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ABSTRACT

Consistency models imitate the multi-step sampling of score-based diffusion in a
single forward pass of a neural network. They can be learned in two ways: consis-
tency distillation and consistency training. The former relies on the true velocity
field of the corresponding differential equation, approximated by a pre-trained
neural network. In contrast, the latter uses a single-sample Monte Carlo estimate
of this velocity field. The related estimation error induces a discrepancy between
consistency distillation and training that, we show, still holds in the continuous-time
limit. To alleviate this issue, we propose a novel flow that transports noisy data
towards their corresponding outputs derived from the currently trained model – as a
proxy of the true flow. Our empirical findings demonstrate that this approach miti-
gates the previously identified discrepancy. Furthermore, we present theoretical and
empirical evidence indicating that our generator-induced flow surpasses dedicated
optimal transport-based consistency models in effectively reducing the noise-data
transport cost. Consequently, our method not only accelerates consistency training
convergence but also enhances its overall performance.

1 INTRODUCTION

The large family of diffusion (Ho et al., 2020), score-based (Song et al., 2021; Karras et al., 2022),
and flow models (Liu et al., 2023; Lipman et al., 2023) have emerged as state-of-the-art generative
models for image generation. Since they are costly to use at inference time – requiring several neural
function evaluations –, many distillation techniques have been explored (Salimans and Ho, 2022;
Meng et al., 2023; Sauer et al., 2023). A most remarkable approach is consistency models (Song
et al., 2023; Song and Dhariwal, 2024). Consistency models lead to high-quality one-step generators,
that can be trained either by distillation of a pre-trained velocity field (consistency distillation), or as
standalone generative models (consistency training) by approximating the velocity field through a
one-sample Monte Carlo estimate.

The corresponding estimation error naturally induces a discrepancy between consistency distillation
and training. While Song et al. (2023) hinted that it would resorb in the continuous-time limit,
we show that this discrepancy remains both on loss functions’ gradients and values. Interestingly,
this discrepancy vanishes when the difference between the target velocity field and its Monte-Carlo
approximation approaches zero. However, this is not the case with the independent coupling (IC)
between data and noise used to construct the standard estimate. It is unclear how to improve this
one-sample estimate without access to the true underlying diffusion model.

The approach we adopt in this paper to alleviate this issue consists in altering the velocity field
– thereby changing the target flow – to reduce the variance of its one-sample estimator. One possible
solution to this problem from the consistency and flow matching literatures (Pooladian et al., 2023;
Dou et al., 2024) is to resort to optimal transport (OT) to learn on a deterministic coupling. However,
due to the prohibitive cubic complexity of OT solvers (e.g. Hungarian matching algorithm), such
methods need to be applied at the minibatch level. This incurs an OT approximation error (Fatras
et al., 2021; Sommerfeld et al., 2019) and stochasticity of the data-noise coupling, thus not solving
the consistency training issue.

In our approach, we propose to use the consistency model itself to construct trajectories. Indeed,
the consistency model provides an approximation of the target flow via a single-step inference, and
can thus be used as a proxy to reduce the expected deviation between the velocity field and its
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(a) PF-ODE (IC). (b) Generator-Induced Flows (GC).

Figure 1: Comparison of the probability flow ODE (PF-ODE) and Generator-Induced Flows in a
synthetic setting: target data is composed of two Diracs, and GC is computed with a closed-form
generator. In the background, we observe the density of probability paths. White arrows are ODE
trajectories associated to the velocity field. Blue lines are sample paths from IC in (a) (respectively
GC in (b)). Trajectories start from random intermediate points ★. On this example, GC sample paths
appear more aligned to the velocity field.

estimator. More precisely, from an intermediate point computed from an IC, we let the consistency
model predict the corresponding endpoint, supposedly close to the data distribution. This predicted
endpoint is coupled to the same original noise vector, defining a generator-induced coupling (GC).
We show empirically that the resulting generator-induced flow presents favorable properties for
training consistency models, in particular a reduced deviation between the velocity field and its
estimator, besides reduced transport costs as supported by theoretical evidence. This can be observed
in Figure 1. From this, we derive practical algorithms to train consistency models with generator-
induced flows, leading to improved performance and faster convergence compared to standard and
OT-based consistency models.

Let us summarize our contributions below.

• We prove that in the continuous time-limit consistency training and consistency distillation
loss function converge to different pointwise values and we provide a closed-form expression
of this discrepancy.

• We propose a novel type of flows that we denote generator-induced flows. It relies on
generator-induced coupling (GC) that can be used to train a consistency model.

• We provide theoretical and empirical insights into the advantages of GC, notably on image
datasets. We show that generator-induced flows have smaller discrepancy to consistency
distillation than IC consistency training, and that they reduce data-noise transport costs.

• We derive practical ways to train consistency models with generator-induced flows in image
generation benchmarks. Our approach based on a mixing strategy leads to faster convergence
and improves the performance compared to the base model and OT-based approaches.

Notation. We consider an empirical data distribution p⋆ and a noise distribution pz (e.g. Gaussian),
both defined on Rd. We denote by q a joint distribution of samples from p⋆ and pz . We equip Rd

with the dot product ⟨x,y⟩ = x⊤y and write ∥x∥ = ⟨x,x⟩1/2 for the Euclidean norm of x. We use
a distance function D : Rd ×Rd → [0,∞) to measure the distance between two points from Rd. sg
denotes the stop-gradient operator.

In consistency models, we consider diffusion processes of the form xt = x⋆ + σtz, where x⋆ ∼ p⋆,
z ∼ pz , and σt is monotonically increasing for t ∈ [0, T ]. We denote the distribution of xt by
p(xt), or simply pt. The conditional distributions or finite-dimensional joint distributions of xt’s
are denoted similarly. When considering a discrete formulation with N intermediate timesteps, we
denote the intermediate points as xti = x⋆ + σtiz, where ti is strictly increasing for i ∈ {0, . . . , N},
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with t0 = 0 and tN = T . The values of σ0 and σT are chosen to be sufficiently small and large,
respectively, so that p0 ≈ p⋆ and pT ≈ p(σT z).

2 CONSISTENCY MODELS: DISTILLATION VS TRAINING

In this section, we provide the required background on diffusion and consistency models (Sec-
tions 2.1 and 2.2), then discuss the discrepancy between consistency dillation and consistency training
(Section 2.3) which we theoretically characterize in continous time.

2.1 FLOW AND SCORE-BASED DIFFUSION MODELS

Score-based diffusion models (Ho et al., 2020; Song et al., 2021) can generate data from noise via a
multi-step process consisting in numerically solving either a stochastic differential equation (SDE),
or equivalently an ordinary differential equation (ODE). Although SDE solvers generally exhibit
superior sampling quality, ODEs have desirable properties. Most notably, they define a deterministic
mapping from noise to data. Recently, Liu et al. (2023) and Lipman et al. (2023) generalize diffusion
to flow models, which are defined by the following probability flow ODE (PF-ODE):

dx = vt(x) dt, (1)

where vt(x) = E[ẋt|xt = x] is the velocity field. Note that ẋt is defined as the random variable
ẋt =

d(x⋆+σtz)
dt = σ̇tz, and is not to be confused with the time-derivative of the ODE, vt.

In the context of consistency models (Song et al., 2023; Song and Dhariwal, 2024), the most common
choice is vt(x) = −σ̇tσt∇x log pt(x) dt, in particular the EDM formulation (Karras et al., 2022)
where σt = t and thus vPF-ODE

t (x) = −t∇x log pt(x). Here,∇x log pt, a.k.a. the score function, can
be approximated with a neural network sϕ(x, t) (Vincent, 2011; Song and Ermon, 2019).

2.2 CONSISTENCY MODELS

Numerically solving an ODE is costly because it requires multiple expensive evaluations of the
velocity function. To alleviate this issue, Song et al. (2023) propose training a consistency model fθ,
which learns the output map of the PF-ODE, i.e. its flow, such that:

fθ(xt, σt) = x0, (2)

for all (xt, σt) ∈ Rd × [σ0, σT ] that belong to the trajectory of the PF-ODE ending at (x0, σ0).

