
SSTAG: Structure-Aware Self-Supervised Learning
Method for Text-Attributed Graphs

Ruyue Liu
Institute of Information Engineering, CAS

School of Cyberspace Security, UCAS
liuruyue@iie.ac.cn

Rong Yin∗

Institute of Information Engineering, CAS
School of Cyberspace Security, UCAS

yinrong@iie.ac.cn

Xiangzhen Bo
Wuhan University of Technology

353145@whut.edu.cn

Xiaoshuai Hao
Xiaomi EV

haoxiaoshuai@xiaomi.com

Yong Liu
Renmin University of China
liuyonggsai@ruc.edu.cn

Jinwen Zhong
Institute of Information Engineering, CAS

zhongjinwen@iie.ac.cn

Can Ma
Institute of Information Engineering, CAS

macan@iie.ac.cn

Weiping Wang
Institute of Information Engineering, CAS

wangweiping@iie.ac.cn

Abstract

Large-scale pre-trained models have revolutionized Natural Language Processing
(NLP) and Computer Vision (CV), showcasing remarkable cross-domain gener-
alization abilities. However, in graph learning, models are typically trained on
individual graph datasets, limiting their capacity to transfer knowledge across
different graphs and tasks. This approach also heavily relies on large volumes of
annotated data, which presents a significant challenge in resource-constrained set-
tings. Unlike NLP and CV, graph-structured data presents unique challenges due to
its inherent heterogeneity, including domain-specific feature spaces and structural
diversity across various applications. To address these challenges, we propose a
novel structure-aware self-supervised learning method for Text-Attributed Graphs
(SSTAG). By leveraging text as a unified representation medium for graph learn-
ing, SSTAG bridges the gap between the semantic reasoning of Large Language
Models (LLMs) and the structural modeling capabilities of Graph Neural Net-
works (GNNs). Our approach introduces a dual knowledge distillation framework
that co-distills both LLMs and GNNs into structure-aware multilayer perceptrons
(MLPs), enhancing the scalability of large-scale TAGs. Additionally, we introduce
an in-memory mechanism that stores typical graph representations, aligning them
with memory anchors in an in-memory repository to integrate invariant knowl-
edge, thereby improving the model’s generalization ability. Extensive experiments
demonstrate that SSTAG outperforms state-of-the-art models on cross-domain
transfer learning tasks, achieves exceptional scalability, and reduces inference costs
while maintaining competitive performance.

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

1 Introduction

In recent years, large-scale pre-trained models have achieved revolutionary breakthroughs in natural
language processing (NLP) [1] and computer vision (CV) [2], demonstrating remarkable cross-
domain generalization capabilities [3]. However, the prevailing paradigm in graph learning remains
confined to training dedicated models for individual graph datasets [4, 5]. This single-graph modeling
approach suffers from two major limitations: (1) models are typically restricted to single or narrowly
defined tasks, lacking the ability to transfer knowledge across different graphs; and (2) model
performance heavily depends on the scale of annotated data, yet acquiring high-quality labels is often
costly and time-consuming, creating a significant bottleneck in low-resource scenarios.

The success of foundation models in language and vision stems from their domain invariance,
supported by unified lexical or pixel spaces. In contrast, developing graph foundation models is
challenging due to the intrinsic heterogeneity of graph-structured data. Graphs exhibit domain-
specific node and edge types, with diverse feature and label spaces, making cross-domain alignment
difficult. Moreover, structural diversity, such as acyclic citation networks versus multi-relational
cyclic knowledge graphs, further complicates knowledge transfer across domains. To address these
challenges, we leverage text as a unified representation medium for graph learning. Many real-world
graphs are inherently text-attributed, where raw textual features provide a domain-agnostic semantic
space. Large language models (LLMs) excel in semantic understanding and reasoning [6, 7, 8], but
struggle with topological reasoning [9, 10], where graph neural networks (GNNs) excel. Conversely,
GNNs lack the open-world knowledge embedded in LLMs, motivating a unified framework that
bridges their complementary strengths.

To bridge this gap, we propose a novel Structure-aware Self-supervised learning method for Text-
Attributed Graphs, called SSTAG. Specifically, to learn transferable invariants across graphs and
tasks, we design a generic template that unifies various tasks by contextualizing the nodes, edges, and
graphs for which we make predictions. For node or edge-level tasks on large-scale graphs, we employ
the Personalized PageRank (PPR) algorithm to sample subgraphs, which mitigates the differences in
graph structure across domains and enhances the scalability of the model. Additionally, we introduce
a new pre-training objective of co-distilling language models (LMs) and graph neural networks
(GNNs) into structure-aware multilayer perceptrons (MLPs), specifically tailored for self-supervised
learning on large-scale task-attribute graphs (TAGs). This approach offers a dual advantage: (1)
Through multimodal distillation, the MLP absorbs both the structural modeling capabilities of GNNs
and the semantic reasoning abilities of LLMs. (2) The lightweight MLP circumvents the high
computational overhead of LLMs, making it more suitable for practical deployment. This two-stage
knowledge transfer paradigm not only overcomes the domain limitations of single graph models but
also mitigates the structural processing limitations inherent in pure LLM approaches.

To summarize, our main contributions are as follows:

(1) We propose a general-purpose graph learning framework that unifies node-, edge-, and graph-level
prediction tasks within a single architecture. The unified design enables flexible adaptation and
effective knowledge transfer across heterogeneous graph domains and diverse downstream tasks,
overcoming the limitations of task-specific and domain-isolated models.

(2) We design a novel self-supervised pretraining objective that distills complementary knowledge
from large language models (LLMs) and graph neural networks (GNNs) into a structure-aware
multi-layer perceptron (MLP), combining semantic reasoning with structural understanding while
ensuring efficient inference.

(3) Extensive experiments conducted on multiple benchmark datasets demonstrate the superiority
of our proposed SSTAG framework: (a) it outperforms state-of-the-art baselines on cross-domain
transfer learning tasks; (b) it exhibits remarkable scalability on large-scale graphs compared to
existing GNN and LLM-based methods;(c) it significantly reduces inference cost while maintaining
competitive performance.

2 Related Work

Representation Learning on TAGs Research on Text-Attributed Graphs (TAGs) lies at the inter-
section of graph machine learning and natural language processing. Early approaches focused on

2

shallow text-based enhancements for graph embeddings [11, 12], where textual features are treated as
auxiliary node attributes within traditional graph algorithms. While computationally efficient, these
methods fail to capture the deep semantic interplay between textual content and graph structures.
Another class of graph learning models based on TAGs are LLMs-only approaches, such as LLaGA
[13] and GraphGPT [14]. These methods leverage instruction tuning to map graph-structured data
into the embedding space of large language models. The emergence of graph neural networks [15]
revolutionizes TAGs processing by enabling end-to-end representation learning. For example, TAPE
[16] leverages large language models to generate explanatory node descriptions, which are then
used as enriched features for training GNNs. Graph-LLM [17] converts graph structures into textual
sequences for downstream prediction via LLMs. Das et al. [18] explore the integration of graph
data with LLMs, along with the influence of multi-modal representations. CaR [19] extracts textual
captions from molecular SMILES strings using LLMs and feeds them into another language model
for fine-tuning. However, they primarily rely on supervised training, which limits their applicability
in low-resource or unlabeled scenarios.

