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ABSTRACT

Convolutional Neural Networks (CNNs) are the state of the art in image classifica-
tion mainly due to their ability to automatically extract features from the images
and in turn, achieve accuracy higher than any method in history. However, the
flip side is, they are correlational models which aggressively learn features that
highly correlate with the labels. Such features may not be causally related to the
labels as per human cognition. For example, in a subset of images, cows can be on
grassland, but classifying an image as cow based on the presence of grassland is
incorrect. To marginalize out the effect of all possible contextual features we need
to gather a huge training dataset, which is not always possible. Moreover, this pro-
hibits the model to justify the decision. This issue has some serious implications
in certain domains such as medicine, where the amount of data can be limited but
the model is expected to justify its decisions. In order to mitigate this issue, our
proposal is to focus CNN to extract features that are causal from a human per-
spective. We propose a mechanism to accept guidance from humans in the form
of activation masks to modify the learning process of CNN. The amount of addi-
tional guidance can be small and can be easily formed. Through detailed analysis,
we show that this method not only improves the learning of causal features but
also helps in learning efficiently with less data. We demonstrate the effectiveness
of our method against multiple datasets using quantitative as well as qualitative
results.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) are more popular than any other techniques in image clas-
sification. The ability to automatically extract required features is one key factor behind the phe-
nomenal success of these models. Image classification being used in critical application areas such
as medicine, surveillance, and many others, CNNs could make a huge impact in these domains.
However, when implementing artificial intelligence based systems in such domains, attributing the
success of the application to accuracy alone is not sufficient. In such cases, these systems are ex-
pected to be justifiable as the decisions made by them may have huge impact on various factors with
high risks.

Recently, it has been observed that CNNs are very much efficient to find correlation between features
and labels and often extract features greedily following that principle (Shwartz-Ziv & Tishby, 2017;
Tishby & Zaslavsky, 2015; Chaitin, 2015; Blier & Ollivier, 2018). In this process, often it may
happen that these models learn correlations (Shen et al., 2017) which may not be justifiable from
human perspective. In order to eliminate the effect of non causal correlations, CNNs need to be
trained on huge datasets which may not be always possible in various domains like medicine. Thus
learning the correct features efficiently from less data becomes an important problem in these areas.

Let us illustrate this using an example. Suppose we have a dataset with images of cows on grasslands
and aeroplanes in blue-sky. It has been observed that grass is extracted as a feature for cow and sky
is extracted as a feature for aeroplane (see Fig. 1). We have used Grad-Cam (Selvaraju et al., 2017)
to generate the heatmaps to visualize the features extracted by the CNNs. These heatmaps reveal
that the model is using irrelevant features for classification. Possible solutions to overcome this
issue would be to add more images to the dataset or to re-balance it in order to remove the data
bias. Contrarily, our objective is to utilize the available data efficiently and to make the models learn
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low high

Figure 1: CNNs need not learn causal features. The examples are taken from the Pascal VOC 2012
dataset (first row) for aeroplane-cow classification in a biased dataset. In the second row we see the
features learnt by the CNN highlighted using the Grad-Cam method. It is evident that the model has
learnt features such as the sky and grassland for classifying aeroplane and cow respectively.

features which can be causal from human perspective. It is evident that, CNNs are not guaranteed
to extract such causal features. With this point of view, we propose to take guidance from humans
on what they think is causal for a few samples in a class. We capture this guidance in the form of
activation masks which are basically binary matrices with 1s on the causal parts of the images (see
Fig. 2). Once we have the user guidance, our plan is to tweak the learning process of the CNNs
though these guidance to focus them on extracting the causal features. We achieve that by modifying
the learning objective of the CNNs and the backpropagation algorithm then takes care of updating
the model parameters accordingly. This simple modification in the training procedure helps avoid
the learning of spurious correlations between features and labels and focus just on the causal ones.
We have experimentally observed that, this concept is working quite well on a wide range of cases
and has proved to be extremely useful in the case of medical datasets.

The main contributions of our work are summarized below:

1. We propose a technique to focus the CNNs in learning causal features with the help of
minimal human guidance.

2. We demonstrate that our method not just improves learning of causal features but also
helps in learning efficiently with less data. Additionally, we also show that the features
learnt using our method are more robust to various types of image perturbations.