Equation (2) is equivalent to (i) enforcing the boundary condition fθ(x0, σ0) = x0, and (ii) ensuring
that fθ has the same output for any two samples of a single PF-ODE trajectory – the consistency
property. (i) is naturally satisfied by the following model parametrization:

fθ(xti , σti) = cskip(ti)xti + cout(ti)fθ(xti , σti), (3)

where cskip(0) = 1, cout(0) = 0, and fθ is a neural network. (ii) is achieved by minimizing the
distance between the outputs of two same-trajectory consecutive samples using the consistency loss:

LCD(θ) = EqI(x⋆,z),p(xti+1
|x⋆,z)

[
λ(σti)D

(
sg
(
fθ(x

Φ
ti , σti)

)
,fθ(xti+1

, σti+1
)
)]

, (4)

where (x⋆, z) is sampled from the independent coupling qI(x⋆, z) = p⋆(x⋆)pz(z), i is an index
sampled uniformly at random from {0, 1, . . . , N − 1}, xti+1

= x⋆ + σti+1
z, and xΦ

ti is computed by
discretizing the PF-ODE with the Euler scheme as follows:

xΦ
ti = Φ(xti+1

, ti+1) = xti+1
+ (ti − ti+1)v

PF-ODE
ti+1

(xti+1
). (5)

This loss can be directly used to distill a score model into fθ.

In the case of consistency training, Song et al. (2023) circumvent the lack of a score function by
noting that vPF-ODE

ti+1
(x) = E[ẋti+1

|xti+1
= x]. In light of this, the intractable xΦ

ti is replaced by its
single-sample Monte Carlo estimate xti , resulting in:

LCT(θ) = EqI(x⋆,z),p(xti
,xti+1

|x⋆,z)

[
λ(σti)D

(
sg
(
fθ(xti , σti)

)
,fθ(xti+1

, σti+1
)
)]

. (6)
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2.3 DISCREPANCY BETWEEN CONSISTENCY TRAINING AND DISTILLATION AND VELOCITY
FIELD ESTIMATION

Naturally, replacing vPF-ODE
t by its single-sample estimate ẋt makes consistency training deviate from

consistency distillation in discrete time. Still, Song et al. (2023, Theorems 2 and 6) suggest that this
discrepancy disappears in continuous time since LCT(θ) = LCD(θ) + o(1/N) and the corresponding
gradients are equal in some cases. Without disproving these results, we find that scaling issues and
lack of generality soften their claim of a closed gap between consistency training and distillation.

Indeed, we provide in the following theorem a thorough theoretical comparison of LCT and LCD.
We first prove that they converge to different values in the continuous-time limit. The difference is
captured by a regularization term that depends on the discrepancy between the velocity field and its
estimate. Moreover, we show that the limits of the scaled gradients do not coincide in the general
case, leaving the (asymptotic) quadratic loss as essentially the only case where the two limits happen
to coincide. The proof can be found in Appendix A.1.
Theorem 1 (Discrepancy between consistency distillation and consistency training objectives).
Assume that the distance function is given by D(x,y) = φ(∥x − y∥) for a continuous convex
function φ : [0,∞) → [0,∞) with φ(x) ∼ Cxα as x → 0+ for some C > 0 and α ≥ 1, and that
the timesteps are equally spaced, i.e., ti = iT

N . Furthermore, assume that the Jacobian ∂fθ

∂x does not
vanish identically. Then the following assertions hold:

(i) The scaled consistency losses NαLCD(θ) and NαLCT(θ) converge as N →∞. Moreover,
the minimization objectives corresponding to these limiting scaled consistency losses are
not equivalent, and their difference is given by:

lim
N→∞

Nα
[
LCT(θ)− LCD(θ)

]
= CTα−1R(θ), (7)

whereR(θ) is defined by

R(θ) =
∫ T

0

λ(σt)E
[
∥∂CTfθ∥α − ∥∂CDfθ∥α

]
dt (8)

and satisfiesR(θ) > 0, with

∂CTfθ =
∂fθ

∂σ
(xt, σt)σ̇t +

∂fθ

∂x
(xt, σt) · ẋt, (9)

∂CDfθ =
∂fθ

∂σ
(xt, σt)σ̇t +

∂fθ

∂x
(xt, σt) · vt(xt). (10)

In particular, if α = 2,

R(θ) =
∫ T

0

λ(σt)E

[∥∥∥∥∂fθ

∂x
(xt, σt) ·

(
ẋt − vt(xt)

)∥∥∥∥2
]
dt. (11)

(ii) The scaled gradient Nα−1∇θLCD(θ) and Nα−1∇θLCT(θ) converge as N → ∞. More-
over, if α ̸= 2, then their respective limits are not identical as functions of θ:

lim
N→∞

Nα−1∇θLCT(θ) ̸= lim
N→∞

Nα−1∇θLCD(θ). (12)

This theorem reveals that the optimization problems of consistency training and distillation differ not
only in discrete time but also in continuous time. It even highlights a discrepancy between, firstly,
the limiting gradients in continuous time—although they are equal for α = 2—and, secondly, the
gradients of the limiting losses, which differ because ofR(θ), even when α = 2.

This analysis also shows the importance of employing probability paths whose sample path derivatives
ẋt are aligned with the velocity field vt(xt). Notably, if a diffusion process xt satisfies ẋt = vt(xt),
we haveR(θ) = 0 and equal gradients for all α ≥ 1. Hence, for such xt, consistency training and
consistency distillation would be reconciled both in discrete time and in the continuous-time limit.

However, it is unclear how to directly improve the single-sample estimation ẋt of vt(xt). In particular,
increasing the number of samples per point xt to reduce its variance is not tractable, as it requires
sampling from the inverse diffusion process p(x⋆|xt). Therefore, we adopt an alternative approach
to alleviate the discrepancy identified in this section, which consists of altering the velocity field
– thereby changing the target flow – to reduce the variance of its one-sample estimator. This approach
is reminiscent of recent work tackling the data-noise coupling that we discuss in the following section.
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3 REDUCING THE DISCREPANCY WITH DATA-NOISE COUPLING

Beyond independent coupling (IC). From Section 2.2, it appears that ẋt is computed through an
IC qI = p⋆(x⋆)pz(z) of data and noise, in a similar fashion to flow matching (Lipman et al., 2023;
Kingma and Gao, 2024). Making correlated choices of data and noise beyond IC could then help
align ẋt and vt(xt), thereby resolving the discrepancy from the previous section. This question has
been tackled, although with different motivation, by recent work.

The reliance on IC in consistency and flow models is increasingly recognized as a limiting factor.
Recent advancements suggest that improved coupling mechanisms could enhance both training
efficiency and the quality of generated samples in flow matching (Liu et al., 2023; Pooladian et al.,
2023) and diffusion models (Li et al., 2024). By reducing the variance in gradient estimation,
enhanced coupling can accelerate training. Additionally, improved coupling could decrease transport
costs and straighten trajectories, yielding better-quality samples. In a different context, ReFlow (Liu
et al., 2023) leverages couplings provided by the ODE solver in a flow framework, and demonstrate
that it reduced transport costs.

Couplings based on optimal transport (OT) solvers. OT is a particularly appealing solution
for our alignment problem. Indeed, if we consider a quadratic cost and distributions with bounded
supports, OT is a no-collision transport map (Nurbekyan et al., 2020), i.e. xt can be sampled by
a unique pair of points (x⋆, z). Thus ẋt = vt(xt), implying R(θ) = 0 in Theorem 1. Several
approaches have precisely targeted the reduction of transport cost in flow and consistency models.

Pooladian et al. (2023) have more directly explored OT coupling within the framework of flow
matching models. They show that deterministic and non-crossing paths enabled by OT with infinite
batch size lowers the variance of gradient estimators. Experimentally, they assess the efficacy of OT
solvers, such as Hungarian matching and Sinkhorn algorithms, in coupling batches of noise and data
points. Dou et al. (2024) have successfully adopted this approach in consistency models. However,
due to the prohibitive cubic complexity of OT solvers, OT has to be applied by minibatch for matching
samples (x⋆, z). Besides an OT approximation error, this incurs the loss of the no-collision property,
making R(θ) non-zero in real use-cases. Another line of works using OT tools with score-based
models relies on the Schrödinger Bridge formulation (De Bortoli et al., 2021; Shi et al., 2023; Korotin
et al., 2024; Tong et al., 2024), which has mostly proven benefits on transfer tasks.

Our approach. In this paper, we use a consistency model as a proxy of the flow of a diffusion
process to reduce transport costs. Our method does not rely on an iterative procedure but rather on a
mixing procedure during a single training, alleviating error accumulation. While not fully solving
the alignment issue either, we will show that our method present reduced transport costs and better
alignment than dedicated OT-based methods.

4 CONSISTENCY MODELS WITH GENERATOR-INDUCED FLOWS

Here, we introduce our method, denoted as Generator-Induced Flows, which relies on a Generator-
Induced Coupling (GC). It consists of capitalizing on the consistency model’s ability to approximate
the diffusion flow in an affordable manner – during the training of the consistency model itself. This
approach not only allows reducing the data-noise transport cost but also narrows the gap between
consistency distillation and consistency training while maintaining a low computational overhead.

