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Abstract

Large language models pretrained on a huge
amount of data capture rich knowledge and
information in the training data. The ability
of data memorization and regurgitation in pre-
trained language models, revealed in previous
studies, brings the risk of data leakage. In or-
der to effectively reduce these risks, we pro-
pose a framework DEPN to Detect and Edit
Privacy Neurons in pretrained language mod-
els, partially inspired by knowledge neurons
and model editing. In DEPN, we introduce a
novel method, termed as privacy neuron detec-
tor, to locate neurons associated with private
information, and then edit these detected pri-
vacy neurons by setting their activations to zero.
Furthermore, we propose a privacy neuron ag-
gregator dememorize private information in a
batch processing manner. Experimental results
show that our method can significantly and ef-
ficiently reduce the exposure of private data
leakage without deteriorating the performance
of the model. Additionally, we empirically
demonstrate the relationship between model
memorization and privacy neurons, from multi-
ple perspectives, including model size, training
time, prompts, privacy neuron distribution, il-
lustrating the robustness of our approach.

1 Introduction

Remarkable progress has been made in large lan-
guage models (LLMs) in recent years (Brown et al.,
2020; Liu et al., 2021; Ouyang et al., 2022; Lee
et al., 2023). However,despite this success, LLMs
are confronted with privacy and security concerns
in real-world applications (Guo et al., 2022; Brown
et al., 2022; Li et al., 2023). The primary cause of
privacy and security risks is the inherent nature of
large pretrained language models. Previous studies
(Carlini et al., 2019, 2021; Thakkar et al., 2021;
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Henderson et al., 2018) have demonstrated that
pretrained language models tend to memorize and
regurgitate a significant portion of the training data,
including atypical data points that appear only once
in the training data. Additionally, external factors
(e.g., membership attack) also contribute to these
risks. A variety of methods have been explored
to attack LLMs for training data extraction. For
instance, Carlini et al. (2021) have successfully ex-
tracted personal information from GPT-3’s output,
while Li et al. (2023) have induced the genera-
tion of personal information by utilizing multi-step
prompts in ChatGPT. All these show that large pre-
trained language models suffer from a serious risk
of privacy leakage.

In order to safeguard privacy, numerous meth-
ods have been proposed. The majority focus on
either removing sensitive information during the
data processing stage (Liu et al., 2017; El Emam
et al., 2009; Zhou et al., 2008; García-Pablos et al.,
2020), or reducing the extent to which models
memorize training data during the training stage
(Li et al., 2021; Hoory et al., 2021; Plant et al.,
2021; Coavoux et al., 2018). However, privacy
breaches often come to light after the completion
of model training, rendering previous methods less
effective. There are also methods proposed in the
post-processing stage, which involve slight param-
eter retraining to make the model forget privacy
information (Bourtoule et al., 2021; Gupta et al.,
2021; Neel et al., 2020). Nevertheless, these meth-
ods generally incur high computational complexity,
making it challenging to apply them to complex
model architectures. In practice, model develop-
ers often attempt to prevent language models from
outputting specific information via blocking or fil-
tering certain keywords, which, however, does not
truly address the underlying issue.

We speculate that private information might be



stored in specific neurons, just like knowledge neu-
rons (Geva et al., 2021; Meng et al., 2022; Dai
et al., 2022). This presumption suggests that we
could change the model memorization of private
information by detecting and deleting these neu-
rons (termed as privacy neurons). Therefore, we
propose a framework DEPN for detecting and edit-
ing privacy neurons. To detect privacy neurons,
we introduce a privacy neuron detector that uses
gradient integration to simultaneously compute the
contributions of multiple markers to neuron activa-
tions. This allows us to estimate an overall privacy
attribution score for private information. Subse-
quently, we further propose a privacy neuron editor
that simply sets the activations of the top z privacy
neurons with the highest privacy scores to zero to
erase the model memorization of the corresponding
private information. For the scenario of process-
ing multiple sentences at the same time, we also
present a privacy neuron aggregator to facilitate
privacy information editing in batches.

