
Under review as a conference paper at ICLR 2023

NEURAL CONSTRAINT INFERENCE: INFERRING EN-
ERGY CONSTRAINTS IN INTERACTING SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Systems consisting of interacting agents are prevalent in the world, ranging from
dynamical systems in physics to complex biological networks. To build systems
which can interact robustly in the real world, it is thus important to be able to infer
the precise interactions governing such systems. Existing approaches typically
discover such interactions by explicitly modeling the feedforward dynamics of
the trajectories. In this work, we propose Neural Constraint Inference (NCI)
model as an alternative approach to discover such interactions: it discovers a set
of relational constraints, represented as energy functions, which when optimized
reconstruct the original trajectory. We illustrate how NCI can faithfully predict
future trajectory dynamics, achieving more consistent long-rollouts than existing
approaches. We show that the constraints discovered by NCI are disentangled and
may be intermixed with constraints from other trajectories. Finally, we illustrate
how those constraints enable the incorporation of external test-time constraints.

1 INTRODUCTION

Team 1

Team 2

Ball

Zone defense / Push

Attraction to player

Attraction to goal

Figure 1: Interactions between NBA players. Com-
plex dynamics, such as the player trajectories in the
NBA, may be explained using a simple set of inter-
actions. In this setting, one team of players aims to
block a separate team from scoring.

Dynamical systems are ubiquitous in both nature
and everyday life. Such systems emerge naturally
in scientific settings such as chemical pathways and
particle dynamics as well as everyday settings such
as in sports teams or social events. Such dynamical
systems may be decomposed as a set of different
interacting components, where the interactions with
respect to each other lead to complex dynamics.
Modeling the underlying dynamics of such systems
is hard: often times we only have access to example
trajectories, without knowledge of the underlying
interactions or the dynamics that govern them.

Consider the scenario given in Figure 1, consisting
of a set of NBA players playing a basketball game.
While the motion of individual players may appear
stochastic in nature, each player aims to score the
basket on the opposite team’s side of the court.
Thus, we may utilize sets of interactions to explain
their behaviors – a group of players on the defensive team serve as a zone defense, preventing players
from the opposite team from getting close to the basket. Simultaneously, a group of offensive players
moves towards the goal, while a group of defensive players moves to intercept them and prevent them
from scoring. By applying our underlying knowledge of these interactions between players, we may
forecast the future dynamics of the basketball game significantly more accurately.

Most works modeling such complex dynamics do not explicitly disentangle individual interactions
between objects. Instead, they rely on a learned network to implicitly disentangle them (Battaglia et al.,
2016; Gilmer et al., 2017; van Steenkiste et al., 2018). In contrast, Kipf et al. (2018) propose Neural
Relation Inference (NRI), which learns a structured set of explicit interaction models between objects
and show how such explicit interaction modeling enables more effective downstream predictions.
In this work, we argue that we should instead model and disentangle interactions between objects

1

Under review as a conference paper at ICLR 2023

as a set of learned relational constraints, with dynamical prediction corresponding to a constraint
satisfaction problem. To this end, we propose Neural Constraint Inference (NCI), where we encode
each of these constraints as an energy function (Du et al., 2021).

To predict future dynamics with NCI, we then solve a constraint satisfaction problem, where we
optimize for a trajectory prediction which minimizes our predicted energy. Prior work on implicit
physical simulation has suggested that such implicit physics modeling (i.e. modeling dynamics
through a constraint satisfaction problem) is significantly more accurate at simulating strong inter-
actions in dynamics than explicit physics models (i.e. modeling dynamics as explicit feed-forward
roll-outs) (Rubanova et al., 2022).

In different experiments, we illustrate how our constraint based decomposition of interactions provides
unique benefits over prior learned approaches for decomposing dynamics. First, we illustrate how
such a decomposition improves the temporal consistency, achieving significantly lower long-term
temporal prediction error. We show that the decomposition is disentangled, enabling us to intermix
interactions between separate trajectories together. We further show that constraints can linearly be
decoded into underlying ground-truth interactions. Finally, we illustrate that such a decomposition
enables us to add flexible test-time constraints to incorporate new changes in the environment.

In summary, in this work, we contribute the following: (i). We propose Neural Constraint Inference
(NCI), which discovers, in an unsupervised manner, the underlying interactions between particles in
a system as a set of energy constraints. (ii). We illustrate how such a constraint decomposition of
interactions enables more accurate long-horizon trajectory prediction performance over prior methods.
And (iii). we illustrate how such a constraint decompositions of interactions is disentangled and
enables the recombination of constraints between separate trajectories, as well as the addition of
novel test-time constraints.

2 LITERATURE

Dynamics and Relational Inference Several works in the past years have studied the problem
of learning dynamics of a physical system from simulated trajectories with graph neural networks
(GNNs) (Guttenberg et al., 2016; Gilmer et al., 2017; van Steenkiste et al., 2018; Lu et al., 2021;
Li et al., 2018; Yang et al., 2022). As an extension of the foundational work of Battaglia et al.
(2016), interaction networks, Kipf et al. (2018) proposes to infer an explicit interaction structure
while simultaneously learning the dynamical model of the interacting systems in an unsupervised
manner, by inferring edge classes with a classifier. Selecting models based on observed trajectories
is also the base of Alet et al. (2019); Goyal et al. (2019); Graber & Schwing (2020). Graber &
Schwing (2020) extends Kipf et al. (2018) to temporally dynamic edge constraints, which yields
better results in real-world datasets. NCI differs from these approach as the generation procedure uses
an optimization solver to satisfy a set of soft constraints. Recent work Rubanova et al. (2022) also
explores combining graph networks with energy optimization. However, it lacks the modularity of
NCI, and the ability to infer edge types from observation. Instead, a global energy function is learned
for all nodes, by leveraging ground truth attributes such as mass. Thus, it has no mechanism to predict
trajectories in the absence of those attributes nor when different types of relations are present.

Energy-Based Models Energy-based models have a long history in machine learning. Early work
focuses on density modeling Hinton (2002); Du & Mordatch (2019); Nijkamp et al. (2020) by aiming
to learn a function that assigns low energy values to data that belongs to the input distribution. To
successfully sample data-points, EBMs have recently relied gradient-based Langevin dynamics Du &
Mordatch (2019). Recent works have illustrated that such a gradient-based optimization procedure
can enable the composition of energy functions representing different concepts Du et al. (2020)
and successfully high-dimensional domains such as images Liu et al. (2021); Nie et al. (2021).
Unsupervised discovery of composable energy functions on images was explored in Du et al. (2021).
In this work, we extend ideas of unsupervised concept learning in EBMs to constraints and apply
them to dynamical modelling and relational inference.

3 CONSTRAINTS AS ENERGY BASED MODELS

We will consider constraints as specifying a set X of underlying trajectories x ∈ RT×D which have
a underlying property we desire. In section Section 3.1, we discuss how we can represent constraints

2

Under review as a conference paper at ICLR 2023

on trajectories using an EBM. We further discuss how we may compose multiple constraints together
as EBMs in Section 3.2.