Self-Supervised Learning on Graphs Self-supervised learning has emerged as a compelling
paradigm for learning representations from graph-structured data without the need for explicit labeling.
Existing work in this area can be broadly classified into two main categories: contrastive learning
methods and generative methods. Contrastive learning methods aim to learn graph representations by
maximizing the similarity between positive pairs while minimizing the similarity between negative
pairs. GraphCL [20] has significantly advanced contrastive learning techniques by introducing various
graph data augmentation strategies. These methods typically rely on effective strategies for pairing
positive and negative samples, along with robust GNN architectures to extract meaningful graph
features. More recently, methods like GPA [21] have introduced personalized graph enhancement
strategies to further improve the quality of learned representations. Generative methods, on the other
hand, focus on learning graph representations by predicting the missing or unobserved parts of the
graph. For instance, GraphMAE [22] employs GNN-based encoders and decoders to reconstruct
masked node features, while S2GAE [23] uses a similar approach to mask edges within the graph
and predict the missing links. However, these methods remain confined to single-graph settings and
face significant challenges in achieving cross-domain generalization.

3 Preliminaries

Text-Attributed Graphs Given a text-attributed graph G = {V, E , TV , TE ,A} with N nodes,
where V represents the set of nodes and E represents the set of edges. For each node v ∈ V , there
is an associated text tv ∈ TV that represents the node-level textual information. For each edge
evu ∈ E connecting nodes v and u, there is an associated text tevu

∈ TE that represents the edge-level
textual information. The adjacency matrix is denoted as A ∈ RN×N . In this work, we focus on
self-supervised learning on text-attributed graphs (TAGs). Specifically, the goal is to pre-train a
mapping function fθ : TV ×A → Rd or TE ×A → Rd such that the semantic information in TV or
TE and the topological information in A can be efficiently captured in a d-dimensional space in a
self-supervised manner.

Graph Neural Networks For graph-structured data, Graph Neural Networks (GNNs) are com-
monly used to instantiate fg. Specifically, the objective of GNNs is to update node represen-
tations by aggregating messages from their neighbors, as expressed by the following equation:
h
(k)
v = COM

(
h
(k−1)
v ,AGG

(
{h(k−1)

u : u ∈ N (v)}
))

, where h
(k)
v represents the representation of

node v at the k-th layer, and N (v) = {u | Av,u = 1} is the set of one-hop neighbors of node v.
In particular, we have h

(0)
v = xv, where xv = Emb(tv) ∈ RF is a F -dimensional feature vector

extracted from the textual attributes tv of nodes, and Emb(·) denotes the embedding function. The
AGG function is used to aggregate features from the neighbors, while the COM function combines
the aggregated neighbor information with the own node embedding from the previous layer.

4 Proposed Method

In this section, we propose SSTAG, a novel framework designed to learn robust and informative graph
representations by integrating structural and textual signals in a self-supervised manner. As shown
in Figure 1, the proposed method comprises three key components: the Unified Graph Task (UGT)

3

Raw text

Language Model Encoder

GNN
Encoder

Decoder

Mask

[CLS] T1 T3 Tn [SEP][MASK]

�퐶�� �1 �3 �� �����2

�퐶��

MLP
Distilling

PageRank (PPR) scores

��

��

��

��

��

(c) Knowledge Distillation(b) Knowledge Extraction(a) Unified Graph Task

Memory Cell �� ∑

�

��

���’Softmax

ℒ푀�

ℒ��

ℒ푚���

Node-Level

Edge-Level

Graph-Level

Figure 1: Overview of the proposed SSTAG framework.

module, the Knowledge Extraction from LLM (KEL) module, and the Knowledge Distillation(KD)
module. Given a text-attributed graph, SSTAG first constructs a generic and task-agnostic self-
supervised objective via the UGT module, which encodes both node structure and attribute semantics.
Subsequently, the KEL leverages a LLM to capture high-level semantic representations from the
node-associated textual attributes. These representations are aligned with graph-based representations
obtained from a GNN.To effectively bridge the modality gap between language and graph features,
we introduce a Knowledge Distillation module that transfers the complementary knowledge from both
the LLM and the GNN into a lightweight MLP, enabling efficient downstream adaptation. Finally,
the pre-trained SSTAG model can be fine-tuned for various downstream tasks at different granularity
levels, such as node classification, link prediction, and graph classification.

4.1 Unified Graph Task

Graphs from different domains often exhibit diverse structural patterns and serve distinct application
scenarios and task objectives. To address this heterogeneity, graph learning tasks are typically
categorized into three levels based on structural granularity: node-level tasks, edge-level tasks,
and graph-level tasks. Recent studies suggest that subgraph-based representations offer notable
advantages. On one hand, they enhance the expressive capacity of models by incorporating richer
local structures [24, 25]; on the other, they enable standardized task formulation across different
levels [26]. Motivated by this, we adopt a unified representation format that leverages target nodes
along with their corresponding context subgraphs.

Node-Level Tasks We design a subgraph sampling strategy that integrates the Personalized PageR-
ank (PPR) algorithm [27]. For a given node v, its importance score πv is computed as follows:

πv = α(I − (1− α)Ã)−1ev, (1)

where I is the unit matrix, Ã denotes the normalized adjacency matrix, α is the teleport factor, and
ev is a one-hot vector corresponding to node v. During sampling, the probability of selecting a node
u at the k-hop neighborhood is proportional to its relative importance score:

pk(u) =
πvu∑

w∈Nk(v)
πvw

, (2)

where Nk(v) denotes the set of k-hop neighbors of node v. Once the sampling is complete, we
construct the subgraph by extracting all edges among the selected nodes. It ensures a higher probability
of including structurally important nodes while preserving the local neighborhood structure.

Edge-Level Tasks For a target edge (u, v), we first apply the node-level subgraph sampling
strategy independently to each endpoint, generating two subgraphs Gu and Gv. The final subgraph
representation for the edge is obtained by taking the union of the two:

G(u,v) = Gu ∪ Gv. (3)

This approach effectively captures both the local context around each endpoint and the structural
characteristics of the edge itself, making it well-suited for link prediction and other edge-level tasks.

4

Graph-Level Tasks For graph-level prediction tasks such as molecular property prediction, each
graph instance is treated as a complete data sample without additional subgraph sampling. This is
because the graph itself already represents a self-contained unit of information.

4.2 Knowledge Extraction from LLM

Most existing self-supervised learning methods for graphs adopt GNNs as their backbone architecture
and rely on pre-processed node feature vectors as input [22, 28, 29]. However, these approaches
often fall short of capturing the rich semantic information embedded within graphs, particularly when
dealing with nodes that carry complex textual attributes. As previously discussed, Large Language
Models excel at understanding and processing textual information, having been trained on diverse and
extensive corpora. This enables them to acquire broad and transferable knowledge for interpreting
natural language attributes in graph data. To fully exploit the complementary strengths of structural
and textual information, we propose an end-to-end self-supervised learning framework for TAGs. Our
method integrates a pre-trained Language Model and a GNN in a cascaded architecture that serves as
a teacher model, enabling joint modeling of semantic and structural features. Specifically, we employ
Sentence Transformers (ST) [30] as the language model and GCN [15] as the graph encoder. These
two components collaboratively capture both the semantic content and topological structure of TAGs.

Inspired by the recent success of masked modeling techniques in natural language processing
[31, 32], we design a text-based masked autoencoder framework to enable large-scale self-supervised
pretraining on TAGs. By randomly masking portions of node textual attributes and requiring the model
to recover the missing content based on contextual and neighborhood information, our approach
effectively guides the model to learn latent semantic correlations and structural patterns. This
pretraining strategy significantly enhances the model’s generalization ability and expressiveness for a
variety of downstream tasks.