Experimental results show that our framework
can quickly reduce the risk of private data leakage
without affecting model performance. Compared
with other methods, our framework is highly ef-
ficient. Furthermore, we have found that model
memorization leads to the aggregation of privacy
neurons in our experiments, and demonstrated that
our framework is very suitable for the scenario of
deep model dememorization.

The main contributions of our work are summa-
rized as follows:

• For the first time, we explore model edit-
ing into privacy protection of pretrained lan-
guage models, provide a new way for privacy
protection, and propose DEPN to effectively
eliminate model memorization in the post-
processing stage.

• We propose the privacy neuron detector to
localize privacy neurons based on gradient
attribution, and the privacy neuron editor to
dememorize privacy information in pretrained
language models.

• We conduct experiments to demonstrate that
the proposed framework is capable of protect-
ing privacy leakage from pretrained language
models.

2 Preliminary

Privacy Definition Privacy preservation has be-
come an issue of great concern in the era of pre-
trained language models. Protecting privacy first
requires specifying the boundaries of privacy. The
definition of privacy is broad. It is closely related
to its context and discourse (Brown et al., 2022).
In any texts about, a specific person can be consid-
ered as private. For the convenience of research, a
narrow definition of privacy is usually taken (Sousa
and Kern, 2023), which treats personal identity in-
formation as privacy, such as names, ID numbers,
phone numbers and other related expressions. The
proposed DEPN can be adapted to the above two
definitions.

Model Editing Geva et al. (2021) find that the
feed-forward network module in Transformer (i.e.,
a two-layer perceptron) can be considered as a key-
value memory, where each key corresponds to a
text pattern and each value represents a distribution
over the vocabulary. Based on this finding, a strand
of research, (Geva et al., 2021; Meng et al., 2022;
Dai et al., 2022) propose to edit factual knowledge
encoded in pre-trained LLMs by locating neurons
related to the entities of factual knowledge. The
basic idea of localization is to change the param-
eters of neurons, and then observe the changes in
the probability of the object entity predicted by the
model. The neurons with greater influence on the
probability are more closely related to the object
entity.

However, these methods have a limitation that
they can only observe the probability change of
one token at a time. Semantic units are usually
composed of a sequence of tokens, rather than a
single token. This makes it impossible to use these
methods directly.

3 Methodology

The proposed DEPN consists of three components:
the privacy neuron detector (§3.2), the privacy neu-
ron editor (§3.3) to erase the model memorization
of privacy data, and the privacy neuron aggregator
(§3.4) for privacy preservation in batches.

3.1 Privacy Prediction Task

Given a tuple T = {X,Y }, let Y = {y1, ..., yn}
be the sequence with private information, X be
the the context of the sequence, θ be the parame-
ters of a language model. Given a context X , the



Figure 1: The diagram of DEPN. When a language model leaks privacy information, DEPN calculates privacy
attribution scores using the Privacy Neuron Detector. It then selects the top z privacy neurons with the Privacy
Neuron Aggregator and eliminates the model memorization of privacy information using the Privacy Editor.

probability of the language model yielding a token
is P (yi|X,θ), yi ∈ Y , so the probability of the
model leaking the private sequence is:

P (Y |X,θ) =

|Y |∏
i=1

P (yi|X,θ) (1)

Take "An■ Ka■ is a senior writer at ESPN.com" as
private sentence containing a person’s name "An■
Ka■". Suppose the input to the language model
is "_ _ is a senior writer at ESPN.com", our goal
is to reduce the probability of privacy leakage, i.e.,
minimizing the probability of predicting "An■"
and "Ka■" .

3.2 Privacy Neuron Detector
As described in Section 2 factual knowledge is
found to be stored in the feed-forward networks
of Transformer, in the form of key-value memory.
Inspired by this, we speculate that private infor-
mation might be also encoded in specific neurons.
Model editing has offered methods to locate and
edit knowledge-related neurons. However, existing
methods can only deal with semantic units com-
posed of a single token, making them not directly
applicable to detect and edit mutli-token private
sequences. To address this issue, we propose a pri-
vacy attribution method based on gradient integra-
tion. The proposed privacy attribution can evaluate

which neurons play a key role in the leakage of
private information from language models.