3.1 ENERGY-BASED MODELS

Definition. An Energy-Based Model (EBM) is defined probabilistically using the Boltzmann
distribution pθ(x) =

exp(−Eθ(x))
Z(θ) , with an underlying partition function Z(θ) =

∫
exp(−Eθ(x))dx,

where θ denotes the weights that parameterize the energy function Eθ. We will represent a constraint
as an EBM, defined using a neural network parameterized energy function Eθ(x) : RD → R that
maps each datapoint to a scalar value representing an energy. A constraint then corresponds to the set
of datapoints in which the assigned energy is low. Thus, datapoints x satisfying our constraint have
high likelihood, and all other datapoints have low likelihood. Constraint satisfaction then corresponds
to sampling from the EBM distribution pθ(x).
Solving Constraints. In our framework, solving a constraint corresponds to sampling from the
EBM which defines it, and thus finding high-likelihood data points under pθ(x). We follow existing
works and utilize a gradient based MCMC procedure, Langevin Dynamics (Welling & Teh, 2011;
Du & Mordatch, 2019) to sample from the EBM distribution. In particular, to solve a constraint, we
initialize a trajectory x0 from uniform noise. We then run M iterative steps following:

x̃m = x̃m−1 − λ

2
∇xEθ

(
x̃m−1

)
+ ωm, ωm ∼ N (0, σ), (1)

where at each step we iteratively optimize the trajectory with respect to the energy function, using
an underlying gradient step size of λ and noise scale of σ. We include hyperparameter details for
sampling in Section A.1 of the appendix, and heuristically set the noise scale of σ = 0.

3.2 COMPOSING CONSTRAINTS

Next, we discuss how we may compose different sets of constraints together, where each constraint
is parameterized by a separate EBM Ej

θ(x). Our composition operator builds on existing works on
composing EBMs representing concepts Du et al. (2021).
Sampling Composed Constraints. Given a set of separate constraints, we wish to solve for a set of
trajectories x which jointly satisfy each of the constraints. In our EBM formulation, this corresponds
to finding a trajectory x which is low energy under each of the specified energy functions Ej

θ(x).

Such a setting is equivalent to finding a trajectory x which has high likelihood under each EBM
probability distribution pjθ(x). This corresponds to sampling from the distribution defined by the
product of the individual EBM distributions,∏

j

pjθ(x) ∝ e−
∑

j Ej
θ(x) = e−E′

θ(x), (2)

which corresponds to a new EBM with energy function E′
θ(x) (an analogous approach can be applied

to generate images subject to a set of concepts (Du et al., 2020)). Thus, we may sample from the
composition of a set of constraints using a sampling procedure as Equation 1, using the new energy
function E′

θ(x), defined as the sum of each individual energy function. Intuitively, this corresponds
to a continuous optimization procedure on each energy function together.

In our setting, different energy functions Ej
θ(x) are constructed by conditioning an energy function

on separate latent vectors. These latents are directly inferred unsupervised from input trajectories by
training an encoder jointly with the energy function parameters.

4 NEURAL CONSTRAINT INFERENCE

Next, we discuss Neural Constraint Inference (NCI), our unsupervised approach to decompose
a trajectory x(1...T)i, consisting of N separate nodes at each timestep, into a set of separate
EBM Ej

θ(x) constraints. Neural Constraint Inference (NCI) is composed by two steps: (i) an
encoder for obtaining a set of energy constraints and (ii) a sampling process which optimizes for a
predicted trajectory, given the inferred energy constraints. Energy functions in NCI are trained using
autoencoding, similar to Du et al. (2021). We provide an illustration of our approach in Figure 2 and
pseudocode in Algorithm 1.

3

Under review as a conference paper at ICLR 2023

Edge
Constraints

zG,B zB,R

zR,G Eθ (xm; z) = 100 Eθ (xm+1; z) = 50 Eθ (xM; z) = 0.2

− λ
2 ∇x(Eθ (xm; zG,B) + Eθ (xm; zB,R) + Eθ (xm; zR,G)) + ωm

m m + 1 M

…

Observed
trajectory

Relational Energy
Constraints

Energy-based Sampling Final Prediction

GNN edge encoding

z

EBM

Figure 2: Overview of NCI. In the left, a portion x (1 . . . T ′) of the input trajectory is observed by Encθ and
encoded by a GNN into relational energy constraints, in the form of a set of latent vectors z for each edge in
the graph. In the right, energy functions parametrized as GNNs for each edge latent vector in z are constructed.
Energy functions are trained so that optimizing a trajectory x0 from uniform noise into a final trajecotry xM

reconstructs the future states of the observed trajectory. This refinement process uses Langevin Dynamics (Eq.
4). Given the full trajectory xm at sampling step m, we update it by summing the gradient contributions of the
energy function associated to each edge, resulting in xm+1.

4.1 RELATIONAL ENERGY CONSTRAINTS

To effectively parameterize different energy constraints for separate interactions, we learn a latent
conditioned energy function Eθ(x, z) : RT×D ×RDz −→ R. Then, inferring a set of different energy
constraints corresponds to inferring a latent z ∈ RDz that conditions an energy function.

Given a trajectory x(1...T)i, we infer a set of L different latent vectors for each each pair of
interacting nodes in a trajectory. Thus, given a set of N different nodes, this corresponds to a set of
N(N − 1)L different energy functions.

Algorithm 1 Training algorithm for NCI.
Input: Full trajectories x, Observed trajectories x(1...T ′), Initial condi-
tions x(1...T0), step size λ, number of gradient steps M , encoder Encθ ,
energy functions Eij,l

θ , noise ωm = 0, true data distribution pD
while not converged do

xi ∼ pD
▷ Encode components zij,l from x(1...T ′)
{z} ← Encθ(x(1...T ′))
▷ Optimize sample x0

i via gradient descent:
x0
i ∼ U(0, 1)

for gradient step n = 1 to N do
x̃m ← x̃m−1 − λ

2
∇x

∑
ij,l E

ij,l
θ (x̃m−1; zij,l) + ωm

end for
▷ Optimize objective LMSE wrt θ:
∆θ ← ∇θ∥x̃m − x∥2
Update θ based on ∆θ using optimizer

end while

Figure 3: Training Algorithm. NCI is trained to infer a
set of constraints, represented as energy functions, using a
trajectory reconstruction objective. A set of latents {z} is
inferred from the beginning of a trajectory x(1...T ′), and
define different constraints. A trajectory is optimized w.r.t.
to energy functions and supervised with the trajectory x.

To generate a trajectory, we optimize the en-
ergy function E(x) =

∑
ij,l E

ij,l
θ (x; zij,l),

across node indices i and j from 1 to N and
latent vectors l from 1 to L. However, assign-
ing one energy function to each latent code
becomes prohibitively expensive as the num-
ber of nodes in a trajectory increases. Thus, to
reduce this computational burden, we param-
eterize L energy functions as shared message
passing graph networks, grouping all edge
contributions ij in a single network. The en-
ergy is then computed as a summation over all
individual node energies after message pass-
ing. To evaluate the energy corresponding to
a single edge factor zij,l we mask out the con-
tributions of all other edges to the final node
energies. Architecture and further details can
be found in Section A.2 of the appendix.

To condition to message passing shared graph
network on each inferred latent zij,l, each edge e(i, j) in the graph is conditioned by the corresponding
encoded edge latent code zij,l, by means of FiLM modulation (Perez et al., 2018).

4.2 INFERRING ENERGY CONSTRAINTS

We utilize Encθ(x) : RT×D −→ RDz to encode the observed trajectories x into L latent representa-
tions per edge in the observation. We utilize a fully connected GNN with message-passing to infer
latents using the encoder module in Kipf et al. (2018). Instead of classifying edge types and using
them as a gate ouputs, we utilize a continuous latent code zij,l, allowing for higher flexibility.

4

Under review as a conference paper at ICLR 2023

4.3 TRAINING OBJECTIVE

To train NCI, we infer a set of different EBM constraints by auto-encoding the underlying trajectory.
In particular, given a trajectory x(1...T)i = (x(1)i, . . . ,x(T)i), we split the trajectory into initial
conditions x(1...T0), corresponding to the first T0 states of the trajectory and x(T0...T), correspond-
ing to the subsequent states of the trajectory, where each state of the trajectory consists of N different
nodes. The edge constraints are encoded by observing a portion of the overall trajectory x(1...T ′),
where T ′ ≤ T .

