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ABSTRACT

In-context learning (ICL) typically presents a function through a uniform sam-
ple of input-output pairs. Here, we investigate how presenting a compositional
subtask curriculum in context may alter the computations that the model learns.
We design a compositional algorithmic task based on the modular exponential—a
double exponential task composed of two single exponential subtasks—and train
transformer models to learn the task in-context. We compare the model when
trained (a) using an in-context curriculum consisting of single exponential sub-
tasks and, (b) the model trained directly on the double exponential task without
such a curriculum. We show that the model trained with a subtask curriculum
can perform zero-shot inference on unseen compositional tasks and is more ro-
bust given the same context length. We study how the task is represented across
the two training regimes, in particular whether subtask information is represented.
We find that the model employs different mechanisms, possibly changing through
training, in a way modulated by the data properties of the in-context curriculum.

1 INTRODUCTION

Many complex real-world tasks consist of the composition of intermediate functions or subtasks.
This notion of systematic compositionality has been extensively studied (Chomsky, 1999; Frege,
1948; Szabó, 2024) and is a key in flexible intelligence, enabling “infinite use from finite means.”
Nevertheless, it has been a central controversy whether neural networks can exhibit human-like
compositionality Fodor & Pylyshyn (1988); Smolensky (1988); Lake & Baroni (2018). The recent
success of Large Language Models (LLMs) has only brought this controversy to a head, given their
often inscrutable nature yet remarkable generalization capabilities, especially their ability to adapt
to context (Brown et al., 2020; Wei et al., 2022a; Lampinen et al., 2024).

A body of literature studied the capability and limitations of compositional generalization in LLMs,
including multi-hop reasoning (Press et al., 2022; Yang et al., 2024), chain-of-thought reason-
ing (Wei et al., 2022b; Wang et al., 2023), and the scratch-pad (Nye et al., 2021). For example,
in a multi-hop reasoning query such as “the mother of the singer of ‘Superstition”’ LLMs seem to
latently encode intermediate information“Stevie Wonder is the singer of ‘Superstition”’—and use
it to make the final answer (Yang et al., 2024). Furthermore, LLMs can improve the performance
on complex hierarchical tasks by decomposing the tasks into component subtasks (Zelikman et al.,
2023). To this end, it is important to understand how the models solve compositional task especially
when the knowledge of subtasks are present.

On the other hand, breaking down a complex task into its intermediate components not only makes
the task easier but also supports identifying the correct ‘components’ of the task, which is crucial
for robustness and generalization. There is a vast space of tasks where models can perform well
on the training data distribution by learning surface correlations rather than identifying the true task
structure, a phenomenon extensively studied as shortcut learning (Arjovsky et al., 2019; McCoy,
2019; Geirhos et al., 2020; Hermann et al., 2023). Similarly, for tasks defined by composition of
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several functions or subtasks, the model can either find a surrogate strategy rather than learning
underlying true compositional structure (Dziri et al., 2024).

Inspired by the above observation, we investigate whether a transformer can infer and leverage infor-
mation about the task structure from an in-context curriculum—in-context examples of component
functions—to perform more robustly on a compositional task. We design an algorithmic task utiliz-
ing the composition of two modular exponential tasks defined by two exponent bases, (a, b). The
curriculum is defined by examples of single exponentials from each base. We train the model with
example sequences sampled from training task sets and evaluate its generalization ability on unseen
combinations of (a, b). We first demonstrate that a curriculum-trained model is capable of zero-shot
inference on unseen compositional task queries and shows higher robustness compared to a model
trained without a curriculum (Section 3.1). We show correlative evidence that the curriculum enables
the model to represent and combine the task parameters to be composed (Section 3.2). Finally, we
study how the length of the curriculum affects the model’s learning and potentially which strategy
is used to solve the compositional task (Section 3.3).
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Figure 1: Overview of the setup and key results. a) Task schema. In curriculum training, each
training sequence is composed of m exemplars for two single-exponential tasks defined by a and b,
respectively, followed by n composite double-exponential task exemplars. In vanilla training, the
model is trained with a sequence of 2m + n in-context exemplars for the double-exponential task
defined by task parameters (a, b). b) Example asymptotic accuracy at the end of training on training
and evaluation tasks for curriculum training (m = 8, n = 8) (top) and vanilla training (bottom). c)
Comparison of the error counts for the last compositional block for curriculum training and vanilla
training (left: m = 8, n = 8, right: m = 10, n = 4). While both models perform fairly well,
the curriculum condition enhances robustness on unseen compositional task block. d) In-context
curriculum can promotes the utilization of the task parameter. Linear probe decoding accuracy of
task parameter b from unseen evaluation sequences. The curriculum trained model represents the
task parameter in compositional task block while vanilla model does not.