Let wk
l be a neuron to be evaluated by the pri-

vacy attribution method, where l is the layer of the
neuron in the language model, and k is its position.
According to §3.1, the probability of the model
outputting private information is:

P (Y |X, wk
l ) =

|Y |∏
i=1

P (yi|X, wk
l = αk

l ) (2)

where αk
l represents the value of the k-th neuron in

the l-ith FFN layer.
We gradually change the parameter of the target

neuron from 0 to the original value of the neuron.
In this process, the probability of the output will
accordingly change. We calculate the cumulative
gradient of the probability change during this pro-
cess as the neuron’s contribution (i.e., privacy attri-
bution score) to the privacy-sensitive output. The
privacy attribution score is computed as:

Att(wk
l ) = βk

l

∫ βk
l

0

∂P (Y |X, αk
l )

∂wk
l

dαk
l (3)

where βk
l is the original value of the neuron wk

l ,
∂P (Y |X,αk

l )

∂wk
l

calculates the gradient of the model



output with regard to wk
l . Directly calculating con-

tinuous integrals is intractable. We follow Dai
et al. (2022) to use Riemann approximation:

Att(wk
l ) =

βk
l

m

∑m
j=1

∂P (Y |X, j
mβk

l )

∂wk
l

(4)

where m = 20 is the number of approximation
steps.

As P (Y |X, wk
l ) =

∏|Y |
i=1 P (yi|X, wk

l = αk
l ),

we have

Att(wk
l ) =

|Y |∑
i=1

βk
l

m

∑m
j=1

∂P (yi|X, j
mβk

l )

∂wk
l

(5)

If the neuron has a great influence on the output of
a private information, the gradient will be signifi-
cant, and a large integration value will be obtained.
Therefore, the privacy attribution score can mea-
sure the neuron’s contribution to the leakage of
privacy information, and the greater the privacy
attribution score, the greater the privacy sensitivity
of the neuron. We select neurons with the top z
privacy attribution score as candidates for editing.

3.3 Privacy Editor
After detecting the privacy neuron candidates with
the privacy neuron detector, we reduce the model
memorization of private information by editing.
Particularly, we use a simple yet effective editing
strategy: setting the parameters (activation values)
of the corresponding neurons to 0, so that the in-
formation flow will not pass through these privacy
neurons.

3.4 Privacy Neuron Aggregator
As a number of sentences in the training data of
LLMs contain private information, the privacy neu-
ron detection and editing can be done over multiple
sentences in a batch processing way. To erase pri-
vacy information encoded in the language model
from multiple sentences in the training data, we
propose the privacy neuron aggregator. When the
input is a text batch, we calculate the privacy attri-
bution score matrix of each sequence in the batch.
After the privacy attribution score calculation, we
let each sequence vote for neurons according to
their privacy attribution scores, and select the top z
neurons with the most votes. These selected neu-
rons will be edited to erase private information.
The hyperparameter z is adjusted according to the
model size, training epochs and other factors. More
details can be found in (§5.1).

4 Experiments

We carried out experiments to examine the effec-
tiveness of the proposed DEPN on a dataset con-
taining private information.

4.1 Setup

Dataset We used the Enron dataset (Klimt and
Yang, 2004). It consists of employee emails that
were publicly disclosed during Enron’s legal inves-
tigation by the Federal Energy Regulatory Commis-
sion. It is the largest publicly available collection of
"real" email data, containing over 500,000 emails
from 158 users.1 We randomly sampled 5% of
the data from Enron as the validation dataset to
evaluate model performance.