2 RELATED WORK

CNN and Interpretability Convolutional Neural Networks (LeCun et al., 1999) have boosted the
progress in the field of computer vision since their inception. Manually designed architectures like
LeNet (LeCun et al., 1989), AlexNet (Krizhevsky et al., 2012), VGG16 (Simonyan & Zisserman,
2014) and many more have been proposed in the literature. In order to simplify the CNN architec-
tures by retaining the spatial structure throughout the network, Springenberg et al. (2014) proposed
the all convolutional nets, which eliminate the fully connected layers in these networks. To interpret
the decisions of the CNNs, tools like Grad-Cam (Selvaraju et al., 2017) are widely used in practice,
as they provide a way to extract the class discriminatory features learnt by the model.

Correlation and Causality Research on the topics of correlation and causality has been gaining
popularity among the researches in the recent years. Work by Shen et al. (2018) has recently shed
some light on the correlational behavior of CNNs in image classification. Few other works like
Arjovsky et al. (2019), try to understand the causal relation between the input images and the cor-
responding labels, i.e. studying whether the relation is causal, anticausal or agnostic in nature. In
our work, we just rely on the fact that there exist few features in the images which are the cause for
the label and we expect the model to correctly identify such causal features only. The importance
of causality, specifically in field of medicine is studied by Castro et al. (2020) and Liu et al. (2019),
highlighting the challenges for causality in computer aided diagnosis.
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Table 1: This table summarizes a list of all the notations used in the paper.
Symbol Description Symbol Description
X Input image C Number of classes
y One-hot class label F Number of feature map outputs
A Input activation mask c Index of true class
ŷ Predicted class probabilities k1 × k2 Size of the filter

{Âf}Ff=1 Set of feature map outputs m1 ×m2 Size of the input image
W A single filter in the convolution

layer
n1 × n2 Size of the activation masks and

the feature maps
Lcl Classification loss α Weight for the causally-focus

loss
Lcf Causally-focus loss ε A very small constant value

Figure 2: Activation mask creation: In the case of lack of annotated data, one can create activation
mask for guidance very easily (this can be implemented in Python). The order is from left to right.

Learning Causal Features The very recent work by Xiao et al. (2020), studies the influence of the
image background on object recognition. They show that non-trivial accuracy can be achieved by
relying just on the background features in the images. A similar study was done in the case of med-
ical images by Maguolo & Nanni (2021), where they showed that CNN models provided diagnosis
for the chest x-ray images even when the lung regions were removed from the input images. Not
much work has been done on improving the learning of causal features, especially in the case of
small datasets. The closest work that we found to our method is the self-supervised method called
Guided Attention Inference Network (GAIN) (Li et al., 2019) which is proposed to improve the pri-
ors for the task of weakly supervised image segmentation. The authors present an extended version
of this method, called the GAINp

ext, which uses an additional parameter sharing network with the
GAIN architecture for pixel level supervision, that brings up the similarity with our work. We use
this model as a baseline in our experiments.

3 PROPOSED METHODOLOGY: CAUSALLY FOCUSED CONVOLUTIONAL
NETWORKS (CFCN)

In this section we describe the proposed method dubbed, Causally Focused Convolutional Networks
(CFCN). In CFCN, we force the model to break the spurious correlation between the label and any
feature, and focus only on the causal features. In order to achieve this, we resort to minimal human
guidance through activation masks.

3.1 NOTATIONS

Consider an input image X of size m1×m2, its ground truth one-hot label y and the corresponding
input activation mask A. Let, C be the number of classes in the dataset. The image classifica-
tion model outputs class probabilities ŷ and the set of feature maps {Âf}Ff=1 generated by the last
convolutional layer after application of relu activation, where F is the number of filters in this con-
volutional layer. The input activation masks and the feature map outputs are resized to a common
shape n1 × n2. Let c denote the index of the true class of the input image. A ◦ B denotes the
element-wise product of two matrices A and B of same size. All the notations are summarized in
Tab. 1.
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Figure 3: Illustration of the methodology: Along with images and labels, activation masks are also
input for guidance. Dotted lines denote the flow present only during the training phase.

3.2 ACTIVATION MASK FOR HUMAN GUIDANCE

Activation masks are binary images where the causal regions are indicated using 1s and those be-
longing to the context regions are indicated using 0s. Some datasets like the Brain MRI (Cheng
et al., 2015), readily provide binary masks which can be directly used for our purpose. In few other
cases, we may have pixel level labels which provide fine grained annotations exactly covering the re-
gions of the objects of interest or bounding boxes annotations, that provide relatively coarse regions
which may also contain few context features in them. Such annotations can be used to generate the
activation masks as described in Appendix A.