We infer a set of different L latents per edge of input observations utilizing the observed states
x(1...T ′) using the encoder specified in Section 4.2, generating a set of latents {z}. We then aim to
train energy functions so that the following unnormalized distribution assigns low energy and high
likelihood to the full trajectory x:

p(x|{z}) ∝
∏

i,j,l∀i ̸=j

p(x|zij,l) = exp
(
−Eij,l

θ (x;Encθ(x(1...T ′))ij,l)
)
, (3)

where zij,l = Encθ(x(1...T ′))ij,l and Eij,l
θ is the energy function linked to the lth constraint of the

encoded edge between nodes i and j, respectively.

Since we wish to learn a set of constraints with high likelihood for the observed trajectory x, as a
tractable supervised manner to learn such a set of valid constraints, we directly supervise that sample
using Equation 1 corresponds to the original trajectory x, similar to Du et al. (2021). In particular,
we sample M steps of Langevin sampling starting from x̃0, which is initialized from uniform noise
and the initial conditions fixed as the ground-truth x(1...T0):

x̃m = x̃m−1 − λ

2
∇x

∑
ij,l

Eij,l
θ (x̃m−1; zij,l) + ωm, ωm ∼ N (0, λ) (4)

where m is the mth step and λ is the step size. We then compute MSE objective with x̃M , which is
the result of M sampling iterations and the ground truth trajectory x:

LMSE(θ) = ∥x̃M − x∥2. (5)
We optimize both x̃ and the parameters θ with automatic differentiation. The overall training
algorithm is provided in Algorithm 1.

5 EXPERIMENTS

In this section we firstly describe our datasets (Section 5.1) and baselines (Section 5.2). Following,
we describe the quantitative results (Section 5.3). In Section 5.4, we show experiments on (i.)
recombination, (ii.) edge classification and (iii.) contribution of the constraints. Next, in Section
5.5, we describe OOD sample detection. Finally, we show how to incorporate test-time constraints
in Section 5.6. In the appendix we give implementation details (Section A.1), experimental details
(Section A.3) and provide an ablation study (Section A.5) and additional examples (Section A.4).

5.1 DATASETS

We tested our model in three different domains. First, we carry on experiments in two simulated
environments: (i.) Particles connected by springs, and (ii.) Particles with charges. Next, we test
several properties of our model in (iii.) NBA SportVu motion dataset, which displays real motion
from tracked basketball players along several NBA games. Finally, we test our performance in (iv.)
JPL Horizons, a physics-based realistic dataset.
Simulated data. Following the experimental setting described in Kipf et al. (2018), we generate
states (position and velocity) of a dynamical system for N = 5 particles for 70 time-steps. Our model
observes the first 49 states, fixes one state and predicts the following 20. We generate 50k training
samples and 10k for validation and test splits.

This setting is interesting because the rules by which particles interact are known and simple. However,
they can generate very complex behaviour.
• Springs: The particles move inside a box with elastic collisions. They are connected by a spring

with probability 0.5, and interact according to Hooke’s law.
• Charged: The particles move inside a box as in Springs. They are assigned a positive or negative

charge qi ∈ {±q} with probability 0.5 and interact via Coulomb forces.

5

Under review as a conference paper at ICLR 2023

Springs Charged

Prediction steps 1 10 20 1 10 20

Static 7.93e-5 7.59e-3 2.82e-2 5.09e-3 2.26e-2 5.42e-2
IN 1.32e-5 1.28e-3 4.71e-3 2.46e-4 1.06e-2 2.15e-2
LSTM (single) 2.27e-6 4.69e-4 4.90e-3 2.71e-3 7.05e-3 1.65e-2
LSTM (joint) 4.13e-8 2.19e-5 7.02e-4 1.68e-3 6.45e-3 1.49e-2
Cond. GNN 9.00e-6 6.13e-5 3.14e-4 3.67e-3 5.61e-3 1.05e-2
NRI (full graph) 1.66e-5 1.64e-3 6.31e-3 1.09e-3 3.78e-3 9.24e-3
NRI (learned) 3.12e-8 3.29e-6 2.13e-5 1.05e-3 3.21e-3 7.06e-3
NCI (Ours) 2.34e-7 1.57e-6 1.74e-5 8.85e-4 3.33e-3 6.54e-3

Table 1: Mean squared error (MSE) in predicting future states for simulations with 5 interacting objects.
NCI outperforms the baselines in mid to long-term prediction error.

NBA SportVU SportVU is an automated ID and tracking service that collects data of NBA players
and the ball (N = 11) during a game. The dataset is generated by splitting each of the labeled events
into 65 steps trajectories of coordinates x,y. We compute the velocities to generate the states. The
dataset is composed of 50k samples for training and 1k samples for validation and test.

JPL Horizons The JPL Horizons on-line ephemeris system provides access to solar system data.
It characterizes the 3D location and velocity of solar system objects (targets) as a function of time,
as seen from locations within the solar system (origins). This dataset consists on the trajectories
captured between 1800 and 2022, with one datapoint every 10 days. We define the nodes as N = 12
targets of the solar system: 8 planets, 3 moons and the Sun. This data is captured from 13 origins:
each one of the targets plus the solar system barycenter (SSB). We gather 1880 trajectories of 43
timesteps split as 1504/188/188 for train, validation and test.

5.2 BASELINES

We consider a Static baseline, which copies the previous state vector, LSTM (single), an LSTM
trained to predict the state vector difference at every timestep. We further compare with LSTM
(joint) which differs from single in that it concatenates input representations from all objects after
passing them through an MLP. For the synthetic experiments, where the edge types are known a priori,
we also evaluate NRI, the architecture presented in Kipf et al. (2018) to infer the interaction graph
(learned), and with a fully connected graph of a single edge type (full graph). We further add a
GNN conditioned to the observed trajectories, and an interaction network (IN) Battaglia et al. (2016).
For NBA SportsVU we will also evaluate on two social interaction-based methods: Social-LSTM
(S-LSTM) Alahi et al. (2016) and Directional-LSTM (TrajNet++) Kothari et al. (2021).

5.3 QUANTITATIVE COMPARISON

For all datasets, we will observe a portion of the trajectory and predict 20 timesteps.

We first test our approach in Springs and Charged datasets. We evaluate the Mean-Squared Error
(MSE) against Kipf et al. (2018), their chosen baselines, a generic Conditional-GNN and an IN. Our
models observes 49 timesteps and fixes the 50th as initial conditions for prediction. We can see in
Table 1 that NCI achieves better long-term prediction in both datasets, and slightly worse short-term
prediction error. This is likely caused by the nature of the generative process. The predictions are
temporally one-shot, while they are refined by several optimization iterations.

Similarly, for NBA (Table 2 (left)) the model observes 40 timesteps and fixes the following 5 as initial
conditions for prediction. NCI outperforms the baselines in terms of prediction error. The models
designed for social interaction perform poorly in long-term prediction, while they have shown to
excel in other tasks such as collision avoidance.

For the JPL Horizons dataset in Table 2 (right), NCI outperforms the baselines substantially. Models
have access to 23 timesteps. NCI observes 20 timesteps and fixes 3 as initial conditions for prediction.
JPL Horizons is a challenging dataset given the unknown masses of the bodies involved, as well as
effects from unobserved smaller bodies nearby them that introduce noise to the trajectories.

5.4 DISENTANGLEMENT OF ENERGY CONSTRAINTS

NCI assigns an energy function to each one of the representations learned by the encoder. Those
constrain the generation process by conditioning the features of their associated EBM. The optimiza-
tion procedure, hence, aims to satisfy all constraints. We train our model to ensure that different

6

Under review as a conference paper at ICLR 2023

=

=

=

+

+

+

GT Springs GT Charged Recombined

Figure 4: NCI can recombine encoded energy constraints at test-time learned from different datasets.
Illustrated, samples from Springs (Col. 1) and Charged (Col. 2) and their recombinations (Col. 3). NCI encodes
both trajectories. NCI is able to reconstruct trajectories framed in green with the initial conditions marked in
blue, while swapping the edge constraints associated to the nodes in the red dashed box. Recombinations look
semantically plausible and smooth.

