To Be or Not to Be: Bayesian Survival Pruning for Multi-Agent System

Anonymous ACL submission

Abstract

To address the challenges of communication
topology redundancy and Newcomb’s paradox
in open-world multi-agent systems, we propose
Agent Bayesian Out(ABO), an uncertainty-
aware framework. By modeling edge weights
in communication graphs as probabilistic ran-
dom variables, ABO innovatively integrates
three key mechanisms: Bayesian edge weight
representation, Gaussian process priors, and
Markov Chain Monte Carlo-based graph sam-
pling. This integration establishes a dynamic
uncertainty propagation model, overcoming
the limitations of conventional methods in
stochastic modeling and open-scenario adap-
tation. Experiments demonstrate that ABO
effectively identifies low-contribution nodes
and redundant connections, achieving an av-
erage accuracy improvement of 1.8 %—2.59 %
on benchmarks. Notably, it exhibits enhanced
transfer capability in open-domain QA tasks.
Ablation studies confirm the synergistic effects
of components through a Bayesian-uncertainty
sampling mechanism, while its zero additional
inference overhead provides a novel paradigm
for distributed agent collaboration. The pro-
posed framework outperforms existing state-of-
the-art (SOTA) methods across multiple met-
rics and achieves cutting-edge performance.

1 Introduction

In recent years, multi-agent systems based on large
language models have demonstrated significant po-
tential in solving complex tasks (Yang et al., 2024a;
Gu et al., 2024; Chen et al., 2024). By emulat-
ing the collaborative nature of human teams (Gao
et al., 2023a; Yen et al.), these systems enable mul-
tiple agents to communicate and cooperate with
each other, thereby substantially enhancing the ef-
ficiency and quality of task solutions (Islam et al.,
2022; McClellan et al., 2024; Sarkar et al., 2022)
However, Multi-Agent Systems (MAS) are com-
monly confronted with the challenges of high
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Figure 1: (a) The mathematical representation and inter-
pretation of the Newcomb’ paradox. (b) In Multi-Agent
Systems, information asymmetry among agents restricts
their cognitive and expressive capabilities, leading to un-
certainty that is not captured within the scope of stochas-
tic modeling. (c) Modeling uncertainty can, to some
extent, compensate for the bias caused by considering
only randomness.

token consumption and inefficiency (Dewes and
Dimitrova, 2024; Zhang et al., 2025; Epperson
et al., 2025). To address communication efficiency
in MAS, existing work has explored various ap-
proaches, including dynamic pruning (You et al.,
2024), information filtering (Mao et al., 2020), and
cross-modal collaboration (Peigne-Lefebvre et al.,
2025; Wu et al., 2025). These studies have pro-
vided a scalable theoretical framework for reduc-
ing communication overhead in MAS by breaking
through the limitations of traditional methods. De-
spite these advancements, existing methods still
face two major limitations: (1) The sampling prob-
ability values, measured from a stochastic perspec-
tive, fail to capture the inherent uncertainty of com-



munication strength, resulting in insufficient sensi-
tivity for redundancy detection (Tran et al., 2021);
(2) The simplified assumptions regarding commu-
nication graph structures do not align well with
the complex dependencies in open-world scenarios,
potentially leading to suboptimal pruning decisions
(Pezeshkpour et al., 2024).

Typically, the observed communication relation-
ships in agent systems and the event sets of in-
dividual agents are assumed to be equivalent to
the true complete event set. Consequently, the ob-
served events can be modeled stochastically based
on Bayes’ theorem (Tran et al., 2025). However, in
open and complex systems, factors such as individ-
ual agents’ cognitive limitations and information
asymmetry mean that the observed event set may
not be the true complete event set. Instead, the
observed event set may be a subset of the complete
event set, leading to scenarios akin to the New-
comb’ paradox. This unobserved portion of the
event set cannot be modeled by existing stochastic
methods, necessitating the introduction of event
uncertainty to compensate for the insufficiencies
of stochasticity, as shown in Figure 1 . Therefore,
we propose Agent Bayesian Qut(ABO), which
effectively addresses the Newcomb’ paradox that
multi-agent systems may encounter when dealing
with open-world complex systems.

We introduce ABO, a multi-agent system (MAS)
collaborative reasoning framework based on uncer-
tainty perception, which effectively circumvents
the occurrence of the Newcomb’ paradox, thereby
enhancing decision-making expectations. The edge
weights in the communication graph are inherently
probabilistic random variables, and their uncer-
tainty characteristics reflect the confidence level
of a specific communication path’s contribution to
the task. By explicitly modeling this uncertainty,
the system can more accurately identify and elimi-
nate redundant elements during multiple rounds of
collaboration. The contributions of this study can
be summarized as follows:

* We introduce uncertainty quantification into
multi-agent communication optimization,
proposing a probabilistic communication
graph optimization method based on uncer-
tainty and an accurate inference approach.

* We efficiently extend the optimization of
multi-agent systems to complex open-world
systems.

* Without incurring additional inference over-
head, ABO outperforms existing baselines in
multiple scenario-based reasoning tasks.