2 EXPERIMENTAL SETUP

2.1 TASK

We use a modular arithmetic task of composition of an exponential function, namely ba
x

mod P ,
referred to as the modular double exponential task. Inspired by well-studied linear modular arith-
metic tasks such as summation, multiplication or both He et al. (2024); Nanda et al. (2023a), we
chose the modular double exponential function for its greater complexity while still offering a deter-
ministic functional mapping and effectively constraining the vocabulary size. We design curriculum
in-context exemplars, which provide blocked examples for ax mod P and bx mod P , followed
by ba

x

mod P . In contrast, vanilla in-context exemplars consist only of ba
x

mod P . We train
transformer architecture on these sequences using a next token prediction task for every (x, y) pair
in the sequence, rather than only on the final query.
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To make fair information gain during training, we provide single exponential task exemplars in
vanilla training as well, but the main difference is that they are not given in-context together with
the compositional task. In every example sequence, we randomly sample task parameters (a, b), and
the model needs to learn to adapt its answer in-context according to (a, b). The task combinations
(a, b) seen during the training include all possible individual a, b, but not all pairs. We evaluate
the trained model on unseen combinations of (a, b). We permit integers x ∈ [0, P ), and a, b are
sampled from the primitive roots of P . Throughout the main experiments, we focus on P = 37, but
we extend our findings to another P value in Appendix A.2.

In the curriculum setting, we use an equal curriculum length m for each exponential task (ax, bx) and
n for the compositional task. We use the same total length, 2m+ n, for the exemplars in the vanilla
setting. While varying the compositional task length in the curriculum, we maintain the importance
of the compositional task equal to each single exponential task in the curriculum by controlling the
weighting factor for the loss contribution from the compositional task (namely, making it such that
the loss from the compositional task is 1/3 of the total loss). Similarly, for a fair comparison, in
the vanilla setting the network sees some sequences for a single exponential task, with a ratio of
2 to 1 (to match the overall weight of the compositional task to the curriculum setting). By doing
this, we effectively make it so that the same (exemplar, label) pairs are seen in both curriculum and
vanilla settings, with the same loss weight to single vs. double exponential tasks. The key difference
between the two settings is the in-context correlations: In the curriculum setting, these correlations
are more complex/hierarchical (possibly leading to in-context compositional), while in the vanilla
setting, they focus on single function learning (the standard few-shot ICL setting).

We fix the total context length to 48, equivalent to 24 pairs of (x, y), and ensure that all x in context
are unique.

2.2 MODEL AND TRAINING

We train 8-layer transformers with sinusoidal positional embeddings with time constant of 120, a
hidden dimension size of 128, and 8 heads, using the Adam optimizer, a learning rate of 7.5×10−4,
and a batch size of 512. All results we report are based on 2 data seeds and trained with 2 × 108

sequences unless otherwise mentioned. Specifically, for the vanilla model, we further trained it up
to 3×108 sequences to ensure that the model’s performance is saturated. See also Appendix A.1 for
the total error counts of the vanilla and curriculum models and example loss curve and performance
evolution.

3 RESULTS

3.1 SUBTASK CURRICULUM CAN INCREASE THE ROBUSTNESS OF IN-CONTEXT LEARNING
OF MODULAR DOUBLE EXPONENTIAL TASK

First, we demonstrate that the subtask curriculum can make in-context learning of unseen compo-
sitional task more robust. In both cases, the models tend to reach near-perfect performance on the
task, as shown in Figure 1b. In Figure 2a, we examine the performance closely with the error counts
after each number of in-context exemplars for 2K evaluation sequences sampled with unseen task
parameter combinations (a, b). Notice that the curriculum enables the model to zero-shot infer the
correct answer for the compositional task after single-task blocks. This effect is more prominent
with the longer curriculum blocks, which allow the model to correctly identify the task parameter
(a, b). In contrast, as more examples are shown, vanilla training also results in fewer errors, but the
error counts eventually saturate.

