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Abstract001

To address the challenges of communication002
topology redundancy and Newcomb’s paradox003
in open-world multi-agent systems, we propose004
Agent Bayesian Out(ABO), an uncertainty-005
aware framework. By modeling edge weights006
in communication graphs as probabilistic ran-007
dom variables, ABO innovatively integrates008
three key mechanisms: Bayesian edge weight009
representation, Gaussian process priors, and010
Markov Chain Monte Carlo-based graph sam-011
pling. This integration establishes a dynamic012
uncertainty propagation model, overcoming013
the limitations of conventional methods in014
stochastic modeling and open-scenario adap-015
tation. Experiments demonstrate that ABO016
effectively identifies low-contribution nodes017
and redundant connections, achieving an av-018
erage accuracy improvement of 1.8%–2.59%019
on benchmarks. Notably, it exhibits enhanced020
transfer capability in open-domain QA tasks.021
Ablation studies confirm the synergistic effects022
of components through a Bayesian-uncertainty023
sampling mechanism, while its zero additional024
inference overhead provides a novel paradigm025
for distributed agent collaboration. The pro-026
posed framework outperforms existing state-of-027
the-art (SOTA) methods across multiple met-028
rics and achieves cutting-edge performance.029

1 Introduction030

In recent years, multi-agent systems based on large031

language models have demonstrated significant po-032

tential in solving complex tasks (Yang et al., 2024a;033

Gu et al., 2024; Chen et al., 2024). By emulat-034

ing the collaborative nature of human teams (Gao035

et al., 2023a; Yen et al.), these systems enable mul-036

tiple agents to communicate and cooperate with037

each other, thereby substantially enhancing the ef-038

ficiency and quality of task solutions (Islam et al.,039

2022; McClellan et al., 2024; Sarkar et al., 2022)040

However, Multi-Agent Systems (MAS) are com-041

monly confronted with the challenges of high042
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Figure 1: (a) The mathematical representation and inter-
pretation of the Newcomb’ paradox. (b) In Multi-Agent
Systems, information asymmetry among agents restricts
their cognitive and expressive capabilities, leading to un-
certainty that is not captured within the scope of stochas-
tic modeling. (c) Modeling uncertainty can, to some
extent, compensate for the bias caused by considering
only randomness.

token consumption and inefficiency (Dewes and 043

Dimitrova, 2024; Zhang et al., 2025; Epperson 044

et al., 2025). To address communication efficiency 045

in MAS, existing work has explored various ap- 046

proaches, including dynamic pruning (You et al., 047

2024), information filtering (Mao et al., 2020), and 048

cross-modal collaboration (Peigne-Lefebvre et al., 049

2025; Wu et al., 2025). These studies have pro- 050

vided a scalable theoretical framework for reduc- 051

ing communication overhead in MAS by breaking 052

through the limitations of traditional methods. De- 053

spite these advancements, existing methods still 054

face two major limitations: (1) The sampling prob- 055

ability values, measured from a stochastic perspec- 056

tive, fail to capture the inherent uncertainty of com- 057
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munication strength, resulting in insufficient sensi-058

tivity for redundancy detection (Tran et al., 2021);059

(2) The simplified assumptions regarding commu-060

nication graph structures do not align well with061

the complex dependencies in open-world scenarios,062

potentially leading to suboptimal pruning decisions063

(Pezeshkpour et al., 2024).064

Typically, the observed communication relation-065

ships in agent systems and the event sets of in-066

dividual agents are assumed to be equivalent to067

the true complete event set. Consequently, the ob-068

served events can be modeled stochastically based069

on Bayes’ theorem (Tran et al., 2025). However, in070

open and complex systems, factors such as individ-071

ual agents’ cognitive limitations and information072

asymmetry mean that the observed event set may073

not be the true complete event set. Instead, the074

observed event set may be a subset of the complete075

event set, leading to scenarios akin to the New-076

comb’ paradox. This unobserved portion of the077

event set cannot be modeled by existing stochastic078

methods, necessitating the introduction of event079

uncertainty to compensate for the insufficiencies080

of stochasticity, as shown in Figure 1 . Therefore,081

we propose Agent Bayesian Out(ABO), which082

effectively addresses the Newcomb’ paradox that083

multi-agent systems may encounter when dealing084

with open-world complex systems.085

We introduce ABO, a multi-agent system (MAS)086

collaborative reasoning framework based on uncer-087

tainty perception, which effectively circumvents088

the occurrence of the Newcomb’ paradox, thereby089

enhancing decision-making expectations. The edge090

weights in the communication graph are inherently091

probabilistic random variables, and their uncer-092

tainty characteristics reflect the confidence level093

of a specific communication path’s contribution to094

the task. By explicitly modeling this uncertainty,095

the system can more accurately identify and elimi-096

nate redundant elements during multiple rounds of097

collaboration. The contributions of this study can098

be summarized as follows:099

• We introduce uncertainty quantification into100

multi-agent communication optimization,101

proposing a probabilistic communication102

graph optimization method based on uncer-103

tainty and an accurate inference approach.104

• We efficiently extend the optimization of105

multi-agent systems to complex open-world106

systems.107

• Without incurring additional inference over- 108

head, ABO outperforms existing baselines in 109

multiple scenario-based reasoning tasks. 110

2 Related Work 111

2.1 Dynamic Graph Structure Modeling and 112

Uncertainty Quantification in MAS 113

Dynamic graph structure modeling of MAS is a 114

cornerstone for enhancing efficiency (Ban et al., 115

2025; Wang et al., 2025; Dong et al., 2025). Tra- 116

ditional approaches typically rely on the Markov 117

Decision Process (MDP) framework, describing 118

agent interactions through states, actions, and tran- 119

sition probabilities (Zhang et al., 2024b). However, 120

real-world scenarios often involve uncertainties in 121

system topology (Shan et al., 2020a,b), necessi- 122

tating the introduction of graph-theoretic meth- 123

ods such as zero-forcing set coloring conditions 124

(Gomes et al., 2024), combined with probabilistic 125

density functions and fuzzy set theory to quantify 126

the impact of parametric uncertainties on dynamic 127

behaviors. For instance, a topological modeling 128

method based on ternary symbolic matrices has 129

been proposed, which verifies the strong structural 130

controllability of the system through coloring con- 131

ditions and designs polynomial-complexity algo- 132

rithms for selecting the minimum leader set, ensur- 133

ing system robustness in dynamic changes (Chen 134

and Li, 2024). Additionally, proxy modeling meth- 135

ods have been employed to approximate complex 136

dynamic models, analyzing the propagation of un- 137

certainties through Monte Carlo simulations to re- 138

duce computational costs and improve prediction 139

accuracy. 140

2.2 Synergistic Optimization Mechanism of 141

Uncertainty and Communication Graph 142

The synergistic optimization mechanism of dy- 143

namic communication topology and uncertainty is 144

crucial for the efficient operation of MAS (Castro 145

et al., 2022). Traditional static topologies are ill- 146

suited to real-time environmental fluctuations (Teh 147

et al., 2022), thus requiring optimization through 148

intelligent algorithms and distributed strategies 149

(Zhang et al., 2024a; Duan et al., 2024). In terms 150

of uncertainty compensation, Multi-Agent Rein- 151

forcement Learning (MARL) enables adaptive ad- 152

justments through empirical replanning strategies 153

(Utke et al., 2025; Zhou et al., 2025). Building on 154

this foundation, AgentDropout (Wang et al., 2025) 155

outperforms various types of multi-agent systems 156
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(MAS) and AgentPrune in terms of performance157