Private Information Sampling In our study, we
categorized the private information in the Enron
dataset into two types: private phrases (for the nar-
row definition of privacy), such as names and phone
numbers, and a batch of randomly sampled sen-
tences to be edit. Names: We selected 20 unique
names that are memorized by language models,
found in 126 sentences, such as "An■ Ka■ is a
senior writer at ESPN.com". Phone Numbers:
We also selected 20 unique LM-memorized phone
numbers, such as "My phone number is 7 1 3 8 5 ■
■ ■ ■ ■". Private texts: We randomly selected
100 sentences that are not semantically overlap-
ping with each other. In Appendix A.4, we discuss
how we determine whether private information is
memorized by a language model.

Model Settings We conducted experiments us-
ing the widely used pretrained model, BERT-base
(Devlin et al., 2018). The model consists of 12
transformer layers, with a hidden state size of 768
and an internal hidden size of 3072 for the feed-
forward network (FFN). Our experiments were per-
formed on NVIDIA Tesla A6000 graphics pro-
cessors. More training details are show in Ap-
pendix A.1.

Baselines To demonstrate the effectiveness and
robustness of DEPN, we compared it with the fol-
lowing baseline models. BERT-O: The bert model
that has not been trained on the Enron dataset.
Since the model does not know the privacy infor-
mation in the dataset, it provides an oracle for as-
sessing the risk of privacy leakage; BERT-F: The

1https://www.cs.cmu.edu/~enron/

https://www.cs.cmu.edu/~enron/


Privacy Type Models Time ↓ Valid-PPL ↓ Privacy Leakage Risk
Metric Value

Phone Number

BERT-O - 25.23

Exposure ↓

1.58
BERT-F 100% 3.07 15.74

BERT-FE 2.4% 3.11 9.78
BERT-DP 181.4% 5.43 3.12

Name

BERT-O - 25.23

MRR ↓

0.87
BERT-F 100% 3.07 1.21

BERT-FE 4.4% 3.11 1.15
BERT-DP 181.4% 5.43 0.95

Random Text

BERT-O - 25.23

PPL ↑

10.05
BERT-F 100% 3.07 2.30

BERT-FE 4.6% 3.11 3.67
BERT-DP 181.4% 5.43 8.82

Table 1: Results of testing the risks of leaking private Phone Numbers, Names, and Texts on different baseline
models, as well as the efficiency of protection. Bold and underlined results indicate the best and second best result,
respectively. ↑: the higher the better. ↓: the lower the better.

bert model trained on the Enron dataset, which cor-
responds to the best predictive performance on the
Enron dataset, but has the greatest risk of privacy
leakage; BERT-DP: A privacy model trained by
the differential privacy gradient descent method
(Li et al., 2021) on the Enron dataset, which is the
commonly used privacy protection method when
using private data for training.

We applied our proposed DEPN on BERT-F to
make a safe model, which is referred to as BERT-
FE in following experiments. Our codes are avail-
able now.2

Metrics To observe the effect of different privacy
preserving methods on the model performance, we
use the Perplexity of Masked Language Modeling
task on the Enron validation dataset (Valid-PPL)
as the metric.

Due to the different types of private information,
we provide metrics separately for the risk of privacy
leakage.

Exposure: The exposure (Carlini et al., 2019)
metric is commonly used in privacy attacks to mea-
sure the exposure risk of phone numbers. Given
a number sequence c, a model with parameters θ,
and the randomness space R, the exposure eθ of c
can be calculated as :

eθ = log2 |R| − log2 Rankθ(c). (6)

Mean Reciprocal Rank (MRR): A person’s
name is usually composed of multiple tokens.
Therefore, we use the reciprocal average of the
rank of each target token to measure the model’s
memorization of names. Given a prefix Q, a name

2https://github.com/flamewei123/DEPN

token sequence E = {e1, ..., en}, the length is |E|,
the model predicts the rank of the target token as
rank(ei|Q), and the MRR for the name E is cal-
culated as follows:∑|E|

i=1
1

Rank(ei|Q)

|E|
. (7)

Perplexity (PPL): When the private text is a
complete sentence, we directly use the perplexity
as the measure of the model memorization.