However, the method should not be dependent on the availability of masks or not. So we devise a
simple technique to generate masks automatically. A typical step by step procedure for activation
mask generation is shown in Fig. 2. For a small subset of training images, the user has to roughly
select the area of the objects of interest, which is then converted into a binary mask as shown in the
figure. This can be automated using a python script.

3.3 CAUSAL FOCUS THROUGH ACTIVATION MASKS

In general CNNs are composed of several convolutional layers and pooling layers to extract features.
The features extracted at the last layer then get passed to a Feed-forward Neural Network (FNN) to
assign labels. Better the quality of features better will be the performance of the classifier. CNN
layers along with the FNN layers are trained end to end by optimizing the categorical cross entropy
loss.

It has been observed that CNNs learn to extract features greedily and often end optimizing the
correlation between labels and features. This process does not ensure that these models will always
extract features which are causal from a human point of view. To mitigate this issue, we propose a
mechanism to guide CNNs to focus on causal (in a human eye) features through additional minimal
human input in the form of activation masks.

During the model training we provide input images, their labels and activation masks. For the subset
of input images which do not have the activation masks, we provide dummy masks with all values
as 1s. The forward pass through the network for a single input image X , with true label y and input
activation mask A generates the class probabilities ŷ and the feature map outputs {Âf}Ff=1 from
the last convolutional layer, where F is the number of filters in this layer. Using this notation, we
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Table 2: Brief summary of the datasets used in the experiments.
Dataset Size Significance
Oxford IIIT Pets 7349 Large annotated dataset.
Aeroplane-Cow 718 Small and biased dataset created from

‘aeroplane’ and ‘cow’ classes in Pascal
VOC 2012 dataset (Everingham et al.).

Brain MRI 3064 Small medical dataset.
IDRiD 82 Small medical dataset.

propose to optimize the following loss to train the CNN.

L = −
C∑
i=1

yilog(ŷi)︸ ︷︷ ︸
Lcl

+ α

1− 1

F

F∑
f=1


n1∑
j=1

n2∑
k=1

(A ◦ Âf )j,k

n1∑
j=1

n2∑
k=1

(Âf )j,k + ε


 ,

︸ ︷︷ ︸
Lcf

(1)

where ε ≥ 0 is a small quantitiy to avoid accidental divide by zero error. α ≥ 0 is the trade-off
parameter between the traditional categorical cross entropy loss (Lcl) and the proposed causally-
focus loss (Lcf ). Greater the value of α greater is the weightage on the causally-focus loss.

Apart from the traditional CNNs, we also applied our causal feature learning method to the all convo-
lutional nets proposed by Springenberg et al. (2014). The number of filters in the last convolutional
layer of these nets, is equal to the number of classes with each feature map output corresponding to
each class, thus highlighting only that class specific features. We then calculate the causally-focus
loss only with respect to the feature map Ac corresponding to the true class of the image and the
input activation mask A as follows:

L = −
C∑
i=1

yilog(ŷi)︸ ︷︷ ︸
Lcl

+α

1−


n1∑
j=1

n2∑
k=1

(A ◦ Âc)j,k

n1∑
j=1

n2∑
k=1

(Âc)j,k + ε


 ,

︸ ︷︷ ︸
Lcf

(2)

where c is the index corresponding to the actual class of the image, i.e. yc = 1. This formulation
has the ability to preserve the spatial structure of the data which is otherwise not maintained by the
fully connected layers. Secondly, in Eq. 1, we are calculating the causally-focus loss on all the
feature map outputs which can be more time consuming. A detailed analysis of the loss function is
presented in the Appendix B. The proposed approach CFCN is depicted in Fig. 3.

4 EXPERIMENTS

4.1 DATASET

We have particularly selected the following four datasets - Oxford IIIT Pets (Parkhi et al., 2012),
Aeroplane-Cow, Brain MRI (Cheng et al., 2015) and IDRiD (Porwal et al., 2018) - for performance
comparison with the baseline. These datasets, help us in demonstrating the effectiveness of our
method across different challenges such as biased data, small dataset size and feature extraction in
medical images. The detailed description of these datasets is given in Tab. 2.