4.1 GENERATOR-INDUCED COUPLING (GC): DEFINITION AND TRAINING LOSS

The solution proposed in this work involves harnessing the consistency model to create a novel form
of coupling. The idea is to leverage the properties and accumulated knowledge within the consistency
model itself, fθ, to construct pairs of points. To achieve this, we first sample an intermediate point,
which is done as usual by sampling x⋆ ∼ p⋆ and z ∼ pz using the IC between the two distributions,
and then predict the initial data point x̂ti via the consistency model:

(x⋆, z) ∼ qI, xti = x⋆ + σtiz, x̂ti = sg(fθ(xti , σti)). (13)

Although x̂ti depends on the timestep ti, it is important to note that it (supposedly) follows the
distribution p0. This x̂ti is coupled with z, thereby defining our generator-induced coupling (GC) q,
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Algorithm 1: Training of consistency models with generator-induced trajectories.
Input: Randomly initialized consistency model fθ, number of timesteps N , noise schedule σti ,

loss weighting λ(·), learning rate η, distance function D, noise distribution pz .
Output: Trained consistency model fθ.
1 while not converged do
2 x⋆ ∼ p⋆, z ∼ pz ; // batch of real data and noise vectors
3 i ∼ multinomial

(
p(σt0), . . . , p(σtN )

)
; // sampling timesteps

4 xti ← x⋆ + σtiz ; // IC intermediate points
5 x̂ti ← sg

(
fθ(xti , σti)

)
; // endpoint prediction from the model

6 x̃ti ← x̂ti + σtiz, x̃ti+1 ← x̂ti + σti+1z ; // GC intermediate points
7 L(θ) = λ(σti)D

(
sg(fθ(x̃ti , σti)),fθ(x̃ti+1

, σti+1
)
)

; // consistency loss
8 θ ← θ − η∇θL(θ) ; // back-propagate consistency loss

which we use to construct the pair of points (x̃ti , x̃ti+1):
(x̂ti , z) ∼ q, x̃ti = x̂ti + σtiz, x̃ti+1

= x̂ti + σti+1
z. (14)

Then we define the consistency training loss for GC, with the overall training procedure outlined in
Algorithm 1:

LGC(θ) = Eq(x̂ti
,z|θ),p(x̃ti

,x̃ti+1
|x̂ti

,z)

[
λ(σti)D

(
sg(fθ(x̃ti , σti)),fθ(x̃ti+1

, σti+1
)
)]

. (15)

Generator-induced trajectories satisfy the boundary conditions of diffusion processes. We
note the two following important properties of the distribution of x̃t:

p(x̃0) = p(x0) ≈ p⋆ and p(x̃T ) ≈ p(xT ) ≈ p(σT z) (16)
The first property is achieved thanks to the boundary condition of the consistency model (c.f. Sec-
tion 2.1), and the second property by construction of the diffusion process which ensures that the
noise magnitude is significantly larger than x̂ti for large t. However, for the timesteps t ∈ (0, T ) the
marginal distributions p(xt) and p(x̃t) do not necessarily coincide. An example of the impact of this
distribution shift can be observed in Figure 4(b).

4.2 PROPERTIES OF GENERATOR-INDUCED FLOWS

1e−02 1e−01 1 10 100

Timesteps σ

1e−02

1e−01

1

10

100

1000

R̃
t(
θ)

IC

Batch-OT (b=512)

GC

Figure 2: Comparison of R̃IC, R̃batch-OT,
and R̃GC on CIFAR-10. GC exhibits
lower values of this quantity for all σt.

Here, we present some properties of Generator-Induced
Flows that motivate them for training consistency models.

4.2.1 REDUCING R(θ) WITH GC

In Theorem 1, we proved that the continuous-time consis-
tency training objective decomposes into the sum of the
consistency distillation objective and a regularizer term:
LCT(θ) = LCD(θ) +R(θ). Here, we study a proxy term
forR(θ) that is easier to calculate:

R̃t = E
[∥∥ẋt − vt(xt)

∥∥2] . (17)

This quantity measures the expected distance between the
true velocity field and its one-sample Monte Carlo esti-
mate. Note that R̃t,GC depends on the endpoint predictor,
a consistency model, which impacts both probability paths and velocity fields. Our goal is to theoret-
ically and empirically compare R̃t,IC, R̃batch-OT, and R̃t,GC in order to demonstrate that GC does
lead to a smaller discrepancy term than IC.

In the following theorem, proved in Appendix A.2, we show that R̃t decays faster for GC than for IC.
Theorem 2. Assume that the data distribution contains more than a single point. Also, assume that
the generator-induced coupling between the predicted data point x̂t and noise z is computed via an
ideal consistency model f̊ , i.e., the flow of the PF-ODE. Then, as t→∞,

R̃t,GC ≪ R̃t,IC. (18)
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Empirical validation. Evaluating R̃t requires computing the difference between the sample path
derivative and the velocity field. In the EDM setting, this difference can be approximated using a
denoiser. Indeed, ẋt = z and vt(xt) = E[ẋt|xt] = E[z|xt] = E[xt−x⋆

t |xt] =
1
t (xt −D⋆(xt, t))

with an optimal denoiser D⋆, which then can be replaced by a denoiser network Dϕ to yield an
approximation for the difference: ẋt − vt(xt) ≈ z− 1

t (xt −Dϕ(xt, t)). Since IC, batch-OT, and
GC can define different pt’s and vt’s, we train a different denoiser Dϕ for each coupling. In Figure 2,
we report the results from the comparison of the two proxy terms on CIFAR-10. We observe that
R̃t,GC < R̃t,batch-OT < R̃t,IC and that the gap increases with t, corroborating our theoretical findings.

4.2.2 REDUCING TRANSPORT COST WITH GC

Here, we investigate the average transport cost between the noise z ∼ pz and the predicted data point
x̂ ∼ p⋆ as a measure of the efficiency of the data-noise coupling. Recall that the diffusion process
is given by xt = x⋆ + σtz. Then, for a consistency model f satisfying the boundary condition
f(x0, σ0) = x0, we define the function c(t) as:

c(t) = EqI(x⋆,z)

[∥∥f(xt, σt)− z
∥∥2] . (19)

c(0) = EqI(x⋆,z)[∥x⋆ − z∥2] and c(t) represent the respective transport cost of IC and GC. We show
below, with proofs in Appendix A.3, that c(t) is decreasing for σt close to zero and for σt large.
Lemma 1 (Transport cost of GC coupling). Assume that f is a continuously differentiable function
representing the ground-truth consistency model, i.e. the flow of the PF-ODE induced by the diffusion
process xt. Define wt = z− E[z|xt] =

1
σ̇t
(ẋt − E[ẋt | xt]). Then:

c′(t) = −2σ̇tE

[〈
∂f

∂x
(xt, σt) ·wt,wt

〉]
. (20)

Corollary 1 (Decreasing transport cost of GC coupling in t→ 0+). There exists a t∗ > 0 such
that for all t ∈ [0, t∗], the derivative of c(t) takes the form c′(t) = −2σ̇tat with at > 0. Hence for σ̇t

positive, the cost is decreasing. In particular, in the EDM setting where σt = t, c(t) is decreasing for
small t.

The proof of this corollary proceeds by noting that for t = 0, the consistency model fθ(x, t) is an
identity function, its Jacobian is an identity matrix, and thus at = E[∥wt∥2]. Using the continuity of
Jacobian elements and invoking intermediate value theorem on at concludes the proof.
Corollary 2 (Decreasing transport cost of GC coupling in t ≈ tmax). Assume that the consistency
model fθ(x, σ) is a scaling function fθ(x, σt) =

σ0

σt
x. Then, we have c′(t) = − 2σ̇tσ0

σt
E[∥wt∥2]. In

particular, c(t) is decreasing whenever σt is increasing.

We note that, while the assumption of the consistency model being a scaling function is strong, it
nonetheless bears some degree of truth for t ≈ tmax, see Lemma 3 of Appendix A.

Toy example. Let us consider a one-dimensional toy example where x⋆ ∼ N (0, σ2
⋆) with σ⋆ ≥ 0

and z ∼ N (0, 1) are independent. Also, we assume σ0 = 0 for the sake of simplicity. In this case,
the marginal law of xt is also Gaussian with pt = N (0, σ2

⋆ + σ2
t ), so the vector field for the diffusion

process xt is calculated as vt(x) = −σ̇tσt∇x log pt(x) =
σ̇tσt

σ2
⋆+σ2

t
x. Then, the corresponding target

diffusion flow and the transport cost function are given by:

f(x, σt) =
σ⋆√

σ2
⋆ + σ2

t

x and c(t) = σ2
⋆ + 1− 2σ⋆σt√

σ2
⋆ + σ2

t

. (21)

We note that f(x, σt) is indeed a scaling function which is asymptotically proportional to x
σt

for
large t, and c(t) is decreasing in t for t > 0.