4.2 Main Results
Table 1 presents our main results, including model
performance, privacy leakage risk, and execution
time cost. The results demonstrate the competitive-
ness of our framework.

For the performance on the Enron validation
dataset (Valid-PPL), BERT-O, which is not trained
on the Enron dataset, exhibits the poorest perfor-
mance. BERT-DP trained with DP-SGD does not
perform well either, due to noise introduced during
backpropagation. In contrast, BERT-FE equipped
with DEPN performs almost on par with BERT-F
on the validation dataset, indicating that neuron
erasure minimally impacts model performance.

Regarding privacy leakage risk metrics, includ-
ing exposure, MRR, and PPL, clearly indicate that
BERT-FE equipped with DEPN achieve the reduc-
tion of privacy leakage risk. BERT-F, trained di-
rectly on private data, exhibits the highest risk. In
comparison, DEPN significantly reduces the risk of
leakage. BERT-O, which has no access to private
data, demonstrates the lowest risk across all three
data types. The BERT-DP model also exhibits very
low risk.

https://github.com/flamewei123/DEPN


(a) Exposures with different number of edited neurons. (b) Model performance with different number of edited
neuron.

Figure 2: The performance of the model and the risk of privacy leakage with the change trend of the number of
neurons edited.

In terms of execution time cost, we assume that
the fine-tuning time of BERT-F on data excluding
privacy is 100% (reference time cost). The DEPN
framework requires less than 5% of the reference
time cost, while BERT-DP requires more time due
to gradient clipping.

In conclusion, while differential privacy training
and fine-tuning with non-private data can mitigate
privacy leakage risks, they incur more time and
may significantly undermine model performance.
The DEPN framework strikes an excellent balance
between performance and privacy protection.

5 Analysis

We further conducted in-depth analyses to demon-
strate why DEPN is able to dememorize privacy in
LLMs from multiple perspectives, including anal-
yses on the relationship between privacy neurons
and model memorization, on the robustness as well
as the cost-effectiveness of DEPN.

5.1 Effect of the Hyperparameter

Figure 2 illustrates the impact of the hyperparame-
ter, the number of edited neurons, on the model. We
calculate the exposures of the original model BERT-
F and the enhanced model BERT-FE on 20 phone
numbers. In Figure 2(a), the red line represents
the average exposure of BERT-F, while the green
line represents the average exposure of BERT-FE
with varying numbers of edited neurons. As the
number of edited neurons increases, the exposure
significantly decreases. In Figure 2(b), the purple
line represents the PPL of BERT-F on the valida-

tion set, while the blue line represents the PPL of
BERT-FE on the validation set with different num-
bers of edited neurons. As the number of erasures
increases, the PPL noticeably increases. Therefore,
increasing the number of edited neurons reduces
the risk of privacy leakage in the model, but it also
leads to a decrease in the model performance.

5.2 Relationship between Memorization And
Privacy Neurons

As it is widely recognized, privacy data leakage
often stems from the model’s ability to memorize
the training data. In this subsection, we conducted
experiments to investigate the relationship between
model memorization and privacy neurons, provid-
ing further evidence for the effectiveness of the
proposed DEPN.

Impact of Training Time on Privacy Neuron
Distribution over Layers Figure 3 depicts the
evolution of the distribution of privacy neurons
over layers as the number of training epochs in-
creases. Overall, the distribution of privacy neu-
rons is pyramid-shaped, and most privacy neurons
identified by the privacy neuron detector are lo-
cated in layers 10-12 of BERT-base. Specifically,
in epoch 1, about 40% of privacy neurons are in
the top layer of BERT-base. As training progresses,
the proportion of privacy neurons from deep layers
increases to 60% by epoch 3 and to 80% by epoch
6. By the 9-th epoch, the distribution of privacy
neurons remains largely unchanged compared to
the 6-th epoch. This suggests that as the depth
of model training increases, the memorization of



(a) epoch 1 (b) epoch 3

(c) epoch 6 (d) epoch 9

Figure 3: The distribution of privacy neurons in the bert-base model at different training epochs.

