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Abstract
Developing generative models to create or con-
ditionally create symbolic music presents unique
challenges due to the combination of limited data
availability and the need for high precision in
note pitch. To address these challenges, we intro-
duce an efficient Fine-Grained Guidance (FGG)
approach within diffusion models. FGG guides
the diffusion models to generate music that aligns
more closely with the control and intent of ex-
pert composers, which is critical to improve the
accuracy, listenability, and quality of generated
music. This approach empowers diffusion mod-
els to excel in advanced applications such as im-
provisation, and interactive music creation. We
derive theoretical characterizations for both the
challenges in symbolic music generation and the
effects of the FGG approach. We provide nu-
merical experiments and subjective evaluation to
demonstrate the effectiveness of our approach.
We have published a demo page 1 to showcase
performances, which enables real-time interac-
tive generation.

1. Introduction
Diffusion models (Ho et al., 2020) have consistently
demonstrated effectiveness across a wide range of gen-
erative tasks, particularly in image and video generation
(Rombach et al., 2022). Despite success, diffusion mod-
els face some limitations. (1) Imprecise detail generation:
Diffusion models often struggle with accurately producing
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details, leading to artifacts or distortions in the generated
content, such as noticeable inconsistencies or distortions in
videos. (2) Limited controllability: Obtaining precise con-
trol over the generated content to align it with the intent
of the user remains a significant challenge. For instance,
correcting specific distortions in a generated video while
keeping the rest of the scene unchanged is difficult with
current diffusion model frameworks.

These limitations are exacerbated in situations where data
is scarce, which is often the case in domains like symbolic
music generation, where symbolic music data is limited
due to copyright constraints and the effort needed to create
data. Additionally, unlike image generation, where the in-
accuracy of a single pixel may not significantly affect over-
all quality, symbolic music generation demands high pre-
cision, especially in terms of pitch. In many musical and
tonal contexts, even a single incorrect or inconsistent note
can be glaringly obvious and disturbing.

To provide more contexts, symbolic music generation is a
subfield of music generation that focuses on creating mu-
sic in symbolic form, typically represented as sequences
of discrete events such as notes, pitches, rhythms, and du-
rations. These representations are analogous to traditional
sheet music or MIDI files, where the structure of the mu-
sic is defined by explicit musical symbols rather than audio
waveforms. Many recent works in symbolic music gener-
ation are based on diffusion models; see Min et al. (2023),
Wang et al. (2024) and Huang et al. (2024) for example.

Following this branch of work, we address the precision
and controllability challenges in diffusion-based symbolic
music generation by incorporating fine-grained guidance
into the training and sampling processes. While soft con-
trol schemes such as providing chord conditions may fail
to ensure detailed pitch correctness, we propose to enhance
chord conditioning with a hard control method integrated
into the sampling process, which guarantees the desired
tonal correctness in every generated sample.

Our results in this work are summarized as follows:

• Motivation: We theoretically and empirically char-
acterize the challenge of precision in symbolic music
generation
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• Methodology: We incorporate fine-grained harmonic
and rhythmic guidance to symbolic music generation
with diffusion models.

• Functionality: The developed model is capable of
generating music with high accuracy in pitch and con-
sistent rhythmic patterns that align closely with the
user’s intent.

• Effectiveness: We provide both theoretical and empir-
ical evidence supporting the effectiveness of our ap-
proach.

1.1. Related Work

Symbolic Music Generation. Symbolic music genera-
tion literature can be classified based on the choice of data
representation, among which the MIDI token-based repre-
sentation adopts a sequential discrete data structure, and is
often combined with sequential generative models such as
Transformers and LSTMs.

To leverage well-developed generative models for sym-
bolic music, Huang et al. (2018) introduced a Transformer-
based model with a novel relative attention mechanism de-
signed for symbolic music generation. Subsequent works
have enhanced the controllability of symbolic music gen-
eration by incorporating input conditions. For instance,
Huang & Yang (2020) integrated metrical structures to en-
hance rhythmic coherence, Ren et al. (2020) conditioned
on melody and chord progressions for harmonically guided
compositions, and Choi et al. (2020) encoded musical style
to achieve nuanced harmonic control. These advancements
have contributed to more interpretable and user-directed
music generation control.

