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ABSTRACT

Multimodal Large Language Models (MLLMs) frequently exhibit hallucination
phenomena, but the underlying reasons remain poorly understood. In this paper,
we present an empirical analysis and find that, although MLLMs incorrectly gen-
erate the objects in the final output, they are actually able to recognize visual
objects in the preceding layers. We speculate that this may be due to the strong
knowledge priors of the language model suppressing the visual information, lead-
ing to hallucinations. Motivated by this, we propose a novel dynamic correction
decoding method for MLLMs (DeCo), which adaptively selects the appropriate
preceding layers and proportionally integrates knowledge into the final layer to
adjust the output logits. Note that DeCo is model agnostic and can be seam-
lessly incorporated with various classic decoding strategies and applied to dif-
ferent MLLMs. We evaluate DeCo on widely-used benchmarks, demonstrating
that it can reduce hallucination rates by a large margin compared to baselines,
highlighting its potential to mitigate hallucinations'.

“The first principle is that you must not fool yourself—and you are the easiest person to fool.”
— Richard Feynman

1 INTRODUCTION

Recently, the rapid development of Multimodal Large Language Models (MLLMs) has demon-
strated a potential pathway towards achieving Artificial General Intelligence (AGI) (Wang et al.,
2024b; Yao et al., 2024; Lu et al., 2024a; Team, 2024; OpenAl, 2023; Liu et al., 2023b; Chern et al.,
2024). However, in practice, the development of MLLMs is hindered by the phenomenon of halluci-
nation, which typically results in the model generating statements about non-existent images while
neglecting to mention certain visible objects, effectively causing it to fool itself (Bai et al., 2024;
Liu et al., 2024a; Li et al., 2023b; Liu et al., 2023a; Rawte et al., 2023). This issue poses significant
risks in high-stakes fields such as medical imaging (Chen et al., 2024b; Hu et al., 2023; Wang et al.,
2023c), autonomous driving (Cui et al., 2024; Wang et al., 2023d), and human-computer interaction
systems (Brie et al., 2023), where such errors could result in irreparable consequences.

The reasons behind hallucinations in MLLMs are complex. Unlike analyses focused on unimodal
LLMs (Chuang et al., 2024; Chen et al., 2024d; Orgad et al., 2024; Chen et al., 2024e; Lu et al.,
2024b; Wang et al., 2024a), many current works assume that MLLM may indeed ‘see’ visual infor-
mation. However, due to factors such as excessive model depth (Chen et al., 2024c; Zhang et al.,
2024a), aggregation patterns (Huang et al., 2024), or priors knowledge inherent in the MLLMs (Leng
etal., 2023; Zhang et al., 2024b), these models ultimately still experience hallucinations (The details
can be found in Appendix B). Concretely, our understanding of the underlying mechanisms of hal-
lucinations in MLLMs remains limited. It is still uncertain whether the visual information is never
correctly recognized or if it is recognized but subsequently suppressed by later information streams.
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Figure 1: Overall results of the probing experiment with MLLMs, indicating that they possess a
certain level of awareness regarding the presence of visual objects (Figure 1(a)), with prediction
accuracy being higher in the preceding layers (Figure 1(b)) but gradually decline afterward.

Hallucinated MLLM can see (to some extent). Inspired by the aforementioned works, we conduct
an empirical analysis and find that MLLMs are not blind; they can recognize objects in the preceding
layers, but this recognition is suppressed in later layers, leading to hallucinations. Specifically, we
focus on object hallucinations” and conduct experiments with MLLMs, demonstrating that they
know to some extent whether an object exists (as shown in Figure 1 and Section 2.1). We further
observe that the confidence of generated tokens is influenced by the knowledge priors of MLLMs
(Section 2.2), leading to a reduction in the probability of ground truth tokens in the deeper layers.

Dynamic correction decoding with preceding-layer knowledge. Based on those findings, we pro-
pose Dynamic Correction Decoding with preCeding-Layer Knowledge (DeCo) to mitigate hallu-
cinations for MLLMs. Our core hypothesis is that preceding layers exhibit higher confidence for
ground truth tokens, and the logits for these tokens should rank prominently at the last layer’s out-
puts. To enhance the logits of ground truth tokens, DeCo dynamically selects preceding layer and
utilizes its prior knowledge to correct the final output logits. Additionally, we introduce a dynamic
soft modulation to preserve the original style of the generated responses. DeCo is training-free and
can be integrated with any popular decoding strategies, such as greedy search, nucleus sampling as
well as beam search, and can seamlessly incorporate into any MLLMs for hallucination mitigation.

Contributions. Our primary contribution lies in exploring the internal mechanisms of hallucinations
in MLLMs. We find that the confidence of generated tokens is influenced by the knowledge priors
of MLLMs, leading to a reduction in the probability of ground truth tokens in the deeper layers. We
further propose DeCo, a dynamic correction decoding method guided by preceding-layer knowl-
edge. DeCo is integrated with InstructBLIP, MiniGPT-4, LLaVA, and Qwen-VL using three popular
decoding strategies: greedy search, nucleus sampling, and beam search. Experimental results show
that DeCo achieves an average hallucination suppression rate of 10.8 % in image captioning dataset,
demonstrating superior suppression effectiveness. Additionally, DeCo outperforms baselines on vi-
sual question answering datasets including POPE, and MME. Additionally, we analyze the latency
and throughput, showing that DeCo introduces an approximate 1.2x increase in latency compared to
the basic decoding process, much faster than previous baselines such as VCD and OPERA.

2 WHY DO MLLMS GENERATE NON-EXIST OBJECTS?

In this section, we conduct a series of empirical analysis to investigate the internal mechanisms of
MLLM and elucidate the underlying reasons for its generation of non-existent objects. To strike a
balance between the realism and complexity of the experiments, we primarily focus on the genera-
tion of objects in image description scenarios (image caption tasks).

Preliminaries of MLLM generation. MLLMs typically concatenate visual tokens, processed by
the visual encoder and projection layer, with embedded textual tokens before feeding them into an
autoregressive language model. We denote the visual tokens as XV = {z,,,Z4,,. .-, Ty, } and
textual tokens as X = {z.,,z,,. .. ,Te }- Here P and @ are the lengths of the visual tokens

2This approach is applicable to other types of hallucinations as well.
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Figure 2: Illustration of token probabilities across transformer layers, which reveals distinct trends
for target hallucinated ( ) and non-hallucinated (green) tokens. In the preceding layers, non-
hallucinated tokens exhibit a higher probability. In the final layers, hallucinated tokens demonstrate
increased probabilities, while the probability of non-hallucinated tokens drops sharply.

and textual tokens respectively. Finally, the input is X = concat{X",X}. Then X would be
passed into MLLM with N stacked transformer layer. The intermediate variable generated by the
i-th layer is called hidden states, denoted as h* = {hj, ht,... h%_;}, where T = P + Q. During
the generation phase, we use the hidden state at the last position in the final layer, which is mapped
to the vocabulary dimension through an affine layer ¢(-), to predict the probability of the next token.
Formally, we have:

p(zr|zr) = softmax(p(hY_ | )) ey, x7 €V (1)

where we use z <7 to simplify the sequence {x; ;?F:_Ol and V refers to the whole vocabulary set.