2 Related Work

2.1 Dynamic Graph Structure Modeling and
Uncertainty Quantification in MAS

Dynamic graph structure modeling of MAS is a
cornerstone for enhancing efficiency (Ban et al.,
2025; Wang et al., 2025; Dong et al., 2025). Tra-
ditional approaches typically rely on the Markov
Decision Process (MDP) framework, describing
agent interactions through states, actions, and tran-
sition probabilities (Zhang et al., 2024b). However,
real-world scenarios often involve uncertainties in
system topology (Shan et al., 2020a,b), necessi-
tating the introduction of graph-theoretic meth-
ods such as zero-forcing set coloring conditions
(Gomes et al., 2024), combined with probabilistic
density functions and fuzzy set theory to quantify
the impact of parametric uncertainties on dynamic
behaviors. For instance, a topological modeling
method based on ternary symbolic matrices has
been proposed, which verifies the strong structural
controllability of the system through coloring con-
ditions and designs polynomial-complexity algo-
rithms for selecting the minimum leader set, ensur-
ing system robustness in dynamic changes (Chen
and Li, 2024). Additionally, proxy modeling meth-
ods have been employed to approximate complex
dynamic models, analyzing the propagation of un-
certainties through Monte Carlo simulations to re-
duce computational costs and improve prediction
accuracy.

2.2 Synergistic Optimization Mechanism of
Uncertainty and Communication Graph

The synergistic optimization mechanism of dy-
namic communication topology and uncertainty is
crucial for the efficient operation of MAS (Castro
et al., 2022). Traditional static topologies are ill-
suited to real-time environmental fluctuations (Teh
et al., 2022), thus requiring optimization through
intelligent algorithms and distributed strategies
(Zhang et al., 2024a; Duan et al., 2024). In terms
of uncertainty compensation, Multi-Agent Rein-
forcement Learning (MARL) enables adaptive ad-
justments through empirical replanning strategies
(Utke et al., 2025; Zhou et al., 2025). Building on
this foundation, AgentDropout (Wang et al., 2025)
outperforms various types of multi-agent systems



(MAS) and AgentPrune in terms of performance
and token efficiency. Additionally, a method for
pruning inter-agent communication edges has been
introduced (Dong et al., 2025), which defines com-
munication redundancy and incorporates the prun-
ing approach of AgentPrune into MAS.

2.3 LLM-Enabled Breakthroughs in
Open-World Agent Modeling

Large Language Models (LLMs) have revolu-
tionized the cognitive capabilities and collabora-
tive paradigms of open-world agents (Yang et al.,
2024b; Yu et al., 2024). Based on the role-memory-
planning-action framework, agents enhance their
generalization abilities through prompt engineer-
ing and self-evolution mechanisms (Sanwal, 2025;
Lee and Tiwari, 2024). These agents not only over-
come the limitations of traditional rule-based meth-
ods but also demonstrate human-like autonomous
behaviors and the potential for emergent collec-
tive intelligence in diverse scenarios such as social
simulations and urban system modeling, paving
new pathways for constructing high-fidelity, scal-
able open-world simulation systems (Gao et al.,
2023b). ToolEmu (Ruan et al., 2024) simulates
high-risk tool execution environments through lan-
guage models, creating dynamic sandboxes to de-
tect long-tail risks and validating the breakthrough
of semantic-level simulation over physical con-
straints. TrustAgent (Hua et al., 2024) pioneers a
constitution-driven framework, internalizing safety
rules into the decision-making process to reduce
risky behaviors while improving task completion
rates. Moreover, systems like Math Agents en-
hance mathematical reasoning accuracy through
code self-verification, marking a transition from
perception-based execution to autonomous cogni-
tion in agents (Cheng et al., 2024).

3 Methodology

This section provides a detailed exposition of Agent
Bayesian Out, a novel graph communication frame-
work designed to enhance the communication effi-
ciency and task performance of MAS. Drawing in-
spiration from the core concepts of AgentDropout,
we introduce uncertainty-aware modeling and more
accurate statistical sampling techniques, as illus-
trated in Figure 2. Specifically, by leveraging the
perspective of uncertainty, our framework can pre-
cisely identify and remove agent nodes and com-
munication edges that contribute less to the current

task. Without incurring additional computational
overhead, this approach effectively utilizes statisti-
cal methods to achieve higher accuracy and demon-
strates transferable representation capabilities in
complex open-world systems.

3.1 Motivation

We can model the communication optimization
problem in MAS within the framework of uncer-
tainty theory, which first requires understanding the
relationship between the observed event set and the
complete event set. Suppose there exist & and ¢*,
where ® denotes the set of events observed under
true conditions, and ®* represents the true com-
plete set of events. Thus, for all ¢; € ®*, where ¢;
represents the i-th eventand 7 = 1,2, ..., n with
n >k, we define & = {¢1, d2,...,dn|n > k}. If
k — oo, then lim |®* — ®| < e(— 0), implying
that & < ®*, i.e., the observed event set is equiva-
lent to the complete event set. Otherwise, ® C &*,
meaning the observed event set is a subset of the
complete event set.