NBA SportsVU JPL Horizons

Prediction steps 1 10 20 1 10 20

S-LSTM 6.60e-5 6.67e-3 2.57e-2 - - -
TrajNet++ 5.30e-5 5.88e-3 2.33e-2 - - -
Static 2.13e-4 3.04e-3 1.07e-2 3.33e-3 5.54e-2 9.05e-2
LSTM (joint) 8.07e-5 1.42e-3 5.31e-3 1.97e-6 3.98e-5 1.09e-4
Cond. GNN 1.71e-4 1.12e-3 3.11e-3 4.57e-6 4.66e-6 5.96e-6
NRI 3.56e-6 7.46e-4 2.74e-3 2.67e-7 7.35e-7 1.16e-6
dNRI 7.97e-6 1.07e-3 4.52e-3 1.35e-5 5.12e-5 1.64e-4
NCI (Ours) 1.27e-5 3.46e-4 1.86e-3 4.05e-7 4.70e-7 8.60e-7

Table 2: Mean squared error (MSE) in predicting future states for NBA dataset and JPL Horizons dataset, with
11 and 12 interacting objects respectively. NCI performs better than the baselines at short and long terms.

constraints contribute individually to the generative process by addition of their associated gradients.
We argue that this procedure both (i.) aids discovery of disentangled edge representations and (ii.)
allows composition among disjoint training distributions.

Recombination To verify our claims, we show how NCI can compose energy constraints learned
from two different distributions, at test-time. Figure 4 shows qualitative results of recombinations
from Springs and Charged datasets. The process is as follows: we train two instances of our model
(NCIS , NCIC) to reconstruct Springs and Charged trajectories respectively. Given sample trajectories
drawn from each dataset (Col. 1 for Springs and 2 for Charged), we encode them into their relational
energy constraints. For each row, we aim to reconstruct the trajectory framed in green while swapping
one of the relational constraints (red dashed box) with an instance drawn from the other dataset. As an
example, in the first row of the figure, we encode the Springs trajectory with NCIS and the Charged
trajectory with NCIC . Next, we fix the initial conditions corresponding to the Charged trajectory
(blue dots) and sample by optimizing the relational energy functions. To achieve recombination,
each model targets specific edges. We satisfy the constraints encoded by NCIS for the mutual edges
corresponding to the nodes in red dashed boxes. The rest of edge constraints are encoded by NCIC .
The sampling process is done jointly by both models, each satisfying their corresponding edge
constraints. The result is a natural combination of the two datasets, which constrain only the targeted
edges. Reconstructed trajectories in Figure 4 (col. 3) are smooth and semantically reasonable.

7

Under review as a conference paper at ICLR 2023

Outlier Detection - Energies per Node

Energy Energy

Figure 5: We can use NCI for outlier detection. A model trained with
certain relation types can detect when a trajectory exhibits a new type of
relation. The illustrated trajectories show the energy associated to each one
of the nodes. Red trajectories: Charged particles, Blue-Green trajectories:
Springs particles. We train NCI in Springs dataset. Our model assigns
higher energies to those nodes that behave differently than the training set.

Eval / Train Springs
Springs 0.00 ±0.01

Charged 0.18 ±0.30

S&C (eval all) 0.14 ±0.30

S&C (eval S) 0.09 ±0.18

S&C (eval C) 0.19 ±0.37

Table 4: Quantitative evalua-
tion of out-of-distribution detec-
tion. S&C rows correspond to
the Springs and Charged mixed
dataset. For this dataset we eval-
uate individually and jointly the
Springs and Charged nodes.

Model Springs Charged

5 objects
Corr. (path) 52.4±0.0 55.8±0.0

Corr. (LSTM) 52.7±0.9 54.2±2.0

NRI (sim.) 99.8±0.0 59.6±0.8

NRI (learned) 99.9±0.0 82.1±0.6

NCI (linear dec.) 97.4±0.01 69.4±1.0

Table 3: Accuracy (in %) of true interaction
recovery. We train a linear decoder to predict
edge types from constraints. Without supervision
NCI learns meaningful representations that can
often recover true interactions. Corr. indicates
evaluation by means of the matrix of correlations
between feature vectors.

Edge classification To test the proper edge disen-
tanglement capabilities of NCI, we propose to eval-
uate quantitatively the representation value of our
inferred constraints. We measure their ability to clas-
sify correctly the edge type that they correspond to.

We train a linear layer to decode the constraints dis-
covered by the encoder into edge types. The objec-
tive used is Binary Cross-Entropy w.r.t. the ground
truth edges. Table 3 shows the accuracy obtained.
In the table, Corr. (path) estimates the interactions
by thresholding the matrix of correlations between
trajectory features. In Corr. LSTM each trajectory
is modeled individually and calculates correlations
between output hidden states. For NRI, the accuracy
is the result of their encoder’s edge classification.

We recover the true edge types with high accuracy in Springs and with moderate success for Charged
dataset. For comparison, note that our evaluation setting for this experiment is considerably different
from that of NRI. Unlike NRI, NCI’s edge representations are discovered without the purpose of edge
classification. We provide additional comparisons in Section A.4 of the appendix.

Gradients for function #2Gradients for function #1

Figure 6: Energy constraints discovered by our
approach control different aspects of the trajec-
tories. For a model trained with 2 energy functions,
this illustration shows the gradients associated to
each energy function applied to a ground-truth sam-
ple. Each constraint pushes the player of interest
into one of the opponents.

Contribution of Energy Constraints Each of the
disentangled constraints controls different aspects
of the interactions. A qualitative example shown
in Figure 6 depicts the gradient orientation of two
energy constraints a model has been trained with.
We can see how each constraint pushes the player
trajectory into different directions, each one of them
pointed to a different player of the rival team.

5.5 OUT-OF-DISTRIBUTION DETECTION

We further utilize the energy value at each constraint
of NCI to detect out-of-distribution interactions in
a trajectory. In our proposed architecture, energy is
evaluated at the node level. Therefore, if NCI has been trained with a specific dataset, the constraints
associated to out-of-distribution type of edges are expected to have higher energy.

We design a new dataset (Charged-Springs) as a combination of Springs and Charged interaction
types. In simulation, nodes are assigned both roles of Charged and Springs particles, but all the forces
they receive correspond to one of the two types with probability p = 0.5. We train a model with the
Springs dataset and evaluate the energies in the proposed mixed setting.

Figure 5 shows qualitatively how the energy is considerably higher for the nodes with Charged-type
forces (drawn in red). Quantitative results are summarized in Table 4 for 1k test samples. We can

8

Under review as a conference paper at ICLR 2023

Edge Constraints (Edge + Velocity) Constraints

(Edge + 2xVelocity) Constraints(Edge - Velocity) Constraints

Edge Constraints

(Edge + Attraction) Constraints

Figure 7: NCI is able to incorporate new energy constraints in test-time. We can see depicted reconstructions
of NBA samples with added constraints. Left: (Col. 1, Row 1): Reconstruction of the encoded trajectory. (Col.
1, Row 2): Decrease of velocity. (Col. 2, Row 1): Low increase of velocity. (Col. 2, Row 2): High increase of
velocity. Right: (Col. 3, Row 1): Reconstruction of the encoded trajectory, (Col. 3, Row 2): Attraction of the
players to a goal point (blue dot). Painted orange, the ground-truth ball trajectory.

see that energies corresponding to Spring-type nodes are considerably lower than for Charged-type
nodes, indicating that constraints are correctly capturing the behavior of the desired interactions.

5.6 FLEXIBLE GENERATION

Another advantage of our approach is that it can flexibly incorporate test-time user specified con-
straints. For this experiment, we investigate two different sets of constraints in Figure 7 when
reconstructing a given 40 step trajectory of the NBA dataset.