In Figure 2b, we show the distribution of the index where the last error was made for different a
task parameters. A left-skewed histogram indicates that the model requires only a few examples to
make a correct inference of the task. A histogram that is more distributed to the right suggests that
the model tends to have higher uncertainty and requires more examples to make correct inference.
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Figure 2: In-context error counts of vanilla-trained model vs. in-context curriculum-trained model.
a) Mean error counts after each number of examples in 2K evaluation sequences with unseen task
parameter combinations (a, b) over 2 seeds. Each panel title indicates a different curriculum length
m-m-n, and the gray vertical lines denote the curriculum task boundaries. b) The last index of error
for the compositional task (if an error occurred).
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Figure 3: Linear probing of task parameters (a, b). a) Linear probe decoding accuracy of y = ba
x

,
task parameters b and a for the vanilla model and the curriculum model (m = 8, n = 8) across
all evaluation sequences. b) Linear probe decoding accuracy of b and a for the a = 15 evaluation
sequences, where the vanilla model is more susceptible to failure (see Figure 2).

3.2 CURRICULUM CHANGES THE REPRESENTATION OF COMPOSITIONAL TASKS IN THE
MODEL

In the previous section, we observed that the model can benefit from having a subtask curriculum
for solving compositional tasks in-context, particularly its zero-shot inference ability on the compo-
sitional task and higher robustness given the same context window, compared to that of the vanilla
model. In this section, we ask how does in-context curriculum enable this compositional solution.We
hypothesize that the in-context curriculum of the single exponential tasks provides unambiguous in-
formation about the task parameters a and b, which can be used to solve the double exponential
task.

To verify this hypothesis, we use a linear probe to decode the subtask parameters in-context from
the internal representation of the trained model. Yet simple, linear probing method has been widely
used to study the internal representations of transformers Gurnee et al. (2023); Nanda et al. (2023b).
We trained a linear classifier on the output of each layer from evaluation sequences to decode a task

4



Published as an SCSL Workshop Paper at ICLR 2025

parameter (a, b) for each y position. We used 80/20 split of the 1K unseen test sequences for linear
probe training testing of the decoding accuracy. 1.

In both the vanilla and curriculum models, decoding of y values becomes near perfect at the final
layer, as expected from the high accuracy (Figure 1b). However, we found a noticeable difference
in decoding of the task parameters. With in-context curriculum, task parameters (a, b) are faithfully
decoded in the corresponding curriculum task block (Figure 3a, bottom panel). The decoding ac-
curacy of both (a, b) is also high in the compositional task block (shots 16-24), suggesting that the
representation of the task parameters inferred from the curriculum is utilized in the compositional
task. In contrast, the vanilla-trained model shows lower decoding accuracy for the task parameters,
especially parameter b. The difference becomes clearer when we examine the failure cases of the
vanilla model, namely a = 15 (see Figure 2b, with widely spread errors across the context window).
Since we train and test on a = 15 evaluation sequences, decoding of a becomes trivial, but decoding
of b is much worse for the vanilla model, while it is maintained near perfect in the curriculum model
in layers 6 and 7.

Additionally, we visualized the attention pattern of the heads in layers 6 and 7, where we can find
heads that attend to the earlier curriculum block from the compositional task block. This aligns with
the linear probe result and indicates that the curriculum-trained model encodes and utilizes the task
parameters inferred from the curriculum block.

In brief, we show correlative evidence that the model trained with in-context curriculum encodes the
task parameters (a, b) in its internal representation and is capable of using them for the compositional
task using linear probes. In contrast, the vanilla model does not necessarily encode the correct task
parameters and we show the correlation between the decoding accuracy of the task parameters and
the robustness using targeted examples.

3.3 WHICH STRATEGY TO USE? CURRICULUM LENGTH CHANGES THE MODEL’S LEARNING
STRATEGY ON COMPOSITIONAL TASKS

We showed that the in-context curriculum can enhance the model’s robustness on compositional
generalization and promotes encoding of the task parameters. However, since the compositional
task can be learned well from the training data without curriculum (as seen in the vanilla model), it
is unclear why the model learns to use the task parameters inferred from the single exponential task
examples. In other words, the model can learn the compositional task independently, even when the
curriculum sequence is provided, without utilizing the task parameters.

In this section, we take the first step to answer this question by looking closely at the loss evolution
and linear decoding probe across the training phase. In Figure 4, we observe a noticeable difference
in the order in which each task is learned when the curriculum length is varied. When the com-
positional task sequence is long enough (Figure 4a), the model first learns the compositional task
without mastering each single exponential task, and thus without being fully able to utilize the task
parameters (black arrow). Only after learning each single exponential task does the model become
capable of zero-shot inference, possibly using the carried information of (a, b), as shown in the linear
probe decoding of a and b in layers 6 and 7 (gray arrow)2. With a shorter compositional task length
(Figure 4b), the single exponential tasks and compositional task are learned concurrently (black
arrow), and the convergence of loss at the zero-shot happens simultaneously with the rest of the
compositional task (gray arrow).