2.1 FINDING 1: MLLM KNOWS TO SOME EXTENT WHETHER AN OBJECT EXISTS

Inspired by (Ye et al., 2024), we explore how MLLMs comprehend objects in the image captioning
task. For simplicity, we abstract this process into a function called isexist(obj), which determines
whether an object is present in an image. To examine the application of this function within the
MLLM'’s image captioning workflow, we conduct probing experiments at the conclusion of object
descriptions in each layer of the MLLM’s language model component, which consists of 32 trans-
former layers in a 7-billion-parameter model (Detailed setup in Appendix C.1).

We employ the prompt template, “USER: <image>Describe the image. ASSISTANT: The image
contains obj.” Both the training and testing datasets are formatted accordingly before being input
into MLLMs. We train a probe classifier at the final position of the hidden state outputs for each
transformer layer, resulting in a total of 32 classifiers. (For details on the subset division, OOD and
in-distribution splits, and prompt templates, please refer to Appendix C.1.) The model is evaluated
using the test set, as shown in Figure 1(a) (left). Further experiments are conducted on three splits
of the evaluation dataset proposed by POPE, with results reported in Figure 1(a) (right). These
evaluations provide a comprehensive understanding of the model’s object recognition capabilities
across diverse scenarios.

We select the best-performing probe classifier from the 32 classifiers to compare accuracy across all
objects, existing objects, and non-existing objects. Our results show that the MLLM achieves high
accuracy for correctly generated objects in image captions. Despite generating many non-existent
objects, the MLLM still maintains around 80% accuracy in our probing experiments. This suggests
that MILLMs possess a certain level of understanding regarding object existence in images.

Additionally, our probing experiments reveal higher accuracy in the preceding layers, as illustrated
in Figure 1(b), which aligns with previous findings (Zhang et al., 2024b; Leng et al., 2023). Further-
more, we show that increasing the resolution of the visual encoder (from 224px to 336px) enhances
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accuracy for non-existing objects, indicating that token information at the last position in the
preceding layers better represents visual information. (For a detailed explanation of the different
visual resolutions, please refer to Appendix C.1). These findings suggests that the utilization of the
preceding-layers in MLLMs enables the model to perform self-correction.

2.2 FINDING 2: LANGUAGE MODEL PRIORS SUPPRESS THE VISUAL INFORMATION THAT
MLLM ALREADY SEE.

We hypothesize that the representations in the preceding layers effectively capture (to some extent)
visual information. However, the prior knowledge embedded in the MLLM reduces the probabilities
of ground truth tokens in deeper layers. Figure 2 illustrates this hypothesis with running examples.
We analyze the Top-4 tokens ranked by probability in the final layer’s output. Non-hallucinated to-
kens like “people”, “left”, “blue”, and “umbrella” exhibit high probabilities from the 18th layer.
In contrast, hallucinated tokens like “bird” and “green” only show comparatively high probabili-
ties around the 30-th layer. Interestingly, the probabilities of ground truth tokens “umbrella” and
“blue” sharply decline from the 30-th layer onwards, eventually falling below the hallucinated to-
kens’ probabilities in the final layer.

To further investigate this phenomenon, we conduct an early

exit experiment (Teerapittayanon et al., 2016; Elbayad et al., 160 Tt
. . . i 1407 =0. .
2020; Schyster et al., 2022) to analyze the evolution of the 1204 = Hhreshold=0.1 /
MLLM’s internal representations across transformer layers. g0
We randomly select 500 images from the MSOCO dataset S o
and use random prompts to elicit raw responses from LLaVA- - v
1.5'—7b. We theq extract a!l non-existent objegts alor}g with R S e~
their corresponding preceding text and input this data into the Layer

MLLM. We observe the probabilities of the next token across o ]

the transformer layers to gain insights into the model’s behav- Figure 3: Distribution of activated
ior (see Appendix C.2 for detailed experimental setup). The ground-truth tokens across layers.
output of the i-th layer is denoted as h’, and the probability

distribution of the next token is represented as p(-|z<)" = softmax(¢(h’_;)). To reduce the obser-
vation tokens and simulate the real sampling process, we truncate the vocabulary, similar to Top-p
sampling, and obtain the candidate tokens, denoted as V.qndidate With a default threshold of 0.9.
We then label the tokens in V.gndidate. Specifically, we filter out data where V.qndidate CONtains at
least one ground truth token and observe whether an activated ground truth token exists among
the candidate tokens, formally expressed as:

3 Tq € Vcandidate ANt € (07 N]a p($a|x<s)i - p($h|$<s)i 2 threshold, (2)

where z, is the activated ground truth token, xj, is the token with the highest probability of being a
hallucinated token in the probability distribution of the final layer and threshold € (0,1). Based on
the experimental setup described above, we conducted the following investigation:

What suppresses the expression of visual facts? We analyze the occurrence of z, at each decod-
ing layer, as shown in Figure 3. The results reveal that the activated ground truth tokens are primarily
present between layers 20 and 28, indicating that MLLMs accurately recognize the image content
in the latter layers. Notably, differences in experimental setups account for the variation in interval
layers observed between Finding 1 and Finding 2. However, the activated ground truth tokens are
suppressed in the final output layer. This suppression may stem from the guidance of the input im-
age or the inherent knowledge bias of the MLLM. To investigate this, we generate candidate tokens
V;an didate 10 the absence of an input image, representing tokens based on the MLLM’s inherent
knowledge. We calculate that the overlap rate of x;, existing in V;andidate reaches 91.05%, sug-
gesting that even without expressing image information, MLLMs still tend to generate the original
hallucination tokens. This finding reveals that the inherent knowledge in MLLMs may diminish
the probability of the ground truth token in the deeper layers.
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Figure 4: Framework of DeCo. DeCo first dynamically selects an appropriate anchor layer from the
preceding layers and then correct the knowledge in the final layer with dynamic coefficient.

3  PROPOSED APPROACH: DYNAMIC CORRECTION DECODING WITH
PRECEDING-LAYER KNOWLEDGE

After investigating the reasons why MLLMs generate non-existent objects, inspired by (Chuang
et al.,, 2024), we introduce Dynamic Correction Decoding with preCeding-Layer Knowledge
(DeCo), which can alleviate hallucinations during inference. The overall framework of Deco is
illustrated in Figure 4, consisting of dynamic preceding layer selection (Section 3.1) and decoding
correction with preceding-layer knowledge (Section 3.2).

3.1 DYNAMIC PRECEDING-LAYER SELECTION

Candidate token acquisition. Due to the vast vocabulary space, we track only the changes in the
top-ranked tokens as candidate tokens across different layers for computational convenience. This
is based on the hypothesis that ground tokens usually appear in the top position of the MLLM’s last
layer output logits. Inspired by (Li et al., 2023a), we use a truncation strategy to select the candidate
tokens, with the default truncation strategy being top-p truncation, formally:

Vewdigae (#7|v<r) = S 27 € V2 Y Prlwr =vlag,21,...,271) <p 3)
vEVD

where V is the whole vocabulary, and p refers to the parameter used in top-p. The selected candidate
tokens are theoretically ensured to be of high quality, thereby preventing the inclusion of low quality
tokens (e.g.,semantically incorrect tokens) that exhibit high probabilities in preceding-layers but low
probabilities in the final layer.
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Table 1: Hit Rate of layers across Preceding-layer selection. Our findings in Section 2

different intervals. demonstrate that activated ground truth tokens typically ex-
hibit higher probabilities in preceding layers compared to hal-
Layer Range 20-28 15-28 lucinated tokens. Based on this observation, we hypothesize

that selecting the token sy, where iy, € Vegndidate, With the
highest probability from the interval layers corresponds to the
ground truth token. We compute the accuracy of x4, as the
ground truth token and denote this metric as the hit rate, as shown in Table 1. The results indicate
that within a specific range of layers (e.g., 15-28), x4, indeed has a high universal probability of rep-
resenting the ground truth token. Intuitively, we track candidate tokens and dynamically choose the
layer in which the token with the highest probability among the preceding layers resides to calibrate
the final logit distribution of the MLLM. The selected preceding layer is referred to as the anchor
layer, formally defined as:

Hit Rate (%) 61.69 71.14

A= argmaxi{xT € Veandidate : SOftmaX((b( Zﬁ"—l))wTai € [CL, b]}a 4)

where a < b,a,b € [1, N], and [a, b] represents the layer interval for MLLMs. Expanding the range
of layers can improve the hit rate. To avoid increased search computation time, we assign default
values of a = 20 and b = 28 for our subsequent experiments.