Velocity Constraints We incorporate the following velocity energy constraint: E =

ϵλ
∑

i,t

√
(vt

x,i)
2 + (vt

y,i)
2 = ϵλ

∑
i,t mod(vt

i), for particle i in time t. The weight λ = 1e− 2/N

scales the effect of this constraint over the rest and ϵ is a multiplicative constant that indicates the
strength and direction of the constraint. Figure 7 (left), we show (i.) ϵ = 0: Reconstruction (top-left);
(ii.) ϵ = 4: Decrease of velocity (bottom-left); (iii.) ϵ = −5: Low increase of velocity (top-right);
and (iv.) ϵ = −10: High increase of velocity (bottom-right). Results satisfy test constraints.

Goal Constraints We also add at test-time an attraction energy constraint of the form: E =
ϵλ

∑
i,t ϕ

t
i. Here λ = 1e− 4/N , ϕ is the angle between the velocity vector vt

i of object i at time-step
t and the orientation of the vector pt

iq, where pt
i is the location of object i at time t and q the point

of attraction or goal. Figure 7 (right) illustrates the scenarios (i.) ϵ = 0: Reconstruction (top); (ii.)
ϵ = 3: Attraction to the goal (bottom, goal in blue). The reconstructed trajectory follows the new
constraint, while maintaining the constraints of the encoded trajectories.

6 DISCUSSION
Conclusion. In this work we introduced Neural Constraint Inference (NCI) which infers relational
constraints specified as energy functions to model the dynamics of an interacting system. We
illustrate how NCI can also faithfully predict future trajectory dynamics, achieving more accurate
long-rollouts than the baselines. We further illustrate the disentanglement of the discovered constraints
by intermixing them with constraints from other distributions of trajectories and show that constraints
are interpretable. We also show that constraints obtained by NCI may discover out-of-distribution
node interactions even within a scene. Finally, we illustrate the flexibility of modeling relational
constraints – enabling the incorporation of external hand-crafted constraints at test-time.

Limitations and Future Work. Our current solution is currently limited to energy constraints
associated to edges, and it would be beneficial to further explore its application to other type of
constraints. Future work will focus on generalizing the use of the energy functions, for instance,
targeting individual nodes in the graph.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio
Savarese. Social lstm: Human trajectory prediction in crowded spaces. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 961–971, 2016. 6

Ferran Alet, Erica Weng, Tomas Lozano-Perez, and Leslie Pack Kaelbling. Neural relational inference
with fast modular meta-learning. In NeurIPS, 2019. 2

Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and Koray Kavukcuoglu.
Interaction networks for learning about objects, relations and physics. NIPS, 2016. 1, 2, 6, 14

Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. In
NeurIPS, 2019. 2, 3

Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with energy based models.
In NeurIPS, 2020. 2, 3

Yilun Du, Shuang Li, Yash Sharma, Joshua B. Tenenbaum, and Igor Mordatch. Unsupervised learning
of compositional energy concepts. NeurIPS, 2021. 2, 3, 5

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. ICML, 2017. 1, 2

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and
Bernhard Schölkopf. Recurrent independent mechanisms. ICLR, abs/1909.10893, 2019. 2

Colin Graber and Alexander G. Schwing. Dynamic neural relational inference. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020. 2

Nicholas Guttenberg, Nathaniel Virgo, Olaf Witkowski, Hidetoshi Aoki, and Ryota Kanai.
Permutation-equivariant neural networks applied to dynamics prediction. ArXiv, abs/1612.04530,
2016. 2

Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14:1771–1800, 2002. 2, 12

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard S. Zemel. Neural
relational inference for interacting systems. ICML, 2018. 1, 2, 4, 5, 6, 14

Parth Kothari, Sven Kreiss, and Alexandre Alahi. Human trajectory forecasting in crowds: A deep
learning perspective. IEEE Transactions on Intelligent Transportation Systems, pp. 1–15, 2021.
doi: 10.1109/TITS.2021.3069362. 6, 14, 15

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning
particle dynamics for manipulating rigid bodies, deformable objects, and fluids. arXiv preprint
arXiv:1810.01566, 2018. 2

Nan Liu, Shuang Li, Yilun Du, Joshua B. Tenenbaum, and Antonio Torralba. Learning to compose
visual relations. NeurIPS, 2021. 2

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021. 2

Weili Nie, Arash Vahdat, and Anima Anandkumar. Controllable and compositional generation with
latent-space energy-based models. NeurIPS, 2021. 2

Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu. On the anatomy of
mcmc-based maximum likelihood learning of energy-based models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 5272–5280, 2020. 2

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
reasoning with a general conditioning layer. In AAAI, 2018. 4, 12

10

Under review as a conference paper at ICLR 2023

Yulia Rubanova, Alvaro Sanchez-Gonzalez, Tobias Pfaff, and Peter Battaglia. Constraint-based graph
network simulator. ICML, 2022. 2

Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber. Relational neural
expectation maximization: Unsupervised discovery of objects and their interactions. ICLR, 2018.
1, 2

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynamics. In
ICML, 2011. 3

Liu Yang, Constantinos Daskalakis, and George E Karniadakis. Generative ensemble regression:
Learning particle dynamics from observations of ensembles with physics-informed deep generative
models. SIAM Journal on Scientific Computing, 44(1):B80–B99, 2022. 2

11

Under review as a conference paper at ICLR 2023

A APPENDIX

In this appendix, we present implementation details in Section A.1. Details about the architecture
and training procedure can be found in Section A.2. Next, experiment settings are described in
Section A.3. Following, additional image generation results in Section A.4, together with additional
quantitative results. We further run an ablation study of each of our proposed components in Section
A.5, together with an ablation study in test-time. Following, we evaluate the energy of NCI in longer
time roll-outs in Section A.6. Finally we discuss the broader impact of our work in Section A.7.

A.1 IMPLEMENTATION DETAILS

Software: We implemented this method using Ubuntu 18.04, Python 3.6, Pytorch 1.10, Cuda 11.2
and several additional libraries which will be provided as a environment requirements file.

Hardware: For each of our experiments we used 1 GPU RTX 2080 Ti (Blower Edition) with
12.8GB of memory. Models are trained for approximately 1 day.

A.2 ARCHITECTURE AND TRAINING DETAILS

In this section we discuss in depth the architecture of the main modules of our method. We also
discuss the idiosyncrasies of our training procedure.

Architecture The architecture of NCI is composed of 3 main modules: (i.) The encoder in Figure
A3 is composed by convolutional and multi-layer perceptron blocks, with ELU activation functions.
It encodes the observable trajectory x(1...T ′) into a set of L latent codes per edge, with a total of
N × (N − 1) edges. (ii.) The short-term energy function in Figure A2 processes the trajectory in
chunks of 5 time-steps. (iii.) The long-term energy function in Figure A1 processes the trajectory with
several convolutional filters, while reducing its temporal resolution. It finally temporally pools the
whole trajectory. It is designed to observe the overall shape of the trajectory. Both energy functions
make use of the Swish activation function. The resulting energy is the summation of the short and
long-term energies E = ELT + EST . The terms node → edge and edge → node correspond to the
different steps of message passing procedure. In node → edge, information from a connected node
pair is concatenated in an edge representation. edge → node represents the summated contribution of
all edge features connected to every node. The conditioning blocks modulate the energy function
features by means of FiLM modulation Perez et al. (2018).

An illustration of the overall architecture can be seen in Figure A1.

Constraint Splitting To generate a trajectory, we optimize the energy function E(x) =∑
ij,l E

ij,l
θ (x; zij,l), across node indices i and j from 1 to N and latent vectors l from 1 to L.