Experimental validation. As stressed in Section 3, a line of works has brought evidence that
reducing the transport cost between noise and data distributions could fasten the training and help
produce better samples. We compare the quadratic transport costs involved in IC, batch-OT (Pooladian
et al., 2023; Dou et al., 2024), and GC (resp. c(0), cOT(0), and c(t)). Results are presented in Figure 3.
Interestingly, GC reduces transport cost more than batch-OT on CIFAR-10 because batch OT is tied
to the batch data points xt whereas our computed x̂t are not.
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Figure 3: Comparison of transport costs between IC, batch-OT and GC on two datasets: a synthetic
one presented in Figure 1 where x⋆ ∼ {δ0, δ1} (left) and CIFAR-10 (right).

5 IMAGE GENERATION WITH GENERATOR-INDUCED FLOWS

In this section, we present a careful analysis of training consistency models with GC on unconditional
image generation. We identify two main obstacles to using GC: (i) the distribution shift in marginals
between IC and GC affects the performance of consistency models trained with GC only, since x̂t is
computed based on IC inputs; (ii) training a GC model with a consistency model pre-trained on IC
is computationally costly. We circumvent these issues with a simple solution based on mixing IC
and GC. Finally, we demonstrate that our mixing approach improves performance and accelerates
convergence of consistency models.

Our experiments are done on the following datasets: CIFAR-10 (Krizhevsky, 2009), ImageNet (Deng
et al., 2009), CelebA (Liu et al., 2015) and LSUN Church (Yu et al., 2015). For the evaluation metrics,
we report the Fréchet Inception Distance (FID, Heusel et al. (2017)), Kernel Inception Distance (KID,
Bińkowski et al. (2018)), and Inception Score (IS, Salimans et al. (2016)). Our experiments are
based on the improved training techniques for consistency models from Song and Dhariwal (2024),
denoted iCT-IC. Note that the iCT-IC reported below does not reach the same performance than in
Song and Dhariwal (2024) since we need to use smaller model size and batch size. In our setting,
on CIFAR-10, training iCT-IC requires approximately one day on a A100 40GB GPU. Details are
provided in Appendix C, and the code is shared in the supplementary material for reproducibility.

5.1 GC FROM SCRATCH: THE CURSE OF DISTRIBUTION SHIFT

The first experiment involves training a consistency model with GC from scratch. As shown in Figure
4(a), we observe that these models converge quickly but reach saturation early in the training process.
When applying the timestep scheduling method with an increasing number of timesteps from Song
and Dhariwal (2024), the FID of the models worsens. Using a fixed number of timesteps prevents
divergence of the FID, but it still plateaus at a higher FID than the baseline iCT-IC.

Finding 1. Consistency models converge faster with GC compared to the standard IC approach.

In Figure 4(b), we plot the FID per timestep for three model / trajectory pairs: GC-model on IC
trajectories, GC-model on GC trajectories, and IC-model on IC trajectories. Notably, we observe
the impact of the distribution shift between IC and GC trajectories: the FID of the GC-model on
IC trajectories degrades at the intermediate timesteps of the diffusion process. This highlights why
training a model exclusively on GC trajectories is insufficient: to build xti in Equation (13), the
model is inferred on IC but trained on GC trajectories. If IC and GC differ too significantly, the model
cannot improve on IC.

Finding 2. Consistency models trained exclusively on GC trajectories exhibit sub-optimal perfor-
mance, likely due to a distribution shift between intermediate timesteps of IC and GC trajectories.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

200 400 600 800 1000

Training iteration (×1e3)

8

16

32

64

128

F
ID

iCT-IC

iCT-GC

iCT-GC, fixed 20 steps

(a) FID of IC vs GC models during training.
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(b) FID of trained IC vs GC along trajectories.

Figure 4: Analysis of GC model on CIFAR-10. (a) When trained with only GC trajectories, consis-
tency models does not reach the performance of the base model (iCT-IC). In (b), we show that is
linked to a distribution shift problem: GC models are weak on IC trajectoires, thus are sub-optimal
for predicting x̂ti required in their own training (Equation (13)).
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Figure 5: A pre-trained endpoint predictor for
GC solves divergence issue observed previously
on CIFAR-10. However, the performance of GC
depends on the performance of the predictor.

Figure 6: Consistency models trained with GC
with mixing converges faster and outperforms
consistency models trained with IC or minibatch-
OT on CIFAR-10.

5.2 GC WITH PRE-TRAINED ENDPOINT PREDICTOR

As a proof of concept and to further corroborate our intuition on Finding 2, we train a consistency
model on GC with a separate endpoint predictor gϕ, pre-trained on IC (iCT-IC) and kept frozen:
x̂ti = gϕ(xti , σti). In Figure 5, we report the performance of consistency models on CIFAR-10
trained with GC using two different gϕ: (i) a gϕ fully-trained as standard iCT-IC with 100k training
steps; (ii) a weak gϕ partially-trained as iCT-IC with 20k training steps.

Finding 3. Using a partially pre-trained and frozen endpoint predictor, trained on IC trajectories,
prevents the consistency model trained on GC from worsening when increasing the number of
timesteps. However, the performance of the GC model depends on the quality of the endpoint
predictor evaluated on IC trajectories.

It is important to note that this setup is not ideal, as it requires pre-training a standard consistency
model. In practice, we aim for a training methodology that accelerates convergence and improves
performance when training from scratch, without doubling the number of required training iterations.
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Table 1: iCT-IC is the standard improved consistency model with independent coupling (Song and
Dhariwal, 2024); iCT-OT is iCT with minibatch optimal transport coupling (Pooladian et al., 2023;
Dou et al., 2024); iCT-GC (µ = 0.5) is our proposed GC with mixing.

Dataset Model FID ↓ KID (×102) ↓ IS ↑

CIFAR-10
iCT-IC 7.42 ± 0.04 0.44 ± 0.03 8.76 ± 0.06
iCT-OT 6.75 ± 0.04 0.36 ± 0.04 8.86 ± 0.09
iCT-GC (µ = 0.5) 5.95 ± 0.05 0.26 ± 0.02 9.10 ± 0.05

ImageNet (32× 32)
iCT-IC 14.89 ± 0.17 1.23 ± 0.05 9.46 ± 0.06
iCT-OT 14.13 ± 0.17 1.18 ± 0.05 9.62 ± 0.06
iCT-GC (µ = 0.5) 13.99 ± 0.28 1.13 ± 0.03 9.77 ± 0.07

CelebA (64× 64)
iCT-IC 15.82 ± 0.13 1.31 ± 0.04 2.33 ± 0.00
iCT-OT 13.63 ± 0.13 1.09 ± 0.03 2.40 ± 0.01
iCT-GC (µ = 0.5) 11.74 ± 0.08 0.91 ± 0.04 2.45 ± 0.01

LSUN Church (64× 64)
iCT-IC 10.58 ± 0.11 0.73 ± 0.03 1.99 ± 0.01
iCT-OT 9.71 ± 0.13 0.64 ± 0.03 2.00 ± 0.01
iCT-GC (µ = 0.5) 9.88 ± 0.07 0.66 ± 0.04 2.14 ± 0.01

5.3 GC FROM SCRATCH WITH MIXING

We propose a simple yet effective solution to address the distribution shift issue that affects the
performance and robustness of the endpoint predictor on IC trajectories: mixing IC and GC during
training. We introduce a mixing factor µ: at each training step, training pairs are drawn from GC
with probability µ, while the remaining pairs are drawn from standard IC. We denote this mixing
procedure as GC (µ = ·). Hence, GC (µ = 0) corresponds to the standard IC procedure, while GC
(µ = 1) corresponds to the procedure introduced in Section 4. We apply this mixing approach to four
image datasets, and include comparisons to batch OT (Pooladian et al., 2023; Dou et al., 2024) as an
additional baseline. Results across multiple datasets and metrics are presented in Table 1, and visual
examples are shown in Appendix Figure 7.

Finding 4. Mixing IC and GC trajectories consistently improves results compared to the base IC
model and outperforms batch-OT in most cases.

As shown in Figure 6, we observe an interesting interpolation phenomenon between µ = 0 and
µ = 1. At µ = 0, we recover the steady FID improvement typical of IC training. As µ increases, the
convergence of the generative model accelerates. At µ = 1, we observe the fast convergence and early
divergence described in Section 5.1. For 0.5 ≤ µ ≤ 0.7, we find a sweet spot where convergence
speed and final FID are improved compared to IC and batch-OT models. We provide further detail
on the sensitivity of our results to the choice of µ, which we found easy to tune, in Appendices B.1
and C.