3.2 DECODING CORRECTION WITH PRECEDING-LAYER KNOWLEDGE

Dynamic soft modulation. We introduce a dynamic modulation coefficient, defaulting to the max-
imum probability. Formally, we have:

max_prob = max (softmax(¢(hg_,))). )

This coefficient can help prevent hard changes in logits, particularly when the probability differences
between candidate tokens in preceding layers are insignificant. From the example in Figure 4, we can
observe that the absence of the dynamic modulation coefficient may lead to semantic incoherence
or even more severe hallucinations.

Preceding-layer knowledge guided decoding. Given the selected preceding layers, we integrate
information from these layers into the final layer to correct the logit distribution. We utilze a hyperpa-
rameter, «, to control the proportion of early-layer information incorporated. Additionally, dynamic
soft modulation is employed to preserve the generative style of the original model. By utilizing the
correction of preceding-layer representations, the probability of predicting the next token and the
logits are updated as follows:

plrr | ze7) = softmax(logits)zT, (6)
logits = ¢(hY_,) 4+ o x max_prob x ¢(h7_,), (7
where N is the last layer of MLLM and A is the selected preceding layer.

4 EXPERIMENT

4.1 SETUP

Baselines. We integrate DeCo with various decoding methods, including greedy decoding, nucleus
sampling, and beam search, and compare it against several baselines for mitigating hallucinations,
as outlined below: Dola (Chuang et al., 2024) is specifically designed for alleviating hallucinations
in factual tasks for LLMs by reducing shallow semantic influences to improve the factuality of the
final layer’s output. VCD (Leng et al., 2023) mitigates the influence of language model’s priors in
MLLMs by generating representations that enhance visual information through the subtraction of
interfering knowledge prior during each sampling step. OPERA (Huang et al., 2024) dynamically
penalizes overconfident tokens based on the emergence of aggregation patterns, while proposing a
retrospective allocation strategy to avoid cases where hallucinations have already occurred. For all
the baselines, we use the default hyperparameters from the source code for a fair comparsion.



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Table 2: CHAIR hallucination evaluation results. Lower scores indicate fewer hallucinations.
OPERA utilizes beam search, VCD applies nucleus sampling, and DeCo is the proposed method
compatible with various decoding approaches.

D . InstructBLIP MiniGPT-4 LLaVA-1.5 Qwen-VL
ecoding Method
CHAIRg | CHAIR;| CHAIRg| CHAIR;] CHAIRs] CHAIR;| CHAIRg| CHAIR;/|
Greed Vanilla 58.8 23.7 31.8 9.9 45.0 14.7 46.0 12.5
Y DoLa 48.4 15.9 322 10.0 47.8 13.8 46.8 12.9
DeCo (Ours) 41.2 /17.6  14.4 9.3 27.0 |4.8 8.8 1.1 378172 11.1 /3.6 42.2 3.8 10.7 |1.8
Vanilla 55.6 15.8 30.6 9.5 48.8 13.9 41.8 10.8
Beam Search OPERA 46.4 14.2 26.2 9.5 44.6 12.8 34.6 9.5
DeCo (Ours) 43.8 [11.8  12.7 /3.1 24.8 |5.8 7.5 2.0 33.0 /158 9.7 |4.2 32.0 /9.8 8.7 |2.1
Vanilla 54.6 24.8 32.6 10.7 48.8 14.2 49.2 13.1
Nucleus VCD 58.0 17.0 33.8 11.1 54.0 16.0 46.4 11.9
DeCo (Ours) 43.6 1.0 129119 30.8 |18 9.5 (1.2 42.8 /6.0 13.2 1.0 43.8 |54 11.8 /1.3

Table 3: POPE hallucination evaluation results. The best results are in bold.

Decoding Method InstructBLIP MiniGPT-4 LLaVA-1.5 Qwen-VL

F11 F11 F11 F11
Vanilla 80.0 58.5 82.2 85.2
Greedy DoLa 83.4 72.8 83.2 85.8
DeCo (Ours) 84.9 14.9 77.4 118.9 86.7 14.5 86.3 1.1
Vanilla 84.4 70.3 84.9 85.3
Beam Search OPERA 84.8 73.3 85.4 86.1
DeCo (Ours) 84.9 10.5 77.9 17.6 86.7 11.8 86.4 11.1
Vanilla 79.8 52.8 83.1 84.5
Nucleus VCD 79.9 56.0 83.1 84.7
DeCo (Ours) 81.8 12.0 63.8 111.0 85.412.3 85.2 10.7

Model. We select four of the most representative MLLM models for evaluation, including Instruct-
BLIP (Dai et al., 2023), MiniGPT-4 (Zhu et al., 2024), LLaVA-1.5 (Liu et al., 2023b) and Qwen-VL
(Bai et al., 2023). All the MLLMs we used have a language model size of 7 billion parameters (7B).

Implementation Details. To select the appropriate preceding layers for hallucination mitigation,
we conduct ablation experiments, details of which can be found in the Section 4.4. For a 7B-sized,
32-layer decoder-only architecture language model, we choose layers 20-28 as candidates for the
preceding layers (according to the findings in Section 2.1). For the image captioning and VQA
tasks, « is set within the range of 0.1 to 0.6. In all experiments, we conduct inference on a single
A800 GPU. The inference of 500 image-caption pairs take approximately 40 minutes.

4.2 BENCHMARK AND METRICS

CHAIR. Caption Hallucination Assessment with Image Relevance (CHAIR) (Rohrbach et al., 2018)
metric, widely used in image captioning, identifies hallucinated objects by comparing the extracted
objects with ground truth labels and evaluates both at the instance level (CHAIR;) and sentence
level (CHAIRg), as shown in Eq. 8. Following (Huang et al., 2024), we conduct experiments using
the same settings, including the consistent 500 images from the MSCOCO 2014 validation dataset
and the identical prompt, “Please help me describe the image in detail.”.

|{hallucinated objects}|
all mentioned objects

_ |{captions with hallucinated objects}|

CHAIR; =
! all captions

, CHAIRg (8)

POPE. The Polling-based Object Probing Evaluation (POPE) (Li et al., 2023b) is a VQA-based
metric for assessing object hallucination in MLLMs. It evaluates hallucinations by asking questions
such as “Is there a <object> in the image?” where <object> is derived from three
types of splits: random (randomly selected objects), popular (frequently occurring objects), and
adversarial (objects closely related to those in the image). The evaluation includes 500 MSCOCO
images, with six questions per image for each split. We use F1 score for performance evaluation.