Explicitly computing one energy function per edge becomes prohibitively expensive as the number
of nodes in a trajectory increases. As introduced, the computational burden is reduced by utilizing a
shared message passing graph network to compute a fixed set of features for all edges (Tables A1,
A2, A3 and Figure A1). Hence, the energy corresponding to a single edge factor zij,l is obtained by
masking out the contributions of all other edges. However, in order to recombine edge types across
multiple datasets it is desirable to train the model to combine multiple energy function contributions.
With this objective, in training time we randomly split the encoded edge constraints into two disjoint
subsets. The generated trajectory is a product of joint optimization of two energy functions, each one
conditioned to one of the subsets. Each energy function observes one edge constraint subset while
masking out the contributions of the rest of edges.

Regularization To speed up training and regularize the energy values, we found useful to add the
Contrastive Divergence loss LCD Hinton (2002):

LCD = EpD(x)

∑
ij,l

Eij,l
θ (x; zij,l)

− Estop grad(qθ(x̃))

∑
ij,l

Eij,l
θ (x̃; zij,l)

 . (6)

, where pD(x) is the true distribution of the data, and qθ the distribution approximated by NCI. We
also regularize the energy values by penalizing the squared energy resulting from above. These

12

Under review as a conference paper at ICLR 2023

…
…

…
Constrains

Fix

E E E E∑ ()x0 ∼ 𝒰(0,1)

xm+1

−
λ2 ∇

x∑
E

θ (x
m;z)

ℒMSE

× M

xM xm

Figure A1: Architecture and methodology of our approach. In the left, Encθ observes a portion of the input
trajectory x and encodes them into constraints, in the form of latent vectors zij,l. In the right, a set of energy
functions parametrized as GNNs are conditioned by zij,l at the edge level. We initialize a trajectory x0 as
uniform noise and the ground-truth initial conditions x(1..T0), and update it by minimizing the constrained
energy functions. We sample by means of Langevin Dynamics. We supervise the reconstructed trajectories with
an MSE objective with respect to the ground-truth trajectory.

regularizations are not necessary for the successful training of our model, however, they are helpful to
stabilize training and therefore used for all experiments. For out-of-distribution detection experiments,
regularization is remarkably useful. In-distribution samples are trained to have an energy close to 0,
hence out-of-distribution samples are easily detected. Both regularizations are added to the primary
objective (MSE) with a weight of λreg = 1e− 4.

Node → Edge

5x1 CNN Block Down (2) 64

CNN Conditioning Block (2) 64

CNN Conditioning Block (2) 64

Temporal Avg. Pool

Edge → Node

MLP 64

Dense → 1: ELT

Long-Term Energy

Table A1: Architecture for the long-term
energy function. The energy computed eval-
uates the whole trajectory by leveraging 1D
convolutional layers with a final temporal av-
erage pooling. Number of layers specified in
parentheses.

Node → Edge

5x1 CNN Block Down (2) 64

Unfold Trajectory K:5, S:1

Dense 64

MLP Conditioning Block (2) 64

MLP Conditioning Block (2) 64

Edge → Node

MLP (2) 64

Dense → 1: EST

Short-Term Energy

Table A2: Architecture for the short-term
energy function. The energy computed eval-
uates chunks of 5 steps of a trajectory, ob-
tained with strides of size 1. Number of lay-
ers specified in parentheses.

Node → Edge

5x1 CNN Block Down (3) 64

Temporal Avg. Pool

MLP (2) 64

Edge → Node

MLP (2) 64

Node → Edge

MLP (2) 64

Dense + LN → (L×Num. edges)

Table A3: Architecture for the encoder.
Number of layers specified in parentheses.

13

Under review as a conference paper at ICLR 2023

A.3 EXPERIMENT DETAILS

In the following section we discuss the specific setting for each one of the experiments. In all cases,
NCI uses Adam optimizer and a learning rate of LR = 3e− 4 with a scheduled decay of γ = 0.5
every 100k iterations (≈ 80 epochs). The illustrated trajectories shown in the figures have been
plotted by accumulating the velocity dimensions of each predicted state to an initial ground-truth
point.

Baselines We choose the baselines described in Kipf et al. (2018), together with their main
contribution, NRI. NRI is considered the de facto standard for relational inference, and LSTM the
main baseline architecture for trajectory forecasting.

• Static: Copies previous state vectors.

• LSTM (single): LSTM model trained to predict the state vector difference at every time-step.
It consists of a tow-layer LSTM with shared parameters and 256 hidden units. The input to
the model is passsed through a two-layer MLP with ReLU activations before it is passed to
the LSTM. The last hidden vector of the LSTM for each time-steps is also passed through a
two-layer MLP with ReLU activations, which outputs a predicted state difference. This is
done individually for each particle. The LSTM has access to the ground-truth input states
until prediction starts.

• LSTM (joint): This model is similar to LSTM (single), with the difference that node states
are concatenated before being processed by the model. This allows communication across
node trajectories.

• NRI (learned graph): For this model, an encoder infers interactions while simultaneously
learning the dynamics from observational data. The encoder outputs a latent code that
represents the underlying interaction graph and the reconstruction is based on graph neural
networks.

• NRI (full graph): This instanciation of NRI is similar to the one above, with the differ-
ence that the latent graph is fixed. The encoder is only allowed to output 1 type of edge
representation.

• dNRI: Extension of NRI to a dynamic relation setting. The encoder infers separate relation
graphs for every time-step. The reconstruction is based on graph neural networks, also in a
dynamic fashion.

• Conditional GNN: For this model, we encode the edges similarly as in NCI, with the
observed part of the trajectory. We decode them in one shot by means of a GNN with
message passing.

• IN: This follows the official implementation provided by Battaglia et al. (2016). In this
case, objects and relations are encoded separately, and propagated in time with a GNN. This
model does not observe any part trajectory (unconditional).

• Social LSTM and Directional LSTM (TrajNet++): This two models are implemented
by Kothari et al. (2021) and executed following instructions in their github https://
github.com/vita-epfl/trajnetplusplusbaselines. The architectures are
LSTM-based, and use different types pooling functions to gather information surrounding
each node. The code is addapted to a state with dimensionality 4 instead of 2.

Quantitative Comparison We utilize the same setting and simulated datasets as detailed in Kipf
et al. (2018), including their baselines: Static, LSTM (single), LSTM (joint) and variations of NRI.
For the C-GNN, we train for 400 epochs with batch size of 40 and Dz = 64. We encode 50 time-steps
and predict the following 20.

For Springs and Charged datasets, NCI is trained with 2 energy functions and latent size per edge
constraint of Dz = 64. We encode 49 time-steps into a set of constraints, fixes 1 time-step from the
ground-truth and predicts the following 20. Number of sampling steps M varies from 3 to 6 along the
first 300k iterations and a step-size of λ = 0.4. We use a batch size of 40 and train for 400 epochs.

Similarly, we run experiments in NBA SportsVU dataset with the same baseline setting for LSTM
(joint) and C-GNN and the same data normalization scheme. C-GNN is trained similarly as before

14

https://github.com/vita-epfl/trajnetplusplusbaselines
https://github.com/vita-epfl/trajnetplusplusbaselines

Under review as a conference paper at ICLR 2023

with a batch size of 8 for 25 epochs. For prediction in NBA experiments, NCI encodes 40 time-steps
into a set of constraints of dimension Dz = 64, fixes 1 time-step from the ground-truth and predicts
the following 20. In training and testing, only the 20 predicted time-steps are generated and supervised
with the ground-truth trajectory. Our model is trained for 25 epochs, with a batch size of 6 and single
set of edge constraints. Number of sampling steps M varies from 3 to 5 along the first 200k iterations
and a step-size of λ = 2.

For this dataset, results in social interaction-based networks (S-LSTM, D-LSTM) are very poor in
long term. This behavior has been discussed with the authors of D-LSTM (Kothari et al. (2021)),
and concluded that it is expected when solving a task of prediction. This model is usually employed
for tasks such as pedestrian collision avoidance with teacher forcing training. After switching the
objective function to a purely MSE loss and changing the training strategy with the authors’ help, the
results improved very slightly. The model converged after 25 epochs.