and token efficiency. Additionally, a method for158

pruning inter-agent communication edges has been159

introduced (Dong et al., 2025), which defines com-160

munication redundancy and incorporates the prun-161

ing approach of AgentPrune into MAS.162

2.3 LLM-Enabled Breakthroughs in163

Open-World Agent Modeling164

Large Language Models (LLMs) have revolu-165

tionized the cognitive capabilities and collabora-166

tive paradigms of open-world agents (Yang et al.,167

2024b; Yu et al., 2024). Based on the role-memory-168

planning-action framework, agents enhance their169

generalization abilities through prompt engineer-170

ing and self-evolution mechanisms (Sanwal, 2025;171

Lee and Tiwari, 2024). These agents not only over-172

come the limitations of traditional rule-based meth-173

ods but also demonstrate human-like autonomous174

behaviors and the potential for emergent collec-175

tive intelligence in diverse scenarios such as social176

simulations and urban system modeling, paving177

new pathways for constructing high-fidelity, scal-178

able open-world simulation systems (Gao et al.,179

2023b). ToolEmu (Ruan et al., 2024) simulates180

high-risk tool execution environments through lan-181

guage models, creating dynamic sandboxes to de-182

tect long-tail risks and validating the breakthrough183

of semantic-level simulation over physical con-184

straints. TrustAgent (Hua et al., 2024) pioneers a185

constitution-driven framework, internalizing safety186

rules into the decision-making process to reduce187

risky behaviors while improving task completion188

rates. Moreover, systems like Math Agents en-189

hance mathematical reasoning accuracy through190

code self-verification, marking a transition from191

perception-based execution to autonomous cogni-192

tion in agents (Cheng et al., 2024).193

3 Methodology194

This section provides a detailed exposition of Agent195

Bayesian Out, a novel graph communication frame-196

work designed to enhance the communication effi-197

ciency and task performance of MAS. Drawing in-198

spiration from the core concepts of AgentDropout,199

we introduce uncertainty-aware modeling and more200

accurate statistical sampling techniques, as illus-201

trated in Figure 2. Specifically, by leveraging the202

perspective of uncertainty, our framework can pre-203

cisely identify and remove agent nodes and com-204

munication edges that contribute less to the current205

task. Without incurring additional computational 206

overhead, this approach effectively utilizes statisti- 207

cal methods to achieve higher accuracy and demon- 208

strates transferable representation capabilities in 209

complex open-world systems. 210

3.1 Motivation 211

We can model the communication optimization 212

problem in MAS within the framework of uncer- 213

tainty theory, which first requires understanding the 214

relationship between the observed event set and the 215

complete event set. Suppose there exist Φ and Φ∗, 216

where Φ denotes the set of events observed under 217

true conditions, and Φ∗ represents the true com- 218

plete set of events. Thus, for all ϕi ∈ Φ∗, where ϕi 219

represents the i-th event and i = 1, 2, . . . , n with 220

n ≥ k, we define Φ = {ϕ1, ϕ2, . . . , ϕn|n ≥ k}. If 221

k → ∞, then lim |Φ∗ − Φ| ≤ ϵ(→ 0), implying 222

that Φ⇔ Φ∗, i.e., the observed event set is equiva- 223

lent to the complete event set. Otherwise, Φ ⊆ Φ∗, 224

meaning the observed event set is a subset of the 225

complete event set. 226

The traditional total probability formula solves 227

for the true complete event set Φ∗, given by 228

P (Φ) = limN→∞
∑N

i=1 P (Φ|ϕi)P (ϕi). How- 229

ever, when agents in MAS perform inference, they 230

can only observe Φ, resulting in an actual prob- 231

ability of P̂ (Φ) =
∑n

i=1 P (Φ|ϕi)P (ϕi). Conse- 232

quently, there remains a probability deviation of 233

∆ = limm→∞
∑m

n+1 P (Φ|ϕi)P (ϕi). In most de- 234

terministic systems, ∆ → δ(→ 0) and can thus 235

be modeled deterministically. However, in com- 236

plex systems, δ ↛ 0, leading to an estimation bias 237

E(∆) in stochastic modeling. When the complex- 238

ity O(u) → ∞, there is a relationship u ↔ ∆, 239

where O(·) denotes the complexity function and u 240

represents the uncertainty metric. Introducing the 241

uncertainty metric u can mitigate the inference bias 242

of MAS in complex systems. 243

Existing MAS optimization methods such as 244

AgentPrune and AgentDropout have limitations 245

from uniform pruning and scalar uncertainty mod- 246

eling, along with oversimplified communication as- 247

sumptions. ABO addresses these issues by integrat- 248

ing stochasticity and uncertainty modeling, which 249

enables robust task inference in complex systems. 250

It attains precise uncertainty-aware optimization, 251

cuts redundancy and fits dynamic communication 252

patterns. 253
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Figure 2: Overall is a Pipeline of ABO.In the same open - world system, agents have different initial information
distributions (e.g., left and right agents have inconsistent scenarios). In various sub - tasks, the information agents
access is unequal. This causes communication uncertainty beyond randomness. When updating communication
graph (both inter - and intra - agent), constraints are imposed on both the randomness - related benefit Lp and the
uncertainty - related benefit Lu.

.

3.2 Problem Formulation and Preliminaries254

Following the initialization approach of Agent-255

Dropout, we model multi-agent communication256

as a weighted directed graph G̃ = (V,E), where V257

is the set of agent nodes and E is the set of commu-258

nication edges. The adjacency matrix set is denoted259

as Ã = Ãintra∪Ãinter, where Ãintra =
⋃

t Ã
(t)
intra con-260

tains the intra-round adjacency matrices for each261

communication round t, and Ãinter =
⋃

t Ã
(t)
inter con-262

tains the inter-round adjacency matrices connecting263

agents across different rounds. N represents the264

total number of agents.265

A core aspect of ABO is the probabilistic model-266

ing of edge weights. For any edge (vi, vj) ∈ E in267

graph G̃, its weight Ã(t)
ij in round t is treated as a268

trainable random variable and follows a Gaussian269

process prior:270

Ã
(t)
ij ∼ N (µ

(t)
ij , (σ

(t)
ij )

2) (1)271

Here, µ(t)
ij ∈ [0, 1] represents the expected com-272

munication strength (i.e., the mean probability of273

edge existence), while (σ
(t)
ij )

2 quantifies the un-274

certainty of the edge weight. In the subsequent275

inference phase, the actual task-executing commu-276

nication graph G will be sampled from this learned277

probability distribution, ensuring that it is a Di- 278

rected Acyclic Graph (DAG). 279

3.3 To Sample or Not to Sample 280

Initialization and Objective: Parameters 281

(mean/variance) for intra-round (Ãintra) and inter- 282

round (Ãinter) adjacency matrices are initialized 283

with Bayesian priors N (0.5, 1.0), balancing 284

initial communication strength and uncertainty. 285

Optimization during node deactivation aims to 286

maximize MAS task performance by evolving 287

intra-round structure: 288

argmax
Ãintra

EG∼p(G|Ãintra)
[µ(G)] (2) 289

Communication graph sampling is modeled as a 290

stochastic policy, leveraging score function estima- 291

tors to derive unbiased gradients, enabling black- 292

box optimization of non-differentiable objectives. 293

Uncertainty constraints refine the optimization pro- 294

cess. 295

MCMC-based Graph Sampling and Gradi- 296

ent Update: We leverage MCMC to sample com- 297

plex graph distributions, initializing from a DAG. 298

Each iteration proposes a new candidate DAG 299

G′ via edge operations (e.g., random edge addi- 300

tion/deletion) guided by current edge parameters 301
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(µ(t)
ij , (σ

(t)
ij )

2). The Metropolis-Hastings accep-302

tance probability α is computed as:303

α(G′|Gcurrent) = min (1,

µ(G′) · p(G′|Ãintra)

µ(Gcurrent) · p(Gcurrent|Ãintra)

)
(3)

304

Here, Gcurrent denotes the current graph struc-305

ture, and p(G|Ãintra) represents the probability of306

sampling graph G given the parameters of the intra-307

round adjacency matrix. G′ is accepted or rejected308

based on α. By collecting M MCMC samples309

{Gm}Mm=1, we estimate the gradient with respect310

to the parameters of Ãintra (mainly the mean µ
(t)
ij ):311

∇Ãintra
E[µ(G)] ≈ 1

M

M∑
m=1

µ(Gm)

· ∇Ãintra
log p(Gm|Ãintra)

(4)312

where313

p(Gm|Ãintra) =
∏
t

∏
(vi,vj)∈E

(t)
m,intra

Ã
(t)
intra[i, j] (5)314

with Ã
(t)
intra[i, j] representing the probability of315

edge (vi, vj) existing in round t (i.e., its mean µ
(t)
ij ).316

The mean parameters of Ãintra are updated using317

gradient descent based on the computed gradient.318

Node Sampling: After optimizing the adjacency319

matrix parameters, for each intra-round commu-320

nication graph G(t), we calculate the sum of the321

weighted in-degrees and out-degrees of each node322

based on the optimized edge weight means. Set-323

ting the node deactivation rate to αN , we accept324

nodes that rank in the top αN proportion in terms325

of sampling contribution.326

3.4 To Connect or Not to Connect327

Further confirmation of the remaining agent com-328

munication edges is carried out.329

Sparse Variational Gaussian Process: After330

complete uncertain node sampling, we reinitialize331

the parameters of the intra-round and inter-round332

adjacency matrices Ã(t)
intra and Ã

(t)
inter. Considering333

the computational complexity of directly perform-334

ing posterior inference on Gaussian processes, we335

employ sparse variational inference, introducing336

K inducing points u = {uk}Kk=1. The variational337

distribution q(Ã) is assumed to factorize over the 338

edge weights in the form: 339

q(Ã) =
∏
t,i,j

N(Ã
(t)
ij , s

(t)
ij )

∏
k

q(uk) (6) 340

ELBO = Eq(Ã)[log p(D|Ã)]

− KL(q(Ã)∥p(Ã))
(7) 341

where D represents the observed data (e.g., task 342

feedback), KL denotes the Kullback-Leibler diver- 343

gence. p(D|Ã) is the likelihood term, and p(Ã) is 344

the prior term composed of the GP prior and the 345

inducing point prior p(u). 346

Constrained Optimization Objective: The op- 347

timization objective during the edge deactivation 348

phase aims to balance task performance, commu- 349

nication efficiency (sparsity), uncertainty control, 350

and model accuracy: 351

L = EG∼q(G|Ã)[µ(G)] + λ1 · ELBO

− λ2

T∑
t=1

∥∥∥mean
(
Ã

(t)
intra

)∥∥∥
∗

− λ3

T∑
t=2

∥∥∥mean
(
Ã

(t)
inter

)∥∥∥
∗

− λ4

∑
t,i,j

s
(t)
ij

(8) 352

We maximize the objective L, which integrates 353

expected task performance, an ELBO term for 354

data fidelity, nuclear norm regularization (|| · ||∗, 355

weighted by λ2, λ3) on adjacency matrix means to 356

enforce sparsity, and a variational variance penalty 357

(λ1, λ4) to stabilize communication uncertainty. Pa- 358

rameter updates are driven by hybrid MCMC sam- 359

pling, policy gradients, and variational inference 360

outcomes. 361

Edge Sampling Mechanism: After optimiza- 362

tion, consistent with AgentDropout, we retain the 363

top 1 − βE proportion of edges with the highest 364

weight values based on the learned edge weight 365

means µ(t)
ij , where βE is the edge deactivation rate. 366

3.5 Transfer in Open-World Complex Systems 367

To further address the stronger uncertainty chal- 368

lenges in open-world complex systems, we extend 369

the original binary correctness judgment to an ex- 370

pectation optimization based on semantic evalua- 371

tion metrics. LetM(y, y∗) denote the normalized 372
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mean of evaluation metrics (BLEU-4, ROUGE-1,373