Masking Strategy During training, each batch processes a (sub)graph G = (V, E , TV), where V
denotes the set of nodes, E the set of edges, and TV the textual features associated with each node. To
prepare the textual input, the text of each node is augmented with special tokens: a [CLS] token is
added at the beginning to serve as the aggregate representation of the sentence (and thus the node),
and a [SEP] token is appended at the end to indicate the end of the sequence.

Let tv denote the raw textual feature of node v ∈ V . After tokenization and augmentation, the
tokenized input sequence becomes: tv = [[CLS], T1, T2, . . . , Tnv

, [SEP]], where Ti are the tokens of
the textual input and nv is the number of tokens for node v. To enable self-supervised learning, we
apply a token-level masking strategy inspired by masked language modeling. A subset of the tokens
in each tv is randomly selected and replaced with a special [MASK] token. This process is governed
by a stochastic masking function M(·), which determines which positions to mask in each token
sequence. Formally, for each token sequence tv , we generate a masked version t̃v such that:

t̃v = M(tv) = [[CLS], T̃1, T̃2, . . . , T̃nv
, [SEP]], (4)

where some T̃i are replaced with [MASK] tokens while others remain unchanged. The model is
then trained to reconstruct the original tokens at the masked positions based on the surrounding
textual context and the structural neighborhood encoded by the GNN. This encourages the model to
learn deep semantic representations that are sensitive to both local graph topology and node-specific
language attributes.

Encoder The teacher model comprises a language model (LM) fLM and a graph neural network
(GNN) fGNN. For each node v ∈ V , the masked textual feature sequence tv is encoded by the LM to
obtain hidden representations:

Ev = fLM(t̃v), (5)
where Ev ∈ R(nv+2)×d is to the output embeddings of nv subword tokens along with special tokens
such as [CLS] and [SEP]. The embedding of the [CLS] token, denoted by Ecls ∈ R|V|×d, is extracted
as the initial representation of nodes. To incorporate structural information, Ecls is propagated
through the GNN fGNN over the adjacency matrix A, yielding the fused representation Hcls:

Hcls = fGNN(A,Ecls). (6)

For each node v, we concatenate the textual embedding Ev , obtained from the masked forward pass,
with the GNN-enhanced [CLS] token representation Hcls

v , followed by a linear transformation:
Hv = Linear

(
Ev ⊕

(
Hcls

v ⊗ 1⊤
nv+2

))
, (7)

5

where 1nv+2 ∈ Rnv+2 is a column vector of ones. The outer product Hcls
v ⊗ 1⊤

nv+2 replicates the
graph-aware node representation across all token positions, which matches the dimensionality of
Ev ∈ R(nv+2)×d. The symbol ⊕ denotes horizontal concatenation, resulting in a fused representation
of shape (nv + 2)× 2d. The linear layer projects this fused matrix back to the original embedding
space: Linear(·) : R2d → Rd. Finally, a language modeling head (MLMHead), implemented as
a multi-layer perceptron (MLP), maps the transformed embeddings into the vocabulary space to
produce token-level prediction probabilities: Pv = MLMHead(Hv).

4.3 Knowledge Distillation

To enable efficient and scalable deployment, we design a lightweight student model that approximates
the teacher’s representations while preserving both semantic and structural information. Unlike
the teacher model, which relies on explicit message passing, the student model incorporates graph
structure implicitly through feature augmentation, thus significantly reducing computational overhead.

The student model adopts a structure-aware multilayer perceptron (MLP) to approximate the teacher’s
representations. For masked textual feature sequence of each node t̃v , the input to the student model
is constructed by augmenting the [CLS] embedding Ecls

v ∈ R1×d with its corresponding Personalized
PageRank (PPR) scores pv ∈ R1×dp relative to its subgraph neighbors. Specifically, the PPR scores
encode the relative importance of neighboring nodes and thereby inject structural information into the
input features. The node representation is obtained by applying fMLP over the concatenated features:

H̃v = fMLP
([
Ecls

v ∥ pv
])

, (8)

where ∥ represents vector concatenation. By leveraging PPR-based structural priors, the student
model can efficiently capture graph topology without relying on explicit message passing, enabling
lightweight yet structure-aware representation learning.

Memory Bank To extract representative and diverse features, we introduce a memory bank that
stores a set of prototypical representations throughout training. The memory bank comprises L
fixed-size memory anchors {aj ∈ Rd}Lj=1, where each anchor serves as a prototype capturing typical
embedding patterns of (sub)graphs.

Given a node v, we compute an activation score svj for each memory anchor aj , which quantifies the
similarity between the input embedding and the stored prototypes. Specifically, the memory anchors
aj are initialized from a uniform distribution, following standard embedding initialization practices
to ensure stable variance and prevent early model collapse.

During training, the memory anchors are progressively refined through attention-based interactions
with incoming graph representations. The activation score svj is computed as:

svj = S(H̃v,aj), (9)

where S(·, ·) denotes a distance or similarity metric. We then apply a softmax function over the L
activation scores to obtain normalized scores s′vj :

s′vj =
esvj∑L
k=1 e

svk

, Ĥv =

L∑
j=1

s′vjaj , (10)

where Ĥv ∈ R1×d denotes the reconstructed node embedding. The memory bank preserves invariant
and semantically meaningful knowledge across training instances. By aligning graph embeddings
with prototypical memory anchors, the model is encouraged to focus on stable and consistent features,
mitigating overfitting and enhancing generalization to unseen graphs. This mechanism strengthens
the model’s robustness and predictive capability, particularly in diverse or noisy graph scenarios.

4.4 Optimization Objectives

Mask Loss We adopt the Masked Language Modeling (MLM) objective for training. The under-
lying intuition behind this design is that the model can learn to reconstruct masked tokens of each
node’s text by leveraging the textual information from its neighboring nodes. This encourages the
model to simultaneously understand local semantic content and exploit the structural dependencies

6

within the graph. The training loss is computed using the cross-entropy loss function for each node
v ∈ V , targeting the prediction of the original tokens at the masked positions. The loss is defined as:

Lmask = − 1

|V|
∑
v∈V

nv∑
i=1

I(v, i) · logPv[i, Ti], (11)

where |V| is the number of nodes, and I(v, i) is an indicator function, which equals 1 if the i-th token
in the tokenized text of node v is a [MASK] token and 0 otherwise. Pv[i, Ti] denotes the predicted
probability of assigning the ground-truth token Ti to the i-th position in the sequence of node v, as
output by the model. By minimizing this loss, the model is trained to accurately recover masked
tokens using the textual context and the structural information encoded in the graph, thereby fostering
more informative and robust node representations.

Consistency Loss In addition to the masked language modeling (MLM) loss, we further introduce
a consistency loss to impose regularization constraints on the latent space, thereby enhancing the
stability and alignment of learned representations. The consistency loss consists of two components:
one enforces alignment between the student model and the teacher model, while the other maintains
consistency with memory-based anchors. For student-teacher consistency, we adopt cosine similarity
to encourage the student model (typically a lightweight MLP) to produce embeddings close to those
generated by the teacher model (the cascaded LM-GNN architecture). Specifically, given the student
representation H̃v and the teacher representation Hv for node v, the loss is formulated as:

LST = 1− 1

|V|
∑
v∈V

(
1− HT

v H̃v

∥Hv∥ · ∥H̃v∥

)
. (12)

The memory consistency loss enables the model to update the corresponding memory anchors, thereby
capturing invariant and prototypical knowledge about generalized graph representations. Specifically,
the memory consistency loss is defined as:

LME =
1

|V|
∑
v∈V

∥∥∥Ĥv − H̃v

∥∥∥2 , (13)

where Ĥv denotes the original structure-aware graph embedding for node v, and H̃v represents
the aligned embedding. By minimizing this loss, the model is encouraged to preserve structural
information within the learned representations and refine the memory anchors. This facilitates a more
accurate encoding of the essential and invariant characteristics of the graph, thereby enhancing the
model’s generalization ability across downstream tasks.