6 CONCLUSION

In this paper, we identify a discrepancy between consistency training and consistency distillation.
Building on this theoretical analysis, we introduce generator-induced flows and show that they
reduce a proxy term measuring this discrepancy. Additionally, generator-induced flows decrease the
data-to-noise transport cost, as demonstrated by theory and experiments. Finally, we derive practical
algorithms for training consistency models using generator-induced flows and demonstrate their
improved empirical performance.

Reproducibility Statement. In this work, we are committed to maintaining high standards of
reproducibility. On the theoretical side, all assumptions and proofs of our results can be found in
Appendix A. For the experimental part, our codebase is included in the Supplementary Material
and will be publicly released upon publication. Additionally, detailed information about datasets,
architectures, and hyperparameters is provided in Appendix C.
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A PROOFS

A.1 CONTINUOUS-TIME CONSISTENCY OBJECTIVES

Theorem 1 (Discrepancy between consistency distillation and consistency training objectives).
Assume that the distance function is given by D(x,y) = φ(∥x − y∥) for a continuous convex
function φ : [0,∞) → [0,∞) with φ(x) ∼ Cxα as x → 0+ for some C > 0 and α ≥ 1, and that
the timesteps are equally spaced, i.e., ti = iT

N . Furthermore, assume that the Jacobian ∂fθ

∂x does not
vanish identically. Then the following assertions hold:

(i) The scaled consistency losses NαLCD(θ) and NαLCT(θ) converge as N →∞. Moreover,
the minimization objectives corresponding to these limiting scaled consistency losses are
not equivalent, and their difference is given by:

lim
N→∞

Nα
[
LCT(θ)− LCD(θ)

]
= CTα−1R(θ), (22)

whereR(θ) is defined by

R(θ) =
∫ T

0

λ(σt)E
[
∥∂CTfθ∥α − ∥∂CDfθ∥α

]
dt (23)

and satisfiesR(θ) > 0, with

∂CTfθ =
∂fθ

∂σ
(xt, σt)σ̇t +

∂fθ

∂x
(xt, σt) · ẋt, (24)

∂CDfθ =
∂fθ

∂σ
(xt, σt)σ̇t +

∂fθ

∂x
(xt, σt) · vt(xt). (25)

In particular, if α = 2,

R(θ) =
∫ T

0

λ(σt)E

[∥∥∥∥∂fθ

∂x
(xt, σt) ·

(
ẋt − vt(xt)

)∥∥∥∥2
]
dt. (26)

(ii) The scaled gradient Nα−1∇θLCD(θ) and Nα−1∇θLCT(θ) converge as N → ∞. More-
over, if α ̸= 2, then their respective limits are not identical as functions of θ:

lim
N→∞

Nα−1∇θLCT(θ) ̸= lim
N→∞

Nα−1∇θLCD(θ). (27)

Proof. (i) Note that ∂CDfθ and ∂CTfθ satisfy:

∂CTfθ(xt, σt) =
∂

∂t
fθ(xt, σt), ∂CDfθ(xt, σt) = E

[
∂

∂t
fθ(xt, σt)

∣∣∣∣xt

]
. (28)

Here, the second equality follows by noting that vt(xt) = E[ẋt|xt] and all the other terms in the
expansion of ∂

∂tfθ(xt, σt) are completely determined once the value of xt is known.

Now, we use Taylor’s theorem to expand the difference between fθ(xti+1
, σti+1

) and fθ(x
Φ
ti , σti) in

the consistency distillation loss, Equation (4). Together with the definition of xΦ
ti , Equation (5), this

yields:

fθ(xti+1
, σti+1

)− fθ(x
Φ
ti , σti)

=
∂fθ

∂σ
(xti+1

, σti+1
) · (σti+1

− σti) +
∂fθ

∂x
(xti+1

, σti+1
) · (xti+1

− xΦ
ti) + o(ti+1 − ti) (29)

= ∂CDfθ(xti+1
, σti+1

) · (ti+1 − ti) + o(ti+1 − ti). (30)

Similarly, by expanding the difference between fθ(xti+1
, σti+1

) and fθ(xti , σti) in Equation (6),

fθ(xti+1
, σti+1

)− fθ(xti , σti)

=
∂fθ

∂σ
(xti+1 , σti+1) · (σti+1 − σti) +

∂fθ

∂x
(xti+1 , σti+1) · (xti+1 − xti) + o(ti+1 − ti) (31)

= ∂CTfθ(xti+1
, σti+1

) · (ti+1 − ti) + o(ti+1 − ti). (32)
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Therefore, for each • ∈ {CD,CT},

NαL•(θ) = Nα · 1
N

N−1∑
i=0

λ(σti)E
[
C
∥∥∂•fθ(xti+1

, σti+1
)
∥∥α (1 + o(1))

]
· (ti+1 − ti)

α (33)

= CTα−1
N−1∑
i=0

λ(σti)E
[∥∥∂•fθ(xti+1

, σti+1
)
∥∥α (1 + o(1))

]
· (ti+1 − ti) (34)

→ CTα−1

∫ T

0

λ(σt)E
[∥∥∂•fθ(xt, σt)

∥∥α] dt (35)

in the continuous-time limit as N →∞.

For simplicity of notation, we write

L∞
• (θ) = lim

N→∞
NαL•(θ) (36)

for each • ∈ {CD,CT}. Then, from the formula for the limiting losses L∞
• (θ), Equation (35), we

immediately obtain

L∞
CT(θ)− L∞

CD(θ) = CTα−1

∫ T

0

λ(σt)E
[∥∥∂CTfθ(xt, σt)

∥∥α − ∥∥∂CDfθ(xt, σt)
∥∥α] dt. (37)

Now, we specialize in the case α = 2 and invoke the general observation that, for any random vectors
x and y, the following identity holds:

E
[
∥x∥2 − ∥E[x|y]∥2

]
= E

[
∥x− E[x|y]∥2

]
. (38)

This can be easily proved by expanding the squared Euclidean norm as the inner product and applying
the law of iterated expectations. Plugging in x ← ∂

∂tfθ(xt, σt) and y ← xt, and noting that
∂CDfθ(xt, σt) = E

[
∂CTfθ(xt, σt) | xt

]
by Equation (28), it follows that

L∞
CT(θ)− L∞

CD(θ) = CT

∫ T

0

λ(σt)E
[∥∥∂CTfθ(xt, σt)− ∂CDfθ(xt, σt)

∥∥2] dt (39)

= CT

∫ T

0

λ(σt)E

[∥∥∥∥∂fθ

∂x
(xt, σt) ·

(
ẋt − vt(xt)

)∥∥∥∥2
]
dt. (40)

Next, we establish the positivity ofR(θ). To this end, note that ∥ · ∥α is a convex function for α ≥ 1.
By invoking the conditional Jensen’s inequality, we find that the expectation inside the limiting scaled
consistency training losses, Equation (35) satisfy:

E
[∥∥∂CTfθ(xt, σt)

∥∥α] = E

[∥∥∥∥ ∂

∂t
fθ(xt, σt)

∥∥∥∥α
]
= E

[
E
[∥∥∥∥ ∂

∂t
fθ(xt, σt)

∥∥∥∥α ∣∣∣∣ xt

]]
(41)

≥ E

[∥∥∥∥E[ ∂

∂t
fθ(xt, σt)

∣∣∣∣ xt

]∥∥∥∥α
]
= E

[∥∥∂CDfθ(xt, σt)
∥∥α]. (42)

Integrating both sides with respect to λ(σt) dt, we obtain the desired inequality. The Jensen’s
inequality also tells that the equality holds precisely when ∂

∂tfθ(xt, σt) = E[ ∂∂tfθ(xt, σt)|xt] holds,
or equivalently, ∂fθ

∂x (xt, σt) · (ẋt − E[ẋt|xt]) = 0. However, given the value of xt, the quantity ẋt

can assume an arbitrary value in Rd because the conditional density of ẋt = σ̇tz given xt is strictly
positive everywhere. Consequently, the equality condition implies ∂fθ

∂x = 0. Since this contradicts
the assumption of the theorem, the strict inequality between the two limiting losses must hold.

Finally, recall that the continuous-time consistency distillation loss, L∞
CD(θ), is given by

L∞
CD(θ) = CTα−1

∫ T

0

λ(σt)E

[∥∥∥∥∂fθ

∂σ
(xt, σt)σ̇t +

∂fθ

∂x
(xt, σt) · vt(xt)

∥∥∥∥α
]
dt. (43)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Similarly, the continuous-time consistency training loss, L∞
CT(θ), is given by

L∞
CT(θ) = CTα−1

∫ T

0

λ(σt)E

[∥∥∥∥∂fθ

∂σ
(xt, σt)σ̇t +

∂fθ

∂x
(xt, σt) · ẋt

∥∥∥∥α
]
dt. (44)

Since vt(xt) = E[ẋt|xt] and E[∥ẋt − E[ẋt]∥2] > E[∥vt(xt) − E[ẋt]∥2], it follows that L∞
CT(θ)

penalizes the Jacobian ∂fθ

∂x more strongly than L∞
CD(θ) does. Therefore, the two limiting consistency

losses do not define equivalent objectives.