Models # Edited Neurons Time
Before Editing After Editing

Reduction Rate
Valid-PPL Exposure Valid-PPL Exposure

bert-small 100 0.26h 4.09 5.10 4.57 3.39 33.5%
bert-base 200 1.59h 3.07 15.74 3.11 9.78 37.86%
bert-large 400 7.66h 2.93 18.10 2.98 7.63 57.84%

Table 2: The privacy leakage risk reduction rate for models of different sizes.

private data tends to converge.
In Appendix A.3, we conducted experiments to

observe the changes of privacy leakage risk reduc-
tion at different training epoch. The results show
that when the training time increases, the risk of
privacy leakage increases too, and the proposed
DEPN becomes more effective in privacy preserva-
tion.

Effect of the Model Size Table 2 illustrates the
performance of the DEPN framework on models
of different scales. Each model was trained for
10 epochs using the optimal hyperparameter set-
tings. Overall, larger models require more time
to identify privacy neurons and require editing a
greater number of privacy neurons for optimal per-
formance. Larger models tended to show a deeper
memory for phone numbers before privacy neu-
rons are edited, leading to higher exposure. After
privacy neuron editing, from the perspective of re-
duction rate, the exposure of the large model is
reduced even more. These findings suggest that
larger models are more at risk of privacy breaches.
Fortunately, the DEPN framework demonstrates
better performance on larger models compared to
smaller ones, offering improved protection against

privacy risks.

Summary of the Relationship between Mem-
orization and Privacy Neurons Based on the
aforementioned experimental findings, we can con-
clude that the model’s scale, training time, and
frequency of privacy data occurrence are all factors
that have influence on the model memorization. As
the model memorization of privacy data deepens,
the aggregation of privacy neurons associated with
privacy data becomes more pronounced, which
makes the method of locating and eliminating pri-
vacy neurons more suitable for deep memorization
scenarios. Therefore, the DEPN framework has
demonstrated excellent effectiveness in mitigating
model memorization.

5.3 Robustness Analysis

Ablation Study We conducted ablation experi-
ments to assess the robustness of the privacy neu-
ron detector by comparing its performance with
different neuron localization methods on phone
number data. In Table 4, we present the results of
these experiments. Specifically, "KN" refers to the
knowledge attribution approach proposed by Dai
et al. (2022), while "Random" donates an approach



Privacy Amount # Edited Neurons Time
Before Editing After Editing

Valid-PPL Exposure Valid-PPL Exposure
20 200 0.76h 3.07 15.74 3.11 9.78
100 500 1.59h 3.07 12.46 3.33 10.47
1000 2000 17.61h 3.07 8.32 3.81 8.03

Table 3: Analysis results on the cost-effectiveness of DEPN.

Methods
Before Editing After Editing

Valid-PPL Exposure Valid-PPL Exposure
PND + Editing 3.07 15.54 3.11 9.78
KN + Editing 3.07 15.54 3.10 10.75

Random + Editing 3.07 15.54 3.07 12.48

Table 4: Effect of using different neuron localization
methods on results.

that randomly selects the same number of neurons
as our method. Our method PND (privacy neuron
detector) achieves superior performance in terms
of exposure reduction compared to the other meth-
ods. Although the knowledge attribution approach
gains a good exposure reduction, it is less effec-
tive than our method due to its attribution being
targeted at a single token. The random selection
approach is also able to decrease privacy exposure
but the exposure reduction is not as significant as
the KN approach and our detector. These results
unequivocally demonstrate the effectiveness of our
method for in privacy neuron localization.

Robustness to Different Prompts We conducted
experiments to validate the robustness of DEPN
to different prompts. We sampled private data
containing phone numbers, all composed of the
same prefix, from the training dataset. We then
performed privacy attacks during inference using
different prompts to examine whether changing
prompts would still result in privacy leakage. Ta-
ble 5 presents the results of these experiments. The
training data consist of phone numbers with the
same prefix of ‘Contact me at ***’. We observe
privacy risk reduction across all prompts, demon-
strating the robustness of DEPN to prompt.