The traditional total probability formula solves
for the true complete event set ®*, given by
P(®) = limy oo Y0, P(®|¢s)P(4;). How-
ever, when agents in MAS perform inference, they
can only observe ®, resulting in an actual prob-
ability of P(®) = S | P(®|¢;)P(¢;). Conse-
quently, there remains a probability deviation of
A = limp oo Yo' P(®[¢i) P(;). In most de-
terministic systems, A — §(— 0) and can thus
be modeled deterministically. However, in com-
plex systems, & — 0, leading to an estimation bias
E(A) in stochastic modeling. When the complex-
ity O(u) — oo, there is a relationship u < A,
where O(+) denotes the complexity function and u
represents the uncertainty metric. Introducing the
uncertainty metric u can mitigate the inference bias
of MAS in complex systems.

Existing MAS optimization methods such as
AgentPrune and AgentDropout have limitations
from uniform pruning and scalar uncertainty mod-
eling, along with oversimplified communication as-
sumptions. ABO addresses these issues by integrat-
ing stochasticity and uncertainty modeling, which
enables robust task inference in complex systems.
It attains precise uncertainty-aware optimization,
cuts redundancy and fits dynamic communication
patterns.
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3.2 Problem Formulation and Preliminaries

Following the initialization approach of Agent-
Dropout, we model multi-agent communication
as a weighted directed graph G = (V, E), where V
is the set of agent nodes and F is the set of commu-
nication edges. The adjacency matrix set is denoted
as A = AipraU Ainter, Where Aipga = U, fli(st)ra con-
tains the intra-round adjacency matrices for each
communication round ¢, and flimer = Ut fli(rtn)er
tains the inter-round adjacency matrices connecting
agents across different rounds. N represents the
total number of agents.

A core aspect of ABO is the probabilistic model-

ing of edge weights. For any edge (v;,v;) € E in

con-

graph G, its weight fll(;) in round ¢ is treated as a
trainable random variable and follows a Gaussian
process prior:

AD ~ N, (05)?) (1)

ij g \Tij
Here, ,uz(-;) € [0, 1] represents the expected com-
munication strength (i.e., the mean probability of
edge existence), while (O‘S))Q quantifies the un-
certainty of the edge weight. In the subsequent
inference phase, the actual task-executing commu-

nication graph GG will be sampled from this learned

probability distribution, ensuring that it is a Di-
rected Acyclic Graph (DAG).

3.3 To Sample or Not to Sample

Initialization and Objective: Parameters
(mean/variance) for intra-round (/Iimra) and inter-
round (/Lmer) adjacency matrices are initialized
with Bayesian priors A(0.5,1.0), balancing
initial communication strength and uncertainty.
Optimization during node deactivation aims to
maximize MAS task performance by evolving
intra-round structure:

[1(G)] )

arg max EGNp(G\A

intra

imra)

Communication graph sampling is modeled as a
stochastic policy, leveraging score function estima-
tors to derive unbiased gradients, enabling black-
box optimization of non-differentiable objectives.
Uncertainty constraints refine the optimization pro-
cess.

MCMC-based Graph Sampling and Gradi-
ent Update: We leverage MCMC to sample com-
plex graph distributions, initializing from a DAG.
Each iteration proposes a new candidate DAG
G’ via edge operations (e.g., random edge addi-
tion/deletion) guided by current edge parameters



(“S‘)’ (0‘,5;))2). The Metropolis-Hastings accep-

tance probability « is computed as:
a(G'|Geyrrent) = min (1,

M(G/> : p(Gﬂ‘A’iintra)~
:U’(chrrent) : p(chrrent | Aintra)
3)

Here, Goyrent denotes the current graph struc-
ture, and p( G|flimm) represents the probability of
sampling graph G given the parameters of the intra-
round adjacency matrix. G’ is accepted or rejected
based on a. By collecting M MCMC samples
{G}M_, | we estimate the gradient with respect
().

)

to the parameters of /me (mainly the mean Ik

1 M
Vi EH(O) = 17 D #(Gm)

m=1 (4)
vAimm log p(Gm ‘ Aintra)

where

p m|A1ntra H H A1(n2ra[ ]] (5)
t (’U,L,’U]) E”Er?mtra

with Al(m)ra [, j] representing the probability of

edge (v;, v;) existing in round ¢ (i.e., its mean ug)).
The mean parameters of /Lmra are updated using
gradient descent based on the computed gradient.
Node Sampling: After optimizing the adjacency
matrix parameters, for each intra-round commu-
nication graph G, we calculate the sum of the
weighted in-degrees and out-degrees of each node
based on the optimized edge weight means. Set-
ting the node deactivation rate to oy, we accept
nodes that rank in the top oy proportion in terms

of sampling contribution.

3.4 To Connect or Not to Connect

Further confirmation of the remaining agent com-
munication edges is carried out.