(ii) Using the convexity of φ, we can show that φ′(x) ∼ Cαxα−1 as x→ 0+. Combining this with
the vector calculus formula ∇y∥y∥ = y

∥y∥ , we get ∇yφ(∥y∥) ≈ Cα∥y∥α−2y for small y. From
this, we can estimate the gradient of the distance between sg

(
fθ(x

Φ
ti , σti)

)
and fθ(xti+1

, σti+1
) with

respect to the model parameter θ as:

∇θD
(
sg
(
fθ(x

Φ
ti , σti)

)
,fθ(xti+1

, σti+1
)
)

= (1 + o(1))Cα

[
∥∂CDfθ∥α−2(∂CDfθ)

⊤ ∂fθ

∂θ

]
· (ti+1 − ti)

α−1 (45)

Here, the expression ∥∂CDfθ∥α−2(∂CDfθ)
⊤ ∂fθ

∂θ in the square bracket is evaluated at (xti+1 , σti+1).
Similarly, the gradient of the distance between fθ(xti , σti) and fθ(xti+1

, σti+1
) is estimated as:

∇θD
(
sg
(
fθ(xti , σti)

)
,fθ(xti+1

, σti+1
)
)

= (1 + o(1))Cα

[
∥∂CTfθ∥α−2(∂CTfθ)

⊤ ∂fθ

∂θ

]
· (ti+1 − ti)

α−1
(46)

Combining these two estimates, we can now compute the limit of the scaled gradient Nα−1∇θL•(θ)
for each • ∈ {CD,CT} as:

Nα−1∇θL•(θ)

= CαTα−2
N−1∑
i=0

λ(σti)E
[
(1 + o(1))

[
∥∂•fθ∥α−2

(∂•fθ)
⊤ ∂fθ

∂θ

]]
· (ti+1 − ti) (47)

→ CαTα−2

∫ T

0

λ(σt)E
[∥∥∂•fθ(xt, σt)

∥∥α−2 (
∂•fθ(xt, σt)

)⊤ ∂fθ

∂θ
(xt, σt)

]
dt (48)

as N →∞. Finally, if α ̸= 2, then the term ∥∂•fθ∥α−2
∂•f

⊤
θ is a nonlinear transformation of ∂•fθ.

This nonlinearity tells that, in general,

E
[
∥∂CTfθ∥α−2

(∂CTfθ)
⊤
∣∣∣xt

]
̸= ∥∂CDfθ∥α−2

(∂CDfθ)
⊤
. (49)

Therefore, the scaled gradient limits are not identical as functions of θ, and in particular, their zero
sets do not coincide.

A.2 PROXY OF THE REGULARIZER

In this subsection, we establish a theoretical result about the decay rate of the proxy of the regularizer.
As preparation for the main result and for future use, we introduce a simple lemma that decomposes
the forward flow generated by a vector field into the sum of a scaling term and a correction term that
is well-behaved.
Lemma 2. Assume that ϕ is the forward flow generated by the vector field vt, meaning that it solves
the characteristic equation:

∂

∂t
ϕ(x, σt) = vt(ϕ(x, σt)), ϕ(x, σ0) = x. (50)

Also, assume that vt is defined as

vt(x) =
σ̇t

σt
(x−D(x, σt)) (51)

for some function D, which we call a “denoiser”. Then ϕ satisfies the following integral equation:

x =
σ0

σt
ϕ(x, σt) + σ0

∫ t

0

σ̇s

σ2
s

D(ϕ(x, σs), σs) ds. (52)
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Proof. We first compute the derivative of ϕ/σt:

∂

∂t

(
ϕ(x, σt)

σt

)
= − σ̇t

σ2
t

ϕ(x, σt) +
1

σt
· σ̇t

σt
(ϕ(x, σt)−D(ϕ(x, σt), σt)) (53)

= − σ̇t

σ2
t

D(ϕ(x, σt), σt). (54)

Integrating both sides with respect to t, it follows that

ϕ(x, σt)

σt
− ϕ(x, σ0)

σ0
= −

∫ t

0

σ̇s

σ2
s

D(ϕ(x, σs), σs) ds. (55)

Rearranging and applying the initial condition ϕ(x, σ0) = x, we obtain the desired equation.

As an immediate consequence of this lemma, we obtain the following result about the asymptotic
structure of a trained consistency model:

Lemma 3. Assume that f̊ is the consistency model generated by a bounded denoiser D, in the sense
that f̊ solves the transport equation

∂f̊

∂σ
(x, σt)σ̇t +

∂f̊

∂x
(x, σt) · vt(x) = 0 (56)

for a vector field v̊t defined as in Equation (51) with the denoiser D. Then

f̊(x, σt) =
σ0

σt
x+O(1) (57)

uniformly in x and σt. The implicit bound of the error term can be chosen to be the bound of D.

Proof. Let ϕ be the forward flow generated by v̊t as in Lemma 2. This ϕ is precisely the inverse
of the consistency model f̊ , in the sense that ϕ(f̊(x, σ), σ) = x holds. Then, replacing x in the
equation of Lemma 2 with f̊(x, σt), we get

f̊(x, σt) =
σ0

σt
x+ σ0

∫ t

0

σ̇s

σ2
s

D(ϕ(f̊(x, σt), σs), σs) ds. (58)

Now let R be such that ∥D(x, σ)∥ ≤ R for any x ∈ Rd and noise level σ. Then, the integral term in
Equation (58) is bounded as:∥∥∥∥∥σ0

∫ t

0

σ̇s

σ2
s

D(ϕ(f̊(x, σt), σs), σs) ds

∥∥∥∥∥ ≤ σ0

∫ t

0

σ̇s

σ2
s

R ds = σ0R

(
1

σ0
− 1

σt

)
≤ R. (59)

This proves the desired claim.

Now we turn to the main result, which analyzes the asymptotic behavior of R̃t,IC and R̃t,GC, as
t→∞:
Theorem 2. Assume that the data distribution contains more than a single point. Also, assume that
the generator-induced coupling between the predicted data point x̂t and noise z is computed via an
ideal consistency model f̊ , i.e., the flow of the PF-ODE. Then, as t→∞,

R̃t,GC ≪ R̃t,IC. (60)

Proof. We first investigate the asymptotic behavior of R̃t,IC in the limit of t→∞. Recall that the
diffusion process xt is given by xt = x⋆ + σtz for (x⋆, z) ∼ qI, and note that

ẋt − vt(xt) = σ̇tz− E[σ̇tz|xt] = −
σ̇t

σt
(x⋆ −D(xt, σt)), (61)

where D(xt, σt) = E[x⋆|xt] is the denoiser. Plugging this into the definition of R̃t,IC, we get

R̃t,IC =

(
σ̇t

σt

)2

E
[∥∥x⋆ −D(xt, σt)

∥∥2] . (62)
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Now, we claim that D(xt, σt) = E[x⋆|xt]→ E[x⋆] as t→∞. Intuitively, this is because xt ≈ σtz
for large t, and σtz is independent of x⋆. More formally, note that the conditional distribution of xt

given x⋆ is p(xt|x⋆) = N (xt;x⋆, σ
2
t I). By Bayes’ theorem, the conditional distribution of x⋆ given

xt is

p(x⋆|xt) =
p(xt|x⋆)p(x⋆)∫

Rd p(xt|x′
⋆)p(x

′
⋆) dx

′
⋆

=
exp

(
− 1

2σ2
t
|xt − x⋆|2

)
p(x⋆)∫

Rd exp
(
− 1

2σ2
t
|xt − x′

⋆|2
)
p(x′

⋆) dx
′
⋆

. (63)

As t → ∞, we have σt → ∞, so the exponential terms converge to 1. Consequently, p(x⋆|xt) →
p(x⋆) and hence E[x⋆|xt]→ E[x⋆] as claimed. Thus,

R̃t,IC ∼
(
σ̇t

σt

)2

E
[∥∥x⋆ − E[x⋆]

∥∥2] . (64)

Since the data distribution p⋆ is assumed to have more than one point, the variance E[∥x⋆ −E[x⋆]∥2]
is strictly positive. Therefore, R̃t,IC decays at a rate asymptotically proportional to ( σ̇t

σt
)2.