MME. The comprehensive MLLM Evaluation benchmark (MME) (Fu et al., 2023) assesses the
perceptual and cognitive abilities of MLLMs across a total of 14 subtasks, including tasks such as
OCR, visual knowledge, attribute relationships, and object recognition.
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GPT-4o0 assisted evaluation. To further assess the model’s performance in image captioning, we ex-
tend beyond the CHAIR metric, which targets object hallucination. Following prior studies (Huang
et al., 2024; Leng et al., 2023), an open evaluation is conducted using GPT-40 on 100 randomly
sampled COCO images. GPT-40 assesses two assistants’ descriptions in terms of Accuracy (A)
(e.g., truthfulness), Detailedness (D) (e.g., richness) and Coherence (C). We introduce the prompt
used in the experiments in Table 10 and Table 11.

4.3 EXPERIMENTAL RESULTS

Results of hallucination in image captioning. Note that we use the baseline’s original decod-
ing settings for a fair comparison and run DeCo under the same settings. From Table 2, we no-
tice that DeCo consistently outperforms other approaches in mitigating hallucinations across four
MLLMs—InstructBLIP, MiniGPT-4, LLaVA-1.5, and Qwen-VL—using three decoding strategies:
greedy search, beam search, and nucleus sampling. We find that DeCo slightly outperforms OPERA,
while our method demonstrates higher efficiency and simplicity in inference (see Section 4.4). Ad-
ditionally, VCD does not perform as well, likely due to producing an increased number of halluci-
nated descriptions during the generation process. In conclusion, the proposed approach DeCo effec-
tively reduces hallucinations in visual description tasks solely through dynamic decoding correction,
achieving an average suppression rate of approximately 10.8% on image captioning datasets. Ad-
ditionally, we further evaluate the performance of DeCo on the AMBER image caption dataset, as
detailed in Table 7 of the Appendix.

Results of hallucination in VQA. In contrast to image cap-
MME tioning, POPE employs a simple polling approach to assess
nees  hallucination levels in MLLMs with respect to object recog-

== VCD

/ ) = eeam  Nition. As shown in Table 3, DeCo demonstrates superior per-
g 12501 / ¢ == OPERA . . . .
’% / % eey fOrmance across all settings, further validating the effective-
/ %/ = oo ness of the proposed approach. Additionally, Figure 5 reveals
1000 o ' that DeCo also achieves better results on MME, which evalu-
6‘7‘\{’ K Q,a&\ & @b& db‘? d{j’ . el
& & o ates the multifaceted VQA capabilities of LLaVA-1.5. These

findings suggest that the underlying mechanism we identi-
fied not only applies to object recognition but also extends
to attribute-related tasks and more complex reasoning tasks.

Figure 5: DeCo generally improves
the MLLM’s performance.

Results of GPT-40’s assistance. Following (Huang et al., 2024; Leng et al., 2023), we further use
GPT-4o0 to evaluate our method against greedy decoding across four distinct models. From Table 4,
we notice that our approach consistently outperform greedy decoding in terms of accuracy, demon-
strating its efficacy in hallucination suppression. The impact of decoding intervention is evident in
the level of detail produced: for some models, our method yield only marginally higher or, in certain
cases, slightly lower levels of detail compared to greedy decoding. DeCo also exhibits a coherence
level comparable to that of the baseline. Nonetheless, our method exhibit a clear advantage in miti-
gating hallucinations across all evaluated models.

Table 4: GPT-40 assisted hallucination evaluation results on MSCOCO. Three aspects are verified,
accuracy (A), detailedness (D) and coherence (C').

InstructBLIP MiniGPT-4 LLaVA-1.5 Qwen-VL
A D C A D C A D (C A D C

Greedy Search 4.92 5.65 6.89 5.71 620 7.67 5.21 6.31 8.18 5.56 6.62 8.20
DeCo (Ours) 6.25 5.77 7.14 6.33 6.08 7.54 742 625 796 7.81 6.70 8.15

Method

4.4 ANALYSIS

Latency and throughput analysis. To evaluate the efficiency of DeCo, we compare its latency
and throughput with several baselines, including DoLa, OPERA, and VCD based on Greedy,
Beam Search, and Nucleus Sampling, respectively. Figure 6 illustrates the results of this compar-
ison. The findings indicate that DeCo operates within an acceptable efficiency cost, striking a bal-
ance between effectiveness and computational overhead. Compared to the basic decoding process,
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the latency increase introduced by our method is approximately 1.2 times. In contrast, the latency
increases for VCD and OPERA are 1.8 and 5.1 times, respectively. While both VCD and OPERA
demonstrate comparable efficacy in mitigating hallucinations, their computational overheads remain
relatively high. This highlights the practical value of DeCo, as it can be integrated into real-world

applications without significantly compromising efficiency. = Vertla == Oure = Basello

e ] N
Perturbation in the selected preceding-layer. Toeval-  seunseer [ DEEEERY
uate the effectiveness of the dynamic layer selection S e
method, we introduce a random perturbation strategy.

0 50 100 150 200 0 10 20 30 40 50

Specifically, for the predetermined preceding layers, we Latency (tokervs)
add random values ranging from -5 to 5 to modify the i

selection of layers. We randomly select 200 images from Figure 6: Comparison of latency and
the MSCOCO dataset and prompt MLLMs to generate throughput across different baselines.
descriptions. The results after incorporating the perturbations are presented in Table 5. Notably, the
perturbed results demonstrate a significant degradation in performance, further validating the effec-
tiveness of our proposed method.

Table 5: Comparison of results between DeCo and perturbed DeCo in image captioning tasks

Method InstructBLIP MiniGPT-4 LLaVA-1.5 Qwen-VL
CHAIRs | CHAIR;] CHAIRs] CHAIR;|, CHAIRs| CHAIR;] CHAIRs] CHAIR;{

DeCo 39.3 12.6 324 9.6 38.8 11.1 44.5 11.1

DeCo+e¢ 45.616.3 143 11.7 33.310.9 10.1 10.5 422124 11.310.2 47.0 12.5 12.8 11.7

Hyperparameter analysis. Our method incorporates two primary hyperparameters: « and the se-
lection of interval layers. In the experiments, we employ DeCo based on greedy decoding. On the one
hand, the hyperparameter o regulates the intensity of early information enhancement. Figure 7(a)
illustrates the performance across various « values. We observe that hallucination suppression is
most effective when a approximates 0.6. As « increases, the efficacy of DeCo in mitigating hal-
lucinations improves. However, it is crucial to note that excessively high o values may lead to the
generation of atypical image descriptions, characterized by repetitive word usage. Notably, we can
adjust the value of alpha appropriately to balance the truthfulness and semantic coherence of the
responses (e.g., by using lower alpha). Additionally, our approach and the hyperparameter for rep-
etition penalty are orthogonal, which implies that we can introduce the repetition penalty term to
mitigate repetition. On the other hand, the layer interval hyperparameter [a, b] determines the can-
didate layers for inclusion in the enhancement process. We conduct experiments using intervals of
four layers, with results presented in Figure 7(b). Our analysis reveals that hallucination suppres-
sion for MLLM is negligible in layers 1-16, while layers 20-28 demonstrate substantial mitigation
of hallucinations. Notably, layers 29-32 exhibit minimal hallucination suppression, aligning with
our findings discussed in Section 2.2. For other families of MLLMs and larger scale MLLMs, the
selection of interval layer should be appropriately adjusted based on empirical experimentation.