Sparse Variational Gaussian Process: After
complete uncertain node sampling, we reinitialize
the parameters of the intra-round and inter-round
adjacency matrices Al(nzra and Al(nzer Considering
the computational complexity of directly perform-
ing posterior inference on Gaussian processes, we
employ sparse variational inference, introducing
K inducing points u = {ug }X_,. The variational

distribution ¢(A) is assumed to factorize over the
edge weights in the form:

= [ VAL, s Hquk (6)

t,1,9

ELBO = E_; log p(D|A)]
— KL(g(A)[lp(A))

where D represents the observed data (e.g., task
feedback), KL denotes the Kullback-Leibler diver-
gence. p(D|A) is the likelihood term, and p(A) is
the prior term composed of the GP prior and the
inducing point prior p(u).

Constrained Optimization Objective: The op-
timization objective during the edge deactivation
phase aims to balance task performance, commu-
nication efficiency (sparsity), uncertainty control,
and model accuracy:

(7

L =Eq._,c14)(G)] + i - ELBO
03 s (1) |
t=1

T
)\ A®)
3 e (32)]
AT

t7i7j

(®)

We maximize the objective L, which integrates
expected task performance, an ELBO term for
data fidelity, nuclear norm regularization (|| -
weighted by A2, A\3) on adjacency matrix means to
enforce sparsity, and a variational variance penalty
(A1, Aq) to stabilize communication uncertainty. Pa-
rameter updates are driven by hybrid MCMC sam-
pling, policy gradients, and variational inference
outcomes.

Edge Sampling Mechanism: After optimiza-
tion, consistent with AgentDropout, we retain the
top 1 — Bg proportion of edges with the highest
weight values based on the learned edge weight

)

ij

means L, where S is the edge deactivation rate.

3.5 Transfer in Open-World Complex Systems

To further address the stronger uncertainty chal-
lenges in open-world complex systems, we extend
the original binary correctness judgment to an ex-
pectation optimization based on semantic evalua-
tion metrics. Let M(y, y*) denote the normalized



mean of evaluation metrics (BLEU-4, ROUGE-1,
ROUGE-2, and ROUGE-L) between the generated
answer y and the reference answer y*, and define
the indicator function as:

s(y) =o(A-M(y,y") = 7)) 9
where o () is the sigmoid function, 7 is the deci-
sion threshold, and A is the temperature coefficient.
This function maps the continuous evaluation met-
ric M € [0, 1] to a soft probability s(y) € (0,1)
for binary decision-making.
Maintaining the Bayesian framework of Agent
Bayesian Out, the loss function is redefined as the
expectation of the evaluation metric:

L=-Eq yai [Eymp(yla.c)s(¥)]
+>\-KL( (GIA)Ip(G))

—)\15 Hmean mtra

— Ao Z Hmean(fli(ﬁ%er) ’*
t=2

The gradient computation employs a score func-
tion estimator:

(10)

M
~ MZ Ym VIOgQ( m|A)

+ AVKL(q||p)

where {y.,, G }M_, are the jointly sampled
samples. This design fully inherits the ABO mech-
anism, replacing the 0-1 correctness labels with
differentiable semantic evaluation expectations to
achieve smooth transfer to open-ended question-
answering scenarios.

(1)

3.6 Graph Sampling for Inference

Post-training, communication graphs are sampled
from the learned probabilistic adjacency param-
eters (,uw,a ) using MCMC methods, ensuring
DAG constralnts Multiple samples are aggregated
via inference strategies for task execution. Imple-
mentation details are provided in the A.1.

4 Experiments

We validated the ABO framework’s core mecha-
nisms theoretically in simulations and compared
its performance with existing methods on multiple
benchmarks, using three different-scale LLMs.

4.1 Experimental Setup

We evaluated our approach on five benchmark
datasets, including MMLU (Hendrycks et al.,
2020), HumanEval (Peng et al., 2024), GSM8K
(Cobbe et al., 2021), AQUA (Wang et al., 2017),
and SVAMP (Patel et al., 2021), against multiple
comparison methods (Vanilla, CoT, MAS, Agent-
Prune, and AgentDropout). All experiments main-
tained consistent agent configurations and random
seeds to ensure fair comparisons.

4.2 Validation of Theoretical Effectiveness of
Core Mechanisms

To validate the theoretical advantages of ABO’s
core design, we constructed a synthetic dataset con-
taining 100 samples: feature vectors were sampled
from a multivariate Gaussian distribution with zero
mean and identity covariance, and labels were ran-
domly generated binary classification labels. Table
1 presents the average accuracy and variance of
each variant across 10 independent runs.

Model Variant Average Accuracy Accuracy Variance (x10~4
AgentDropout 49.1 6.322
MCMC 494 11.378
Bayesian 50.1 6.767
GP 50.1 9.433
GP + MCMC 52.1 6.767
Bayesian + GP 51.9 29.656
Bayesian + MCMC 52.1 19.656
ABO 58.8 4.622

Table 1: Ablation Study on Core Components: Accu-
racy (%)

ABO'’s full setup hits 58.8% accuracy, a 9.7-
point gain over the baseline with the least variance.
Its individual parts only add 0.3 - 1.0 percentage
points, but the whole framework brings major im-
provements, proving the three core parts work well
together.