Next, we investigate the asymptotic behavior of R̃t,GC. Recall the consistency training loss for GC,
Equation (15). Under the assumptions in Theorem 1, the scaled loss NαLGC(θ) converges to

L∞
GC(θ) = CTα−1

∫ T

0

λ(σt)E

[∥∥∥∥∂fθ

∂σ
(x̃t, σt)σ̇t +

∂fθ

∂x
(x̃t, σt) · σ̇tz

∥∥∥∥α
]
dt. (65)

Here, x̃t = x̂t + σtz and x̂t = f̊(xt, σt), where f̊ is the ideal consistency model for the flow
associated with the diffusion process xt. The proof of this claim is similar to that of Theorem 1,
so we only highlight the necessary changes. Most importantly, the velocity term is not ˙̃xt but σ̇tz.
This is due to how the discrete-time samples are constructed. Indeed, from Equation (14), we
find that x̃ti+1

− x̃ti = (σti+1
− σti)z, which manifests as the velocity term σ̇tz in Equation (65).

Consequently, the associated (average) velocity field ṽt is given by

ṽt(x̃t) = E[σ̇tz|x̃t] =
σ̇t

σt
(x̃t − E[x̂t|x̃t]). (66)

Therefore, R̃t,GC reduces to

R̃t,GC =

(
σ̇t

σt

)2

E
[∥∥x̂t − E[x̂t|x̃t]

∥∥2] . (67)

Now, unlike in the IC case, we claim that E[x̂t|x̃t] ≈ x̂t as t → ∞. Heuristically, this is because
both x̂t and x̃t are almost deterministic functions of z; hence, the conditioning has negligible effect
in the limit.

More precisely, let ϕ be the forward flow generated by the PF-ODE vector field vt. As in the proof
of Lemma 2, integrating both sides of Equation (54) from t to u yields

ϕ(x, σu)

σu
=

ϕ(x, σt)

σt
−
∫ u

t

σ̇s

σ2
s

D(ϕ(x, σs), σs) ds. (68)

Letting u→∞, we claim that the right-hand side converges. Indeed, the empirical data distribution
p⋆ has compact support, meaning all the data points are confined in a bounded region of Rd. Since
the values of D are weighted averages of the data points, it follows that D is also bounded. Then
the integrand σ̇s

σ2
s
D(ϕ(x, σs), σs) is absolutely itnegrable on [t,∞), hence the convergence follows.

Moreover, the limit does not depend on t. Denote this limit by ρ(x):

ρ(x) =
ϕ(x, σt)

σt
−

∫ ∞

t

σ̇s

σ2
s

D(ϕ(x, σs), σs) ds. (69)

As shown in the previous part, we know that D(x, t) = c+ o(1) as t→∞ with c = E[x⋆]. Then,
multiplying both sides of Equation (69) by σt and rearranging, we have, for large t,

ϕ(x, σt) = σtρ(x) + σt

∫ ∞

t

σ̇s

σ2
s

D(ϕ(x, σs), σs) ds (70)

= σtρ(x) + (c+ o(1))σt

∫ ∞

t

σ̇s

σ2
s

ds (71)

= σtρ(x) + c+ o(1). (72)
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Since ϕ is a bijection, the above relation tells that ρ(x) is also a bijection. Next, we replace x← x̂t

in the equation defining ρ(x), Equation (69), to obtain:

ρ(x̂t) = z+
x⋆

σt
−
∫ ∞

t

σ̇s

σ2
s

D(ϕ(x̂t, σs), σs) ds. (73)

Since ρ is invertible, applying ρ−1 to both sides yields

x̂t = ρ−1

(
z+

x⋆

σt
−

∫ ∞

t

σ̇s

σ2
s

D(ϕ(x̂t, σs), σs) ds

)
(74)

= ρ−1

(
x̃t

σt
+

x⋆ − x̂t

σt
−

∫ ∞

t

σ̇s

σ2
s

D(ϕ(x̂t, σs), σs) ds

)
(75)

Since all of x⋆, x̂t, and D are bounded by the largest norm of the data point, they are all finite. Hence,
the last line shows that x̂t = ρ−1

(
x̃t

σt
+ O( 1

σt
)
)
, demonstrating that x̂t is almost a deterministic

function of x̃t. Therefore, E[x̂t|x̃t] ≈ x̂t as required. Consequently, R̃t,GC satisfies

R̃t,GC ≪
(
σ̇t

σt

)2

. (76)

This proves that R̃t,GC ≪ R̃t,IC as required.

A.3 TRANSPORT COST

As a base for the two corollaries presented in the paper, we will first derive a useful representation of
the derivative of the transport cost.

The main purpose of the lemma is to provide a more tractable representation of c′(t), the time
derivative of the expected transport cost. We expect c(t) to decrease with t because the predicted data
point f(xt, σt) becomes more dependent on the noise z as t increases. However, directly analyzing
f(xt, σt)− z is challenging because the dependence of f(xt, σt) on z is not explicit. Therefore, the
lemma aims to:

• identify a quantity that better captures the dependence between z and xt;
• relate c(t) to this quantity.

The proof proceeds by deriving a key property of the ground-truth consistency map f : it satisfies the
transport equation,

∂f

∂σ
(x, σt) σ̇t +

∂f

∂x
(x, σt) · vt(x) = 0. (77)

This equation is equivalent to saying that the conditional expectation of the time derivative of f(xt, σt)
given xt is zero:

E
[
∂

∂t
f(xt, σt)

∣∣∣∣xt

]
= 0. (78)

By leveraging this property, we can simplify c′(t) into an expression involving wt = z− E[z | xt],
the residual between the true noise z and its prediction given xt. This residual captures the uncertainty
in predicting z based on xt, allowing us to relate c′(t) directly to the prediction accuracy of f .
Lemma 1 (Transport cost of GC coupling). Assume that f is a continuously differentiable function
representing the ground-truth consistency model, i.e. the flow of the PF-ODE induced by the diffusion
process xt. Define wt = z− E[z|xt] =

1
σ̇t
(ẋt − E[ẋt | xt]). Then:

c′(t) = −2σ̇tE

[〈
∂f

∂x
(xt, σt) ·wt,wt

〉]
. (79)
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Proof. Note that the inverse flow f−1(y, σt) transports the initial point y at time t = 0 along the
vector field vt up to time t. Consequently, f−1 is a flow with the corresponding vector field vt:

∂

∂t
[f−1(y, σt)] = vt(f

−1(y, σt)). (80)

By differentiating both sides of the identity y = f(f−1(y, σt), σt) with respect to t and applying
the above observation, we get:

0 =
∂

∂t

[
f(f−1(y, σt), σt)

]
(81)

=
∂f

∂σ
(f−1(y, σt), σt)σ̇t +

∂f

∂x
(f−1(y, σt), σt) ·

∂

∂t
[f−1(y, σt)] (82)

=
∂f

∂σ
(x, σt)σ̇t +

∂f

∂x
(x, σt) · vt(x), (83)

where the substitution x = f−1(y, σt) is used in the last step. Consequently,

c′(t) = 2E

[〈
∂

∂t
[f(xt, σt)],f(xt, σt)− z

〉]
(84)

= 2E

[〈
∂f

∂σ
(xt, σt)σ̇t +

∂f

∂x
(xt, σt) · ẋt,f(xt, σt)− z

〉]
(85)

= 2E

[〈
∂f

∂x
(xt, σt) · (ẋt − vt(x)),f(xt, σt)− z

〉]
(86)

= 2σ̇tE

[〈
∂f

∂x
(xt, σt) · (z− E[z|xt]),f(xt, σt)− z

〉]
, (87)

where we used the relations xt = x⋆ + σtz and vt(x) = E[ẋt|xt]. Now, let wt = z − E[z | xt].
Then E[wt | xt] = 0, hence by an application of the law of iterated expectations, E[⟨wt, g(xt)⟩] = 0
for essentially any function g : Rd → Rd. Using this, we can further simplify the last line as:

c′(t) = −2σ̇tE

[〈
∂f

∂x
(xt, σt) ·wt, z

〉]
= −2σ̇tE

[〈
∂f

∂x
(xt, σt) ·wt,wt

〉]
, (88)

proving the desired equality.

An immediate consequence of this lemma is that c(t) decreases for small t:
Corollary 1 (Decreasing transport cost of GC coupling in t→ 0+). There exists a t∗ > 0 such
that for all t ∈ [0, t∗], the derivative of c(t) takes the form c′(t) = −2σ̇tat with at > 0. Hence for σ̇t

positive, the cost is decreasing. In particular, in the EDM setting where σt = t, c(t) is decreasing for
small t.

Proof. The proof of this corollary proceeds by noting that for t = 0, the consistency model fθ(x, t)
is an identity function, its Jacobian is an identity matrix leading to at = E[∥wt∥2] > 0 and by
assumption, all the elements of the Jacobian are continuous. By continuity of at, t∗ exists and
invoking intermediate value theorem on at concludes the proof.