To better capture spatio-temporal harmonic structures in
music, researchers have adopted diffusion models with var-
ious control mechanisms. Min et al. (2023) incorporated
control signals tailored to diffusion inputs, enabling con-
trol over melody, chords, and texture. Wang et al. (2024)
extended this by integrating hierarchical control for full-
song generation. To further enhance control, Zhang et al.
(2023) and Huang et al. (2024) leveraged the gradual de-
noising process to refine sampling. Building on these ap-
proaches, our work addresses the remaining challenge of
precise control in real-time generation.

In parallel to diffusion-based approaches, a body of work
on general symbolic music generation—using models such
as RNNs, GANs, and VAEs—has also explored mecha-
nisms for achieving precise user-controllable generation.
Early work on symbolic generation already explored user-
steerable conditioning. Meade et al. (2019) retrofitted an
RNN method with human-interpretable controls such as
note density and pitch range limits. Dong et al. (2017) pro-
posed a method that conditions a GAN model on one track

given by human to generate the remaining tracks based on
temporal structure of that track. Wu & Yang (2021) utilized
a Transformer based VAE model to realize fine-grained
style transfer over full songs.

Image Inpainting. Image inpainting with diffusion mod-
els has advanced rapidly, offering valuable insights for
our task. In our setting, harmonic conditions define con-
strained or masked regions, and the model must com-
plete the rest—analogous to inpainting. Recent diffusion-
based methods have enabled fine-grained control during
both training and sampling. For instance, Lugmayr et al.
(2022) introduced a post-conditioning strategy that adapts
the reverse diffusion process to reconcile known and miss-
ing regions without retraining, albeit with increased in-
ference time. Xie et al. (2023) combined shape and text
prompts to enable precise, user-guided inpainting via joint
training and sampling design. Corneanu et al. (2024) im-
proved sampling efficiency by conditioning directly in the
latent space, supporting faster and semantically coherent
completions. Inspired by these works, we adapt the idea
of context-aware, guided completion to symbolic music,
enabling controllable generation over structured time-pitch
domains.

Controlled Diffusion Models. Multiple works in con-
trolled diffusion models are related to our work in terms of
methodology. Specifically, we adopt the idea of classifier-
free guidance in training and generation, see Ho & Sali-
mans (2021). To control the sampling process, Chung et al.
(2023), Song et al. (2023) and Novack et al. (2024) guide
the intermediate sampling steps using the gradients of a
loss function. In contrast, Dhariwal & Nichol (2021), Sa-
haria et al. (2022), Lou & Ermon (2023) and Fishman et al.
(2023) apply projection and reflection during the sampling
process to straightforwardly incorporate data constraints.
Different from these works, we design guidance for inter-
mediate steps tailored to the unique characteristics of sym-
bolic music data and generation. While the meaning of a
specific pixel in an image is undefined until the entire im-
age is generated, each position on a piano roll corresponds
to a fixed time-pitch pair from the outset. This new context
enables us to develop novel implementations and theoreti-
cal perspectives on the guidance approach.

2. Background: Diffusion Models for Piano
Roll Generation

In this section, we introduce the data representation of pi-
ano roll. We then introduce the formulations of diffusion
model, combined with an application on modeling the pi-
ano roll data.
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Data Representation of Piano Rolls. Let M ∈
{0, 1}L×H be a piano roll segment, where H is the pitch
range and L is the number of time units in a frame. For
example, H can be set as 128, representing a pitch range
of 0− 127, and L as 64, representing a 4-bar segment with
time signature 4/4 (4 beats per bar) and 16th-note resolu-
tion. Each element Mlh of M (l ∈ J1, LK, h ∈ J1, HK)
takes value 0 or 1, where Mlh = 1/0 represents the pres-
ence/absence of a note at time index l and pitch h.2 Since
standard diffusion models are based on Gaussian noise, the
output of the diffusion model is a continuous random ma-
trix X ∈ RL×H , which is then projected to the discrete
piano roll M by Mlh(X) = 1{Xlh ≥ 1/2}, where 1{·}
stands for the indicator function.