-~ LLavVA — MiniGPT-4 - Qwen-VL - InstructBLIP - ous Greedy Search LavA MINIGPT-4
50 50
a5 ° 45-
o 0
' 404 o 404
§ <
T 354 & 351
304 | T— — 30-
sl - 25— . , . . ! : !
01 02 03 04 05 06 07 08 09 10 14 58 012 13716 1720 2124 2528 2932
Alpha Layer Interval
(a) Ablation study of a. (b) Ablation study of interval layers.

Figure 7: Ablation experiment results for hyperparameter o and different interval layers.

Mitigating snowballing hallucinations. Snowballing hallucinations are a prevalent issue in the
responses generated by MLLMs. This phenomenon occurs when an initial hallucination triggers a
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sequence of subsequent errors, leading to a compounding effect that significantly degrades the qual-
ity and coherence of the generated text. Figure 8 illustrates a typical example of snowballing hallu-
cinations, where an initial misinterpretation of the visual input propagates through the decoding pro-
cess, resulting in a highly inconsistent and erroneous output. Our approach can reduce the accumu-
lation of errors and improves the overall consistency and accuracy of the generated responses. The
effectiveness of DeCo is further demonstrated through additional cases based on diverse MLLMs,
which can be found in Figures 9, 10, 11, and 12 in Appendix G.

5 RELATED WORK

5.1 MLLM HALLUCINATION MECHANISM

Hallucination in MLLMs, characterized by contradictions between image input and textual output,
has been a prevalent issue (Liu et al., 2024a; Chen et al., 2024g). Current research on the mechanism
of hallucination in MLLMs focuses on two key aspects: the interaction between images and text at
different layers, and the prior bias of the LLM during decoding. Several studies have investigated the
role of image-text interaction at different layers in MLLMs. Grad-CAM (Zhang et al., 2024a) visu-
alizations reveal that image-text interaction exists in the preceding layers (1-11) but not in the deep
layers. OPERA (Huang et al., 2024) further proposes that the “Aggregation Pattern” leads to hallu-
cination, where visual information from preceding layers is gradually aggregated to anchor tokens,
and focusing solely on these tokens during prediction while ignoring visual information leads to a
high probability of hallucination in the generated sequence. However, other studies have revealed
that MLLMs exhibit biases towards LLM priors, even in the presence of noisy or absent visual in-
formation. VCD (Leng et al., 2023) discovers that MLLMs generate high-confidence answers even
when the image is noisy or absent, indicating a bias towards LLM priors. Similarly, PAI (Liu et al.,
2024b) describes this phenomenon as “Text Inertia” and posits that it stems from existing paradigms
that map visual representations onto the text representations as tokens. This leads to an inference
process that fails to adequately account for image tokens, resulting in hallucinations.

5.2 HALLUCINATION MITIGATION FOR MLLMSs

One straightforward approach to mitigate hallucination is to reduce the knowledge gaps and data bias
between vision and language during model training. Finetuning-based methods have been explored,
focusing on crafting specific datasets (You et al., 2024; Gunjal et al., 2024; Chen et al., 2024f) and
alignment training (Sun et al., 2023; Yu et al., 2023; Chen et al., 2023; Li et al., 2023c) to achieve
better knowledge alignment between images and text. While these methods have shown promising
results, they often require expensive annotated paired data and substantial computational resources.

Hallucination can also be mitigated by post-processing methods, which usually involve using ad-
ditional tools or self-reflection strategies to revise the response. For instance, LURE (Zhou et al.,
2024) detects hallucinations using manually-crafted features and revises the generated text accord-
ingly. Woodpecker (Yin et al., 2023) combines MLLM outputs with an expert VQA model to post-
edit hallucinations. However, these methods incur additional inference costs and delays, and require
task-specific procedures and prompts to be designed (Xu et al., 2024). Training-free decoding meth-
ods have been explored to mitigate hallucination. OPERA (Huang et al., 2024) identifies an abnor-
mal attention pattern that often accompanies hallucinated descriptions and proposes the mitigation
method based on this pattern. VCD (Leng et al., 2023) introduces the notion that visual uncertainty
increases hallucination and proposes a contrast decoding method to alleviate the issue. VDD (Zhang
et al., 2024b) proposes a “Post-Hoc debias” approach that ensures uniform scores for each answer
in the absence of an image to mitigate the influence of LLM priors.

6 CONCLUSION

In this paper, we demonstrate that MLLMs exhibit an awareness of hallucinated objects, with earlier
layers showing higher confidence, while tokens shaped by prior knowledge diminish the likelihood
of true tokens in the final layers. Based on this insight, we introduce DeCo, dynamic correction de-
coding with preceding-layer knowledge to mitigate hallucinations. Extensive experiments demon-
strate the efficacy of our approach, which also shows advantages in latency and throughput.
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A LIMITATIONS

Lack of generalized research. Due to the GPU cost consideration, we conduct experiments solely
on limited MLLMs, without exploring additional MLLMSs or those with larger parameter sizes.

No free lunch. The results shown in Table 4 indicate that our method has a little negative impact
on the level of detailedness metric. In future work, we aim to integrate DeCo with other strategies
and explore approaches that can effectively balance truthfulness and diversity.

B COMPARATIVE ANALYSIS, SUMMARY, AND FUTURE DIRECTIONS

Here, we compare our work with previous works, summarize and speculate on the underlying causes
of hallucinations in LLMs and MLLMs, and provide insights into future directions.

Comparison of previous mechanism findings. Existing studies suggest that MLLMs may focus
more on visual tokens in the early layers while paying greater attention to textual tokens in the
later layers (Zhang et al., 2024a; Chen et al., 2024c). The aggregation pattern is typically positively
correlated with hallucinations and tends to emerge at deeper layers (Huang et al., 2024). These
conclusions align with our findings, suggesting that MLLMs exhibit a better ability to perceive visual
information in the preceding-layers compared to the final layers. In the detection of hallucinations in
LLMs, some studies employing probing techniques have found that the intermediate layers exhibit
the best detection performance (Chen et al., 2024a; Orgad et al., 2024; Chen et al., 2024e; Lu et al.,
2024b), a finding similar to our Finding 1. This suggests that the hallucination mechanisms in LLMs
and MLLMs may share underlying similarities.

Comparison of previous hallucination mitigation methods. Our work shares a similar assump-
tion with OPERA (Huang et al., 2024) and VCD (Leng et al., 2023), positing that the knowledge
priors inherent in MLLMs may suppress the model’s ability to comprehend visual information.
However, our approach is comparatively simpler than that of OPERA (Huang et al., 2024) and
VCD (Leng et al., 2023). Additionally, our work differs from the assumption in unimodal LLMs,
where the semantic information present in the shallow layers interferes with factual recall in the final
layer (Chuang et al., 2024; Chen et al., 2024d). However, our method is actually parallel to previous
approaches and can be combined to achieve better results.

Summary. Combining current research, we speculate that this phenomenon observed in both
LLMs and MLLMs may be due to characteristics of the Transformer architecture, specifically the
anchor token effect in the attention mechanism (Huang et al., 2024; Wang et al., 2023b), which
leads to information loss when processing long sequences. For instance, in MLLMs, a single token
may be insufficient to summarize information from extended sequences of visual tokens. Another
work suggest that the knowledge overshadowing of multiple conditions within the query leads to
hallucinations in LLM (Zhang et al., 2024c). In multimodal settings, image information represents
a distinct condition. When the textual modality overshadows the condition related to the image, it
can result in hallucinations in visual perception. Essentially, this reflects a loss of information flow
within the attention mechanism. Overall, from an architectural perspective, hallucinations in both
LLMs and MLLMs arise due to the imperfect of handling such interactions within the attention
patterns of the Transformer.