ROUGE-2, and ROUGE-L) between the generated374

answer y and the reference answer y∗, and define375

the indicator function as:376

s(y) = σ (λ · (M(y, y∗)− τ)) (9)377

where σ(·) is the sigmoid function, τ is the deci-378

sion threshold, and λ is the temperature coefficient.379

This function maps the continuous evaluation met-380

ricM ∈ [0, 1] to a soft probability s(y) ∈ (0, 1)381

for binary decision-making.382

Maintaining the Bayesian framework of Agent383

Bayesian Out, the loss function is redefined as the384

expectation of the evaluation metric:385

L = −EG∼q(G|Ã)

[
Ey∼p(y|q,G)s(y)

]
+ λ ·KL(q(G|Ã)∥p(G))

− λ1

T∑
t=1

∥∥∥mean(Ã
(t)
intra)

∥∥∥
∗

− λ2

T∑
t=2

∥∥∥mean(Ã
(t)
inter)

∥∥∥
∗

(10)386

The gradient computation employs a score func-387

tion estimator:388

∇L ≈ − 1

M

M∑
m=1

s(ym)∇ log q(Gm|Ã)

+ λ∇KL(q∥p)

(11)389

where {ym, Gm}Mm=1 are the jointly sampled390

samples. This design fully inherits the ABO mech-391

anism, replacing the 0-1 correctness labels with392

differentiable semantic evaluation expectations to393

achieve smooth transfer to open-ended question-394

answering scenarios.395

3.6 Graph Sampling for Inference396

Post-training, communication graphs are sampled397

from the learned probabilistic adjacency param-398

eters (µij , σ
2
ij) using MCMC methods, ensuring399

DAG constraints. Multiple samples are aggregated400

via inference strategies for task execution. Imple-401

mentation details are provided in the A.1.402

4 Experiments403

We validated the ABO framework’s core mecha-404

nisms theoretically in simulations and compared405

its performance with existing methods on multiple406

benchmarks, using three different-scale LLMs.407

4.1 Experimental Setup 408

We evaluated our approach on five benchmark 409

datasets, including MMLU (Hendrycks et al., 410

2020), HumanEval (Peng et al., 2024), GSM8K 411

(Cobbe et al., 2021), AQUA (Wang et al., 2017), 412

and SVAMP (Patel et al., 2021), against multiple 413

comparison methods (Vanilla, CoT, MAS, Agent- 414

Prune, and AgentDropout). All experiments main- 415

tained consistent agent configurations and random 416

seeds to ensure fair comparisons. 417

4.2 Validation of Theoretical Effectiveness of 418

Core Mechanisms 419

To validate the theoretical advantages of ABO’s 420

core design, we constructed a synthetic dataset con- 421

taining 100 samples: feature vectors were sampled 422

from a multivariate Gaussian distribution with zero 423

mean and identity covariance, and labels were ran- 424

domly generated binary classification labels. Table 425

1 presents the average accuracy and variance of 426

each variant across 10 independent runs. 427

Model Variant Average Accuracy Accuracy Variance (×10−4)

AgentDropout 49.1 6.322
MCMC 49.4 11.378
Bayesian 50.1 6.767
GP 50.1 9.433
GP + MCMC 52.1 6.767
Bayesian + GP 51.9 29.656
Bayesian + MCMC 52.1 19.656
ABO 58.8 4.622

Table 1: Ablation Study on Core Components: Accu-
racy (%)

ABO’s full setup hits 58.8% accuracy, a 9.7- 428

point gain over the baseline with the least variance. 429

Its individual parts only add 0.3 - 1.0 percentage 430

points, but the whole framework brings major im- 431

provements, proving the three core parts work well 432

together.

Figure 3: Effect of Dropout Rate on Model Accuracy

433
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Figure 3 shows that the model achieves optimal434

performance at a dropout rate of 0.15 (61%), which435

is adopted in subsequent experiments. Adjacency436

matrix analysis reveals that ABO learns modular437

graph structures (detailed in Appendix A.3), pro-438

viding a theoretical foundation for practical appli-439

cations.440

4.3 Benchmark Performance441

4.3.1 Comparative Experiment442

After validating the theoretical effectiveness of443

core mechanisms, we further evaluated ABO’s444

practical performance on real benchmark datasets.445

We selected five widely used benchmark datasets446

for evaluation: MMLU, HumanEval, GSM8K,447

AQUA, and SVAMP. All experiments were con-448

ducted using three different scales of large lan-449

guage models: DeepSeekV3(DeepSeek-AI et al.,450

2025), Llama-3-70B-Instruct, and Llama-3-8B-451

Instruct(et al., 2024), to verify the generalizability452

of our approach. Table 2 presents detailed perfor-453

mance comparisons of ABO with existing methods454

across three different scales of LLMs on various455

benchmark datasets.456

Results show that ABO achieves optimal perfor-457

mance across all model scales and datasets, with458

average accuracy improvements of 1.18%-2.59%.459

The largest improvements are observed on com-460

plex reasoning tasks (such as AQUA), with the461

most significant enhancement on smaller models462

(Llama-3-8B).463

4.3.2 Ablation Study464

Independent ABO analyses show each part boosts465

model performance: Bayesian modeling improves466

info reliability assessment, MCMC sampling en-467

hances collaboration via better communication468

paths. The full ABO framework achieves top per-469

formance across models and benchmarks, effec-470

tively addressing communication redundancy and471

improving collaboration efficiency, intelligence,472

adaptability, and robustness. This confirms the473

effectiveness of our innovative designs. More case474

studies are shown in A.4.475

4.3.3 Consumption Analysis476

Figure 4 illustrates the comparison of token con-477

sumption between ABO and AgentDropout on the478

Llama-3-8B-Instruct model.479

Token consumption analysis shows ABO saves480

0.8% in completion tokens with a slight prompt481

phase increase (+1.3%), an acceptable trade-off482

Figure 4: Token Usage Comparison on DeepSeekV3.

for its accuracy gains, and has inference time over- 483

head similar to AgentDropout. Communication 484

graph analysis reveals ABO learns a more mod- 485

ular topology with clearer node roles in GSM8K 486

(detailed analysis in A.5). ABO’s robustness is ver- 487

ified through key hyperparameter impact analysis. 488

4.3.4 Further Analysis 489

To further explore the applicability of the method, 490

we examined the kernel functions of different 491

estimation processes, varying MCMC sampling 492

steps, and the random dropout rate used by MAS 493

during inference (for detailed experimental infor- 494

mation, shown in A.6). Optimizing the choices 495

of kernel function, MCMC sampling steps, and 496

dropout rate can enhance the performance of Agent- 497

BayesianOut. For practical use, an RBF + White 498

kernel combination, 20 - 50 MCMC sampling steps, 499

and a dropout rate of 0.15 or 0.25 are recommended 500

for the best performance balance. 501

4.4 Open-World Question Answering 502

Evaluation 503

To assess ABO’s effectiveness in open - world sce- 504

narios, we experimented on PubMedQA, FinQA, 505

and SafetyQA. These tasks demand coherent text 506

responses. Evaluation used BLEU-4 (measuring n 507

- gram precision match between generated text and 508

reference answers, scored 0 - 100, higher is bet- 509

ter)(Papineni et al., 2002), ROUGE-1 (word - level 510

overlap and recall)(Lin and Hovy, 2003), ROUGE- 511

2 (bigram - level matching for phrase similarity), 512

and ROUGE-L (overall structural similarity via 513

longest common subsequences). 514

Table 3 shows that ABO consistently achieves 515

the highest scores across all evaluation metrics and 516

datasets. Experimental results demonstrate that 517

ABO significantly outperforms baseline methods 518

across all open-ended question-answering datasets 519
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Model Method MMLU HumanEval GSM8K AQUA SVAMP Average

DeepSeekV3

Vanilla 85.97 88.46 94.72 84.61 93.68 89.49
CoT 86.31 89.24 95.45 85.46 93.92 90.08
MAS 88.98 89.52 95.51 85.66 94.18 90.77
AgentPrune 90.62 90.93 96.01 87.93 95.02 92.10
AgentDropout 90.89 91.70 96.17 88.35 95.80 92.58
+MCMC 90.86↓−0.03 91.72↑+0.02 96.21↑+0.04 88.36↑+0.01 95.78↓−0.02 92.57↑+0.01

+Bayesian 91.20↑+0.31 92.68↑+0.98 96.41↑+0.24 88.96↑+0.61 96.27↑+0.47 93.10↑+0.52