Formulation of the Diffusion Model. To model and
generate the distribution of M, denoted as PM, we use the
the Denoising Diffusion Probabilistic Modeling (DDPM)
formulation (Ho et al., 2020). The objective of DDPM
training, with specific choices of parameters and reparam-
eterizations, is given as

Et∼UJ1,T K,X0∼PM,ε∼N (0,I)[λ(t)∥ε− εθ(Xt, t)∥2], (1)

where εθ is a deep neural network with parameter θ. More-
over, according to the connection between diffusion models
and score matching (Song & Ermon, 2019), the deep neural
network εθ can be used to derive an estimator of the score
function st(Xt) = ∇Xt

log pt(Xt). Specifically, st(Xt)
can be approximated by −εθ(Xt, t)/

√
1− ᾱt.

With the trained noise prediction network εθ, the reverse
sampling process can be formulated as (Song et al., 2021a):

Xt−1 =
√
ᾱt−1

(
Xt −

√
1− ᾱtεθ(Xt, t)√

ᾱt

)
+
√
1− ᾱt−1 − σ2

t εθ(Xt, t) + σtεt,

(2)

where σt are hyperparameters chosen corresponding to
equation 1, and εt is standard Gaussian noise at each step.
Going backward in time from XT ∼ N (0, I), the process
yields the final output X0, which can be converted into a
piano roll M(X0).

According to Song et al. (2021b), the DDPM forward and
backward processes can be regarded as discretizations of
the following SDEs:

dXt = −1

2
β(t)Xtdt+

√
β(t)dWt, (3)

dXt = −
[
1

2
β(t)Xt + β(t)st(Xt)

]
dt+

√
β(t)dW̄t,

(4)
2This is a slightly simplified representation model for the pur-

pose of theoretical analysis, the specified version with implemen-
tation details is provided in Section 5.1

3. Methodology: Fine-Grained Guidance
While generative models have achieved significant success
in text, image, and audio generation, the effective model-
ing and generation of symbolic music remains a relatively
unexplored area. One challenge of symbolic music gener-
ation involves the high-precision requirement in harmony.
Unlike image generation, where a slightly misplaced pixel
may not significantly affect the overall image quality, an
“inaccurately” generated musical note can drastically dis-
rupt the harmony, affecting the quality of a piece.

In this section, we present a control methodology that can
precisely achieve the desired harmony. Specifically, we de-
sign a fine-grained conditioning and sampling control, al-
together referred to as Fine-Grained Guidance (FGG) that
leverage the characteristic of the piano roll data.

3.1. Fine-Grained Conditioning in Training

We first introduce fine-grained conditioning in training,
which serves as the foundation of the more important sam-
pling control in the next subsection 3.2.

We train a conditional diffusion model with fine-grained
harmonic (C, required) and rhythmic (R, optional) condi-
tions, which are provided to the diffusion models in the
form of a piano roll M cond. We provide illustration of
M cond(C,R) and M cond(C) via examples in Figure 1 and
Figure 2, respectively. The mathematical descriptions are
provided in Appendix B.

Figure 1. An illustrative example of M cond(C,R) with both con-
ditions.

4To enable the model to handle both rhythm+chord and chord-
only conditions, we use negative values to indicate the absence
of rhythmic input when only harmonic conditions are provided,
avoiding misinterpretation of 0s and 1s as active constraints. Em-
pirically, removing this distinction (i.e., still using 0 and 1 when

3
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Figure 2. An illustrative example of M cond(C) with harmonic
conditions only.4

3.2. Fine-Grained Control in Sampling Process

We first provide a rough idea of the harmonic sampling
control. To integrate harmonic constraints into our model,
we employ temporary tonic key5 signatures to establish the
tonal center. Our sampling control mechanism guides the
gradual denoising process to ensure that the final generated
notes remain within a specified set of pitch classes. This
control mechanism removes or replaces harmonically con-
flicting notes, maintaining alignment with the temporary
tonic key.