Effect of Dropout Rate on Model Accuracy
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Figure 3: Effect of Dropout Rate on Model Accuracy



Figure 3 shows that the model achieves optimal
performance at a dropout rate of 0.15 (61%), which
is adopted in subsequent experiments. Adjacency
matrix analysis reveals that ABO learns modular
graph structures (detailed in Appendix A.3), pro-
viding a theoretical foundation for practical appli-
cations.

4.3 Benchmark Performance
4.3.1 Comparative Experiment

After validating the theoretical effectiveness of
core mechanisms, we further evaluated ABO’s
practical performance on real benchmark datasets.
We selected five widely used benchmark datasets
for evaluation: MMLU, HumanEval, GSM8K,
AQUA, and SVAMP. All experiments were con-
ducted using three different scales of large lan-
guage models: DeepSeekV3(DeepSeek-Al et al.,
2025), Llama-3-70B-Instruct, and Llama-3-8B-
Instruct(et al., 2024), to verify the generalizability
of our approach. Table 2 presents detailed perfor-
mance comparisons of ABO with existing methods
across three different scales of LLMs on various
benchmark datasets.

Results show that ABO achieves optimal perfor-
mance across all model scales and datasets, with
average accuracy improvements of 1.18%-2.59%.
The largest improvements are observed on com-
plex reasoning tasks (such as AQUA), with the
most significant enhancement on smaller models
(Llama-3-8B).

4.3.2 Ablation Study

Independent ABO analyses show each part boosts
model performance: Bayesian modeling improves
info reliability assessment, MCMC sampling en-
hances collaboration via better communication
paths. The full ABO framework achieves top per-
formance across models and benchmarks, effec-
tively addressing communication redundancy and
improving collaboration efficiency, intelligence,
adaptability, and robustness. This confirms the
effectiveness of our innovative designs. More case
studies are shown in A.4.

4.3.3 Consumption Analysis

Figure 4 illustrates the comparison of token con-
sumption between ABO and AgentDropout on the
Llama-3-8B-Instruct model.

Token consumption analysis shows ABO saves
0.8% in completion tokens with a slight prompt
phase increase (+1.3%), an acceptable trade-off

Token Usage Comparison on DeepSeekV3

Dropout Ptok.
Dropout Ctok.
BayesianOut Ptok

m= BayesianOut Ctok.

Token Count (in Millions)

MMLU HumanEval GSM8K AQUA SVAMP
Task

Figure 4: Token Usage Comparison on DeepSeekV3.

for its accuracy gains, and has inference time over-
head similar to AgentDropout. Communication
graph analysis reveals ABO learns a more mod-
ular topology with clearer node roles in GSM8K
(detailed analysis in A.5). ABO’s robustness is ver-
ified through key hyperparameter impact analysis.

4.3.4 Further Analysis

To further explore the applicability of the method,
we examined the kernel functions of different
estimation processes, varying MCMC sampling
steps, and the random dropout rate used by MAS
during inference (for detailed experimental infor-
mation, shown in A.6). Optimizing the choices
of kernel function, MCMC sampling steps, and
dropout rate can enhance the performance of Agent-
BayesianOut. For practical use, an RBF + White
kernel combination, 20 - 50 MCMC sampling steps,
and a dropout rate of 0.15 or 0.25 are recommended
for the best performance balance.

4.4 Open-World Question Answering
Evaluation

To assess ABO’s effectiveness in open - world sce-
narios, we experimented on PubMedQA, FinQA,
and SafetyQA. These tasks demand coherent text
responses. Evaluation used BLEU-4 (measuring n
- gram precision match between generated text and
reference answers, scored 0 - 100, higher is bet-
ter)(Papineni et al., 2002), ROUGE-1 (word - level
overlap and recall)(Lin and Hovy, 2003), ROUGE-
2 (bigram - level matching for phrase similarity),
and ROUGE-L (overall structural similarity via
longest common subsequences).

Table 3 shows that ABO consistently achieves
the highest scores across all evaluation metrics and
datasets. Experimental results demonstrate that
ABO significantly outperforms baseline methods
across all open-ended question-answering datasets



Model Method MMLU HumanEval GSMSK AQUA SVAMP Average
Vanilla 85.97 88.46 94.72 84.61 93.68 89.49
CoT 86.31 89.24 95.45 85.46 93.92 90.08
MAS 88.98 89.52 95.51 85.66 94.18 90.77
DeepSeekV3 AgentPrune 90.62 90.93 96.01 87.93 95.02 92.10
AgentDropout 90.89 91.70 96.17 88.35 95.80 92.58
+MCMC 90.86, %9 91.7297°:02 96211109 883611001 95787002 92 5741001
+Bayesian 91.2011031 926817098 96.4111024  88.96110-61 96.2711047 93,101 +0-52
ABO 91.8611%97 931017110 96,6710 90.21111-%¢ 96,9811 937611118
Vanilla 83.12 85.76 90.81 82.06 89.89 86.33
CoT 83.69 86.11 92.09 82.63 90.81 87.07
MAS 86.37 87.83 93.74 83.81 91.49 88.65
Liama-3.70p AgentPrune 87.80 88.87 93.08 85.40 92.64 89.56
AgentDropout 88.69 88.63 94.85 86.30 93.02 89.90
+MCMC 86.72) 108 88717916 094737012 865247022 932941027 89 9gq+0-09
+Bayesian 88.66170-86 897017083 950117016 86.9517065 94224120 90 914T1-01
ABO 90.1717238  90.161712° 956211077 88.6017230 094,08111:06 917341183
Vanilla 53.56 53.32 70.24 41.66 75.12 58.78
CoT 56.84 54.18 70.46 43.76 76.26 60.30
MAS 60.14 48.34 69.32 45.32 77.63 60.15
Llama-3.8g  AgentPrune 60.82 49.16 71.49 47.26 78.86 61.52
AgentDropout 62.61 55.68 71.01 47.82 79.24 63.27
+MCMC 62.10, 7951 556917001 71247025 47677915 79.76110-52 63.2921410-02
+Bayesian 63261705 568811120 726011 5124907342 g0 72448 64,9497 167
ABO 63.981 7137 578411216 72781120 525047477 82 1111287 65.8677250