5.4 Analysis on the Cost-Effectiveness of
DEPN

In this subsection we discuss the limitation of
DEPN, specifically its dependency on the amount
of private data to be erased. We conducted an exper-
iment where we used 1,000 private data instances,
each containing phone numbers, extracted from our
training dataset. DEPN was applied onto the BERT-
base model to erase private information. Experi-

Prompts Original Exposure Exposure
‘Contact me at ***’ 12.52 9.77 ↓
‘Contact me at : ***’ 11.20 9.40 ↓
‘Contact me : ***’ 12.50 9.68 ↓
‘Call me at ***’ 12.31 11.82 ↓
‘My phone number is ***’ 13.41 12.96 ↓
‘You can call me at ***’ 13.04 12.84 ↓

Table 5: Results with varying prompts during privacy
attack. ‘Contact me at ***’ is the prefix to the private
phone numbers in the training data, and the others are
varying prompts used in inference.

ment results are shown in Table 3. As the amount
of private data increases, more neurons need to
be edited to achieve better privacy protection, and
the performance of the model drops significantly.
Furthermore, it becomes apparent that, with the
escalation of private data volume, the reduction in
privacy risks gradually diminishes. These obser-
vations indicate that DEPN excels in remediating
language models when dealing with a small num-
ber of data leaks, but exhibits weak performance
when confronted with a large batch of private data.

6 Related Work

Model Editing To edit incorrect or undesirable
information captured in LLMs, a variety of model
editing approaches have been proposed, which can
be categorized into four strategies. First, the Con-
strained Fine-tuning strategy (Zhu et al., 2020)
updates LLMs specifically for the target knowl-
edge, allowing precise modification. Second, the
Memory-based Editing strategy (Mitchell et al.,
2022; Dong et al., 2022) maintains a knowledge
cache that stores new information to replace unde-
sirable predictions. Third, the Meta-learning-based
Editing strategy (De Cao et al., 2021; Mitchell et al.,
2021) introduces editable training based on meta-
learning, training model parameters to accommo-
date editing. Lastly, the Locating and Editing strat-
egy (Geva et al., 2021; Meng et al., 2022; Dai et al.,
2022) assumes that knowledge is locally stored in
LLMs. This strategy locates specific parameters
associated with the knowledge and directly edits
parameters to perform editing.



Privacy Protection To address privacy risks in
NLP models, various privacy-preserving methods
have been proposed, which can be categorized
into three main stages of application (Guo et al.,
2022; Sousa and Kern, 2023): data processing
stage, pre-training and/or fine-tuning stage, and
post-processing stage. In the data processing stage,
methods involve removing or replacing sensitive
information in the original data (Liu et al., 2017;
El Emam et al., 2009; Zhou et al., 2008; García-
Pablos et al., 2020). In the pre-training or fine-
tuning stage, data privacy can be protected by mod-
ifying the model training process. One approach is
differential privacy stochastic gradient descent (DP-
SGD) (Li et al., 2021; Hoory et al., 2021), which
introduces noise into the clipped gradient to re-
duce the distinction between gradients and prevent
memorization of training data. Another method is
adversarial training (Plant et al., 2021; Coavoux
et al., 2018), which constrains the model’s learning
of private information through adversarial training
techniques. However, methods used in the data pro-
cessing stage and in the pre-training or fine-tuning
stage are not applicable if the privacy leakage is
discovered after the model training is completed.
Methods used in the post-processing stage focus
on making trained models forget specific data or al-
ter specific parameters to safeguard hidden private
information (Bourtoule et al., 2021; Gupta et al.,
2021; Neel et al., 2020). These methods are often
with high computational cost and cannot be eas-
ily applied to large models. In contrast, proposed
DEPN can achieve the protection of private infor-
mation in the post-processing stage with a small
computational overhead.