Preliminaries. Recall that a piano roll segment M ∈
{0, 1}L×H , where l ∈ J1, LK is the time index, and h ∈
J1, HK is the pitch index. For given chord condition se-
quence C, let K denote the corresponding key sequence.
For example, when the C major chord appears as the chord
condition at time index l, we would expect K(l) to contain
the pitch classes of the C major scale6. We note that C is
essentially different from K, where C describes chord se-
quences and is provided as condition for generation, and
K is a restriction of “allowed” pitch classes for sampling
refinement.

Let w(l;K) := {l, w(l;K)}Ll=1denote the undesired pitch
positions on the piano roll M. The generated piano roll M̂

rhythmic condition is not provided) led to a 8–15% drop in chord
accuracy (e.g., direct chord accuracy drops from 0.485 to 0.421,
and chord similarity drops from 0.767 to 0.705), highlighting the
importance of explicitly encoding missing rhythmic information.

5As a clarification, instead of assigning one single key to a
piece or a big section, here we refer to each key associated with
the temporary tonic.

6We note that the correspondence between C and K is in fact
flexible, and can be designed by the user of the model. More
discussion is provided in the next section 4

is expected to satisfy M̂lh = 0, for all (l, h) ∈ w(l,K). In
other words, for X̂0 we need

∀(l, h) ∈ w(l,K), P
(

X̂0,lh > 1/2
)
= 0. (5)

Note that in the backward sampling equation 2 that derives
Xt−1 from Xt, we have for the first term (Song et al.,
2021a; Chung et al., 2023)(

Xt −
√
1− ᾱtε̂θ(Xt, t)√

ᾱt

)
= “predicted X0”

= Ê[X0|Xt], t = T, T − 1, . . . , 1.

(6)

Edit Intermediate-step Outputs of the Sampling Pro-
cess. The primary cause of inaccurately generated notes
is the estimation error of the probability density of X0,
which in turn affects the corresponding score function
ŝt(Xt). The equivalence ŝt(Xt) = −ε̂θ(Xt, t)/

√
1− ᾱt

therefore inspires us to project Ê[X0|Xt] to the K-
constrained domain RL×H\WK by adjusting the value of
ε̂θ(Xt, t). This adjustment is interpreted as an adjustment
of the estimated score. Here WK is the set of matrices,
connected to the set of positions (on the matrix) w(l,K) by

WK =
{
X ∈ RL×H | ∃(l, h) ∈ w(l;K),Xl,h > 1/2

}
.

Specifically, at each sampling step t, we replace the guided
noise prediction ε̂θ(Xt, t) with ε̃θ(Xt, t) such that

ε̃θ(Xt, t) = argmin
ε

∥ε− ε̂θ(Xt, t)∥

s.t.
(
Xt −

√
1− ᾱtε√
ᾱt

)
∈ RL×H\W′

K.
(7)

The element-wise formulation of ε̃θ(Xt, t) is given as fol-
lows, with calculation details provided in Appendix A.1.

ε̃θ,lh(Xt, t) = 1{(l, h) ̸∈ ω(l;K)} · ε̂θ,lh(Xt, t)

+1{(l, h) ∈ ωK(l)}·

max

{
ε̂θ,lh(Xt, t),

1√
1− ᾱt

(
Xt,lh −

√
ᾱt

2

)}
.

(8)
Plugging the adjusted noise prediction ε̃θ(Xt, t) into equa-
tion 2, we derive the adjusted X̃t−1. The sampling process
is therefore summarized as the following Algorithm 1.

Note that at the final step t = 0, the noise correction di-
rectly projects X̂0 to RL×H\W′

K, ensuring the probabilis-
tic constraint 5.

Theoretical Property of the Sampling Control. A nat-
ural concern is that enforcing precise fine-grained control
over generated samples may disrupt the learned local pat-
terns. The following proposition 1, proved in A.2, provides
an upper bound that quantifies this potential effect and ad-
dress the concern.