Table 2: Accuracy Comparison of Different Methods Across LLM Base Models (%)

Dataset
Vanilla 42.4 53.1 379 51.6
CoT 457 56.9 413 553
PubMedQA g 43 59.8 446 582
ABO 519 63.4 48.7 62.4
Vanilla  39.0 495 332 47.8
FinOA CoT 432 54.8 389 52.4
MAS  46.5 58.3 422 55.9
ABO 499 61.6 46.8 59.4
Vanilla 47.6 582 432 56.9
CoT  50.1 61.8 46.9 59.5
SafetyQA MAS  52.9 64.4 49.6 62.2
ABO  55.6 67.9 532 65.4

Table 3: Performance comparison on different models
and datasets

and metrics, showcasing its versatility in handling
both deterministic and uncertain problems. In
the medical domain, ABO’s ROUGE-2 score im-
proves by 4.1% over MAS on PubMedQA (Jin
et al., 2019), highlighting its advantage in process-
ing specialized terminology and phrase combina-
tions. ABO also maintains consistent performance
advantages in the financial domain, as evidenced
by its results on FinQA (Yang et al., 2023; Zhang
et al., 2023a,b; Wang et al., 2023; Liu et al., 2023;

Model BLEU-4 ROUGE-1ROUGE-2ROUGE-L Zhang et al., 2023c), and in the safety domain on

SafetyQA(to be fully publicly available upon accep-
tance). These results validate ABQO’s effectiveness
in professional domain open-question-answering
tasks, providing support for its deployment in di-
verse application scenarios.

5 Conclusion

We introduce Agent Bayesian Out (ABO), a frame-
work for optimizing multi-agent communication
topology with uncertainty awareness. It com-
bines Bayesian edge weights, Gaussian process
priors, and MCMC sampling to eliminate low-
contribution nodes/edges. ABO surpasses existing
methods on benchmarks. Ablation studies high-
light core component synergy, and hyperparameter
analysis pinpoints an optimal dropout rate. ABO
shows more gains on smaller models and complex
tasks, proving effective communication optimiza-
tion in resource-constrained settings. Importantly,
it boosts performance without extra inference costs,
offering a new paradigm for efficient multi-agent
collaboration.



6 Limitations

Despite its outstanding performance in multi-agent
communication optimization, ABO still has several
limitations that warrant attention. Although the
inference stage has comparable overhead to exist-
ing methods, the MCMC sampling and variational
inference in the training stage may impose signif-
icant computational burdens in large-scale agent
systems. The current framework applies the same
dropout rate to all agents, failing to fully account
for the role differences and importance of different
agents. Moreover, our experiments have mainly fo-
cused on language understanding, code generation,
and mathematical reasoning, and the effectiveness
of ABO in more extensive scenarios such as mul-
timodal interaction or real-time decision-making
remains to be verified. The uncertainty modeling
based on Gaussian distribution may not be precise
enough in some complex nonlinear or multimodal
distribution scenarios. Additionally, in the face
of adversarial scenarios or highly dynamic envi-
ronments with cognitive inequality and incomplete
information, the existing methods still need im-
provement. Addressing these limitations will help
develop more efficient and adaptive multi-agent
communication optimization frameworks.
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A Appendix
A.1 Graph Sampling for inference

The inference stage of our proposed Adaptive
Bayesian Optimization (ABO) framework requires
efficient sampling of communication graph topolo-
gies from the learned probabilistic model. This
appendix details the implementation of the sam-
pling module used during inference.

A.1.1 Probabilistic Graph Sampling

After training, our model has learned parameters
for the adjacency matrix, represented as distribu-

®)

tions with mean ,ui;
(t)

and variance (US))2 for each
potential edge e, °. Algorithm I illustrates our com-
plete sampling procedure, which follows these key

steps:

1. Graph Sampling: For each potential edge,
we sample from the learned normal distri-
bution N (ug), (O’Z-(;))Q) and compare with a
threshold to determine edge existence. The
algorithm generates multiple graph samples to
capture the uncertainty in the learned model.