The overall loss is then a sum of these three components:

L = Lmask + LST + LME. (14)

By jointly optimizing the MLM loss and the consistency loss, the model is encouraged to capture
both semantic and structural information in a stable and generalizable way, leading to more robust
node representations for downstream graph tasks.
Remark 4.1. During inference, only the student model is employed to generate node embeddings.
Given an unseen (sub)graph and a set of anchor nodes for which we aim to obtain representations,
we first use the language model fLM to encode the raw textual attributes of all nodes in the graph.
Subsequently, the [CLS] tokens from each node are passed into the MLP module fMLP to produce
propagated representations, which serve as the final embeddings for each node. Finally, we extract
the embeddings corresponding to the specified anchor nodes for downstream use.

5 Experiments

5.1 Experimental Setting

We adopt the widely used linear probing protocol to evaluate the representation learning capability of
the self-supervised pretraining models on unseen datasets. Specifically, we train a linear classifier on
top of the frozen embeddings produced by the pre-trained models. Both our model and all baseline

7

Table 1: Experimental results for self-supervised representation learning. We report the accuracy (%
) for the node classification task and the ROC - AUC score (%) for the link prediction task. The
proposed method and other self-supervised benchmarks are pretrained on ogbn - Paper100M and then
evaluated on individual target datasets. The best results are bold, and the second best are underlined.

Node Classification (Accuracy, %) Link Prediction (ROC-AUC, %)
Cora Pubmed ogbn-Arxiv WikiCS Products FB15K237 WN18RR ML1M

GCN 57.62 ± 0.21 55.18 ± 0.37 60.85 ± 0.13 53.24 ± 0.23 61.95 ± 0.32 72.52 ± 0.29 72.05 ± 0.31 66.64 ± 0.52
GIN 57.97 ± 0.45 48.98 ± 0.21 61.27 ± 0.25 52.32 ± 0.36 63.83 ± 0.15 73.60 ± 0.33 73.98 ± 0.39 65.71 ± 0.37
GAT 66.29 ± 0.24 57.30 ± 0.35 63.34 ± 0.49 50.91 ± 0.34 64.94 ± 0.28 72.14 ± 0.43 72.57 ± 0.65 66.89 ± 0.34
GraphCL 72.56 ± 0.52 67.27 ± 1.21 62.15 ± 0.21 55.96 ± 1.02 72.18 ± 0.42 65.34 ± 0.87 68.52 ± 0.55 67.02 ± 0.49
BGRL 74.42 ± 0.81 68.17 ± 0.22 69.04 ± 0.14 59.93 ± 0.35 73.08 ± 0.28 64.92 ± 0.36 66.47 ± 0.43 68.10 ± 0.22
GraphMAE 73.54 ± 0.38 68.38 ± 1.18 68.54 ± 0.20 54.68 ± 0.55 72.65 ± 0.62 62.87 ± 0.84 70.51 ± 0.32 68.57 ± 0.34
GraphMAE2 73.92 ± 0.64 68.76 ± 0.55 69.07 ± 0.27 58.04 ± 0.47 74.05 ± 0.33 60.54 ± 0.39 71.43 ± 0.11 69.13 ± 1.01
Graph-LLM 73.88 ± 0.35 68.62 ± 0.32 70.11 ± 0.52 62.16 ± 0.48 74.02 ± 0.34 82.47 ± 0.56 73.46 ± 0.61 70.21 ± 0.51
UniGraph 74.65 ± 0.56 70.84 ± 0.51 70.89 ± 0.44 65.47 ± 0.51 76.58 ± 0.44 85.01 ± 0.63 80.55 ± 0.27 70.02 ± 0.28
SSTAG (Ours) 75.09 ± 1.02 72.65 ± 0.35 72.85 ± 0.43 68.76 ± 0.62 78.27 ± 0.48 88.64 ± 0.49 82.42 ± 0.66 71.24 ± 0.42

Table 2: Experimental results for self-supervised representation learning. We report the ROC - AUC
(%) for the graph classification task and RMSE (⇓) for the graph regression task. “⇓" indicates
that lower RMSE values correspond to better model performance. SSTAG and other self-supervised
benchmarks are pretrained on ogbn-Paper100M and then evaluated on individual target datasets.

Graph Classification (ROC-AUC, %) Graph Regression (RMSE, ⇓)
HIV BBBP BACE MUV esol LIPO CEP

GCN 74.15 ± 0.26 65.43 ± 0.33 69.02 ± 0.38 71.82 ± 0.26 1.379 ± 0.034 0.824 ± 0.034 1.342 ± 0.036
GIN 74.38 ± 0.24 66.07 ± 0.52 69.85 ± 0.32 72.35 ± 0.14 1.295 ± 0.021 0.819 ± 0.021 1.296 ± 0.015
GAT 73.82 ± 0.43 66.82 ± 0.15 68.51 ± 0.20 72.06 ± 0.42 1.324 ± 0.027 0.821± 0.027 1.305 ± 0.008
GraphCL 75.55 ± 0.29 68.74 ± 0.38 73.64 ± 0.56 74.27 ± 0.37 1.304 ± 0.024 0.763 ± 0.024 1.326 ± 0.016
BGRL 75.32 ± 0.44 67.35 ± 0.42 75.14 ± 0.21 75.13 ± 0.35 1.162 ± 0.018 0.784 ± 0.018 1.293 ± 0.021
GraphMAE 76.13 ± 0.12 69.51 ± 0.14 76.28 ± 0.43 75.88 ± 0.26 1.116 ± 0.015 0.754 ± 0.015 1.288 ± 0.008
GraphMAE2 77.84 ± 0.35 71.62 ± 0.25 77.41 ± 0.18 77.69 ± 0.42 1.069 ± 0.006 0.728 ± 0.006 1.262 ± 0.011
Graph-LLM 76.43 ± 0.20 72.54 ± 0.37 80.65 ± 0.33 76.13 ± 0.31 1.114 ± 0.024 0.719 ± 0.024 1.232 ± 0.009
UniGraph 77.27 ± 0.31 73.28 ± 0.30 79.23 ± 0.26 76.88 ± 0.52 1.090 ± 0.032 0.710 ± 0.032 1.195 ± 0.012
SSTAG (Ours) 79.52 ± 0.26 74.38 ± 0.35 82.06 ± 0.31 79.86 ± 0.40 1.043 ± 0.020 0.698 ± 0.003 1.186 ± 0.006

self-supervised methods are first pre-trained on the large-scale citation network ogbn-Paper100M.
Subsequently, we evaluate the learned representations on twelve graph datasets spanning five distinct
domains. For baselines, we compare our method with the state-of-the-art generative self-supervised
methods for graphs: GraphMAE [22] and GraphMAE2 [33], contrastive methods such as GraphCL
[20] and BGRL [34], and methods specifically tailored for TAGs, including UniGraph [35] and Graph-
LLM [9]. Since most of these baselines are not originally designed for cross-domain evaluation, we
use the ST language model to unify the input node features across different graphs. To ensure a fair
comparison, all baselines employ GCN as the backbone GNN, consistent with our method. Detailed
descriptions of the datasets, baselines and hyperparameter settings can be found in Appendix A.