NRI and dNRI are trained with a batch size of 40 and 32 respectively, a learning rate of LR = 5e− 4
and hidden sizes of 256. We train them for 35 epochs, until convergence which which takes
approximately 24h. For both architectures, we use 2 edge types as recommended in the respective
papers. Specifically, in NRI they try for higher number of edge types and conclude that the model is
overfitting.

Finally, experiments in JPL Horizons dataset are with the same baseline setting as NBA SportsVU.
In this case, we train LSTM (joint), C-GNN and NCI for 2000 epochs (given the small size of the
dataset). In none of the cases we see signs of overfitting. C-GNN and NCI use a batch size of 10 and
6 respectively. NCI has a number of sampling steps M that varies from 3 to 5 along the first 300k
iterations and a step-size of λ = 2. In this experiment NRI and dNRI are trained for 2000 epochs
with the same hyperparameters as in the NBA experiments. For both experiments we observe that
dNRI performs worse than NRI. We tried to the best of our ability to obtain the expected results, but
after hyperparameter tuning including modifications in the number of edge types, we conclude that
the differences are negligible and therefore we keep the default settings.

Recombination While not necessary, we found recombinations slightly more natural-looking by
leveraging a variation of the original architecture. In this case, each EBM has a branch that evaluates
trajectory energies unconditionally. That branch is solely used by edges that have been masked
out (i.e. conditioned in another EBM). The unconditional architecture is therefore very similar to
that in A1 and A2 but disregarding the conditioning blocks. We train NCI for 120 epochs both in
Charged and Springs datasets separately, with latent size per edge constraint of of Dz = 8. For this
experiment, NCI is trained to reconstruct 30 observed time-steps and predict the following 10, as we
find prediction helpful for proper constraint learning. We use a dataset instance with double sampling
frequency than for the other experiments. For data augmentation, we select randomly the initial
point of the trajectories in the range T0 = [1, . . . , 50], as velocity distributions diverge along the
trajectories. The encoder observes the input data both rotated and instance-normalized. In test-time,
we sample M = 6 times with a step-size of λ = 16.

Out-of-distribution Detection We utilize the same Springs and Charged dataset variations as for
the recombination experiments. For evaluation we also utilize the Charged-Springs dataset explained
in the main body of the paper. The energy values are obtained at the node level by evaluating a ground-
truth trajectory. The hyperparameters of the model are those of the recombination experiments.

We found especially useful to use the regularization in Equation 6. This maintains the in-distribution
energy close to 0, while increasing energy from out-of-distribution nodes.

Flexible Generation For this experiment, we train a model in NBA SportsVU dataset with the
same hyperparameters as for quantitative comparison. However, in this case we only reconstruct 40
time-steps. The formulation of the hand-crafted constraints is described with detail in the main body
of the paper. λ corresponding to the weight of the new constrain is found by grid search by means of
visual inspection. However, it is fixed for new instances of the experiment.

Edge Classification For edge classification, we decode the constraints into edge types (1 or 0)
with a dense layer. In all cases, we use models trained for prediction and decode the latent codes
product of observing the 49 initial time-steps with the model. We train the dense layer with a BCE

15

Under review as a conference paper at ICLR 2023

Model Springs Charged
5 objects

LSTM (linear dec.) 61.4 60.3
NCI (linear dec.) 97.4 69.4

Table A4: Accuracy (in %) of true interaction recovery. We train a linear decoder to predict edge types from
latent codes. For LSTM, we linearly project the last hidden vector pairs associated to an edge between two
nodes, excluding self-loops.

(binary cross-entropy) loss and LR = 5e− 4. For the LSTM in Table A4, we train a two-layer LSTM
with shared parameters and 64 hidden units that models each trajectory individually. It receives
ground-truth inputs until step 49 and is conditioned to the previous time steps. For this experiment,
we keep the last hidden state of the second layer of the LSTM as our node representation. We generate
128 dimensional edges by concatenation of the node representations and decode them linearly into an
edge type, training the layer for 75 epochs. Table A4 is discussed in Section A.4. Baseline setting for
results in Table 3 are detailed in the main body of the paper.

16

Under review as a conference paper at ICLR 2023

=

=

=

+

+

+

GT Springs GT Charged Recombined

Figure A2: More examples of recombinations. Illustrated, samples from Springs (Col. 1) and Charged (Col. 2)
and their recombinations (Col. 3). NCI encodes both trajectories. NCI is able to reconstruct trajectories framed
in green with the initial conditions marked in blue, while swapping the edge constraints associated to the nodes
in the red dashed box. Recombinations look semantically plausible and smooth.

A.4 MORE EXAMPLES AND ADDITIONAL RESULTS

In this Section, we illustrate more examples of the main experiments and additional quantitative
results.

Qualitative Examples Figure A2 illustrates cross-dataset combinations of edge constraints. We
encode ground-truth trajectories (columns 1 and 2) separately into their corresponding energy
constraints. We train a different model for each data distribution. Next, we fix initial conditions x0

(blue points) of the scene framed in green and aim to reconstruct them. In test-time we generate a
trajectory by minimizing simultaneously the energy functions corresponding to the two models. Each
model targets specific edges. Particularly, one model adds constraints corresponding to the mutual
edges of the particles highlighted by a red dashed box, while the other aims to reconstruct the rest of
the trajectories.

Next, Figures A3 and A4 show qualitatively the predictions of NCI compared to the ground truth. In
both cases, the initial 49 steps are the ground-truth trajectory. The black dot indicates the beginning
of our model’s predictions (the trajectory color gets lighter with time). Predictions are often accurate.
In cases where there is a significant difference with the ground-truth (e.g. green node in the center of
Figure A4), the predicted trajectory looks semantically plausible.

Figure A6 illustrates the ability of NCI to add hand-crafted constraints in test-time. In the top row, a
trajectory reconstruction together with added goals that the nodes (players) are attracted to. In the
bottom row, a trajectory reconstruction followed by the same trajectory with variations of the agent
velocities. The resulting plots show how both the edge constraints and the newly added hand-crafted
constraints are respected.

17

Under review as a conference paper at ICLR 2023

Springs: 50 GT + 20 predictions

G
ro

un
d

Tr
ut

h
20

 P
re

d.
 N

C
I

Figure A3: Qualitative example of 20 predictions in the future of NCI in the Springs particles dataset. In both
rows, first 50 steps are the ground-truth. The black dot indicates the beginning of predictions for row 1. In all
cases, predictions look almost identical to the ground-truth.

Charged: 50 GT + 20 predictions

G
ro

un
d

Tr
ut

h
20

 P
re

d.
 N

C
I

Figure A4: Qualitative example of 20 predictions in the future of NCI in the Charged particles dataset. In both
rows, first 50 steps are the ground-truth. The black dot indicates the beginning of predictions for row 1. In all
cases, predictions are fairly close to the ground-truth. In the cases where they differ (green node - center) the
predictions are smooth and look reasonable.

Finally, Figure A5 illustrates an example of the sampling procedure. By leveraging Langevin
Dynamics sampling we refine our predictions iteratively in a gradient-based optimization procedure.
The model quickly understands the general shape of the trajectories and refines them locally using
the final sampling steps.

Edge Linear Decoding Results We show in Table A4 the quantitative comparison of NCI with
respect to the LSTM (single) baseline for linear edge type decoding. Note that NRI learned edge
representations are already a classification of explicit edge types and therefore do not allow for linear
decoding. The resulting accuracy of NCI surpasses that of the LSTM by a significant margin.