MCMC-Adjustment: As all valid communi-
cation graphs must be directed acyclic graphs
(DAGs), we employ a verification step af-
ter initial sampling. When cycles are de-
tected, our MCMC adjustment algorithm (Al-
gorithm 1, Phase 2) resolves constraint viola-
tions by selectively removing edges with the
lowest probability until the DAG property is
satisfied.

. Inference with Sampled Graphs: The sam-
pling process balances between exploration
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of the graph space and exploitation of high-
probability edges. The variance term (agf))2
naturally captures the uncertainty in edge ex-
istence, allowing more diverse sampling for
edges with high uncertainty.

A.1.2 Implementation Considerations

When implementing the sampling module, several
practical considerations are addressed:

* Computational Efficiency: For large-scale
multi-agent systems, efficient cycle detection
and DAG verification algorithms are crucial.
We implement an optimized topological sort-
ing algorithm with O(V + E)) complexity as
part of our MCMC-Adjustment function.

Threshold Selection: The threshold for edge
existence can be adaptively set based on the
distribution of sampled probabilities or fixed
at a predetermined value (e.g., 0.5). Similarly,
the consensus threshold for the final graph
integration is carefully selected.

» Sample Diversity: To ensure diverse graph
samples, the sampling process leverages the
probability distributions learned during train-
ing, particularly the variance parameters that
indicate model uncertainty.

A.1.3 Inference with Sampled Graphs

When multiple graph samples are generated (Vs >
1), our algorithm employs a consensus-based ap-
proach to aggregate results:

* The algorithm computes the edge occurrence
frequency f;; across all sampled graphs.

* Edges appearing in a majority of samples
(above the consensus threshold) are included
in the final graph.

* The final consensus graph is verified to main-
tain the DAG property through the same
MCMC-Adjustment process if needed.

* For classification tasks, this consensus ap-
proach effectively implements majority vot-
ing, while for regression tasks, it provides a
stable foundation for prediction averaging.

The complete graph sampling algorithm (Algo-
rithm 1) enables our framework to leverage the full
probabilistic information learned during training,
resulting in more robust and adaptable multi-agent
communication structures during deployment.
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A.2 Experimental Details
A.2.1 Evaluation Protocol

* Benchmark Datasets: MMLU (general
reasoning), HumanEval (code generation),
GSMS8K, AQUA, and SVAMP (mathematical
reasoning)

Comparison Methods: Vanilla (baseline),
CoT (Chain of Thought), MAS (standard
multi-agent system), AgentPrune, and Agent-
Dropout

Consistency Measures: Same agent config-
uration and prompts across all experiments,
with agent prompts inherited from Agent-
Dropout; consistent random seeds

A.2.2 Implementation Details

* Hardware: All experiments conducted on 2x
RTX 3090 GPUs

e ABO Parameters:

— Node deactivation rate: any = 0.15

— Edge deactivation rate: g = 0.15

— MCMC sampling times: M = 10

— Initial learning rate: 7 = 0.001

— Training: 20 epochs using Adam opti-
mizer

— Bayesian edge weight prior distribution:
N(0.5,1.0)

— Weight coefficients: A1 = Ao = 0.01,
/\3 = 0.005, and A4 =0.1

A.3 Adjacency Matrix Structure Analysis

We analyzed the communication structure learned
by ABO through adjacency matrix heatmaps. As
shown in Figure 5, the trained adjacency matrix
exhibits distinct modular characteristics compared
to the initial state, with more concentrated edge
weight distributions forming tightly connected sub-
structures. In the initial state, the communica-
tion structure exhibits a random connection pattern:
Node 0 connects to Nodes 2-4, Node 1 connects to
Node 0, and Node 2 connects to Nodes 0-1. After
training, the ABO-optimized topology shows a se-
lective connection pattern, particularly with Node
3 forming strong connections with Nodes 1, 2, and
4, and Node 2 forming bidirectional connections
with Node 3, while other regions remain sparse.
This modular structure implies more efficient infor-
mation transfer and specialized division of labor in
multi-agent systems.
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Initial Adjacency Matrix Heatmap
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Figure 5: Initial adjacency matrix (left) vs. trained
adjacency matrix (right). Blue indicates strong connec-
tions, yellow indicates weak or no connections. Node 3
emerges as a key information hub after ABO optimiza-
tion.

A.4 Case Study

* General Reasoning (MMLU): ABO outper-
forms AgentDropout by +0.97%, +3.48%,
+1.37% across three model scales. It enhances
cross-domain reasoning via Bayesian uncer-
tainty quantification and dynamic communi-
cation topology adaptation.

Code Generation (HumanEval): ABO
achieves +1.4%, +1.53%, +2.16% gains in
programming tasks. It resolves algorithmic
uncertainty through probabilistic code pattern
evaluation and MCMC-driven knowledge in-

tegration.
* Mathematical Reasoning
(AQUA/GSMSK/SVAMP): ABO shows

+4.77% gains on AQUA, highlighting its
multi-step problem-solving ability. Bayesian
agents verify solution reliability through
uncertainty propagation and MCMC-based
collaborative refinement.