7 Conclusion

In this paper, we have presented a privacy neuron
detecting and editing framework DEPN to address
privacy leakage risks in pretrained language mod-
els. Through the privacy neuron detector based on
the privacy attribution scoring method, we accu-
rately detect risky neurons associated with private
information. The privacy neuron editor effectively
eliminates model memorization of private data. Ex-
perimental results and in-depth analyses demon-
strate the ability of DEPN to reduce privacy risks
efficiently without degrading model performance.
Our work explores a novel approach to privacy pro-
tection and contributes to model de-memorization
in the post-processing stage.

Limitations Our current study still has two lim-
itations. First, although we propose a method to
process private data in batches, we find that too
many instances in a batch will reduce the effect of
memorization erasure. Second, we use a few types
of private information in our experiments due to
the limited availability of datasets containing pri-
vate information. We would like to collect more
available datasets for our framework in the future.

Ethical Statement In this paper, we use the En-
ron dataset to evaluate the privacy-preserving ef-
fect of DEPN. This dataset consists of employee
emails that were publicly disclosed during Enron’s
legal investigation by the Federal Energy Regula-
tory Commission. Since the data comes from real
persons, we masked sensitive information such as
specific names and phone numbers in this paper.
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A Appendix

A.1 Training Details
For BERT-base fine-tuning, we set the hyperpa-
rameters as follows: 20 training epochs, a learning
rate of 3e-5 with linear warm-up, and a batch size of
16. We fine-tuned BERT-base on the Enron dataset
using the Masked Language Modeling task to simu-
late training on datasets containing privacy informa-
tion. Additionally, we pretrained smaller (layer=4,
hidden size=512, intermediate size=2048) (Bhar-
gava et al., 2021) and larger (layer=24, hidden
size=1024, intermediate size=4096) BERT mod-
els 3 to compare the performance of privacy erasure
at different model scales.

A.2 Effect of the Frequency of Privacy Data
Ocurrence

We also examined the influence of the frequency of
privacy data ocurrence in the training set on DEPN.
As shown in Table 6, phone numbers with an ocur-
rence frequency greater than 10 exhibit higher ex-
posure compared to those with a frequency less
than 10, indicating a higher risk of leakage. How-
ever, after erasure, the exposure of phone num-
bers with a frequency greater than 10 is reduced
by 32.65%, while the exposure of phone numbers
with a frequency less than 10 is reduced by 22.58%.
These results suggest that our method effectively
reduces exposure for both high-frequency and low-
frequency phone numbers, mitigating the risk of
privacy leakage.

Frequency Original Exposure Exposure
>=10 23.15 15.59
<10 8.90 6.89

Table 6: Frequency of privacy data ocurrence make
exposure different.

A.3 Effect of Training Time
Figure 4 illustrates the changes in exposure of
phone number data before and after erasing pri-
vacy neurons in models with different training
epochs. We conducted experiments using 20 differ-
ent phone numbers and averaged the final results.
The blue line represents the exposure of phone
numbers before privacy neuron erasing. The blue
line initially remains low but exhibits a significant
surge after the 10-th epoch, indicating that models

3https://huggingface.co/BERT-large-uncased

Figure 4: Comparison of privacy leakage risk reduction
at different training epochs.

with longer training time have a more pronounced
memorization of the training data. Additionally,
the yellow line represents the exposure of phone
numbers after privacy neuron erasing. The widen-
ing gap between the two lines indicates that as the
model’s memorization becomes more apparent, the
proposed DEPN becomes more effective in privacy
preservation.

A.4 The Judgement of the Memorization
In our experiment, we specifically identify the pri-
vate data memorized by the language model from
the training dataset. To assess whether the model
has memorized private data, we employ the con-
text of private information as the input to the lan-
guage model. Subsequently, we calculate the risk
of private information leakage and classify the in-
formation with a leakage risk exceeding predefined
thresholds as having been memorized by the lan-
guage model. For names, we establish a threshold
for memorization as the MRR of less than 1.5. For
phone numbers, we employ the Exposure values
exceeding 15 as memorization.

https://huggingface.co/BERT-large-uncased