The next result is the statement about the asymptotic behavior of the transport cost c(t) in the large-t
regime.
Corollary 2 (Decreasing transport cost of GC coupling in t ≈ tmax). Assume that the consistency
model fθ(x, σ) is a scaling function fθ(x, σt) =

σ0

σt
x. Then, we have c′(t) = − 2σ̇tσ0

σt
E[∥wt∥2]. In

particular, c(t) is decreasing whenever σt is increasing.

Proof. Under the assumption, we have ∂f
∂x = σ0

σt
I. Thus, by Lemma 1,

c′(t) = −2σ̇tE

[〈
σ0

σt
Iwt,wt

〉]
= −2σ̇tσ0

σt
E[∥wt∥2]. (89)

This proves that c′(t) < 0 whenever σ̇t > 0.
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B ADDITIONAL RESULTS

B.1 ABLATION STUDIES

Table 2: Analysis of performance with regards
to some hyper-parameters of iCT-GC (µ = 0.5)
on CIFAR-10.

Model FID

iCT-IC 7.42 ± 0.04
iCT-GC (µ = 0.5) iso-time 6.38 ± 0.03

iCT-GC (µ = 0.5) 5.95 ± 0.05
iCT-GC(µ = 0.5) + dropout 7.77 ± 0.04
iCT-GC (µ = 0.5) - EMA 6.73 ± 0.05

Iso wall-clock training time. As illustrated
above, consistency models trained with GC con-
verge faster than IC. However, each training step
is more time-consuming, as it necessitates a for-
ward evaluation of the consistency model without
gradient computation. Regarding wall-clock train-
ing time, the computational overhead of iCT-GC
is approximately 20% of the iCT-IC. In top part of
Table 2, we report under “iCT-GC (µ = 0.5) iso-
time” the results of iCT-GC (µ = 0.5) trained for
as many hours as iCT-IC. Even when considering
wall-clock training time, iCT-GC (µ = 0.5) is still
superior to iCT-IC.

Hyper-parameters. We evaluate the influence of two important hyper-parameters. First, the
dropout in the learned model. Second, whether to use or not the EMA to compute GC endpoints x̂.
The results are presented in bottom part of Table 2. Interestingly, the results on dropout are opposite
to those found by (Song and Dhariwal, 2024), since using dropout lowers the performance of iCT-GC
(µ = 0.5).

Analysis of µ on ImageNet. We present further results of the mixing procedure with varying µ
({0.3, 0.5, 0.7, 1.}) on ImageNet-32 in Figure 8. For µ = {0.3, 0.5}, iCT-GC outperforms the base
model iCT-IC.

B.2 VISUAL RESULTS

We include in Figure 7 examples of generated images for considered baselines.

C EXPERIMENTAL DETAILS

The code is based on the PyTorch library (Paszke et al., 2019).

Scheduling functions and hyperparameters from Song and Dhariwal (2024). The training of
consistency models heavily rely on several scheduling functions. First, there is a noise schedule
{σi}Ni=0 which is chosen as in Karras et al. (2022). Precisely, σi =

(
σ0

1
ρ + i

N (σN
1
ρ − σ0

1
ρ )
)ρ

with ρ = 7. Second, there is a weighting function that affects the training loss. It is chosen as
λ(σi) = 1

σi+1−σi
. Combined with the choice of noise schedule, it emphasizes to be consistent

on timesteps with low noise. Then, Song et al. (2023) proposed to progressively increase the
number of timesteps N during training. Song and Dhariwal (2024) argue that a good choice of
dicretization schedule is an exponential one, which gives N(k) = min(s02⌊

k
K′ ⌋, s1) + 1 where

K ′ = ⌊ K
log2[s1/s0]+1⌋, K is the total number of training steps, k is the current training step, s0

(respectively s1) the initial (respectively final) number of timesteps. Finally, Song and Dhariwal
(2024) propose a discrete probability distribution on the timesteps which mimics the continuous
probability distribution recommended in the continuous training of score-based models by Karras
et al. (2022). It is defined as p(σi) ∝ erf( log(σi+1)−Pmean√

2Pstd
)− erf( log(σi)−Pmean√

2Pstd
). In practice, Song and

Dhariwal (2024) recommend using: s0 = 10, s1 = 1280, ρ = 7, Pmean = −1.1, Pstd = 2.0.

We use the lion optimizer (Chen et al., 2023) implemented from https://github.com/lucidrains/lion-
pytorch.

Selection of hyper-parameter µ. We have selected µ based on the results from Figure 6, which
presents a grid search for µ on CIFAR-10. Given the bell-shaped relationship observed between
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(a) Trained with IC. (b) Trained with OT. (c) Trained with GC (µ = 0.5).

Figure 7: Uncurated samples from consistency models trained on CelebA 64× 64 for fixed noise
vectors. Note that models trained with generator-induced trajectories tend to generate sharper images.

500 1000 1500

Training iteration (×1e3)

16

32

64

128

F
ID

Minimum FID of CT

iCT-IC

iCT-GC (µ = 0.3)

iCT-GC (µ = 0.5)

iCT-GC (µ = 0.7)

iCT-GC (µ = 1)

Figure 8: Results of varying µ for iCT-GC on ImageNet-32.
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Table 3: Hyperparameters for CIFAR-10. Arrays indicate quantities per resolution of the UNet model.
{} indicate an hyper-parameter search performed for each type of model (iCT, iCT-OT, iCT-GC
(µ = 0.5)).

Hyperparameter Value
batch size 512
image resolution 32
training steps 100 000
learning rate {0.0001, 0.00003}
optimizer lion
s0 10
s1 1280
ρ 7
σ0 0.002
σ1 80
network architecture SongUNet

(from Karras et al. (2022) implementation)
model channels 128
dropout {0., 0.3}
num blocks 3
embedding type positional
channel multiplicative factor [1, 2, 2]
attn resolutions ∅

µ and FID, we opted to retain the best performing value identified on CIFAR-10, µ = 0.5, for
all subsequent experiments (Table 1), including those on other datasets, without further tuning.
Importantly, even without an exhaustive hyperparameter search, our method consistently outperforms
baseline approaches. This choice is validated by the ablation study presented in Appendix B.1
showing similar trend for another dataset, showing that the hyper-parameter µ is easy to tune.

Details on neural networks architectures. We use the NCSN++ architecture (Song et al., 2021) and
follow the implementation from https://github.com/NVlabs/edm.

Evaluation metrics. We report the FID, KID and IS. For the three different metrics, we rely on the
implementation from TorchMetrics (Skafte Detlefsen et al., 2022). For the three different metrics, we
use the standard practice (e.g. Song and Dhariwal (2024)) of FID which is to compare sets of 50 000
generated versus training images. Confidence intervals reported in Table 1 are averaged on five runs
by sampling new sets of training images, and new sets of generated images from the same model.

Datasets. CIFAR-10 is a dataset introduced in Krizhevsky (2009). ImageNet (Deng et al., 2009),
CelebA (Liu et al., 2015), and LSUN Church (Yu et al., 2015) are used respectively at 32 × 32,
64× 64 and 64× 64 resolutions. We preprocess these images by resizing smaller side to the desired
value, center cropping, and linearly scaling pixel values to [−1, 1].
Details on computational ressources As mentioned in the paper, the image dataset experiments
have been conducted on NVIDIA A100 40GB GPUs.

D BROADER IMPACTS

If used in large-scale generative models, notably in text-to-image models, this work may increase
potential negative impacts of deep generative models such as deepfakes (Fallis, 2021).
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Table 4: Hyperparameters for CelebA and LSUN Church. Arrays indicate quantities per resolution
of the UNet model. {} indicate an hyper-parameter search performed for each type of model (iCT,
iCT-OT, iCT-GC (µ = 0.5)).

Hyperparameter Value
batch size 128
image resolution 64
training steps 150 000
learning rate 0.00008
optimizer lion
s0 10
s1 1280
ρ 7
σ0 0.002
σ1 80
network architecture SongUNet

(from Karras et al. (2022) implementation)
model channels 128
dropout {0., [0., 0., 0.2, 0.2]}
num blocks [3, 3, 4, 5]
embedding type positional
channel multiplicative factor [1, 2, 2, 2]
attn resolutions ∅

Table 5: Hyperparameters for ImageNet-1k. Arrays indicate quantities per resolution of the UNet
model. {} indicate an hyper-parameter search performed for each type of model (iCT, iCT-OT,
iCT-GC (µ = 0.5)).

Hyperparameter Value
batch size 512
image resolution 32
training steps 150 000
learning rate 0.00008
optimizer lion
s0 10
s1 1280
ρ 7
σ0 0.002
σ1 80
network architecture SongUNet

(from Karras et al. (2022) implementation)
model channels 128
dropout {0., [0., 0., 0.2, 0.2]}
num blocks [3, 5, 7]
embedding type positional
channel mult [1, 1, 2]
attn resolutions [16]
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