ABO 91.86↑+0.97 93.10↑+1.40 96.67↑+0.50 90.21↑+1.86 96.98↑+1.18 93.76↑+1.18

Llama-3-70B

Vanilla 83.12 85.76 90.81 82.06 89.89 86.33
CoT 83.69 86.11 92.09 82.63 90.81 87.07
MAS 86.37 87.83 93.74 83.81 91.49 88.65
AgentPrune 87.80 88.87 93.08 85.40 92.64 89.56
AgentDropout 88.69 88.63 94.85 86.30 93.02 89.90
+MCMC 86.72↓−1.08 88.71↓−0.16 94.73↓−0.12 86.52↑+0.22 93.29↑+0.27 89.99↑+0.09

+Bayesian 88.66↑+0.86 89.70↑+0.83 95.01↑+0.16 86.95↑+0.65 94.22↑+1.20 90.91↑+1.01

ABO 90.17↑+2.38 90.16↑+1.29 95.62↑+0.77 88.60↑+2.30 94.08↑+1.06 91.73↑+1.83

Llama-3-8B

Vanilla 53.56 53.32 70.24 41.66 75.12 58.78
CoT 56.84 54.18 70.46 43.76 76.26 60.30
MAS 60.14 48.34 69.32 45.32 77.63 60.15
AgentPrune 60.82 49.16 71.49 47.26 78.86 61.52
AgentDropout 62.61 55.68 71.01 47.82 79.24 63.27
+MCMC 62.10↓−0.51 55.69↑+0.01 71.24↓−0.25 47.67↓−0.15 79.76↑+0.52 63.292↑+0.02

+Bayesian 63.26↑+0.65 56.88↑+1.20 72.60↑+1.11 51.24↑+3.42 80.72↑+1.48 64.94↑+1.67

ABO 63.98↑+1.37 57.84↑+2.16 72.78↑+1.29 52.59↑+4.77 82.11↑+2.87 65.86↑+2.59

Table 2: Accuracy Comparison of Different Methods Across LLM Base Models (%)

Dataset Model BLEU-4 ROUGE-1ROUGE-2ROUGE-L

PubMedQA

Vanilla 42.4 53.1 37.9 51.6
CoT 45.7 56.9 41.3 55.3
MAS 48.2 59.8 44.6 58.2
ABO 51.9 63.4 48.7 62.4

FinQA

Vanilla 39.0 49.5 33.2 47.8
CoT 43.2 54.8 38.9 52.4
MAS 46.5 58.3 42.2 55.9
ABO 49.9 61.6 46.8 59.4

SafetyQA

Vanilla 47.6 58.2 43.2 56.9
CoT 50.1 61.8 46.9 59.5
MAS 52.9 64.4 49.6 62.2
ABO 55.6 67.9 53.2 65.4

Table 3: Performance comparison on different models
and datasets

and metrics, showcasing its versatility in handling520

both deterministic and uncertain problems. In521

the medical domain, ABO’s ROUGE-2 score im-522

proves by 4.1% over MAS on PubMedQA (Jin523

et al., 2019), highlighting its advantage in process-524

ing specialized terminology and phrase combina-525

tions. ABO also maintains consistent performance526

advantages in the financial domain, as evidenced527

by its results on FinQA (Yang et al., 2023; Zhang528

et al., 2023a,b; Wang et al., 2023; Liu et al., 2023;529

Zhang et al., 2023c), and in the safety domain on 530

SafetyQA(to be fully publicly available upon accep- 531

tance). These results validate ABO’s effectiveness 532

in professional domain open-question-answering 533

tasks, providing support for its deployment in di- 534

verse application scenarios. 535

5 Conclusion 536

We introduce Agent Bayesian Out (ABO), a frame- 537

work for optimizing multi-agent communication 538

topology with uncertainty awareness. It com- 539

bines Bayesian edge weights, Gaussian process 540

priors, and MCMC sampling to eliminate low- 541

contribution nodes/edges. ABO surpasses existing 542

methods on benchmarks. Ablation studies high- 543

light core component synergy, and hyperparameter 544

analysis pinpoints an optimal dropout rate. ABO 545

shows more gains on smaller models and complex 546

tasks, proving effective communication optimiza- 547

tion in resource-constrained settings. Importantly, 548

it boosts performance without extra inference costs, 549

offering a new paradigm for efficient multi-agent 550

collaboration. 551
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6 Limitations552

Despite its outstanding performance in multi-agent553

communication optimization, ABO still has several554

limitations that warrant attention. Although the555

inference stage has comparable overhead to exist-556

ing methods, the MCMC sampling and variational557

inference in the training stage may impose signif-558

icant computational burdens in large-scale agent559

systems. The current framework applies the same560

dropout rate to all agents, failing to fully account561

for the role differences and importance of different562

agents. Moreover, our experiments have mainly fo-563

cused on language understanding, code generation,564

and mathematical reasoning, and the effectiveness565

of ABO in more extensive scenarios such as mul-566

timodal interaction or real-time decision-making567

remains to be verified. The uncertainty modeling568

based on Gaussian distribution may not be precise569

enough in some complex nonlinear or multimodal570

distribution scenarios. Additionally, in the face571

of adversarial scenarios or highly dynamic envi-572

ronments with cognitive inequality and incomplete573

information, the existing methods still need im-574

provement. Addressing these limitations will help575

develop more efficient and adaptive multi-agent576

communication optimization frameworks.577

References578

Manlu Ban, Jianjun Li, Hongyong Deng, and Yanhong579
Wang. 2025. Dynamic event-triggered h leader-580
following consensus for nonlinear stochastic multi-581
agent systems with semi-markov switching topolo-582
gies and application. Journal of the Franklin Institute,583
362(1287):107596.584

Spencer C Castro, P. Samuel Quinan, Helia Hosseinpour,585
and Lace Padilla. 2022. Examining effort in 1d un-586
certainty communication using individual differences587
in working memory and nasa-tlx. IEEE Transactions588
on Visualization and Computer Graphics, 28(1):411–589
421. Epub 2021 Dec 29.590

Junzhe Chen, Xuming Hu, Shuodi Liu, Shiyu Huang,591
Wei-Wei Tu, Zhaofeng He, and Lijie Wen. 2024. Ll-592
marena: Assessing capabilities of large language593
models in dynamic multi-agent environments. arXiv594
preprint arXiv:2402.16499.595

Qitian Chen and Shaoyuan Li. 2024. Strong structural596
controllability of multi-agent systems with uncertain597
connection topologies. Journal of Systems Science598
& Complexity. Received: 17 Oct 2023 / Revised: 12599
Nov 2024.600

Yuheng Cheng, Ceyao Zhang, Zhengwen Zhang, Xi-601
angrui Meng, Sirui Hong, Wenhao Li, Zihao Wang,602

Zekai Wang, Feng Yin, Junhua Zhao, and Xiuqiang 603
He. 2024. Exploring large language model based in- 604
telligent agents: Definitions, methods, and prospects. 605
arXiv preprint arXiv:2401.03428. Submitted on 7 606
Jan 2024. 607

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar- 608
ian, Mark Chen, Heewoo Jun, Lukasz Kaiser, 609
Matthias Plappert, Jerry Tworek, Jacob Hilton, 610
Reiichiro Nakano, Christopher Hesse, and John 611
Schulman. 2021. Training verifiers to solve math 612
word problems. arXiv preprint arXiv:2110.14168. 613
ArXiv:2110.14168v2 [cs.LG] for this version. 614

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx- 615
uan Wang, Bochao Wu, Chengda Lu, Chenggang 616
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, 617
Damai Dai, Daya Guo, Dejian Yang, Deli Chen, 618
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, 619
and 81 others. 2025. Deepseek-v3 technical report. 620
arXiv preprint arXiv:2412.19437v2, arXiv. 621

Rafael Dewes and Rayna Dimitrova. 2024. Contract- 622
based design and verification of multi-agent sys- 623
tems with quantitative temporal requirements. arXiv 624
preprint arXiv:2412.13114. Extended version of pa- 625
per accepted at AAAI-25. 626

Anqi Dong, Karl H. Johansson, and Johan Karls- 627
son. 2025. Task allocation for multi-agent systems 628
via unequal-dimensional optimal transport. arXiv 629
preprint arXiv:2503.09369. Submitted on 12 Mar 630
2025, 6 pages, 4 figures. 631

Qiqi Duan, Chang Shao, Guochen Zhou, Minghan 632
Zhang, Qi Zhao, and Yuhui Shi. 2024. Dis- 633
tributed evolution strategies with multi-level learn- 634
ing for large-scale black-box optimization. IEEE 635
Transactions on Parallel and Distributed Systems, 636
35(11):2087–2101. 637

Will Epperson, Gagan Bansal, Victor Dibia, Adam Four- 638
ney, Jack Gerrits, Erkang Zhu, and Saleema Amershi. 639
2025. Interactive debugging and steering of multi- 640
agent ai systems. In CHI Conference on Human Fac- 641
tors in Computing Systems (CHI 2025). Published at 642
CHI 2025. 643

Aaron Grattafiori et al. 2024. The llama 3 herd of mod- 644
els. arXiv preprint arXiv:2407.21783v3, arXiv. 645

Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao 646
Ding, Zhilun Zhou, Fengli Xu, and Yong Li. 2023a. 647
Large language models empowered agent-based mod- 648
eling and simulation: A survey and perspectives. 649
arXiv preprint arXiv:2312.11970. 650

Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao 651
Ding, Zhilun Zhou, Fengli Xu, and Yong Li. 2023b. 652
Large language models empowered agent-based mod- 653
eling and simulation: A survey and perspectives. 654
arXiv preprint arXiv:2312.11970. Submitted on 19 655
Dec 2023. 656

9

https://doi.org/10.1016/j.jfranklin.2025.107596
https://doi.org/10.1016/j.jfranklin.2025.107596
https://doi.org/10.1016/j.jfranklin.2025.107596
https://doi.org/10.1016/j.jfranklin.2025.107596
https://doi.org/10.1016/j.jfranklin.2025.107596
https://doi.org/10.1016/j.jfranklin.2025.107596
https://doi.org/10.1016/j.jfranklin.2025.107596
https://doi.org/10.1109/TVCG.2021.3114803
https://doi.org/10.1109/TVCG.2021.3114803
https://doi.org/10.1109/TVCG.2021.3114803
https://doi.org/10.1109/TVCG.2021.3114803
https://doi.org/10.1109/TVCG.2021.3114803
https://doi.org/10.48550/arXiv.2402.16499
https://doi.org/10.48550/arXiv.2402.16499
https://doi.org/10.48550/arXiv.2402.16499
https://doi.org/10.48550/arXiv.2402.16499
https://doi.org/10.48550/arXiv.2402.16499
https://doi.org/10.1007/s11424-024-xxxx-x
https://doi.org/10.1007/s11424-024-xxxx-x
https://doi.org/10.1007/s11424-024-xxxx-x
https://doi.org/10.1007/s11424-024-xxxx-x
https://doi.org/10.1007/s11424-024-xxxx-x
https://doi.org/10.48550/arXiv.2401.03428
https://doi.org/10.48550/arXiv.2401.03428
https://doi.org/10.48550/arXiv.2401.03428
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.48550/arXiv.2412.19437
https://arxiv.org/abs/2412.13114
https://arxiv.org/abs/2412.13114
https://arxiv.org/abs/2412.13114
https://arxiv.org/abs/2412.13114
https://arxiv.org/abs/2412.13114
https://arxiv.org/abs/2503.09369
https://arxiv.org/abs/2503.09369
https://arxiv.org/abs/2503.09369
https://doi.org/10.1109/TPDS.2024.3437688
https://doi.org/10.1109/TPDS.2024.3437688
https://doi.org/10.1109/TPDS.2024.3437688
https://doi.org/10.1109/TPDS.2024.3437688
https://doi.org/10.1109/TPDS.2024.3437688
https://arxiv.org/abs/2503.02068
https://arxiv.org/abs/2503.02068
https://arxiv.org/abs/2503.02068
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2312.11970
https://doi.org/10.48550/arXiv.2312.11970
https://doi.org/10.48550/arXiv.2312.11970
https://doi.org/10.48550/arXiv.2312.11970
https://doi.org/10.48550/arXiv.2312.11970
https://doi.org/10.48550/arXiv.2312.11970


Iago Pachêco Gomes, Cristiano Premebida, and De-657
nis Fernando Wolf. 2024. Multi-agent interaction-658
aware behavior intention prediction using graph mix-659
ture of experts attention network on urban roads. Ex-660
pert Systems with Applications. Preprint submitted661
October 22, 2024.662

Xiangming Gu, Xiaosen Zheng, Tianyu Pang, Chao663
Du, Qian Liu, Ye Wang, Jing Jiang, and Min Lin.664
2024. Agent smith: A single image can jailbreak one665
million multimodal LLM agents exponentially fast.666
In Forty-first International Conference on Machine667
Learning.668

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,669
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.670
2020. Measuring massive multitask language under-671
standing. arXiv preprint arXiv:2009.03300.672

Wenyue Hua, Xianjun Yang, Mingyu Jin, Zelong Li,673
Wei Cheng, Ruixiang Tang, and Yongfeng Zhang.674
2024. Trustagent: Towards safe and trustworthy llm-675
based agents. arXiv preprint arXiv:2402.01586. Sub-676
mitted on 2 Feb 2024 (v1), last revised 3 Oct 2024677
(v4).678

Amirul Islam, Leila Musavian, and Nikolaos Thomos.679
2022. Multi-agent deep reinforcement learning in680
vehicular occ. In IEEE Vehicular Technology Con-681
ference (VTC2022-Spring). Accepted in VTC2022-682
Spring.683

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Co-684
hen, and Xinghua Lu. 2019. Pubmedqa: A dataset for685
biomedical research question answering. In Proceed-686
ings of the 2019 Conference on Empirical Methods687
in Natural Language Processing and the 9th Inter-688
national Joint Conference on Natural Language Pro-689
cessing (EMNLP-IJCNLP), pages 2567–2577, Hong690
Kong, China. Association for Computational Linguis-691
tics.692

Donghyun Lee and Mo Tiwari. 2024. Prompt infection:693
Llm-to-llm prompt injection within multi-agent sys-694
tems. arXiv preprint arXiv:2410.0.07283. Submitted695
on 9 Oct 2024 (v1), last revised 11 Oct 2024 (v4).696

Chin-Yew Lin and Eduard Hovy. 2003. Automatic697
evaluation of summaries using n-gram co-occurrence698
statistics. In Proceedings of the 2003 Human Lan-699
guage Technology Conference of the North American700
Chapter of the Association for Computational Lin-701
guistics, volume N03-1020, pages 150–157, NAACL.702
Association for Computational Linguistics. DOI: [in-703
sert DOI here].704

Xiao-Yang Liu, Guoxuan Wang, Hongyang Yang, and705
Daochen Zha. 2023. Fingpt: Democratizing internet-706
scale data for financial large language models. arXiv707
preprint arXiv:2307.10485. 43 pages, 8 tables, and 2708
figures.709

Hangyu Mao, Zhengchao Zhang, Zhen Xiao, Zhibo710
Gong, and Yan Ni. 2020. Learning agent communi-711
cation under limited bandwidth by message pruning.712
In AAAI Conference on Artificial Intelligence (AAAI713

2020). Accepted as a regular paper with poster pre- 714
sentation at AAAI 2020. 715

Joshua McClellan, Naveed Haghani, John Winder, 716
Furong Huang, and Pratap Tokekar. 2024. Boosting 717
sample efficiency and generalization in multi-agent 718
reinforcement learning via equivariance. In NeurIPS 719
2024. Accepted as a poster at NeurIPS 2024. 720

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 721
Jing Zhu. 2002. Bleu: a method for automatic evalu- 722
ation of machine translation. In Proceedings of the 723
40th Annual Meeting of the Association for Com- 724
putational Linguistics, volume P02, pages 311–318, 725
Philadelphia, Pennsylvania, USA. Association for 726
Computational Linguistics. NAACL 2018 Test-of- 727
Time Award. 728

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. 729
2021. Are nlp models really able to solve 730
simple math word problems? arXiv preprint 731
arXiv:2103.07191. ArXiv:2103.07191v2 [cs.CL] for 732
this version; presented at NAACL 2021. 733

Pierre Peigne-Lefebvre, Mikolaj Kniejski, Filip Sondej, 734
Matthieu David, Jason Hoelscher-Obermaier, Chris- 735
tian Schroeder de Witt, and Esben Kran. 2025. Multi- 736
agent security tax: Trading off security and collabo- 737
ration capabilities in multi-agent systems. In AAAI 738
Conference on Artificial Intelligence (AAAI 2025). 739
Accepted to AAAI 2025 Conference. 740

Qiwei Peng, Yekun Chai, and Xuhong Li. 2024. 741
Humaneval-xl: A multilingual code generation 742
benchmark for cross-lingual natural language gen- 743
eralization. arXiv preprint arXiv:2402.16694. To 744
appear in LREC-COLING 2024. 745

Pouya Pezeshkpour, Eser Kandogan, Nikita Bhutani, 746
Sajjadur Rahman, Tom Mitchell, and Estevam 747
Hruschka. 2024. Reasoning capacity in multi- 748
agent systems: Limitations, challenges and human- 749
centered solutions. arXiv preprint arXiv:2402.01108. 750
ArXiv.org perpetual non-exclusive license. 751

Yangjun Ruan, Honghua Dong, Andrew Wang, Sil- 752
viu Pitis, Yongchao Zhou, Jimmy Ba, Yann Dubois, 753
Chris J. Maddison, and Tatsunori Hashimoto. 2024. 754
Identifying the risks of lm agents with an lm- 755
emulated sandbox. arXiv preprint arXiv:2309.15817. 756
Submitted on 25 Sep 2023 (v1), last revised 17 May 757
2024 (v2). 758

Manish Sanwal. 2025. Layered chain-of-thought 759
prompting for multi-agent llm systems: A compre- 760
hensive approach to explainable large language mod- 761
els. arXiv preprint arXiv:2501.18645. Submitted on 762
29 Jan 2025 (v1), last revised 3 Feb 2025 (v2). 763

Soumyendu Sarkar, Vineet Gundecha, Alexander 764
Shmakov, Sahand Ghorbanpour, Ashwin Ramesh 765
Babu, and 1 others. 2022. Multi-agent reinforcement 766
learning controller to maximize energy efficiency for 767
multi-generator industrial wave energy converter. In 768
Proceedings of the AAAI Conference on Artificial 769
Intelligence, volume 36, pages 12135–12144, June 770
2022. AAAI Press. 771