Future directions. Overall, the present works and ours work reveals notable similarities in the
internal patterns of hallucination between LLMs and MLLMs. In future research, we will adopt a
unified perspective to investigate the underlying causes of hallucinations in both LLMs and MLLMs.
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C DETAILED EXPERIMENTAL SETUP

C.1 DETAILED SETTINGS FOR FINDINGS 1

In the probing experiment, we utilize the pipeline proposed in the POPE (Li et al., 2023b) to con-
struct 1,200 balanced positive and negative sample pairs from the MSCOCO dataset as training data
for the probe classifier, where each sample consists of an object accompanied by a label indicating
its existence or non-existence. (Note: There is no overlap between the training data and the evalu-
ation data for object hallucination proposed by the POPE). We select the AMBER dataset (Wang
et al., 2023a), which has a different distribution from the MSCOCO dataset, to test whether our
conclusions can generalize. The AMBER dataset contains 1,004 carefully annotated images, each
labeled with existent objects as well as non-existent objects. We use the prompt “Describe the
image.” to generate raw responses from LLaVA-1.5 on the images and then extract all object
category tokens and label them with whether they exist. Given that the training set contains only
80 object categories, we denote the object tokens in test data belonging to these 80 categories as
in-distribution (in-dist), while the remaining tokens are categorized as out-of-distribution (OOD).

Previous work (Karamcheti et al., 2024) has demonstrated that increasing the resolution of the vi-
sion encoder enhances the visual comprehension capabilities of MLLMs. In our study, we compare
LLaVA trained with a resolution of 224px against the original LLaVA with a resolution of 336px
in probing experiments. Notably, the language model’s weights differ between the two MLLMs, al-
though both initial models are based on Vicuna-1.5-7b. Our results, as illustrated in the Figure 1(b),
further affirm the scaling law associated with visual resolution, while also providing indirect valida-
tion of the reliability of the probing experiments.

C.2 DETAILED SETTINGS FOR FINDINGS 2

In the early exit experiment, we randomly select 500 images
from MSOCO and use random prompts (shown in Table 6) Table 6: Randomly prompts.

to elicit raw responses from LLaVA-1.5-7b. We then extract
all non-existent objects along with their corresponding pre- Prompts

ceding text. Specifically, for the sentence “Additionally, Describe the image
there is a car.”, we extract the hallucinated object  pjease describe this image in detail.

13 )

token “car” and the preceding text “Additionally, Generate a caption for this image.

there is a”. We re-input the preceding text into the
MLLM and observe the changes in its internal state when pre-
dicting the next token. We denote that a total of K preceding texts are selected, with the j-th preced-
ing text denoted as s7.
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D EVALUATION RESULTS IN AMBER

The AMBER image caption dataset consists of 1,004 images, each accompanied by meticulously
annotated labels. These annotations include all objects present in the images, as well as some po-
tential hallucinated objects. AMBER employs four evaluation metrics: CHAIR (the proportion of
generated hallucinated objects among all objects), Cover (the coverage of generated objects against
all ground truth objects), Hal (the proportion of hallucinations among all generated captions), and
Cog (the overlap ratio with potential hallucinated objects). Lower values of CHAIR, Hal, and Cog
indicate higher truthfulness for the MLLMs, while a higher Cover value signifies better diversity.
We compare Deco with the baselines on the LLaVA-1.5-7b. The results are as shown in Table 7. The
results reveal that Deco demonstrates a significant advantage in truthfulness, although its diversity
is somewhat lacking, yet remains within an acceptable range.

Table 7: Results of using DeCo on the AMBER image caption dataset with LLaVA-1.5-7b.

Decoding Method LLaVA-1.5
CHAIR | Covert Hall Cog |
Greed Vanilla 8.2 48.9 34.3 4.0
y DoLa 8.0 50.8 375 43
DeCo (Ours) 6.6 |1.6 475014 28.1 )62 2.8|1.2
Vanilla 7.1 50.7 32.4 3.8
Beam Search OPERA 6.4 49.0 27.5 2.9
DeCo (Ours) 6.3 0.8 46.8 139 25173 24|14
Vanilla 10.2 50.2 43.3 4.5
Nucleus VCD 9.0 51.7 40.2 4.4

DeCo (Ours) 8.3 /1.9 48.0122 375058 3411

E ABLATION RESULTS OF DYNAMIC SOFT MODULATION

To quantify the effect of soft modulation, we remove the “max_prob” term and use greedy decoding
to describe the images. The images and prompts used in the ablation experiment are consistent with
the setup in Table 2, and the ablation results are presented in the Table 8. Additionally, we provide
illustrative cases that demonstrate how soft modulation helps prevent abrupt changes in logits, as
shown in the Figure 13.

Table 8: Ablation study of dynamic soft modulation.

Method LLaVA-1.5 Qwen-VL
CHAIRs | CHAIR;] CHAIRs|)] CHAIR:|
DeCo 37.8 11.1 42.2 10.7

DeCo (wo/max_probs) 41.2 13.4 11.6 10.5 45.813.6 12.3 11.6
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F RESULTS OF MMVET

We evaluate the performance of LLava-1.5-7B and Qwen-VL-7B on a comprehensive benchmark
MM Vet and use their default settings based on nucleus sampling. The results are as shown in Table 9.

Table 9: Results of using DeCo on MM Vet with LLaVA-1.5-7b and Qwen-VL-7b.

Model Method Rec 1 OCR T Know?t Gent Spat T Math 1+  Total T
LLaVA-1.5 Vanilla 28.8 14.1 15.5 16.4 15.6 35 23.6
~  DeCo (Ours) 321133 215174 18.613.1 20.714.3 237181 112177 279143
Vanilla 51.8 35.3 41.0 35.6 38.1 19.2 45.7

Qwen-VL  DeCo (Ours) 50.5[13 382129 388[22 33818 4L713.6 265173 46.310.6

G CASE ANALYSIS ACROSS DIVERSE MLLMS

there is a car parked near the corner,

mounted on a street light post. The
s possibly parked at the parking mete|

MLLMs/| signs provide directions to various

drivers alike.

1 1
1 Greedy Search 1
1 p S |
: there is a car parked on the street, !
1 and a person can be seen standing :
' @ near the corner. The scene captures | 1
| AR = the essence of a bustling urban '
, User R/CHMO environment with clear signage to 1
! ALAHOND UERAR"V d help people navigate their way !
' ~ MEST AT around the city. '
1 = 4 | = / \ J
1 ; + x !
1 1
1 ~ 1
1 ( 1
1 The image showcases a street corner Ours x + 1
: 0.9 in a city, featuring street signs ( :
]
\ \
1 1
1
1
1
1
1
1
1

locations, including the local library indicated by one of the street signs.
and a nearby market. The sky above < The scene captures th? essence of
: the street corner is blue, indicating a :!’ba“_l'fe and navigation, with clear
1 clear day. irections for pedestrians and
1
1

In the background, there is a car 2??

Figure 8: The case of mitigating snowballing hallucination with DeCo.
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-

Instruction: Please describe this image in detail.

InstructBlip (Beam search):

The image depicts a group of three motorcyclists riding down a winding road
through a mountainous area. The road is surrounded by tall, rocky cliffs on
both sides, creating a dramatic and scenic setting. The motorcyclists are
wearing helmets and appear to be enjoying the ride, taking in the
breathtaking views around them. There are two motorcycles visible in the
scene, with one closer to the center of the image and the other slightly off
to the right side. In addition to the motorcycles, there are several cars
parked along the side of the road, providing additional transportation
options for those exploring the area.