4
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Algorithm 1 DDPM sampling with fine-grained harmonic
control
Input: Input parameters: forward process variances βt,

ᾱt =
∏t

s=1 βt, backward noise scale σt, key sig-
nature guidance K

Output: generated piano roll M̃ ∈ {0, 1}L×H

1 XT ∼ N (0, I);
2 for t = T, T − 1, . . . , 1 do
3 Compute guided noise prediction ε̂θ(Xt, t)
4 Perform noise correction: derive ε̃θ(Xt, t) using equa-

tion 8
5 Compute X̃t−1 by plugging the corrected noise

ε̃θ(Xt, t) into equation 2
6 end
7 Convert X̃0 into piano roll M̃
8 return output

Proposition 1. Under the SDE formulation in equation 3
and equation 4, given an early-stopping time t0

7, if

EXt∼pt [∥ε∗(Xt, t)− εθ(Xt, t)∥2] ≤ δ (9)

for all t, where ε∗(Xt, t) is the optimal solution of the
DDPM training objective (1), then we have

KL(p̃t0 |pt0) ≤
δ

2

∫ T

t0

β(t)√
1− e

−
∫ t
t0

β(s)ds

dt,

KL(p̃t0 |p̂t0) ≤
δ

2

∫ T

t0

β(t)√
1− e

−
∫ t
t0

β(s)ds

dt,

where pt0 is the distribution of Xt0 in the forward process,
p̂t0 is the distribution of X̂t0 generated by the diffusion
sampling process without noise adjustment, and p̃t0 is the
distribution of X̃t0 generated by the fine-grained noise ad-
justment.

Proposition 1 provides upper bounds for the distance be-
tween the controlled distribution and the uncontrolled dis-
tribution, as well as between the controlled distribution and
the ground truth. We remark that, our method can shape the
output towards a specific tonal quality. This can be for ex-
ample using the Dorian scale as the key signature sequence
K to shape the generated music towards the Dorian mode (a
tonal framework not present in the training data), where the
generated distribution p̃ with fine-grained noise adjustment
is fundamentally different from the ground truth distribu-
tion p. Nevertheless, Proposition 1 guarantees a substan-
tial overlap between the two distributions p̃ and p, demon-
strating a well-balanced interplay between external control

7We adopt the early-stopping time to avoid the blow-up of
score function, which is standard in many literature (Song & Er-
mon, 2020; Nichol & Dhariwal, 2021)

and the model’s internal learning from the training data,
e.g., melodic lines. This theoretical insight aligns with our
empirical observations, which is presented in the “Mode
Change” section of the demo page.

4. Challenges for Uncontrolled Symbolic
Music Generation Models

In the previous section 3, we present our FGG method that
guarantees the precision of generation. But why is it mean-
ingful to provide such guarantee in the task of symbolic
music generation? Why is it hard for models to self-ensure
harmonic precision without having the hard sampling con-
trol? We use Section 4 to answer these questions. These
discussions further motivate and justify the importance of
the FGG method.

In the rest of this section, we focus our discussion to tonic-
centric genres. Although not covering every aspect of mu-
sic, it still spans a wide range of genres that are deeply
embedded in everyday life, including tonic-centric New
Age music, light classical music, and tonic-focused movie
soundtracks. Such genres rely heavily on harmony, i.e., the
simultaneous sound of different notes that form a cohesive
entity in the mind of the listener (Müller, 2015).

Using the concept of temporary tonic key signatures we
discussed in the previous section, we focus our discussion
on the presence of out-of-key notes8 in generated music. In
the tonic-centric genres, out-of-key notes are uncommon,
and produce noticeable dissonance, if not having a “reso-
lution”. We often notice that out-of-key notes are usually
perceived merely as mistakes when appearing in generative
model outputs, as demonstrated by some examples on our
demo page.

We aim to explain why the existence of out-of-key notes
is an issue for diffusion-based symbolic music generation
models in the tonic-centric genres. Specifically, we ex-
plain the following phenomenon: Suppose G is a diffusion
model trained to generate tonic-centric genres. In the tar-
get data distribution, out-of-key notes appear at a small rate
P (O) ≳ 0. These out-of-key notes are carefully managed
(by expert composers) in the training set. However, when
out-of-key notes appear in the generated samples of G, they
often lack an appropriate resolution and are more likely to
be perceived negatively. Why does the model often fail to
learn this nuance?