10

https://ssrn.com/abstract=5004052
https://ssrn.com/abstract=5004052
https://ssrn.com/abstract=5004052
https://ssrn.com/abstract=5004052
https://ssrn.com/abstract=5004052
https://openreview.net/forum?id=DYMj03Gbri
https://openreview.net/forum?id=DYMj03Gbri
https://openreview.net/forum?id=DYMj03Gbri
https://doi.org/10.48550/arXiv.2009.03300
https://doi.org/10.48550/arXiv.2009.03300
https://doi.org/10.48550/arXiv.2009.03300
https://doi.org/10.48550/arXiv.2402.01586
https://doi.org/10.48550/arXiv.2402.01586
https://doi.org/10.48550/arXiv.2402.01586
https://arxiv.org/abs/2205.02672
https://arxiv.org/abs/2205.02672
https://arxiv.org/abs/2205.02672
https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.48550/arXiv.2410.07283
https://doi.org/10.48550/arXiv.2410.07283
https://doi.org/10.48550/arXiv.2410.07283
https://doi.org/10.48550/arXiv.2410.07283
https://doi.org/10.48550/arXiv.2410.07283
https://aclanthology.org/N03-1020/
https://aclanthology.org/N03-1020/
https://aclanthology.org/N03-1020/
https://aclanthology.org/N03-1020/
https://aclanthology.org/N03-1020/
https://doi.org/10.48550/arXiv.2307.10485
https://doi.org/10.48550/arXiv.2307.10485
https://doi.org/10.48550/arXiv.2307.10485
https://arxiv.org/abs/1912.05304
https://arxiv.org/abs/1912.05304
https://arxiv.org/abs/1912.05304
https://arxiv.org/abs/2410.02581
https://arxiv.org/abs/2410.02581
https://arxiv.org/abs/2410.02581
https://arxiv.org/abs/2410.02581
https://arxiv.org/abs/2410.02581
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.48550/arXiv.2103.07191
https://doi.org/10.48550/arXiv.2103.07191
https://doi.org/10.48550/arXiv.2103.07191
https://arxiv.org/abs/2502.19145
https://arxiv.org/abs/2502.19145
https://arxiv.org/abs/2502.19145
https://arxiv.org/abs/2502.19145
https://arxiv.org/abs/2502.19145
https://doi.org/10.48550/arXiv.2402.16694
https://doi.org/10.48550/arXiv.2402.16694
https://doi.org/10.48550/arXiv.2402.16694
https://doi.org/10.48550/arXiv.2402.16694
https://doi.org/10.48550/arXiv.2402.16694
https://arxiv.org/abs/2402.01108
https://arxiv.org/abs/2402.01108
https://arxiv.org/abs/2402.01108
https://arxiv.org/abs/2402.01108
https://arxiv.org/abs/2402.01108
https://doi.org/10.48550/arXiv.2309.15817
https://doi.org/10.48550/arXiv.2309.15817
https://doi.org/10.48550/arXiv.2309.15817
https://doi.org/10.48550/arXiv.2501.18645
https://doi.org/10.48550/arXiv.2501.18645
https://doi.org/10.48550/arXiv.2501.18645
https://doi.org/10.48550/arXiv.2501.18645
https://doi.org/10.48550/arXiv.2501.18645
https://doi.org/10.48550/arXiv.2501.18645
https://doi.org/10.48550/arXiv.2501.18645
https://doi.org/10.1609/aaai.v36i11.21473
https://doi.org/10.1609/aaai.v36i11.21473
https://doi.org/10.1609/aaai.v36i11.21473
https://doi.org/10.1609/aaai.v36i11.21473
https://doi.org/10.1609/aaai.v36i11.21473


Qihe Shan, Fei Teng, Tieshan Li, and C.L. Philip Chen.772
2020a. Containment control of multi-agent sys-773
tems with nonvanishing disturbance via topology re-774
configuration. Science China Information Sciences,775
64(7):179203:1–179203:3.776

Qihe Shan, Fei Teng, Tieshan Li, and C.L. Philip Chen.777
2020b. Containment control of multi-agent sys-778
tems with nonvanishing disturbance via topology re-779
configuration. Science China Information Sciences,780
64(7):179203:1–179203:3.781

Min Yee Teh, Shizhen Zhao, Peirui Cao, and Keren782
Bergman. 2022. Enabling quasi-static reconfig-783
urable networks with robust topology engineering.784
IEEE/ACM Transactions on Networking, PP(99):1–785
15.786

Cong Tran, Won-Yong Shin, and Andreas Spitz. 2021.787
Community detection in partially observable social788
networks. ACM Transactions on Knowledge Discov-789
ery from Data. 24 pages, 8 figures, 5 tables; to appear790
in an upcoming issue.791

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen,792
Quoc-Viet Pham, Barry O’Sullivan, and Hoang D.793
Nguyen. 2025. Multi-agent collaboration mech-794
anisms: A survey of llms. arXiv preprint795
arXiv:2501.06322. Submitted on 10 Jan 2025.796

Sharlin Utke, Jeremie Houssineau, and Giovanni Mon-797
tana. 2025. Investigating relational state abstraction798
in collaborative marl. In Proceedings of the AAAI799
Conference on Artificial Intelligence, volume 39,800
pages 20947–20955, Philadelphia, Pennsylvania,801
USA. AAAI.802

Ling Wang, Dani Yogatama, Chris Dyer, and Phil Blun-803
som. 2017. Program induction by rationale gen-804
eration: Learning to solve and explain algebraic805
word problems. arXiv preprint arXiv:1705.04146.806
ArXiv:1705.04146v3 [cs.AI] for this version.807

Neng Wang, Hongyang Yang, and Christina Dan Wang.808
2023. Fingpt: Instruction tuning benchmark for open-809
source large language models in financial datasets.810
arXiv preprint arXiv:2310.04793. Workshop on811
Instruction Tuning and Instruction Following at812
NeurIPS 2023.813

Zhexuan Wang, Yutong Wang, Xuebo Liu, Liang814
Ding, Miao Zhang, Jie Liu, and Min Zhang. 2025.815
Agentdropout: Dynamic agent elimination for token-816
efficient and high-performance llm-based multi-agent817
collaboration. arXiv preprint arXiv:2503.18891.818
Submitted on 24 Mar 2025.819

Di Wu, Xian Wei, Guang Chen, Hao Shen, Xiangfeng820
Wang, Wenhao Li, and Bo Jin. 2025. Generative821
multi-agent collaboration in embodied ai: A system-822
atic review. arXiv preprint arXiv:2502.11518. 18823
pages.824

Hongyang Yang, Xiao-Yang Liu, and Christina Dan825
Wang. 2023. Fingpt: Open-source financial large826
language models. arXiv preprint arXiv:2306.06031.827

Yijun Yang, Tianyi Zhou, Kanxue Li, Dapeng Tao, Lu- 828
song Li, Li Shen, Xiaodong He, Jing Jiang, and Yuhui 829
Shi. 2024a. Embodied multi-modal agent trained by 830
an llm from a parallel textworld. In 2024 IEEE/CVF 831
Conference on Computer Vision and Pattern Recog- 832
nition (CVPR), pages 26265–26275. 833

Yingxuan Yang, Qiuying Peng, Jun Wang, Ying Wen, 834
and Weinan Zhang. 2024b. Llm-based multi-agent 835
systems: Techniques and business perspectives. 836
arXiv preprint arXiv:2411.14033. Submitted on 21 837
Nov 2024 (v1), last revised 28 Dec 2024 (this version, 838
v2). 839

John Yen, Jianwen Yin, Thomas R. Ioerger, Michael S. 840
Miller, Dianxiang Xu, and Richard A. Volz. CAST: 841
Collaborative Agents for Simulating Teamwork. De- 842
partment of Computer Science, Texas A&M Univer- 843
sity. 844

Jiawei You, Youlong Wu, Dingzhu Wen, Yong Zhou, 845
Yuning Jiang, and Yuanming Shi. 2024. Dynamic 846
communication in multi-agent reinforcement learn- 847
ing via information bottleneck. In GLOBECOM 848
2024 - 2024 IEEE Global Communications Confer- 849
ence, Shanghai, China. IEEE. To appear. 850

Yangyang Yu, Zhiyuan Yao, Haohang Li, Zhiyang Deng, 851
Yupeng Cao, Zhi Chen, Jordan W. Suchow, Rong Liu, 852
Zhenyu Cui, Zhaozhuo Xu, Denghui Zhang, Kodu- 853
vayur Subbalakshmi, Guojun Xiong, Yueru He, Jimin 854
Huang, Dong Li, and Qianqian Xie. 2024. Fincon: A 855
synthesized llm multi-agent system with conceptual 856
verbal reinforcement for enhanced financial decision 857
making. arXiv preprint arXiv:2407.06567. Submit- 858
ted on 9 Jul 2024 (v1), last revised 7 Nov 2024 (v3). 859

Boyu Zhang, Hongyang Yang, and Xiao-Yang Liu. 860
2023a. Instruct-fingpt: Financial sentiment analy- 861
sis by instruction tuning of general-purpose large 862
language models. arXiv preprint arXiv:2306.12659. 863
FinLLM Symposium at IJCAI 2023. 864