Note that since we control the weighting of the loss from the compositional task to be invariant to
the number of examples (i.e., the compositional task block and each single exponential task block
always have the same importance), we effectively control the information gain from the varying
number of examples only, rather than differences in loss contribution stemming from the number of
examples.

All these observations serve as the first evidence that the different designs of the curriculum affect the
model’s learning mechanism for the compositional task, which requires more thorough investigation.

1We performed a control experiment using shuffled labels in Appendix A.3, which aligns with the baseline
performance in Figure 3.

2See Appendix A.6 for more detailed analysis indicating that the model develops independent strategy for
compositional task in the beginning.
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Figure 4: Different curriculum lengths lead to different learning strategies. a) When the compo-
sitional task sequence is longer (m = 4, n = 16), the model first learns the compositional task
independently (top panel, black arrow), but later learns to compose task parameters for zero- or
first-shot inference (bottom panel, gray arrow). b) When the compositional task sequence is shorter
(m = 10, n = 4), the model relies on task parameters inferred from the curriculum block. Before
learning each exponential task, the compositional task performance is limited by the single expo-
nential task performance (top panel, black arrow). The compositional task block loss decreases
simultaneously with the single exponential task loss (bottom panel, gray arrow).

4 RELATED WORKS

In-context learning has brought significant interest recently, particularly due to the emergent ca-
pabilities of LLMs (Wei et al., 2022a). Broadly, in-context learning can be seen as a special case
of few-shot learning, where the model adapts and generalizes to unseen input examples without
requiring gradient updates. In earlier works on meta-learning (Santoro et al., 2016; Vinyals et al.,
2016; Wang et al., 2016), it was shown that neural networks trained with specific objectives or data
can perform few-shot learning. In the recent works on transformer architecture (Vaswani, 2017) in
scale, researchers found that in-context learning can emerge from auto-regressive next-token pre-
diction tasks without specific tuning of the training objective. Many studies (Chan et al., 2022; Xie
et al., 2022; Raventós et al., 2024) have highlighted the importance of data properties for in-context
learning. Furthermore, the transient and non-monotonic nature of in-context learning has been in-
vestigated (Singh et al., 2024a;b). A few studies (Hendel et al., 2023; Todd et al., 2023) have
explored how different in-context tasks can be represented in LLMs in the form of task vectors.

Curriculum learning is critical in learning of humans and animals, well-attested in a body of liter-
ature (Skinner, 2019; Elio & Anderson, 1984; Clerkin et al., 2017; Dekker et al., 2022). While its
potential importance has long been acknowledged in machine learning community (Bengio et al.,
2009; Wang et al., 2021), the benefit from curriculum has been shown marginal in standard super-
vised learning benchmarks (Wu et al., 2021). However, the right curricula show greater significance
in the context of reinforcement learning (Karpathy & Van De Panne, 2012; Tessler et al., 2017;
Narvekar et al., 2020). In particular, Lee et al. (2024) shows theoretical evidence of importance of
subtask curricula in reinforcement learning of compositional tasks.

Modular arithmetic tasks have been used in a rich body of literature to understand how sequence
models, such as transformers, can implement the internal mechanisms required to solve these tasks.
For example, Power et al. (2022); Zhong et al. (2023) used simple modular addition tasks to inves-
tigate the grokking phenomenon and demonstrate that transformers can implement multiple solu-
tions. He et al. (2024) studied how transformers can learn skill composition in-context with out-of-
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distribution tasks. Our work builds on these findings by exploring how transformers can utilize a
curriculum of subtasks given in-context to achieve compositional generalization.

5 DISCUSSION

We investigated how transformers can leverage inferred subtask information from an in-context
curriculum to generalize to unseen compositional tasks, using a modular double exponential task
as a case study. We demonstrated that incorporating a curriculum enables zero-shot inference on
compositional tasks and increases model robustness. As an initial step to understand the model’s
internal workings, we used a linear probe to explore how the model processes the curriculum. We
found that the internal representation encodes task parameters from the curriculum blocks, and these
parameters are effectively decoded as the compositional task sequence is processed. By analyzing
targeted failure cases, we showed that the decoding accuracy of the task parameters is correlated with
model performance, which may explain why the curriculum-trained model is more robust. Finally,
we observed that the amount of compositional task information provided in-context (controlled by
curriculum length) affects both the learning strategy and the evolution of task representations during
training. Our observations suggest the importance of the data property present in-context, such as
curriculum, can impact compositional generalization.