5.2 Self-Supervised Representation Learning

We comprehensively evaluate the proposed SSTAG framework on four graph representative tasks:
node classification, link prediction, graph classification, and graph regression. The overall experi-
mental results are summarized in Tables 1 and 2, from which three key observations can be drawn.
(1) Across all tasks and datasets, SSTAG consistently outperforms a wide range of existing graph
self-supervised learning methods. This highlights its strong generalization capability in cross-domain
graph learning scenarios, where data distributions and structural patterns vary significantly. By
capturing richer structural and semantic dependencies, SSTAG generates more discriminative and
transferable graph embeddings, enabling it to adapt effectively to unseen graphs. (2) As a standalone
pretraining model, SSTAG exhibits remarkable performance when transferred to downstream tasks.
In most cases, it achieves results comparable to, or even better than, fully supervised baselines,
particularly in low-label regimes where annotated data is scarce. For instance, on the BACE graph
classification dataset, SSTAG achieves an accuracy of 82.06% after fine-tuning, which surpasses
the supervised baseline by 12.21%. This clearly demonstrates the label efficiency of our method,
underscoring its potential in real-world scenarios where labeled graph data is often limited or costly
to obtain. (3) Another important finding is that SSTAG benefits from a unified task template, which
allows it to seamlessly adapt to tasks of different granularities, ranging from local node-level tasks to
holistic graph-level tasks. This flexible adaptation mechanism contributes to its robust performance

8

Table 3: Ablation studies of key components.

WikiCS ogbn-Arxiv FB15K237 MUV
SSTAG 68.76 72.85 88.64 79.86
W/o Lmask 67.02 70.51 85.84 76.22
W/o LST 67.75 71.86 87.12 78.65
W/o LME 66.53 71.14 85.96 76.43
W/o GNN 64.34 69.53 84.32 70.57
W/o PPR 68.12 72.37 88.4 79.21

Table 4: Analysis of distillation and inference
efficiency on ogbn-Arxiv.

Model Inference Time
(min)

Accuracy
(%) Parameters

GNN 13.4 73.91 7.1B
Distilled MLP 8.7 72.85 22M
∆ Change ↓ 35.1% ↓ 1.06% ↓ 99.7%

Table 5: Analysis of LMs and GNNs choices.

#parameters ogbn-Arxiv FB15K237 MUV

Sentence Transformer [30] ∼ 66M 72.85 88.64 79.86
DeBERTa-v3-base [36] ∼184M 72.53 88.83 79.54
E5-large-v2 [37] ∼335M 73.21 89.02 80.01
LLaMA-2-7B-hf [38] ∼7B 73.68 89.67 80.39
GCN − 72.85 88.64 79.86
GIN − 72.43 89.13 80.04
GAT − 73.02 88.92 80.33

in complex multi-task settings, where heterogeneous objectives must be addressed simultaneously.
The ability to transfer knowledge across tasks and granularities further underscores the scalability
and versatility of the proposed framework.

5.3 Ablation Studies

Ablation on Key Components We perform an ablation study to evaluate the contribution of each
component in SSTAG, with results summarized in Table 3. The variant “W/o Lmask” removes the
masked modeling objective and trains the model only with the consistency loss, and the performance
drop highlights the role of masked modeling in capturing fine-grained structural and semantic
dependencies. The variant “W/o LST” discards the student–teacher consistency while retaining
masked modeling and memory-based consistency, and the degradation indicates that the student–
teacher design is crucial for stabilizing training and improving cross-view alignment. In contrast,
“W/o LME” eliminates memory-based consistency while keeping masked modeling and student–
teacher consistency, and the observed decline suggests that memory-based consistency is effective
in preserving long-range dependencies and mitigating representation drift. The setting “W/o GNN”
replaces the graph neural network encoder with a standard MLM objective for fine-tuning the language
model, followed by distillation into an MLP, and the substantial performance loss demonstrates the
necessity of graph-structured message passing for relational reasoning. Finally, “W/o PPR Sampling”
substitutes personalized PageRank-based sampling with simple neighborhood sampling, and the
reduction confirms that PPR-based sampling provides more informative subgraph contexts and
alleviates bias from naive neighborhood expansion. Overall, the consistent degradation across all
variants demonstrates that each component is indispensable, and their joint design is critical to the
effectiveness and robustness of SSTAG.

Impact of Model Distillation We further evaluate the effectiveness and efficiency of the distilled
MLP model in comparison to the original GNN teacher. Specifically, we measure inference accuracy,
computational efficiency, and model size. The distilled MLP achieves a 35.1% improvement in
inference efficiency and a 99.7% reduction in the number of parameters, while incurring only a minor
accuracy drop of 1.06% relative to the GNN. These results demonstrate that our distillation approach
preserves the representational power of the teacher model while substantially reducing computational
and memory overhead. As shown in Table 4, the distilled MLP consistently maintains high accuracy
across multiple downstream tasks, confirming that the co-distillation strategy effectively transfers
knowledge from the GNN to the lightweight student model without sacrificing task performance.

Analysis of LMs and GNNs Choices Table 5 presents a comparative analysis of different language
models (LMs) and GNNs as backbone architectures. To assess the impact of LMs, we evaluate several
widely used pre-trained models. Compared with SentenceTransformers (ST, 110M parameters),
larger models such as E5-large-v2 (335M) [37] and LLaMA-2-7B-hf (7B) [38] yield consistent
improvements. For instance, replacing ST with LLaMA-2-7B-hf on the ogbn-Arxiv node classifica-

9

Table 6: Comparison of computational cost and performance of different methods.

Dataset Method Pre-training Downstream Training Downstream Inference Accuracy(%)

ogbn-Arxiv

GAT − 24.6mins 5.8min 63.34
GraphCL − 32.6mins 4.9min 62.15
GraphMAE2 − 5.2h 5.1min 68.76
Graph-LLM 24.2h − 12.6min 72.85
SSTAG (Ours) 22.6h − 8.7min 72.85

tion task improves accuracy by 0.82%, highlighting the benefit of higher-capacity LMs. However,
these gains incur significantly higher computational and memory costs, revealing an inherent trade-
off between accuracy and efficiency. Hence, LM selection should balance task requirements and
available resources: smaller models suit low-latency or resource-limited settings, while larger ones
favor accuracy-oriented applications. For GNNs, models with stronger aggregation capability, such
as GraphSAGE and GAT, generally outperform simpler architectures like GCN, indicating that ex-
pressive structural encoders complement high-capacity LMs in enhancing downstream performance.
Further LM configuration details are provided in Appendix A.

5.4 Efficiency Analysis

The overall time complexity of the proposed method is primarily dominated by the language model
(LM), owing to its long-sequence processing. During pretraining, the computational cost is approxi-
mately O(N · (L2d+ Ltd

2)), where N denotes the number of nodes, Lt the input sequence length,
and d the embedding dimension. The neighborhood aggregation in the graph neural network (GNN)
introduces an additional overhead of O(Nd2+Ed), where E is the number of edges; in dense graphs
(E ∝ N2), this can grow to O(N2d). In the student model, explicit message passing is replaced by
structure-aware MLPs with PPR-based feature injection, thereby reducing the complexity to O(Nd).
Memory retrieval incurs an additional cost of O(NLd), where L is the number of memory anchors.
Other components, such as masked prediction in multimodal interaction (O(nmasked · nv), where
nmasked is the number of masked tokens) and consistency loss (O(Nd)), introduce relatively minor
computational overhead. Overall, the dominant factor remains the LM complexity, while the student
model and auxiliary modules are designed to maintain scalability in large-scale graph settings.