We provide an intuitive explanation using statistical rea-
soning. Consider a piano roll segment, represented as a

8For instance, a G♮ note is considered as out-of-key in a G♭
major context. Admittedly the inference of temporary tonic key
is even more vague than chord recognition, due to the flexibility
of harmony. However, in the following discussion, we assume
that the temporary tonic key is specified.

5
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random variable M. Suppose we are interested in whether
this segment contains an out-of-key note (denoted as event
{O}) and whether that note is eventually resolved within
the segment (denoted as event {R,O}). In our training
data, almost every out-of-key note is resolved, meaning the
probability of unresolved out-of-key note is close to 0, i.e.,
P (R̄, O) ≈ 0.

Now, we examine the probability in the generated music.
The key question then is whether the generative model also
learns to keep P̂ (R̄, O) small. The following proposition 2
leverages analysis of statistical errors to show that P̂ (R̄, O)
can decrease slowly as the dataset size n increases.

Proposition 2. Consider generating piano roll M from a
continuous random variable X, i.e., given n i.i.d. data
{Xi}ni=1 ∼ pX, let {Mi}ni=1 be given by Mi

lh = 1{Xi
lh ≥

1/2}. Denote the model for estimating the distribution of
X as p̂X. We have ∃ C > 0 such that ∀n,

inf
p̂X

sup
pX∈Pδ

E{Mi}n
i=1

P̂ (R̄, O) ≥ C · n− 1
LH+2 − P (R̄, O),

(10)
where P̂ is the probability associated with the generated
data p̂X.

The proof of proposition 2 is provided in appendix A.3.
The term suppX∈Pδ

is the supremum taken over the search
space of the continuous generative model9, and inf p̂X

de-
notes the best possible realization of the model. The mini-
max formulation is standard in works that discuss statistical
convergence of generative models (Fu et al., 2024).

The theoretical insights presented in proposition 2 demon-
strate that the occurrence of unsolved out-of-key note is of-
ten unavoidable, and the decay rate of this error probability
with respect to training set size n is slow O(n−1/(LH)).
Thus, relying on the model itself for precision is challeng-
ing for existing models, given the inherent scarcity of high-
quality data and the slow decay rate of errors. There are
two implications following this line: First, it would be im-
mensely valuable to develop a model that enjoys the abil-
ity to implicitly learn contextually appropriate out-of-key
notes (nevertheless, currently in our work we did not take
this path). Second, with the fact that symbolic music gener-
ation requires an exceptional level of precision, it is worth-
while to develop methods that enable the model to function
as a well-controlled collaborative tool to aid human com-
posers.

9The exact formulation of Pδ is given in appendix A.3. While
real life distribution classes associated with generative models are
more complicated and difficult to analyze, Pδ essentially captures
their characteristics, and is therefore comparable to them. This
type of simplification while maintaining core characteristics ap-
pears to be standard in works that provide theoretical insights (Fu
et al., 2024).

5. Experiments
In this section, we present experiments to demonstrate the
effectiveness of our fine-grained guidance approach. We
additionally create a demopage10 for demonstration, which
allows for fast and stable interactive music creation with
user-specified input guidance11, and even for generating
music based on tonal frameworks absent from the training
set.

5.1. Numerical Experiments

We present numerical experiments on accompaniment gen-
eration given both melody and chord generation, or sym-
bolic music generation given only chord conditions. We
focus on the former one as it provides a more effective
basis for comparison. Due to page limits, we put the
results and more detailed explanation of the latter one
in Appendix D.3. For the accompaniment generation
task, we compare with two state-of-the-art baselines: 1)
WholeSongGen (Wang et al., 2024) and 2) GETMusic (Lv
et al., 2023).

