023), CLIPing (Khan & Dang-Nguyen, [2024) and D3 (Yang et al.| [2025)).

For the two-stage baselines, we let images recognized by the one-class model as seen classes go
through the multiclass model to get their concrete class in testing. For the CNN-based and CLIP-
based baselines, we replaced their binary classifier with a multi-class classifier trained in an end-to-
end fashion and adopted the MaxLogit (Zhang & Xiang, 2023)) technique in testing, because of its
good performance in detecting unknown samples. For all algorithms that need a threshold to detect
novel categories, we computed it from the training data such that 95% of the samples in each class
are marked as known, which is the widely used setup in open set problems. Full implementation
details are provided in the supplementary.

6.1

Open Set Face Forgery Detection.

Since the two-stage baselines rely on the closed
set finetuned CLIP model as their multiclass clas-
sifier, we also report the performance of this
model independently. As shown in Table [T} most
baseline models struggle to achieve high perfor-
mance on both Accuracy (Acc) and Detection
Rate (DR) simultaneously. Methods with higher
Acc typically exhibit lower DR, and vice versa.
It could also be observed that two-stage methods
yield lower Acc than their base forgery classifier,
indicating that OOD detectors and forgery classi-
fiers are difficult to integrate in OSFFD with sat-
isfactory performance. Besides, directly applying
OSR techniques with an Xception backbone at-
tains notably low Acc, underscoring that off-the-

EVALUATION OF DETECTION PERFORMANCE

Table 2: Comparisons of prediction accuracy with
diverse baselines implemented by ourselves for the
Real-vs-Fake detection task. Data configurations are
the same as those in OSFFD. All baseline models are
implemented following their original algorithms.

Methods FS FR EFS FE & SM Avg
OC-FakeDect

(Khalid & Wo0,2020} 48.09 48.45 48.18 47.16 47.97
SBI (Shiohara & Ya-|

masakil2022] 50.13 50.36 50.07 49.96 50.13
Xception

(Rossler et al.|2019] 71.73 67.98 67.19 67.49 68.60
SPSL (Liu et al.}2021] 72.29 65.87 70.34 69.57 69.52
SIA (Sun et al.[[2022] 69.45 64.13 66.91 64.64 66.28
UCF (Yan et al.[[2023a) 71.10 64.78 65.18 67.98 67.26
NPR (Tan et al.;2024] 80.76 75.73 77.67 77.21 77.84
CLIP Zero-Shot

(Radford et al. 2021} 52.96 53.20 53.12 56.62 53.97
UnivFD (Ojha_et_al.|

5073] 77.64 76.83 79.33 81.31 78.78
CLPing _(Khan & o046 7705 7958 8100 79.07

Dang-Nguyen/|2024]
D~ (Yang et al.}[2025]
Ours

78.56
87.22

77.00
85.93

79.67
83.52

79.81
84.97

78.76
85.41

shelf OSR approaches are insufficient to solve the OSFFD problem. With more sophisticated designs
tailored to face forgery detection, the baselines achieve higher Acc in most cases, confirming that
efficient mechanisms for exploring forgery-specific representations are necessary to address OSFFD.

In comparison, our DLED model consistently achieves the highest DR across all scenarios and
demonstrates superior average Acc, outperforming baseline methods in the majority of cases. These
results highlight the effectiveness of DLED in discovering novel fake categories while maintaining
strong recognition performance on real images and known fake categories.

Real-vs-Fake Detection. We also evaluate the proposed DLED model on the traditional Real-vs-
Fake detection task, using the same data configuration as in the OSFFD problem. In this task, all
baseline methods are implemented according to their original designs without modification. For
our DLED model, any face predicted to belong to a fake category is classified as a fake sample.
The results are shown in Table[2] It can be observed that DLED significantly outperforms these face
forgery detection algorithms across all evaluation cases. These empirical results demonstrate that, in
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addition to its strong performance on the OSFFD problem, the proposed DLED model also achieves
competitive results on the traditional binary Real-vs-Fake deepfake detection task.