Scaling Characteristics: ABO exhibits
+2.588%, +1.828%, +1.182% improvements
from 8B to 70B models. Its uncertainty-aware
mechanism optimizes knowledge routing, re-
ducing error accumulation in smaller models.

A.5 Communication Graph Structure
Analysis

To intuitively demonstrate how AgentBayesianOut
optimizes communication topology, we analyzed
the communication graph structure learned on the
GSMSK task, as shown in Figure 6.

Comparing the edge distribution and node in-
degree/out-degree changes between the initial state
(top) and trained state (bottom), we can observe
that ABO forms more meaningful communication



H

Figure 6: Initial communication graph structure (top) vs.
trained structure (bottom). Left: edge existence distri-
bution; Center: node in-degree; Right: node out-degree.
Node 3 emerges as the primary information output node
after training, while connections are redistributed more
efficiently.

patterns. In the initial graph, Node O exhibits high
in-degree and out-degree, indicating imbalanced
communication load. After training, the system re-
tains key bidirectional connections between math-
ematical experts and problem decomposers while
reducing direct connections from commentators
to executors, instead using mathematical experts
as information intermediaries to form clearer in-
formation flow paths. Particularly noteworthy is

|

SVAMP

Performance Comparison of Different Kernels
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Figure 7: Performance Comparison of Different Kernels
across Tasks. The RBF+White kernel shows the highest
average accuracy, highlighted in sky blue.
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that Node 3 becomes the primary information out-
put node after training, while Node 0’s out-degree
is completely eliminated, and the roles of Nodes
1 and 2 also undergo significant changes. This
demonstrates that ABO can intelligently identify
and retain the critical participation of specific nodes
(such as result verifiers) rather than mechanically
applying uniform deactivation patterns. This case
clearly illustrates how ABO achieves more flexible
and efficient communication topology optimiza-
tion.
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A.6 Detailed Further Analysis

Figure 7 shows that the RBF+White kernel combi-
nation performs optimally (93.76%), outperform-
ing single RBF kernels (91.57%) and other choices
such as linear kernels.

Effect of MCMC Sampling Steps on Performance

HumanEval GSM8K
Task

step 10
Step 20
Step 50

= Step 100

Accuracy (%)

AQuA

MMLU SVAMP

Figure 8: Effect of MCMC Sampling Steps on Model
Performance across Tasks. Increasing the number of
MCMC steps improves accuracy up to 50 steps, after
which performance saturates or slightly declines.

Figure 8 demonstrates that model performance
reaches optimum between 20-50 MCMC sampling
steps, with performance stabilizing or slightly de-
clining after 50 steps.

Effect of Dropout Rate on Model Performance

GSM8K
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Dropout 0.10
Dropout 0.15
Dropout 0.20

=== Dropout 0.25

== Dropout 0.30

MMLU HumanEval

Accuracy (%)
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Figure 9: Effect of Dropout Rate on Model Performance
across Tasks. The performance peaks at a dropout rate of
0.15, after which over-regularization degrades accuracy.

Dropout rate analysis presents a bimodal distri-
bution, as shown in Figure 9. Performance reaches
two peaks at 0.15 92.68% and 0.25 93.78%, corre-
sponding to different optimal topological structures.
Performance significantly decreases beyond 0.30.



Algorithm 1: Communication Graph Sampling for Inference
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Data: Trained parameters flimra and flimer (mean ,u(.t)

;- and variance (JE;))Q), number of samples N
Result: Set of sampled communication graph(s) {G1, G2, ..., Gn, }

Phase 1: Graph Sampling;

Initialize empty set of graph samples G <+ ();

for s = 1to N, do

Initialize empty adjacency matrix A®) < 0,,5,,;

for each time step t do

for each potential edge ez(;) do
Sample edge probability pz(;) ~N (,uz(»;), (O‘S))2);
\) > threshold then
Set AS) —1; /* Tentatively add edge */
end
end
Check if current A(®) maintains DAG property;
if A®) violates DAG constraint then
A®) < MCMC-Adjustment(A(®), {pz(;)}) ; /* Fix DAG constraint x/

end

ifp

end
Add graph to sample set: G < G U {A®)};

end

Phase 2: MCMC-Adjustment;

Function MCMC-Adjustment (A4, P = {pg)}):
Initialize A’ + A;

while A’ violates DAG constraint do

Identify set of edges Eyiolation that cause cycles;
Select edge eg) € FEyiolation With lowest probability pz(;);
Remove edge: Agj ~—0; /* Remove least probable edge in cycle */
if DAG check(A’) = TRUE then
break;
end
end
return A’;

Phase 3: Inference with Sampled Graph;
if N; = 1 then
Use the single sampled graph (G directly for inference;
else
Perform MCMC-based graph integration;
Initialize final graph Ggpa <— empty graph;
for each edge position (i, j) across time steps do

Compute edge occurrence frequency f;; = N% Zi\ﬁl ]I[Ag;) =1];

if f;; > consensus_threshold then
‘ Gﬁnal(iaj) — 1;
end
end
Ensure Gy maintains DAG property using MCMC-Adjustment if needed;

Use Gfing for inference;

end
return G;
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