4.2 BASELINES

In our experiments, we use the CNN traditionally trained using just the classification loss as our first
baseline. As another related method that uses additional pixel level guidance, we use the extended
version of GAIN (Li et al., 2019) as our second baseline. In comparison to these, we compare two
of our models: one that uses fully connected layers for classification (CFCN-F) and another one that
uses the all convolutional nets (CFCN-C). We use the same architecture for feature extraction in all
the methods for a given dataset.
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Figure 4: Demonstrating the effectiveness of proposed CFCN: This figure shows the counterpart
heatmaps from CFCN for the images in Fig. 1. We see that unlike CNN, CFCN is able to focus on
the causal features belonging to the aeroplanes and the cows present in the images.

Table 3: Quantitative results comparing proposed CFCN variants with the state of the art. We see
that in the case of small datasets, CFCN models outperform the baselines in almost every metric.
In the case of Oxford IIIT Pets dataset, CNN is performing slightly better than other methods but it
must be noted that high accuracy may also come from the spurious correlations in the features and
the labels. This fact is also evident as shown in the visual results (Fig. 5).

Models Metrics Metrics
Acc. F1 ROC Acc. F1 ROC

Oxford IIIT Pets Aeroplane-Cow
(Small Dataset)

CNN 0.94 0.94 0.98 0.78 0.74 0.83
GAIN 0.86 0.84 0.92 0.72 0.70 0.74

CFCN-F 0.86 0.85 0.97 0.76 0.75 0.83
CFCN-C 0.90 0.88 0.96 0.82 0.81 0.86

Brain MRI IDRiD
(Small Dataset) (Small Dataset)

CNN 0.86 0.85 0.97 0.83 0.80 0.24
GAIN 0.66 0.56 0.83 0.80 0.84 0.82

CFCN-F 0.88 0.87 0.96 0.92 0.94 0.80
CFCN-C 0.88 0.87 0.97 0.88 0.90 0.71

4.3 EXPERIMENTAL SETTING

All our experiments were run on a GPU system with 16 GB RAM and a single GeForce RTX 2080
GPU. The codes are implemented in Python 3.7 with Tensorflow v2.2. We have used the ‘matplotlib’
library in Python to generate all the plots and used the ‘polyfit’ function available in ‘numpy’ library
to regress a curve in the plots wherever necessary. As a preprocessing step, we normalize the input
images in the range [0,1]. We evaluate the performance of all the models using five quantitative
metrics: accuracy, macro f1-score and AU-ROC. Further we present the qualitative results using
Grad-Cam for heatmap visualization. A detailed description of the experimental setup for each
dataset is given in the Appendix C

4.4 RESULTS: BEYOND CNNS TO DETECT CAUSAL FEATURES

Recall from Fig. 1 that CNNs need not learn causal features as it optimizes over correlation.
Whereas, with additional human guidance, CFCNs are able to ignore the spurious correlations
present in the data and learn just the causal features in the images as shown in Fig. 4.

Tab. 3 compares the performance of various models on several metrics. It can be seen that both
CFCN variants perform quiet well. Furthermore, we see that, in the case of very small datasets
(Aeroplane-Cow, Brain MRI and IDRiD), our models outperform the baselines in almost every met-
ric. Further, to validate the correctness of our models in terms of feature learning, we present the
comparison of the Grad-Cam heatmaps generated by these models in Fig. 5. We observe that CFCNs
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Figure 5: Comparison of models on qualitative results: CFCN variants learn causal features
whereas the features learnt by baselines are not causal.

Figure 6: Convergence: Causally-focus loss does not affect the convergence in training CFCNs.

are not just accurate but also rely on the class-discriminatory causal features in the images for classi-
fication rather than using any context information. We share a few additional results in the Appendix
D.

The Convergence of CFCN. We also empirically verify that adding the causally-focus loss does
not affect the training of the underlying CNN. Fig. 6 shows steady convergence based on both the
loss functions.

4.5 RESULTS: EFFECT OF VARYING THE WEIGHTAGE FOR CAUSALLY-FOCUS LOSS

As we have seen that, CFCN is able to detect causal features and also perform better or quite similar
to the baselines, we want to investigate the sensitivity of the setup of human guidance.

The trade-off parameter α is an important quantity as it trades-off between the classification loss
and causally-focus loss (see Eq. 1 and Eq. 2). We expect that as the value of α increases, the
model should focus more and more on the causal features. We see the expected behaviour in Fig.
7. Further, we have observed that beyond a certain threshold, the activations become very small
there-by affecting the classification performance of the models.