6.2 ABLATION STUDY

In this section, we conducted an ablation study on DLED. These experiments follow the same setup
as described for OSFFD, and the results are summarized in Table 3}

Our results indicate that: 1) Compared to Table 3: Ablation Study of DLED. The table presents
MaxLogit, EDL enhances model performance DR results under the same data configuration as used
across both the spatial and frequency branches, in the main OSFFD experiments.

indicating its superior capability in uncertainty

. . . . Models FS FR EFS FE&SM  Avg
estimation and, consequently, improved discov- Zero-Shotwit MaxLogit_ 08T 026 0385 0235 042
. . Spatial Branch Zero-Shot with EDL. 1.58 0.58 0.68 0.63 0.87

ery of novel categorles. 2) Although equlpped Finetuning with EDL  13.02 3094 833  50.59 2571
. N Zero-Shy ith MaxLogit ~ 3.85 235 6.98 0.53 343
with EDL, the pretrained CLIP model cannot be  frequency Brancn o ShotwihEDL. 471 251 606 033 346
. . . . Finett ith EDL. 1434 849 7.69 90.36 30.22
directly applied to the OSFFD problem in either — p—— FidencFwor — 202 %ls 2% 17 52
Full DLED 33.61 3492 34.71 82.18 46.36

the spatial or frequency domain, as indicated by
its extremely poor performance (see the 2nd and 5th rows). Fine-tuning the prompts and integrating
LoRA layers substantially improves the performance of both branches, highlighting the effective-
ness of task-specific representation adaptation. 3) Without frequency information, the finetuned
spatial branch with EDL exhibits an average performance drop of about 20% relative to the fused
model (see the 3rd and 7th rows). This highlights the necessity of extracting complementary evi-
dential cues across spatial and frequency domains to fully exploit forgery-specific signals and make
more effective use of EDL, as well as the benefits of evidence integration. 4) By incorporating the
improved uncertainty estimation, the full DLED model achieves the highest average Detection Rate,
surpassing simple evidence fusion in most cases and thereby validating its effectiveness.

6.3 ANALYSIS OF EVIDENCE

To provide a clearer understanding of DLED’s behavior in OSFFD, we present visualizations of
evidence distribution in Fig. [] In this analysis, FR and EFS are treated as seen fake categories,
while FS and FE represent novel categories.

Unseen Categories
FR FR

Seen Categories

Fig. 4| illustrates how uncertainty estimation fa- . . :
cilitates the detection of novel fake categories ) |
among test samples. Each subfigure visualizes :
the Dirichlet distribution produced by DLED for
the corresponding fake category. These visualiza-  geal EFS Real EFS | Real EFS Real EFS
tions demonstrate that the DLED model exhibits @F% U @

higher confidence when making predictions on seen

clgsses, while showing grea}ter p I‘delCthIl UNCCI™  The evidence for seen fake categories FR and EFS
tainty for novel fake categories. This behavior en- ¢ .ondensed in their corresponding corner with

gbles DLED to (?ffecti\(ely }‘ecognize newly CmeErg-  Jow uncertainty, while the evidence for novel fake
ing fake categories while simultaneously maintain- categories FS and FE is sparse with higher uncer-
ing strong performance on known classes. tainty.

Figure 4: Visualization of Evidence Distribution.

7 CONCLUSION

In this work, we reformulate the Open Set Face Forgery Detection (OSFFD) problem by removing
the need for unlabeled novel data during model training, thereby enhancing its practicality for real-
world applications. By treating the OSFFD as an uncertainty estimation problem, we proposed a
novel algorithm, DLED, which effectively identifies unseen fake categories as novel while simul-
taneously classifying real and known fake categories. DLED leverages EDL to collect and fuse
evidence from both spatial and frequency domains, exploiting category-specific semantics to es-
timate prediction uncertainty. Additionally, we propose an improved uncertainty formulation that
enhances the model’s ability to detect novel fake categories. Extensive experiments under various
testing configurations demonstrate that DLED substantially outperforms diverse baseline methods in
addressing the OSFFD problem. Future work will focus on improving the efficiency of the proposed
method and enabling rapid adaptation to the detected novel fake categories.
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