As shown in Table 6, the training time and memory overhead of SSTAG are comparable to those
of training a language model (LM) using only the masked language modeling (MLM) objective.
This suggests that the overall computational cost of our framework is primarily dominated by the
LM. Consequently, when using similar LMs, the runtime of SSTAG is on par with other LM-based
approaches. SSTAG is designed as a pretraining-centric model, where most of the computational
cost is incurred during the pretraining phase. However, it offers a key advantage at inference time
by allowing the use of a distilled student model (structure-aware MLP) resulting in significantly
lower inference overhead. We further compare the training and inference costs of our model with
GNN-based methods. We conduct experiments on two datasets of different scales: ogbn-arXiv and
WikiCS. Although SSTAG incurs longer pretraining time, its inference time on downstream datasets
is comparable to or even shorter than the combined training and inference time of GNN-based
methods. This advantage becomes more pronounced as the size and number of downstream datasets
increase. While LMs generally have larger parameter counts, our framework mitigates this drawback
by requiring only forward passes during downstream inference, thereby avoiding the additional
memory overhead of backpropagation during training.

6 Conclusion

In this work, we propose SSTAG, a structure-aware self-supervised framework tailored for text-
attributed graphs, aiming to bridge the gap between the structural reasoning strengths of GNNs and
the semantic understanding capabilities of LLMs. By leveraging text as a unified medium, SSTAG
tackles the challenge of knowledge transfer across heterogeneous graph domains. Our approach
introduces a generic prediction template for node-, edge-, and graph-level tasks, along with a novel
co-distillation objective that fuses multimodal knowledge into a lightweight, structure-aware MLP.
Extensive experiments demonstrate that SSTAG not only achieves superior performance across
cross-domain and large-scale settings but also substantially reduces inference costs, making it a
promising direction for practical and scalable graph representation learning.

10

Acknowledgment

This work is supported in part by the National Natural Science Foundation of China (No.62106259,
No.62076234), Beijing Outstanding Young Scientist Program (NO.BJJWZYJH012019100020098),
and Beijing Natural Science Foundation (No. 4222029).

References
[1] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu,

Yulin Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale
pre-trained language models. Nature Machine Intelligence, 5(3):220–235, 2023.

[2] Xiaowei Hu, Zhe Gan, Jianfeng Wang, Zhengyuan Yang, Zicheng Liu, Yumao Lu, and Lijuan
Wang. Scaling up vision-language pre-training for image captioning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 17980–17989, 2022.

[3] Zhen Wang, Zhifeng Gao, Hang Zheng, Linfeng Zhang, Guolin Ke, et al. Exploring molecular
pretraining model at scale. Advances in Neural Information Processing Systems, 37:46956–
46978, 2024.

[4] Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. Learning to pre-train graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pages
4276–4284, 2021.

[5] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 1857–1867, 2020.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[7] Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang,
Shaochen Zhong, Bing Yin, and Xia Hu. Harnessing the power of llms in practice: A survey on
chatgpt and beyond. ACM Transactions on Knowledge Discovery from Data, 18(6):1–32, 2024.

[8] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen,
Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language
models. ACM transactions on intelligent systems and technology, 15(3):1–45, 2024.

[9] Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang,
Dawei Yin, Wenqi Fan, Hui Liu, et al. Exploring the potential of large language models (llms)
in learning on graphs. ACM SIGKDD Explorations Newsletter, 25(2):42–61, 2024.

[10] Xiao Li, Li Sun, Mengjie Ling, and Yan Peng. A survey of graph neural network based
recommendation in social networks. Neurocomputing, 549:126441, 2023.

[11] Yanchao Tan, Zihao Zhou, Hang Lv, Weiming Liu, and Carl Yang. Walklm: A uniform language
model fine-tuning framework for attributed graph embedding. Advances in neural information
processing systems, 36:13308–13325, 2023.

[12] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A
survey of approaches and applications. IEEE transactions on knowledge and data engineering,
29(12):2724–2743, 2017.

[13] Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: large language
and graph assistant. In Proceedings of the 41st International Conference on Machine Learning,
pages 7809–7823, 2024.

[14] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 491–500, 2024.

11

[15] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, 2017.

[16] Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi.
Harnessing explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation
learning. In 12th International Conference on Learning Representations, ICLR 2024, 2024.

[17] Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, and Yang
Yang. Graphllm: Boosting graph reasoning ability of large language model. arXiv preprint
arXiv:2310.05845, 2023.

[18] Debarati Das, Ishaan Gupta, Jaideep Srivastava, and Dongyeop Kang. Which modality should
I use - text, motif, or image? : Understanding graphs with large language models. In Kevin
Duh, Helena Gómez-Adorno, and Steven Bethard, editors, Findings of the Association for
Computational Linguistics: NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pages
503–519, 2024.

[19] Chen Qian, Huayi Tang, Zhirui Yang, Hong Liang, and Yong Liu. Can large language models
empower molecular property prediction? arXiv preprint arXiv:2307.07443, 2023.

[20] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. Advances in neural information processing
systems, 33:5812–5823, 2020.

[21] Xin Zhang, Qiaoyu Tan, Xiao Huang, and Bo Li. Graph contrastive learning with personalized
augmentation. IEEE Transactions on Knowledge and Data Engineering, 2024.

[22] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM
SIGKDD conference on knowledge discovery and data mining, pages 594–604, 2022.

[23] Qiaoyu Tan, Ninghao Liu, Xiao Huang, Soo-Hyun Choi, Li Li, Rui Chen, and Xia Hu. S2gae:
Self-supervised graph autoencoders are generalizable learners with graph masking. In Pro-
ceedings of the sixteenth ACM international conference on web search and data mining, pages
787–795, 2023.

[24] Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting
for graph neural networks. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 2120–2131, 2023.

[25] Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training
and downstream tasks for graph neural networks. In Proceedings of the ACM web conference
2023, pages 417–428, 2023.

[26] Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In The Twelfth
International Conference on Learning Representations, ICLR 2024, 2024.

[27] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford infolab, 1999.

[28] Ruyue Liu, Rong Yin, Yong Liu, and Weiping Wang. Aswt-sgnn: Adaptive spectral wavelet
transform-based self-supervised graph neural network. In Proceedings of the AAAI conference
on artificial intelligence, volume 38, pages 13990–13998, 2024.

[29] Ruyue Liu, Rong Yin, Yong Liu, and Weiping Wang. Unbiased and augmentation-free self-
supervised graph representation learning. Pattern Recognition, 149:110274, 2024.

[30] Nils Reimers and Iryna Gurevych. Making monolingual sentence embeddings multilingual
using knowledge distillation. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 2023.

[31] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16000–16009, 2022.

12

[32] Huanjing Zhao, Beining Yang, Yukuo Cen, Junyu Ren, Chenhui Zhang, Yuxiao Dong, Evgeny
Kharlamov, Shu Zhao, and Jie Tang. Pre-training and prompting for few-shot node classification
on text-attributed graphs. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 4467–4478, 2024.

[33] Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie Tang.
Graphmae2: A decoding-enhanced masked self-supervised graph learner. In Proceedings of the
ACM web conference 2023, pages 737–746, 2023.

[34] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar
Veličković, and Michal Valko. Bootstrapped representation learning on graphs. In ICLR
2021 workshop on geometrical and topological representation learning, 2021.

[35] Yufei He, Yuan Sui, Xiaoxin He, and Bryan Hooi. Unigraph: Learning a unified cross-domain
foundation model for text-attributed graphs. In Yizhou Sun, Flavio Chierichetti, Hady W.
Lauw, Claudia Perlich, Wee Hyong Tok, and Andrew Tomkins, editors, Proceedings of the 31st
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, V.1, KDD 2025, pages
448–459, 2025.

[36] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced
bert with disentangled attention. In International Conference on Learning Representations,
2021.

[37] Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan
Majumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training.
arXiv preprint arXiv:2212.03533, 2022.