4.6 RESULTS: LEARN MORE WITH LESS DATA DUE TO CAUSALITY

Through this experiment we demonstrate that our method helps not just in learning causal features
but also helps in learning faster with less data. The basic idea is, with more guidance, we reduce the
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Figure 7: Illustration of effect of the trade-off parameter (α) in the Loss: We see that, with
increase in the value of α, the model is able to focus more on the class-discriminatory causal feature
in the input images.

Figure 8: Illustration of the effect of human guidance in the form of activation mask: As we
increase the amount of human guidance in the form of activation masks accuracy increases (left),
and loss reduces at a greater rate with the increase in the training dataset size (in x-axis, 1 unit
equals to 1000 samples). One observation is that, with additional guidance the models are able to
learn efficiently with less data.

uncertainties in the model for learning causal features as the model is explicitly guided to focus on
the features which are effective to discriminate.

To demonstrate this, we trained the CNN models with same architectures by varying the training
dataset size in steps of 1000, from 1000 to 7000 training samples. In each case, we train models
with 0, 200, 600 and 1000 activation masks as input. So basically we train 28 (7×4) models in total.
For a given dataset size we expect the models with more activation masks as input to have higher
accuracy than those with less number of activation masks as input. We share the results in Fig. 8
in the form of two plots. To understand the average behavior of the models we present the curves
which we regressed through the points representing the metric values for each model.

The first plot shows comparison of models on the basis of test accuracy. We see that the curve for
the models with higher number of activation masks as input dominates over the curves of the models
with less number of activation masks as input in almost all the train dataset size cases. This shows
that the model is able to learn more with the same amount of data when it is provided with additional
information as described in our approach.

The second plot considers the average of categorical cross entropy loss and the causally-focus loss
as a metric for model comparison. This metric captures the correctness of the models both in terms
of classification and causal feature extraction. We see that the models with more activation masks
as input have lower loss than the models with less number of activation masks as input. We can also
see that the lowest loss attained using 7000 training samples by the models with no activation masks
as input is also attained by the model with just 200 activation masks as input using just 3000 to 4000
training samples. This confirms that, with more guidance the models are able to learn faster from
less amount of data.
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(a) Vary Background

(b) Vary Brightness

Figure 9: Robust feature learning: The above figures show the robustness of feature learning in
CFCNs against changes in the background and the brightness of the input images.

4.7 RESULTS: ROBUSTNESS AGAINST ADVERSARIAL PERTURBATION OF IMAGES

Finally, we present another interesting experiment highlighting the robustness of the features learnt
by the CFCN models in comparison to that of traditionally trained CNNs with the same architecture
and identical experimental setup. We vary the background for the objects of interest and check how
the two models perform in terms of visual results. We expect that in comparison to the traditional
CNNs, the features learnt by CFCNs would be more stable across such image perturbations. As
shown in Fig. 9(a), we see that the features learnt by CFCN are more robust to change in the context
of the images. This further confirms the effectiveness of our method in learning causal features
rather than relying of the context features for classification.

Similarly, we also conducted another experiment in this direction by varying the brightness of the
input images. As shown in Fig. 9(b), we see that the features learnt by CFCNs are more robust in
comparison to that of CNNs, for different brightness values of the input images.

5 CONCLUSION

In this paper we demonstrate that, through minimal human guidance it is possible to go beyond
the traditional CNN architectures to avoid overestimating spurious correlations between labels and
contextual features. Using such guidance in the form of activation masks, the proposed model
CFCN is able to detect causal features in the images. This ability in turn helps CFCN not only to
achieve higher accuracy with less data but also to be robust against several adversarial changes in
the images.
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A ACTIVATION MASK GENERATION

For manual activation mask generation, we have used the ‘mpl interactions’ library available in
Python. As shown in Fig2, a user has to select the regions of interest in the given image which is
then automatically converted into binary activation mask. These masks can be then stored along
with the datasets for later use.

Further, in order to utilize the available annotations for activation mask generation, we can use
the pixel level labels provided in the image segmentation datasets or the bounding box annotations
provided in the object localization datasets. When using pixel level annotations, the pixel values
representing the objects of interest can be set to 1s and rest other pixels can be set to 0s. Similarly,
when using bounding box annotations, the pixels withing the bounding box regions need to be set
to 1s while all other pixels outside the box regions need to be set to 0s. Few examples of such
conversions are shown in Fig. 10.