Boyu Zhang, Hongyang Yang, Tianyu Zhou, Ali Babar, 865
and Xiao-Yang Liu. 2023b. Enhancing financial sen- 866
timent analysis via retrieval augmented large lan- 867
guage models. arXiv preprint arXiv:2310.04027. 868
ACM International Conference on AI in Finance 869
(ICAIF) 2023. 870

Boyu Zhang, Hongyang Yang, Tianyu Zhou, Ali Babar, 871
and Xiao-Yang Liu. 2023c. Enhancing financial sen- 872
timent analysis via retrieval augmented large lan- 873
guage models. arXiv preprint arXiv:2310.04027. 874
Presented at ACM International Conference on AI in 875
Finance (ICAIF) 2023. 876

Cuijuan Zhang, Lianghao Ji, Shasha Yang, Xing Guo, 877
and . 2024a. Distributed optimal consensus con- 878
trol for multi-agent systems based on event-triggered 879
and prioritized experience replay strategies. Science 880
China Information Sciences, 68(1). 881

Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, 882
Guancheng Wan, Kun Wang, Dawei Cheng, Jef- 883
frey Xu Yu, and Tianlong Chen. 2024b. Cut 884

11

https://doi.org/10.1007/s11432-018-9695-2
https://doi.org/10.1007/s11432-018-9695-2
https://doi.org/10.1007/s11432-018-9695-2
https://doi.org/10.1007/s11432-018-9695-2
https://doi.org/10.1007/s11432-018-9695-2
https://doi.org/10.1007/s11432-018-9695-2
https://doi.org/10.1007/s11432-018-9695-2
https://doi.org/10.1007/s11432-018-9695-2
https://doi.org/10.1007/s11432-018-9695-2
https://doi.org/10.1007/s11432-018-9695-2
https://doi.org/10.1109/TNET.2022.3210534
https://doi.org/10.1109/TNET.2022.3210534
https://doi.org/10.1109/TNET.2022.3210534
https://arxiv.org/abs/1801.00132
https://arxiv.org/abs/1801.00132
https://arxiv.org/abs/1801.00132
https://arxiv.org/abs/2501.06322
https://arxiv.org/abs/2501.06322
https://arxiv.org/abs/2501.06322
https://doi.org/10.1609/aaai.v39i20.35390
https://doi.org/10.1609/aaai.v39i20.35390
https://doi.org/10.1609/aaai.v39i20.35390
https://doi.org/10.48550/arXiv.1705.04146
https://doi.org/10.48550/arXiv.1705.04146
https://doi.org/10.48550/arXiv.1705.04146
https://doi.org/10.48550/arXiv.1705.04146
https://doi.org/10.48550/arXiv.1705.04146
https://doi.org/10.48550/arXiv.2310.04793
https://doi.org/10.48550/arXiv.2310.04793
https://doi.org/10.48550/arXiv.2310.04793
https://arxiv.org/abs/2503.18891
https://arxiv.org/abs/2503.18891
https://arxiv.org/abs/2503.18891
https://arxiv.org/abs/2503.18891
https://arxiv.org/abs/2503.18891
https://arxiv.org/abs/2502.11518
https://arxiv.org/abs/2502.11518
https://arxiv.org/abs/2502.11518
https://arxiv.org/abs/2502.11518
https://arxiv.org/abs/2502.11518
https://doi.org/10.48550/arXiv.2306.06031
https://doi.org/10.48550/arXiv.2306.06031
https://doi.org/10.48550/arXiv.2306.06031
https://doi.org/10.1109/CVPR52733.2024.02482
https://doi.org/10.1109/CVPR52733.2024.02482
https://doi.org/10.1109/CVPR52733.2024.02482
https://arxiv.org/abs/https://doi.org/10.48550/arXiv.2411.14033
https://arxiv.org/abs/https://doi.org/10.48550/arXiv.2411.14033
https://arxiv.org/abs/https://doi.org/10.48550/arXiv.2411.14033
https://doi.org/10.1109/GLOBECOM52923.2024.10901017
https://doi.org/10.1109/GLOBECOM52923.2024.10901017
https://doi.org/10.1109/GLOBECOM52923.2024.10901017
https://doi.org/10.1109/GLOBECOM52923.2024.10901017
https://doi.org/10.1109/GLOBECOM52923.2024.10901017
https://doi.org/10.48550/arXiv.2407.06567
https://doi.org/10.48550/arXiv.2407.06567
https://doi.org/10.48550/arXiv.2407.06567
https://doi.org/10.48550/arXiv.2407.06567
https://doi.org/10.48550/arXiv.2407.06567
https://doi.org/10.48550/arXiv.2407.06567
https://doi.org/10.48550/arXiv.2407.06567
https://doi.org/10.48550/arXiv.2306.12659
https://doi.org/10.48550/arXiv.2306.12659
https://doi.org/10.48550/arXiv.2306.12659
https://doi.org/10.48550/arXiv.2306.12659
https://doi.org/10.48550/arXiv.2306.12659
https://doi.org/10.48550/arXiv.2310.04027
https://doi.org/10.48550/arXiv.2310.04027
https://doi.org/10.48550/arXiv.2310.04027
https://doi.org/10.48550/arXiv.2310.04027
https://doi.org/10.48550/arXiv.2310.04027
https://doi.org/10.48550/arXiv.2310.04027
https://doi.org/10.48550/arXiv.2310.04027
https://doi.org/10.48550/arXiv.2310.04027
https://doi.org/10.48550/arXiv.2310.04027
https://doi.org/10.48550/arXiv.2310.04027
https://doi.org/10.1007/s11432-023-4183-4
https://doi.org/10.1007/s11432-023-4183-4
https://doi.org/10.1007/s11432-023-4183-4
https://doi.org/10.1007/s11432-023-4183-4
https://doi.org/10.1007/s11432-023-4183-4
https://arxiv.org/abs/2410.02506
https://arxiv.org/abs/2410.02506


the crap: An economical communication pipeline885
for llm-based multi-agent systems. arXiv preprint886
arXiv:2410.02506. Submitted on 3 Oct 2024.887

Zhuohui Zhang, Bin He, Bin Cheng, and Gang Li. 2025.888
Bridging training and execution via dynamic directed889
graph-based communication in cooperative multi-890
agent systems. In The 39th AAAI Conference on891
Artificial Intelligence (AAAI 2025). 9 pages, 7 fig-892
ures.893

Yihe Zhou, Yuxuan Zheng, Yue Hu, Kaixuan Chen,894
Tongya Zheng, Jie Song, Mingli Song, and Shunyu895
Liu. 2025. Cooperative policy agreement: Learn-896
ing diverse policy for offline marl. In Proceedings897
of the AAAI Conference on Artificial Intelligence,898
volume 39, pages 23018–23026, Philadelphia, Penn-899
sylvania, USA.900

A Appendix901

A.1 Graph Sampling for inference902

The inference stage of our proposed Adaptive903

Bayesian Optimization (ABO) framework requires904

efficient sampling of communication graph topolo-905

gies from the learned probabilistic model. This906

appendix details the implementation of the sam-907

pling module used during inference.908

A.1.1 Probabilistic Graph Sampling909

After training, our model has learned parameters910

for the adjacency matrix, represented as distribu-911

tions with mean µ
(t)
ij and variance (σ

(t)
ij )

2 for each912

potential edge e(t)ij . Algorithm 1 illustrates our com-913

plete sampling procedure, which follows these key914

steps:915

1. Graph Sampling: For each potential edge,916

we sample from the learned normal distri-917

bution N (µ
(t)
ij , (σ

(t)
ij )

2) and compare with a918

threshold to determine edge existence. The919

algorithm generates multiple graph samples to920

capture the uncertainty in the learned model.921

2. MCMC-Adjustment: As all valid communi-922

cation graphs must be directed acyclic graphs923

(DAGs), we employ a verification step af-924

ter initial sampling. When cycles are de-925

tected, our MCMC adjustment algorithm (Al-926

gorithm 1, Phase 2) resolves constraint viola-927

tions by selectively removing edges with the928

lowest probability until the DAG property is929

satisfied.930

3. Inference with Sampled Graphs: The sam-931

pling process balances between exploration932

of the graph space and exploitation of high- 933

probability edges. The variance term (σ
(t)
ij )

2 934

naturally captures the uncertainty in edge ex- 935

istence, allowing more diverse sampling for 936

edges with high uncertainty. 937

A.1.2 Implementation Considerations 938

When implementing the sampling module, several 939

practical considerations are addressed: 940

• Computational Efficiency: For large-scale 941

multi-agent systems, efficient cycle detection 942

and DAG verification algorithms are crucial. 943

We implement an optimized topological sort- 944

ing algorithm with O(V + E) complexity as 945

part of our MCMC-Adjustment function. 946

• Threshold Selection: The threshold for edge 947

existence can be adaptively set based on the 948

distribution of sampled probabilities or fixed 949

at a predetermined value (e.g., 0.5). Similarly, 950

the consensus threshold for the final graph 951

integration is carefully selected. 952

• Sample Diversity: To ensure diverse graph 953

samples, the sampling process leverages the 954

probability distributions learned during train- 955

ing, particularly the variance parameters that 956

indicate model uncertainty. 957

A.1.3 Inference with Sampled Graphs 958

When multiple graph samples are generated (Ns > 959

1), our algorithm employs a consensus-based ap- 960

proach to aggregate results: 961

• The algorithm computes the edge occurrence 962

frequency fij across all sampled graphs. 963

• Edges appearing in a majority of samples 964

(above the consensus threshold) are included 965

in the final graph. 966

• The final consensus graph is verified to main- 967

tain the DAG property through the same 968

MCMC-Adjustment process if needed. 969

• For classification tasks, this consensus ap- 970

proach effectively implements majority vot- 971

ing, while for regression tasks, it provides a 972

stable foundation for prediction averaging. 973

The complete graph sampling algorithm (Algo- 974

rithm 1) enables our framework to leverage the full 975

probabilistic information learned during training, 976

resulting in more robust and adaptable multi-agent 977

communication structures during deployment. 978
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A.2 Experimental Details979