[38] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[39] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020.

[40] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

[41] Haiteng Zhao, Shengchao Liu, Ma Chang, Hannan Xu, Jie Fu, Zhihong Deng, Lingpeng Kong,
and Qi Liu. Gimlet: A unified graph-text model for instruction-based molecule zero-shot
learning. Advances in neural information processing systems, 36:5850–5887, 2023.

[42] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, 2019.

[43] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,
2018.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .

14

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the dissertation complies in all respects with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This paper is a fundamental study of dynamic graph data, not related to a
specific application, and does not address the societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This thesis does not present a high risk of misuse or dual use.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Assets used in the paper have been appropriately noted.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New assets introduced in the document are well documented and available
with the asset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Crowdsourcing experiments and studies with human subjects are not included
in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Details of Experiments

The supplementary material provides additional details on the experiments section that could not be
included in the main manuscript due to page limitations.All experiments were conducted on a Linux
server equipped with 945GB of RAM and eight NVIDIA A100 GPUs, each with 40GB of memory.
The implementation of our method is available at https://github.com/Liury925/SSTAG.

A.1 Datasets

In this section, we describe the datasets used in this work. The overall statistics for each dataset are
given in Table 7.

Cora The Cora [9] dataset represents a co-citation graph of academic papers in the field of computer
science. In Graph-LLM, the authors reconstruct this dataset because the commonly used Cora version
in the GNN community relies on bag-of-words features, making it difficult to retrieve the original
text. The newly collected Cora dataset contains 2,708 nodes and 10,556 edges, maintaining the same
graph structure as the original version.

PubMed The PubMed [26] dataset is a co-citation graph of biomedical research papers focused
on diabetes mellitus. The data source and processing procedure follow the same approach as the
Cora dataset. After preprocessing, the dataset contains 19,717 nodes and 88,648 edges. For the node
classification task, nodes are categorized into three classes: Diabetes mellitus, experimental, Diabetes
mellitus, type 1, and Diabetes mellitus, type 2. The standard train/validation/test split consists of 60
training nodes, 500 validation nodes, and 19,157 test nodes.

ogbn-Arxiv The Arxiv [39] dataset is a large-scale citation graph constructed from academic papers
published on the arXiv platform. The graph comprises 169,343 nodes and 1,166,243 edges. It is
primarily used for the node classification task, where each node corresponds to a paper, and edges
represent citation relationships. The dataset includes a total of 40 distinct classes. The standard data
split contains 90,941 training, 29,799 validation, and 48,603 test nodes.

ogbn-Papers100M The ogbn-Papers100M [39] dataset is part of the Open Graph Benchmark
(OGB) and contains over 111 million nodes and 1.6 billion edges. Each node represents a paper
from the Microsoft Academic Graph, and edges denote citation relationships. The task is node
classification, where the goal is to predict the field of study for each paper. Due to its massive scale,
the dataset is designed to evaluate the scalability and efficiency of graph learning algorithms.

WikiCS The WikiCS [26] is a graph dataset constructed from the English Wikipedia, where nodes
correspond to articles and edges represent hyperlink connections. Each article is associated with
textual features and is labeled by one of several pre-defined classes. The task is semi-supervised node
classification, and it includes 10 different training/validation/test splits, allowing for robust evaluation
under few-shot settings.

Products The Products [39] dataset is part of the Amazon co-purchase graph, where nodes are
products and edges connect products frequently bought together. It is included in the OGB benchmark
as ogbn-products. Each node is associated with a multi-hot encoded feature vector and a category
label. The dataset is used for node classification, with over 2 million nodes and 60+ classes.

FB15K237 FB15k237 [26] is a commonly used benchmark in knowledge graph completion tasks.
It is a refined version of the original FB15k dataset, which was curated from Freebase. The refinement
removes inverse relations to avoid test leakage. The dataset includes entities as nodes and relations as
labeled edges, and the primary task is link prediction or knowledge graph completion.

WN18RR WN18RR [26] is a benchmark knowledge graph dataset derived from WordNet. It is a
variant of WN18 with inverse relations removed to prevent test leakage. The graph consists of entities
and labeled edges representing lexical relationships such as hypernymy and synonymy. It is widely
used for evaluating link prediction models in knowledge graphs.

21

https://github.com/Liury925/SSTAG

Table 7: Statistics of text-attributed graph datasets.

Dataset Avg. #N Avg. #E #G Task level Task(class) Domain Split (train/val/test)

Cora 2,708 10,556 1 Node classification(7) Citation 140/500/2,068
Pubmed 19,717 88,648 1 Node classification(3) Citation 60/500/19,157

ogbn-Arxiv 169,343 1,166,243 1 Node classification(40) Citation 90,941/29,799/48,603
ogbn-Papers100M 111,059,956 1,615,685,872 1 Node classification(172) Citation 1,196,087/125,265/214,326

WikiCS 11,701 216,123 1 Node classification(10) Web link 580/1,769/5,847
Products 54,025 144,638 1 Node classification(47) Co-purchase 14,695/1,567/36,982
fb15k237 14,541 310,116 1 Link classification(237) Knowledge 272,115/17,535/20,466
WN18RR 40,943 93,003 1 Link classification(11) Knowledge 86,835/3,034/3,134

ML1M 9,923 2,000,418 1 Link classification(5) Movie rating 850,177/50,011/100,021
HIV 25.51 54.94 41,127 Graph classification(2) molecular 32,901/4,113/4,113

BBBP 24.06 51.91 2,039 Graph classification(2) molecular 1,631/204/204
BACE 34.09 73.72 1,513 Graph classification(2) molecular 1,210/151/152
MUV 24.23 52.56 93,087 Graph classification(17) molecular 74,469/9,309/9,309
ESOL 13.29 27.35 1,128 Graph Regression molecular 902/113/113
CEP 38.02 41.00 29978 Graph Regression molecular 23,982/2,998/2,998
LIPO 27.04 59.00 4,200 Graph Regression molecular 3,360/420/420

ML1M The MovieLens-1M [40] dataset is a widely used benchmark for recommender systems. It
can be represented as a bipartite user-item interaction graph. Node features include user and item
attributes such as age, gender, occupation, and genres. The typical task is rating prediction or top-k
recommendation.

HIV The HIV [41] dataset is a molecular graph classification dataset from the MoleculeNet
benchmark. Each molecule is represented as a graph, where atoms are nodes and bonds are edges.
The binary classification task is to predict whether a molecule is active against HIV. The dataset is
used to evaluate models in molecular property prediction.

BBBP The BBBP [41] dataset is a binary classification dataset that predicts whether a given
compound can penetrate the blood–brain barrier. Each data point is a molecular graph with atom-level
features. This dataset is particularly relevant for drug discovery applications and poses a challenge
due to its relatively small size and imbalanced labels.

BACE The BACE [41] dataset contains molecular graphs used to predict the binding results of
human β-secretase 1 (BACE-1) inhibitors. It is a binary classification task that plays a role in
early-stage drug development, especially for Alzheimer’s disease. Graph-based models leverage atom
and bond features to make predictions.

MUV The MUV (Maximum Unbiased Validation) [41] dataset is designed to serve as a challenging
benchmark for virtual screening. It includes a collection of molecular graphs with multiple binary
classification tasks, each corresponding to a biological target. The dataset is highly imbalanced and
contains a significant number of decoys, making it suitable for testing model robustness.

ESOL The ESOL [41] dataset is used for regression tasks where the goal is to predict the aqueous
solubility of compounds. Molecules are represented as graphs, and the target is a continuous solubility
value. This dataset is important for evaluating models in pharmaceutical and materials chemistry.