Figure 10: Obtaining the activation masks: The following table shows some examples of ob-
taining activation masks from different annotations available for some aligned tasks such as image
segmentation and object localization. First row in the figure shows the input images, second row
shows their corresponding available annotations and third row shows the activation masks generated
from these annotations. As in the case of Brain MRI dataset, binary masks are readily available,
which can be directly used for our purpose.

B ANALYSING THE LOSS FUNCTION

We present the Eq. 1 again for the purpose of analysis.

L = −
C∑
i=1

yilog(ŷi)︸ ︷︷ ︸
Lcl

+ α

1− 1

F

F∑
f=1


n1∑
j=1

n2∑
k=1

(A ◦ Âf )j,k

n1∑
j=1

n2∑
k=1

(Âf )j,k + ε




︸ ︷︷ ︸
Lcf

The first term in the loss represents the standard categorical cross entropy loss (Lcl). The second
term consists of the loss weight α and the causally-focus loss (Lcf ). In this section we elaborate
more on the second loss.

Intuitively, the causally-focus loss calculates the percentage of the activation values present in the
output feature maps which are active in the context region of the images. More the activations
present in the context regions, more will be the loss. In the optimal case, the model will have learnt
only the causal features, in which case the loss will be equal to 0, which is the lowest. Contrarily,
in the worst case, only the features outside the causal regions marked by the activation map will be
active, making the loss equal to 1, which is the highest.
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When using the CFCN for multi-label classification, the loss needs some modifications. An updated
version of the loss for multi-label classification is given by Eq. 3. Basically, in the case of multi-
label classification, each image will have ‘C’ activation mask, one each corresponding to one of the
C classes in the network. Thus, it also requires the last convolutional layer to have number of filters
to be equal to the number of classes in the dataset. This requirement is already satisfied in the case
of the ‘all convolutional nets’. Each filter corresponds to a class in the dataset. We calculate the
causally-focus loss with respect to each feature map output and the corresponding activation mask
for that class, as depicted in Eq. 3.

L = −
C∑
i=1

yilog(ŷi) + α

1− 1

C

C∑
f=1


n1∑
j=1

n2∑
k=1

(Af ◦ Âf )j,k

n1∑
j=1

n2∑
k=1

(Âf )j,k + ε


 , (3)

C DETAILED EXPERIMENTAL SETUP

Table 4: Detailed experimental setup for each dataset.
Sr. Dataset Filters in conv. layers DO BS LR Epochs α
1. Oxford IIIT Pets 128,128,64,64,32,32,16,16 0.3 64 1e-4 500 1
2. Aeroplane-Cow 128,128,64,64,32 0.3 16 1e-4 200 1.5
3. Brain MRI 64,64,64,32,32,32 - 32 1e-5 150 3
4. IDRiD 32,32,16,16,8,8 0.3 5 1e-4 200 0.8

In this section we describe the detailed experimental setup used for training different models on
each dataset. We have implemented all the models using Tensorflow v2.2. In all the experiments,
we used custom CNN architectures for each dataset. Further, for each dataset, all the experiments
were run by maintaining an identical experimental setup for all the models. Input images from all
the models except the IDRiD dataset were resized to the shape 96×96 while those belonging to the
IDRiD dataset were resized to the shape 250×175. The number of filters used in each convolutional
layers of these architectures is given in Tab. 4. Every convolutional layer is followed by a batch
normalization layer and later by a dropout layer (except for the Brain MRI dataset). We use a
dropout(DO) value of 0.3. The last dropout layer is followed by a convolutional layer with 1×1
filter size and 16 filters in the case of CFCN-F models and ‘C’ filters in the case of CFCN-C, where
‘C’ is the number of classes in the given dataset. As IDRiD is a multi-label classification dataset,
the 1times1 convolutional layer in this case has 3 filters, for both CFCN-F and CFCN-C. The 1×1
convolutional layer is then followed by a flatten layer in the case of CFCN-F, while for the CFCN-
C models, we use global average pooling. In the case of CFCN-F the flatten layer is followed by
the output layer which is a fully connected layer with C neurons in it. In CFCN-C, global average
pooling layer acts as the output layer. We have used ‘relu’ activation in all the intermediate layers.
For output layer, we use ‘softmax’ activation in the case of multi-class classification and ‘sigmoid’
in the case of multi-label classification. Details about the batch size (BS), learning rate (LR), number
of epochs and the value for loss weight parameter α introduced in Eq. 1 and 2, for each dataset are
given in Tab. 4.