InstructBlip (Ours):
The image depicts a group of motorcycles traveling down a roadway, passing =
through a tunnel. The motorcycles are ridden by three people who are
enjoying the scenic route through the tunnel. The motorcycles are
positioned in various positions along the roadway, with one motorcycle being
closer to the center of the image, another motorcycle slightly behind it,
and another motorcycle further away from the center of the image. The
third motorcycle is positioned further away from the others, but still visible
in the background. The roadway itself is surrounded by trees and rocks,
adding to the scenic nature of the scene.

\

Instruction: Please describe this image in detail.

InstructBlip (Greedy):

The image features a large red chair with the shape of an animal, specifically in this case
being represented by two horses. One horse is standing on top and another one appears to
be sitting atop it from behind its back legs towards front side viewing angle. There are
several people visible throughout different parts around or near these animals: three
individuals can been seen walking along either sides close together; there's also someone
further away who seems more distant but still within reachable distance for interaction if
needed. Additionally, some cars parked nearby add movement into scene as they come
closer while driving past each other during their daily activities outside.

InstructBlip (Ours):

The image features a large red chair with a horse statue placed on top of it. The horse
statue is positioned on the chair's seat, making it appear as if the horse is actually sitting
on the chair. The chair is placed on a grassy area, likely outside, and there are several
trees visible in the background. The scene is set up as a sculpture, showcasing a unique and
creative way of displaying a horse statue.

Input Image

Input Image

Instruction: Please describe this image in detail.

InstructBlip (Nucleus):

The image captures a skateboarder skillfully riding a rail in a blue skate park,
likely practicing his tricks. The skateboarder is wearing a helmet, providing safety
for the activity. There are multiple cars present in the background, including two
parked on either side of the skate park. Additionally, there are two benches
scattered around the scene, likely providing seating for the skateboarder and
other park visitors.

InstructBlip (Ours):
The image depicts a skateboarder skillfully skating on a rail near a blue railing at
a skateboarding park. The skateboarder is wearing a helmet and appears to be
engaging in a trick, performing a rail grind on the rail. The skateboarding park is
well-equipped with several skateboarding obstacles, including a skateboarding
ramp, a skateboarding rail, and a skateboarding ledge. These obstacles are
designed to challenge skateboarders and provide them with the opportunity to
practice their skills and showcase their skills in various ways.

Input Image

J

Figure 9: DeCo’s performance in reducing hallucinations of InstructBlip-7B on three basic decoing
methods.
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Instruction: Please describe this image in detail. \

LLaVA-1.5 (Greedy):

The image features a woman sitting on a motorcycle, which is parked in front of a white
building. She is wearing a leather jacket and appears to be posing for the camera. The
motorcycle is positioned in the foreground, with the woman sitting comfortably on the seat.

In the background, there is a car parked further away from the motorcycle. The scene
captures the woman's enthusiasm for her motorcycle and her outdoor adventures.

LLaVA-1.5 (Ours):

The image features a woman sitting on a motorcycle parked outside a building. She is
positioned in front of the motorcycle, occupying a majority of the frame. The motorcycle
itself occupies a large portion of the scene, extending from left to right.

The woman appears to be dressed in motorcycle gear, possibly preparing for a ride or
Input Image already having completed one. The motorcycle's positioning suggests that it might be
parked outside a garage or other similar location where motorcycle enthusiasts gather.

Instruction: Please describe this image in detail.

LLaVA-1.5 (Beam search):

The image features a delicious-looking pizza sitting in a box on a dining
table. The pizza is topped with tomatoes and cheese, making it an appetizing
sight. Next to the pizza, there is a bottle of beer, which complements the
meal perfectly.

In addition to the pizza and beer, there is a knife placed on the table,
likely for cutting and serving the pizza slices. The dining table occupies most
of the space in the image, emphasizing the focus on the pizza and beer.

LLaVA-1.5 (Ours):

The image features a delicious looking pizza sitting inside a box, ready to be
eaten. The pizza is topped with tomatoes and cheese, making it look
delicious and freshly prepared. Next to the pizza box, there is a bottle of
beer, adding to the overall enjoyment of the meal. The scene appears to be
ready for someone to enjoy a delicious combination of pizza and beer. Input Image

Instruction: Please describe this i;\u;e i detail.

| LLaVA-1.5 (Nucleus):

The image features a group of four giraffes in a lush green field,
surrounded by trees and a pond. The giraffes are standing close to each
other, with one on the left side, two in the middle, and one on the right
side of the scene. They appear to be enjoying their time in the open field,
possibly in a zoo or wildlife sanctuary.

In addition to the giraffes, there are two birds visible in the scene, one
near the left side and the other closer to the center. The birds are likely
part of the wildlife in the area. The overall atmosphere of the image is

.. serene and peaceful, showcasing the beauty of the natural environment.

. LLaVA-1.5 (Ours):

The image depicts a group of four giraffes in a zoo enclosure, enjoying
their time together in the grassy area. They are spread out throughout the
scene, with one giraffe near the left side of the enclosure, another on the
right side, one close to the middle, and another giraffe further back in the
background.

Input Image

The zoo enclosure features a pond in the middle, where the giraffes can
drink water or cool off during hot days. There are also several trees within
\ the enclosure, providing the animals with shade and a natural habitat fey

Figure 10: DeCo’s performance in reducing hallucinations of LLaVA-1.5-7B on three basic decoing
methods.
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( Instruction: Describe this image in detail. \

Qwen-VL (Greedy):

The image features a young woman standing in a doorway of a bathroom. She is
holding a toothbrush in her hand and appears to be smiling as she poses for the
camera. The bathroom has a window, which allows natural light to enter the room.

In the background, there is a clock on the wall, located above a door handle. The
door handle is on the door leading into the bathroom. The woman is standing near
the door, creating a frame with her body that captures her and the doorway.

Qwen-VL (Ours):

The image features a young woman standing in a doorway of a bathroom. She is
holding a toothbrush in her hand and is smiling for the camera. The bathroom
appears to be an old-fashioned style, with a 1999 date stamp on the bottom right
corner of the image. The woman's hair is styled in a bun, and she is dressed in a
gray sweater and jeans.

Input Image

Instruction: Describe this image in detail.

Qwen-VL (Beam search):

The image captures a man skiing down a snow-covered slope at high
speed. He is wearing ski gear and skiing equipment, including skis on his
feet. The man is fully immersed in the skiing experience, leaning
forward slightly as he navigates the snowy hill.

There are two ski poles visible in the scene, one on the left side and
the other on the right side of the man. Additionally, a backpack can be
spotted in the background, likely carrying the skier's belongings.

Qwen-VL (Ours):

The image features a man wearing a brown jacket and a hat skiing down
a snowy hill. He is equipped with two ski poles for balance and control
during his descent. The man is actively making his way through the
snow, enjoying the winter sport. The scene is set in a snow-covered
landscape, providing a fun and challenging environment for skiing. Input Image

Instruction: Describe this image in detail.

Qwen-VL (Nucleus):

The image features two zebras standing side by side in a dirt area, either in
a zoo or a wildlife park. They are both eating hay from a trough placed in
their enclosure. The zebras have distinctive black and white stripes that are
easily recognized.

In the background, there are several rocks scattered around the area, giving
the scene a natural feel. A person can be seen near the right side of the
image, possibly observing or maintaining the enclosure.