A.2.1 Evaluation Protocol980

• Benchmark Datasets: MMLU (general981

reasoning), HumanEval (code generation),982

GSM8K, AQUA, and SVAMP (mathematical983

reasoning)984

• Comparison Methods: Vanilla (baseline),985

CoT (Chain of Thought), MAS (standard986

multi-agent system), AgentPrune, and Agent-987

Dropout988

• Consistency Measures: Same agent config-989

uration and prompts across all experiments,990

with agent prompts inherited from Agent-991

Dropout; consistent random seeds992

A.2.2 Implementation Details993

• Hardware: All experiments conducted on 2×994

RTX 3090 GPUs995

• ABO Parameters:996

– Node deactivation rate: αN = 0.15997

– Edge deactivation rate: βE = 0.15998

– MCMC sampling times: M = 10999

– Initial learning rate: η = 0.0011000

– Training: 20 epochs using Adam opti-1001

mizer1002

– Bayesian edge weight prior distribution:1003

N (0.5, 1.0)1004

– Weight coefficients: λ1 = λ2 = 0.01,1005

λ3 = 0.005, and λ4 = 0.11006

A.3 Adjacency Matrix Structure Analysis1007

We analyzed the communication structure learned1008

by ABO through adjacency matrix heatmaps. As1009

shown in Figure 5, the trained adjacency matrix1010

exhibits distinct modular characteristics compared1011

to the initial state, with more concentrated edge1012

weight distributions forming tightly connected sub-1013

structures. In the initial state, the communica-1014

tion structure exhibits a random connection pattern:1015

Node 0 connects to Nodes 2-4, Node 1 connects to1016

Node 0, and Node 2 connects to Nodes 0-1. After1017

training, the ABO-optimized topology shows a se-1018

lective connection pattern, particularly with Node1019

3 forming strong connections with Nodes 1, 2, and1020

4, and Node 2 forming bidirectional connections1021

with Node 3, while other regions remain sparse.1022

This modular structure implies more efficient infor-1023

mation transfer and specialized division of labor in1024

multi-agent systems.1025

Figure 5: Initial adjacency matrix (left) vs. trained
adjacency matrix (right). Blue indicates strong connec-
tions, yellow indicates weak or no connections. Node 3
emerges as a key information hub after ABO optimiza-
tion.

A.4 Case Study 1026

• General Reasoning (MMLU): ABO outper- 1027

forms AgentDropout by +0.97%, +3.48%, 1028

+1.37% across three model scales. It enhances 1029

cross-domain reasoning via Bayesian uncer- 1030

tainty quantification and dynamic communi- 1031

cation topology adaptation. 1032

• Code Generation (HumanEval): ABO 1033

achieves +1.4%, +1.53%, +2.16% gains in 1034

programming tasks. It resolves algorithmic 1035

uncertainty through probabilistic code pattern 1036

evaluation and MCMC-driven knowledge in- 1037

tegration. 1038

• Mathematical Reasoning 1039

(AQUA/GSM8K/SVAMP): ABO shows 1040

+4.77% gains on AQUA, highlighting its 1041

multi-step problem-solving ability. Bayesian 1042

agents verify solution reliability through 1043

uncertainty propagation and MCMC-based 1044

collaborative refinement. 1045

• Scaling Characteristics: ABO exhibits 1046

+2.588%, +1.828%, +1.182% improvements 1047

from 8B to 70B models. Its uncertainty-aware 1048

mechanism optimizes knowledge routing, re- 1049

ducing error accumulation in smaller models. 1050

A.5 Communication Graph Structure 1051

Analysis 1052

To intuitively demonstrate how AgentBayesianOut 1053

optimizes communication topology, we analyzed 1054

the communication graph structure learned on the 1055

GSM8K task, as shown in Figure 6. 1056

Comparing the edge distribution and node in- 1057

degree/out-degree changes between the initial state 1058

(top) and trained state (bottom), we can observe 1059

that ABO forms more meaningful communication 1060

13



Figure 6: Initial communication graph structure (top) vs.
trained structure (bottom). Left: edge existence distri-
bution; Center: node in-degree; Right: node out-degree.
Node 3 emerges as the primary information output node
after training, while connections are redistributed more
efficiently.

patterns. In the initial graph, Node 0 exhibits high1061

in-degree and out-degree, indicating imbalanced1062

communication load. After training, the system re-1063

tains key bidirectional connections between math-1064

ematical experts and problem decomposers while1065

reducing direct connections from commentators1066

to executors, instead using mathematical experts1067

as information intermediaries to form clearer in-1068

formation flow paths. Particularly noteworthy is

Figure 7: Performance Comparison of Different Kernels
across Tasks. The RBF+White kernel shows the highest
average accuracy, highlighted in sky blue.

1069
that Node 3 becomes the primary information out-1070

put node after training, while Node 0’s out-degree1071

is completely eliminated, and the roles of Nodes1072

1 and 2 also undergo significant changes. This1073

demonstrates that ABO can intelligently identify1074

and retain the critical participation of specific nodes1075

(such as result verifiers) rather than mechanically1076

applying uniform deactivation patterns. This case1077

clearly illustrates how ABO achieves more flexible1078

and efficient communication topology optimiza-1079

tion.1080

A.6 Detailed Further Analysis 1081

Figure 7 shows that the RBF+White kernel combi- 1082

nation performs optimally (93.76%), outperform- 1083

ing single RBF kernels (91.57%) and other choices 1084

such as linear kernels. 1085

Figure 8: Effect of MCMC Sampling Steps on Model
Performance across Tasks. Increasing the number of
MCMC steps improves accuracy up to 50 steps, after
which performance saturates or slightly declines.

Figure 8 demonstrates that model performance 1086

reaches optimum between 20-50 MCMC sampling 1087

steps, with performance stabilizing or slightly de- 1088

clining after 50 steps.

Figure 9: Effect of Dropout Rate on Model Performance
across Tasks. The performance peaks at a dropout rate of
0.15, after which over-regularization degrades accuracy.

1089
Dropout rate analysis presents a bimodal distri- 1090

bution, as shown in Figure 9. Performance reaches 1091

two peaks at 0.15 92.68% and 0.25 93.78%, corre- 1092

sponding to different optimal topological structures. 1093

Performance significantly decreases beyond 0.30. 1094
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Algorithm 1: Communication Graph Sampling for Inference

Data: Trained parameters Ãintra and Ãinter (mean µ
(t)
ij and variance (σ(t)

ij )
2), number of samples Ns

Result: Set of sampled communication graph(s) {G1, G2, ..., GNs}
1 Phase 1: Graph Sampling;
2 Initialize empty set of graph samples G ← ∅;
3 for s = 1 to Ns do
4 Initialize empty adjacency matrix A(s) ← 0n×n;
5 for each time step t do
6 for each potential edge e

(t)
ij do

7 Sample edge probability p
(t)
ij ∼ N (µ

(t)
ij , (σ

(t)
ij )

2);

8 if p(t)ij > threshold then
9 Set A(s)

ij ← 1 ; /* Tentatively add edge */

10 end
11 end
12 Check if current A(s) maintains DAG property;
13 if A(s) violates DAG constraint then
14 A(s) ← MCMC-Adjustment(A(s), {p(t)ij }) ; /* Fix DAG constraint */

15 end
16 end
17 Add graph to sample set: G ← G ∪ {A(s)};
18 end
19 Phase 2: MCMC-Adjustment;
20 Function MCMC-Adjustment(A, P = {p(t)ij }):
21 Initialize A′ ← A;
22 while A′ violates DAG constraint do
23 Identify set of edges Eviolation that cause cycles;

24 Select edge e
(t)
ij ∈ Eviolation with lowest probability p

(t)
ij ;

25 Remove edge: A′
ij ← 0 ; /* Remove least probable edge in cycle */

26 if DAG check(A′) = TRUE then
27 break;
28 end
29 end
30 return A′;
31 Phase 3: Inference with Sampled Graph;
32 if Ns = 1 then
33 Use the single sampled graph G1 directly for inference;
34 else
35 Perform MCMC-based graph integration;
36 Initialize final graph Gfinal ← empty graph;
37 for each edge position (i, j) across time steps do
38 Compute edge occurrence frequency fij =

1
Ns

∑Ns
s=1 I[A

(s)
ij = 1];

39 if fij > consensus_threshold then
40 Gfinal(i, j)← 1;
41 end
42 end
43 Ensure Gfinal maintains DAG property using MCMC-Adjustment if needed;
44 Use Gfinal for inference;
45 end
46 return G;
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