For the Oxford IIIT Pets dataset and the IDRiD dataset, we do not down-sample the input images
throughout the network. For the Aeroplane-Cow and Brain MRI datasets, we down-sample the
images by using a stride of 2 in every second and every third convolutional layer in the respective
dataset case. While calculating the causally focus loss, we can resize the input activation masks
from input size to the size of the output feature maps. Conversely, we can also resize the output
feature maps to the input size. In case of the Oxford IIIT Pets and IDRiD, the input activation masks
and the output feature maps have the same size as the input (ie. (m1 ×m2) = (n1 × n2)), so no
resize operation is required. For the Aeroplane-Cow dataset, we resize the output activation mask to
the input size while for Brain MRI dataset, we resize the input activation masks to the size of output
feature maps.
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D ADDITIONAL RESULTS

D.1 BENEFITS IN VISUAL EXPLANATION

In this subsection, we present the benefits of using the all convolutional nets. As discusses earlier,
the all convolutional nets are known for their architectural simplicity and their ability to retain the
spatial structure of the images throughout the network. Additionally, the last convolutional layer of
these nets generate feature maps, each of which corresponds to one particular class in the dataset.
Thus, each feature map retains the features in the input images which are similar to those of the
images belonging to the class represented by that feature map. This fact is clearly highlighted in
Fig. 11. We see that, for the first image of digit ‘0’, the most similar digits are the digit ‘2’ and digit
‘6’. Similarly, for the second image of input digit ‘9’, the closest digits are ‘1’, ‘4’ and ‘7’.

Due, to this explanations similar to the Grad-Cam are obtained in just the single forward pass through
the network, thereby eliminating the need of back-propagating through the network for gradient
calculations. When using CFCN with the all convolutional nets, the additional benefit is that, each
feature map output highlights only the class-specific causal features present in the images, thereby
enhancing the explainability of these models.

(a) Feature maps for input digit ‘0’

(b) Feature maps for input digit ‘9’

Figure 11: Enhanced visual explanations: This figure demonstrates the benefits of all convolu-
tional nets in terms of visual explanations. The feature map outputs for the input digits (a) 6 and (b)
9 are given. The images represent the classes 0 to 9 in row major order from left to right.
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D.2 ADDITIONAL TRAINING PLOTS

In Fig. 12, we present the training plots for the remaining two dataset: Aeroplane-Cow and IDRiD.
These plots also confirm empirically that the modified loss in CFCN attains convergence after a
specified number of epochs.

Figure 12: Convergence: Causally-focus loss does not affect the convergence in training CNNs.
Demonstration using the training plots for Aeroplane-Cow and IDRiD datasets.

D.3 COMPARISON THE CAUSALLY-FOCUS LOSS ON THE BENCHMARKS

Figure 13: Comparing the causally-focus loss: In the above plot, we compare the values of the
causally-focus loss for different models on the benchmark datasets. We observe that, our models
perform better than baselines in all the dataset cases.

In Fig. 13, we present the comparison of the causally-focus loss for different models on different
datasets. The x-axis represents the models while the y-axis represents the loss values. For better
visualization, we have performed min-max normalization over the causally-focus losses of the mod-
els for a given dataset. We observe that the causally-focus loss is the lowest mostly in the case of
CFCN-F models. Also, the CFCN-C models perform more or less similar to these models. This
further confirms that our method is successful in eliminating the spurious correlations based on the
context features, thereby providing reliable predictions.
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D.4 CAUSAL FEATURE LEARNING IN CFCN

In Fig. 14, we present few additional results comparing the heatmaps generated by the traditionally
trained CNN and the CFCN on the Bike-Helmets dataset. This dataset consists of about 764 images
in total, of which we have used 500 samples for testing.

Figure 14: Additional qualitative results presenting the Grad-Cam heatmaps generated for the Bike-
Helmets dataset provided by Make-ML.
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D.5 VARY BACKGROUND

Figure 15: Additional visual results comparing the robustness of features learnt by CNN and CFCN
for the vary-background experiment. The results show that CFCN consistently outperforms CNN in
terms of robust feature learning.

In Fig. 15, we present few more results comparing the traditionally trained CNNs and the CFCN
models for the vary-background experiment. We observe that CFCN are able to extract the class
discriminatory causal features in the images in all the cases and it is least affected by the changes in
the context regions of the input images.
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