The types of compositional context structures we have emphasized in this work may be common
in natural language data; from textbooks to novels, many types of documents introduce simpler
elements in the beginning that build to yield more complex interactions later in the document. Thus,
while many theoretical works on in-context learning focus on presenting IID examples of a single
task in context, our work highlights that language models may yield qualitatively different types
of in-context learning when the contexts have a curricular compositional structure. These findings
therefore highlight the importance of considering the many types of context structures that may
contribute to in-context learning (cf. Lampinen et al., 2024). We hope that our results will encourage
more exploration of the curricula and compositional learning in-context, both in controlled settings
and at scale.

Limitations and future directions: Our analysis in this paper is limited to correlational evidence.
Further analysis with causal manipulation would be necessary to gain a more precise understanding
of the mechanisms behind the observed model behavior. Furthermore, in naturalistic settings there
may be many types of compositional tasks that share common components; examining how our
findings change in such settings would be an exciting direction for future work. For example, it
would be interesting to explore the representations of large language models as they learn novel
tasks from compositional in-context curricula.
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A ADDITIONAL RESULTS

A.1 LOSS CURVE AND TOTAL ERROR COUNTS
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Figure 5: Example loss and performance curve.
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Figure 6: Total error counts histogram for train/test sequences in vanilla and curriculum (8-8-8)
trained model (2 seeds). Left: Error counts for sequences of corresponding a. Right: Total errors in
all evaluation sequences.
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A.2 P=41
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Figure 7: Analysis of robustness on vanilla vs. curriculum model on P=41.a) Error counts of after
each number of exemplars in the sequence. For P=41, only the shortest curriculum (11-11-2) was
better than vanilla. b) Distribution of the last error query index for curriculum trained model (11-
11-2) and vanilla trained model.

A.3 LINEAR PROBE - CONTROL BASELINE

We performed a control experiment with shuffled labels to find the baseline performance. Since
the pair of (x, y) are not uniformly distributed in single and double exponential tasks, the baseline
performance are different as shown in the following figure of control decoding of y in curriculum.

control y 

lin
ea

r p
ro

be
 a

cc
.

Curriculum 8-8-8 Vanilla

control y 

control a

control b
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Figure 8: Control linear probe decoding. We used shuffled labels for linear probe training to validate
the baseline performance. The baseline performance for decoding of y in single exponential task is
slightly higher as (x, y) mapping for single exponential task is not uniformly distributed.
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A.4 LINEAR PROBE - VARYING CURRICULUM LENGTH

We report linear probe results from other curriuculum lengths-(10− 10− 4) and (4− 4− 16). The
main findings are aligned with the main figure.
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Figure 9: Linear probe decoding results for other curriculum lengths.

A.5 ATTENTION PATTERN ANALYSIS

We visualize the attention pattern from layer 6 and 7 from curriculum trained model and vanilla
trained model, averaged on 2K evaluation sequences. In vanilla trained model, the attention pattern
is continuous without block structure. On the other hand, curriculum trained model develops aten-
tion heads that show strong attention from compositional task block to curriculum block, which is
aligns with other results.
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Curriculum  11-11-2Curriculum  10-10-4Curriculum  8-8-8

Curriculum  4-4-16Vanilla

Figure 10: Attention pattern analysis for layer 7 in models trained with different curriculum length.
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Figure 11: Attention pattern analysis for layer 6 in models trained with different curriculum length.

A.6 INDEPENDENT LEARNING STRATEGY OF COMPOSITIONAL TASK

As an observational analysis to better know that the model initially learns the compositional task
independently without utilizing the information from curriculum block, we closely looked at the
error pattern through out the training and compare it to the that of the models at the end of vanilla
training or curriculum training. We hypothesized that if the model use the information from the
curriculum even before it fully learns the task, we could see the error pattern being different from
vanilla model.

Specifically, we focus on the 4 checkpoints during the training (indicated with the bars in Fig-
ure 12a), which are in the order of 1) the model learned compositional task independently, 2) the
model is in the process of learning single exponential tasks, 3) the model learned single exponential
tasks and utilizes them for the compositional task and 4) the training is further maintained.
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Figure 12: Detailed analysis over training periodm of the model strategy on compositional task. a)
Loss curve. In panel c we present the error pattern and decoding analysis of the colored bars which
indicates different learning phase. b) Example error distribution pattern in vanilla and curriculum
trained model. c) Left: Last error position distribution over training phase. The model’s error
pattern is very similar to that of vanilla trained model before the model acquires single exponential
task. Right: Linear probe decoding on task parameter b. The utilization of task information from
the curriculum block happens only after model acquires almost perfect b.
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