18

Under review as a conference paper at ICLR 2023

Steps: 1 2 3 4 Ground Truth

Sampling Procedure in Trajectory Reconstruction

Figure A5: Examples of trajectory reconstruction procedure for 50 time-steps of the Charged dataset. We
initialize the velocity as uniform noise and sample 4 times (in this case) using Langevin Dynamics. We obtain a
faithful reconstruction of the ground-truth trajectories.

A.5 ABLATION STUDY

Following, we add an ablation study carried on in the Charged dataset, with 370k iterations and a
batch size of 64. Here, we analyse NCI’s performance through a variety of design choices. Those are
the following:

• Latent size: We explore different sizes for the edge constraints. The choices are LS
∈ {16, 32, 64, 128}.

• Langevin step size. The choices are λ ∈ {0.1, 0.2, 2.0, 6.0, 10.0, 14.0}.

• Objective: We evaluate the impact of adding the contrastive divergence objective to the MSE
reconstruction loss.

• Edge masking strategy: In a setting with 2 EBMs, we evaluate 1) a random masking strategy,
2) a masking strategy based on the edge contribution to a specific node and 3) no masking
strategy.

• Decoder baseline: We substitute the iterative energy minimization by a feed-forward graph
decoder. This is equivalent to the Conditional GNN baseline.

For this experiment, we follow the setting in the quantitative comparison and simply modify the
variable of interest. Tha analysis shows how a small langevin step is desirable in terms of performance
(λ = 0.2). The model seems to be robust to the latent size choice, although there is a slight preference
for LS = 32. When it comes to the objective, we show quantitatively that regularizing training with
a contrastive divergence term improves performance. We can also observe how a masking strategy is
better than none. Finally, we show by comparing to a decoder baseline how our sampling strategy is
crucial for competitive results. Our ablation study is summarized in Table A5.

Similarly, we perform an ablation at test-time, with our best trained model for the Charge dataset. We
analyse NCI’s performance under the following variations:

19

Under review as a conference paper at ICLR 2023

• Number of Langevin steps: We train our model with M = 6 langevin steps and test it with
M ∈ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20].

• Number of nodes: We train NCI with 5 nodes and test it in datasets with N = 3 and N = 7

Results are summarized in Table A6. ”Train” indicates the setting used in training.

A.6 LONGER-TIME ROLL-OUTS

We evaluate our model against NRI in longer term prediction. Given the chaotic nature of trajectories,
we evaluate the energy among consecutive states (squared pairwise difference) for 100 timesteps.
This time, we employ our model auto-regressively in the Charged dataset, while it has been trained to
predict 20 steps in one-shot. R1 indicates that we iteratively predict 1 time-step. Results in Table A7
show how NCI preserves approximately more than 3 times of the energy than NRI as time unfolds.

A.7 BROADER IMPACT

Understanding interactions across agents in a trajectory is fundamental to explain their present
behavior and predict their future. The importance of such understanding is higher when we do not
have access to the true interaction types or they are simply not a discrete set. In those cases, being
able to learn representations of interactions from observational data provides a window into the
physics of the world we live in. These property is desirable in AI for applications such as molecular
dynamics modeling or autonomous vehicles, which have a huge impact on our lives. Despite the fact
that there is a wide range of approaches for inferring interactions and predicting trajectories, there
is relatively little work on inferring these in a interpretable manner. Our model aims to learn these
interaction constraints that allow for a higher degree of manipulation over the learned representations.
This interpretability and manipulability properties are important to AI, but might raise concerns of
abuse. Our approach, similar to many other approaches, may capture the implicit biases present in
data. There is also the potential threat of attacks to systems that rely on interpretable models, which
can be more easily targeted than those which are opaque.

20

Under review as a conference paper at ICLR 2023

Reconstruction: Edge Constraints (Edge - Velocity) Constraints (Edge + Velocity) Constraints

(Edge + Goal 1) Constraints (Edge + Goal 2) ConstraintsReconstruction: Edge Constraints

Figure A6: More examples of NBA reconstructed trajectories with added constraints in test-time. NCI can
generate realistic trajectories by respecting both (i). The learned edge constraints + (ii). new hand-crafted
constraints added in test-time. Illustrated (top row) we see the reconstruction of the trajectory with an added
goal. We can see that the trajectories have the tendency to be attracted in the direction indicated by the blue
arrow. The actual goal is located outside the frame. We can see (bottom row) constraints of higher and lower
velocity than the reconstruction. In all cases, the trajectories follow the new constraints without loosing their
original constraints.

Ablation Study 1 step 10 step 20 step
Latent Size

16 1.20e-3 3.75e-3 7.06e-3
32 9.87e-4 3.60e-3 6.82e-3
64 1.15e-3 3.82e-3 7.00e-3
128 1.15e-3 3.91e-3 7.24e-3

Sampling step size

0.1 9.54e-4 3.53e-3 6.81e-3
0.2 9.07e-4 3.36e-3 6.62e-3
2.0 1.16e-3 3.82e-3 7.09e-3
6.0 1.15e-3 3.82e-3 7.00e-3
10.0 1.14e-3 3.78e-3 7.07e-3
14.0 1.19e-3 3.91e-3 7.29e-3

Masking type

Mask random 1.15e-3 3.82e-3 7.02e-3
Mask by node 1.15e-3 3.78e-3 7.03e-3
No masking 1.17e-3 3.82e-3 7.09e-3

Objective

MSE+CD 1.15e-3 3.82e-3 7.02e-3
MSE (no CD) 1.36e-3 4.02e-3 7.47e-3

Decoder (no sampling) 3.27e-3 5.31e-3 9.65e-3

Table A5: Ablation study investigating effects of different factors like latent size, sampling step size, masking
type and objective in results.

21

Under review as a conference paper at ICLR 2023

Ablation Study in Test 1 step 10 step 20 step
Number of Langevin steps M

1 1.06e-1 1.18e-1 2.47e-1
2 3.23e-2 4.34e-2 8.22e-2
3 7.00e-3 1.16e-2 2.68e-2
4 1.86e-3 4.63e-3 1.00e-2
5 1.03e-3 3.51e-3 7.05e-3
6 (Train) 8.85e-4 3.33e-3 6.54e-3
7 9.00e-4 3.33e-3 6.45e-3
8 8.93e-4 3.36e-3 6.47e-3
9 9.00e-4 3.39e-3 6.60e-3
10 9.10e-4 3.44e-3 6.66e-3
20 1.03e-3 3.64e-3 7.04e-3

Number of nodes N

3 1.79e-3 3.71e-3 6.74e-3
5 (Train) 8.85e-4 3.33e-3 6.54e-3
7 1.34e-3 4.66e-3 1.01e-2

Table A6: Ablation study investigating effects of different factors in test-time: Number of langevin steps and
number of nodes.

Energy Evaluation (1e-3 1-2 10-11 20 -21 30-31 40-41 50-51 60-61 70-71 80-81 90-91 100-101
Baseline 5.0 4.9 5.0 5.0 4.9 4.9 5.0 4.9 5.0 5.0 4.9
NCI (R1) 3.2 2.4 2.2 2.2 2.1 2.1 2.0 1.9 1.9 2.0 2.0
NRI 1.2 0.75 0.65 0.60 0.68 0.62 0.61 0.70 0.59 0.57 0.65

Table A7: Energy evaluation NCI preserves more energy in long rollouts than NRI.

22

	Introduction
	Literature
	Constraints as Energy Based Models
	Energy-based Models
	Composing Constraints

	Neural Constraint Inference
	Relational Energy Constraints
	Inferring Energy Constraints
	Training Objective

	Experiments
	Datasets
	Baselines
	Quantitative Comparison
	Disentanglement of Energy Constraints
	Out-Of-Distribution Detection
	Flexible Generation

	Discussion
	Appendix
	Implementation details
	Architecture and Training Details
	Experiment details
	More Examples and Additional Results
	Ablation Study
	Longer-time roll-outs
	Broader Impact