CEP The CEP (Clean Energy Project) [41] dataset comprises molecular graphs of organic photo-
voltaic compounds. Each molecule has a computed power conversion efficiency (PCE), making the
task a regression problem. It is one of the largest publicly available molecular property datasets and
is critical for materials discovery in renewable energy research.

LIPO The LIPO [41] dataset is a molecular property prediction dataset where the target is the
logarithm of the partition coefficient between octanol and water (logP), reflecting the molecule’s
lipophilicity. It is a regression dataset used in computational chemistry and drug design, where
accurate logP prediction is essential for pharmacokinetics modeling.

A.2 Baselines

GCN Graph Convolutional Network (GCN) [15] introduces convolutional operations into graph-
structured data. It aggregates features from a node’s neighbors and itself, enabling effective semi-

22

supervised learning on graph data. GCN is widely used in node classification tasks and serves as the
backbone for many subsequent GNN models.
Code: https://github.com/tkipf/gcn

GIN Graph Isomorphism Network (GIN) [42] is designed to have maximum expressive power
among GNNs, equivalent to the Weisfeiler-Lehman test for graph isomorphism. By using a
summation-based aggregation and MLP update, GIN can effectively distinguish different graph
structures.
Code: https://github.com/weihua916/powerful-gnns

GAT Graph Attention Network (GAT) [43] applies attention mechanisms to assign different
importances to different neighbors during message passing. This allows the model to better capture
local structural variations and learn more robust node embeddings.
Code: https://github.com/PetarV-/GAT

GraphCL GraphCL [20] is a contrastive self-supervised learning framework for graphs. It generates
multiple augmented graph views via structural and attribute perturbations and maximizes agreement
between their representations. GraphCL has shown competitive performance in unsupervised graph
classification.
Code: https://github.com/Shen-Lab/GraphCL

BGRL BGRL [34] is a bootstrap-based self-supervised method that eliminates the need for negative
samples. Inspired by BYOL, it uses two networks—an online and a target network—to predict node
embeddings across augmented views. This method is memory-efficient and stable on large graphs.
Code: https://github.com/nerdslab/bgrl

GraphMAE GraphMAE [22] is a masked autoencoder designed for graphs, inspired by BERT-style
pretraining. It masks parts of node features and learns to reconstruct them using a GNN backbone,
enabling effective pretraining for downstream tasks.
Code: https://github.com/THUDM/GraphMAE

GraphMAE2 GraphMAE2 [33] is an enhanced version of GraphMAE with improved masking
strategies and decoder designs. Using GAT as the encoder, it introduces better training stability and
performance in graph representation learning.
Code: https://github.com/THUDM/GraphMAE-v2

Graph-LLM Graph-LLM [9] is a framework designed to bridge graph representation learning and
large language models (LLMs). It introduces a graph-to-text conversion pipeline that transforms
graph-structured data into natural language sequences, enabling pretrained LLMs to reason over
and extract knowledge from graphs. Graph-LLM supports both node-level and graph-level tasks by
prompting the LLMs with rich textual contexts that reflect topological and semantic information. This
approach bypasses the need for message passing in traditional GNNs, offering a scalable alternative
for graph-based learning.
Code: https://github.com/CurryTang/Graph-LLM.

UniGraph UniGraph [35] proposes a unified pretraining framework for graph-level, node-level, and
edge-level tasks. By designing a universal contrastive learning objective and architecture, UniGraph
generalizes well across diverse graph tasks.
Code: https://github.com/Graph-COM/UniGraph

A.3 Hyperparameter Setting

The hyperparameter tuning process in this work is divided into three categories. First, some hy-
perparameters (such as the number of epochs, learning rate, optimizer, and batch size) are selected
empirically based on standard practice. Second, certain hyperparameters (such as the masking rate
and the number of memory anchors) are optimized using grid search on the validation split, with
metrics like accuracy or AUC depending on the specific task. Third, for parameters with complex
interactions, we select the best values based on cross-validation across multiple settings. The selection

23

https://github.com/tkipf/gcn
https://github.com/weihua916/powerful-gnns
https://github.com/PetarV-/GAT
https://github.com/Shen-Lab/GraphCL
https://github.com/nerdslab/bgrl
https://github.com/THUDM/GraphMAE
https://github.com/THUDM/GraphMAE-v2
https://github.com/CurryTang/Graph-LLM.
https://github.com/Graph-COM/UniGraph

criteria and the actual values used in our experiments are summarized in Table 8. It is worth noting
that optimal values may vary slightly across different datasets.

Table 8: Summary of hyperparameters and tuning criteria.

Hyperparameter Value Tuning Criterion (Search Range)
Mask Rate 0.5 Grid Search (0.1, 0.3, 0.5, 0.7)
Num GNN Layers 3 Empirical
Hidden Size 768 Empirical
PPR Top-k 128 Cross-validation (64, 128, 256)
Learning Rate 2e-5 Empirical
PPR α 0.15 Cross-validation (0.10, 0.15, 0.20, 0.25)
Weight Decay 0.001 Empirical
Batch Size 1024 Empirical
Dropout 0.2 Grid Search (0.1, 0.2, 0.3, 0.4)
Optimizer AdamW Empirical
Num Epochs 1 Empirical
Warmup Steps 10% Empirical
Num MLP Layers 3 Empirical
Memory Anchors 256 Grid Search (64, 128, 256, 512)

A.4 Language Models

Sentence Transformer Sentence Transformers [30] are a family of models that extend pretrained
transformers like BERT to generate semantically meaningful sentence embeddings. By fine-tuning
on natural language inference and paraphrase datasets using Siamese or triplet networks, Sentence
Transformers enable efficient semantic similarity search, clustering, and information retrieval.
HuggingFace: https://huggingface.co/sentence-transformers

DeBERTa-v3-base DeBERTa [36] improves BERT and RoBERTa by disentangling the represen-
tation of content and position, and using an enhanced mask decoder. The v3 version incorporates
further improvements such as better initialization and larger-scale training. DeBERTa-v3-base has
around 140M parameters and achieves strong performance on various NLU benchmarks.
HuggingFace: https://huggingface.co/microsoft/deberta-v3-base

E5-large-v2 E5-large-v2 [37] (Embedding-from-Embedding) is a dual-encoder model developed
by Google for high-quality semantic search and retrieval tasks. It is fine-tuned on a mixture of
supervised and unsupervised datasets with contrastive loss to produce universal embeddings. The
"large-v2" version contains approximately 355M parameters and supports both query and passage
encoding.
HuggingFace: https://huggingface.co/intfloat/e5-large-v2

LLaMA-2-7B-hf LLaMA 2 [38] is a series of open foundation language models released by Meta.
LLaMA-2-7B-hf is the 7-billion-parameter variant and is suitable for a wide range of NLP tasks,
including generation, question answering, and dialogue. The Hugging Face version provides easy
integration with the Transformers library.
HuggingFace: https://huggingface.co/meta-llama/Llama-2-7b-hf

24

https://huggingface.co/sentence-transformers
https://huggingface.co/microsoft/deberta-v3-base
https://huggingface.co/intfloat/e5-large-v2
https://huggingface.co/meta-llama/Llama-2-7b-hf

	Introduction
	Related Work
	Preliminaries
	Proposed Method
	Unified Graph Task
	Knowledge Extraction from LLM
	Knowledge Distillation
	Optimization Objectives

	Experiments
	Experimental Setting
	Self-Supervised Representation Learning
	Ablation Studies
	Efficiency Analysis

	Conclusion
	Details of Experiments
	Datasets
	Baselines
	Hyperparameter Setting
	Language Models