Qwen-VL (Ours):
The image features two zebras standing side by side in a dirt field, eating hay
from a trough. They both have a distinctive black and white striped pattern
on their coats. The first zebra is located more towards the left side of the
mage, while the second zebra is slightly further to the right.

The field appears to be a part of a wildlife reserve or a zoo, as suggested by
Input Image the presence of a feeding station. The overall setting suggests a calm and
peaceful environment, allowing these two zebras to graze together in harmony.

Figure 11: DeCo’s performance in reducing hallucinations of Qwen-VL-7B on three basic decoing
methods.
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Instruction: Please describe this image in detail.

MiniGPT4 (Greedy):

This image shows two men standing in a living room. One man is holding a
white object in his right hand, while the other man is standing behind
him with his arms crossed in front of his chest. The room is decorated
with yellow curtains and a blue couch. The furniture is cluttered with
various objects, including a lamp, a vase, and a book. The walls are
adorned with yellow and white wallpaper. The overall atmosphere of the
image is casual and relaxed.

MiniGPT4 (Ours):

This image depicts two men standing in a room with yellow walls and
curtains. One man is holding a white object in his right hand while the
other man is standing behind him with his arms crossed in front of him.
The furniture in the room includes a blue couch and a chair. The room
appears to be well lit with sunlight coming through the window.

Instruction: Please describe this image in detail.

MiniGPT4 (Beam search):

The image shows a large clock tower in the middle of a city street. The clock
tower is made of metal and has two large clock faces on it. The clock tower is
surrounded by tall buildings on either side of it. There is a black car parked on
the sidewalk next to the clock tower. The car is facing the clock tower and has
its lights on. There are people walking on the sidewalk in front of the clock tower. ®
Some of them are looking up at the clock tower while others are walking past it.
The buildings on either side of the clock tower have large windows and balconies.
The street is lined with trees and streetlights.

MiniGPT4 (Ours):

This image depicts a large clock tower in the middle of a city street. The clock
tower is made of metal and has two clock faces on it. The clock tower is
surrounded by buildings and cars passing by on the street below it. There is a
black car parked on the sidewalk next to the clock tower.

Input Image

Instruction: Please describe this image in detail.

MiniGPT4 (Nucleus):

The image shows a white plate with a piece of meat, a bunch of broccoli, and
some cashews. There is a knife and fork on the side of the plate, and a glass
of water on the other side. The plate is on a brown tablecloth and the
background is a brown wall.

MiniGPT4 (Ours):

The image shows a plate of food consisting of broccoli, potatoes, and meat.
The plate is white with a black rim and appears to be on a table or countertop.
The food is arranged in rows with broccoli on one side of the plate and

Input Image potatoes on the other side. A piece of meat is in the center of the plate.

- J

Figure 12: DeCo’s performance in reducing hallucinations of MiniGPT4-7B on three basic decoing
methods.
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/ Instruction: Please describe this image in detail. \

Ours:

The image depicts a bedroom scene where a bed occupies a large portion
of the space. The bed itself is unique, resembling a circular shape with a
bedroom divider in its center. The bedroom divider separates the bed
from other parts of the room.

There are two pillows on the bed, one on each side, adding comfort to
the bedding arrangement. The bedroom also features a wall with a few
windows, allowing natural light to illuminate the room.

Ours (wo/max_probs):

The image depicts a bedroom scene where a bed occupies most of the
space. The bed is unique due to its shape and style: it resembles a
circular bed frame suspended above the floor. It appears to be made of
metal and has a bedding arrangement consisting of pillows and blankets
placed on top of it.

There are two pillows visible on the bed, one located near the middle of
Input Image the bed frame and another one towards the bottom part of it.

Additionally, two blankets can be seen on the bed frame, one occupying

the middle part of it and another one slightly higher than the first one.

Instruction: Please describe this image in detail.

Ours:

The image depicts two giraffes standing together inside a zoo enclosure.
They are both tall and majestic animals, one occupying a majority of the
space in the image while the other occupies a smaller portion. Both
giraffes are feeding from a feeding basket hung high above them, likely
providing them with food to eat.

The zoo enclosure features concrete walls and a concrete floor, creating
a solid structure for the animals to stand on. The scene captures the
beauty of these two majestic animals interacting with each other and
feeding together.

Ours (wo/max_probs):

The image depicts two giraffes standing together inside a zoo enclosure.
They are both tall and majestic animals, one occupying the left side of
the frame while the other occupies the right side. Both giraffes are
feeding on hay placed high above them, likely hung from a feeding pole
or similar device.

The zoo enclosure features concrete walls and a concrete floor, creating

a solid structure for the animals to stand within. Additionally, there are

two clocks visible in the background, one located above the other, likely

meant for zoo staff to track time during feeding or other activities Input Image
within the enclosure.

Instruction: Please describe this image in detail.

Ours:

The image depicts a young boy standing next to two horses in a grassy
field. The boy is holding the horses' reins, guiding them as they stand
together. The horses are positioned close to each other, one occupying
the left side of the field and the other occupying the right side.

The boy is wearing jeans and a green shirt, and he appears to be
enjoying his time with the horses. The scene captures a moment of
bonding between the boy and the horses, showcasing the connection
between humans and animals.

Ours (wo/max_probs):

The image depicts a young boy standing next to two horses, one white
and one black, both equipped with harnesses. The boy seems to be
handling both horses simultaneously, possibly preparing them for a ride
or simply admiring them.

The boy is positioned between the two horses, one occupying the left

Input Image side of the frame while the other occupies the right side of the frame.
Both horses are equipped with harnesses, one harnessed nearer to the

\ boy's left side while the other harnessed nearer to his right side. /

Figure 13: Analysis of cases of soft modulation. Soft modulation avoids the hallucination phenom-
ena and erroneous semantics caused by abrupt changes in logits.
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Table 10: The prompt used for GPT-40 evaluation adopted from Leng et al. (2023); Huang et al.
(2024); Liu et al. (2024b)

GPT-40 Prompt

You are required to score the performance of two Al assistants in describing a given image. You
should pay extra attention to the hallucination, which refers to the part of descriptions that are in-
consistent with the image content, such as claiming the existence of something not present in the
image or describing incorrectly in terms of the counts, positions, or colors of objects in the image.
Please rate the responses of the assistants on a scale of 1 to 10, where a higher score indicates better
performance, according to the following criteria:

1: Accuracy: whether the response is accurate with respect to the image content. Responses with
fewer hallucinations should be given higher scores.

2: Detailedness: whether the response is rich in necessary details. Note that hallucinated descriptions
should not count as necessary details.

Please output the scores for each criterion, containing only two values indicating the scores for
Assistant 1 and 2, respectively. The two scores are separated by a space. Following the scores,
please provide an explanation of your evaluation, avoiding any potential bias and ensuring that the
order in which the responses were presented does not affect your judgment.

[Assistant 1]
{Response of Assistant 1}
[End of Assistant 1]

[Assistant 2]
{Response of Assistant 2}
[End of Assistant 2]

Output format:
Accuracy: <Scores of the two answers>
Reason:

Detailedness: <Scores of the two answers>
Reason:

Table 11: The prompt used for GPT-40 to evaluate coherence.

GPT-40 Prompt

You are required to score the coherence of two Al assistants in describing a given image. Please rate
the responses of the assistants on a scale of 1 to 10, where a higher score indicates better coherence.

[Assistant 1]
{Response of Assistant 1}
[End of Assistant 1]

[Assistant 2]
{Response of Assistant 2}
[End of Assistant 2]

Output format: Coherence: <Scores of the two answers >
Reason:
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