5.1.1. DATA REPRESENTATION AND MODEL
ARCHITECTURE

The generation target X is represented by a piano-roll ma-
trix of shape 2×L×128 under the resolution of a 16th note,
where L represents the total length of the music piece, and
the two channels represent note onset and sustain, respec-
tively. In our experiments, we set L = 64, correspond-
ing to a 4-measure piece under time signature 4/4. Longer
pieces can be generated autoregressively using the inpaint-
ing method. The backbone of our model is a 2D UNet with
spatial attention.

The condition matrix M cond is also represented by a piano
roll matrix of shape 2× L× 128, with the same resolution
and length as that of the generation target X . For the ac-
companiment generation experiments, we provide melody
as an additional condition. Detailed construction of the
condition matrices are provided in Appendix D.1.

5.1.2. DATASET

We use the POP909 dataset (Wang et al., 2020a) for train-
ing and evaluation. This dataset consists of 909 MIDI
pieces of pop songs, each containing lead melodies, chord
progression, and piano accompaniment tracks. We exclude
29 pieces that are in triple meter. 90% of the data are used
to train our model, and the remaining 10% are used for

10See https://huajianduzhuo-code.github.io/FGG-diffusion-
music/. We note that slow performance may result from
Huggingface resource limitations and network latency.

11The format of user-specified input guidance is limited within
the constrained piano roll format, as is demonstrated in the paper.
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evaluation. In the training process, we split all the midi
pieces into 4-measure non-overlapping segments (corre-
sponding to L = 64 under the resolution of a 16th note),
which in total generates 15761 segments in the entire train-
ing set. Training and sampling details are provided in Ap-
pendix D.2.

5.1.3. TASK AND BASELINE MODELS

We consider accompaniment generation task based on
melody and chord progression. We compare the per-
formance of our model with two baseline models: 1)
WholeSongGen (Wang et al., 2024) and 2) GETMusic (Lv
et al., 2023). WholeSongGen is a hierarchical music gener-
ation framework that leverages cascaded diffusion models
to generate full-length pop songs. It introduces a four-level
computational music language, with the last level being ac-
companiment. The model for the last level can be directly
used to generate accompaniment given music phrases, lead
melody, and chord progression information. GETMusic is
a versatile music generation framework that leverages a dis-
crete diffusion model to generate tracks based on flexible
source-target combinations. The model can also be directly
applied to generate piano accompaniment conditioning on
melody and chord. Since these baseline models do not sup-
port rhythm control, to ensure comparability, we will use
the M cond(C) without rhythm condition in our model.

5.1.4. EVALUATION

We generate accompaniments for the 88 MIDI pieces in our
evaluation dataset.12 We introduce the following objective
metrics to evaluate the generation quality of different meth-
ods:

(1) Percentage of Out-of-Key Notes First, for each method,
we present the frequency of out-of-key notes by comput-
ing the percentage of steps in the generated sequences con-
taining at least one out-of-key note, where each step cor-
responds to a 16th note. The results, presented in Table 1,
indicate that frequency of out-of-key notes in the baselines
is roughly 2%-4%, equating to about 1–3 occurrences in a
4-measure piece. In contrast, our sampling control method
effectively eliminates such dissonant notes in the generated
samples.

(2) Direct Chord Accuracy and Chord Progression Simi-
larity We evaluate harmonic consistency by comparing the
chord progressions of the generated and ground truth ac-
companiments. Chords are extracted using the rule-based
recognition method from Dai et al. (2020). Direct chord
accuracy is computed as the percentage of beats where the

12The WholeSongGen model from Wang et al. (2024) is also
trained on the POP909 dataset. Our evaluation set is a subset of
their test set so there is no in-sample evaluation issue on their
model.

recognized chord of the generated output exactly matches
that of the ground truth. However, since not all mismatches
reflect equal harmonic deviation—for instance, C major is
harmonically close to Cmaj7 but far from B major—direct
accuracy may fail to reflect the nuanced similarity between
chords.

To address this, we further assess chord progression
similarity. We divide each accompaniment into non-
overlapping 2-measure segments and encode them into a
256-dimensional latent space using a pre-trained disentan-
gled VAE (Wang et al., 2020b). Cosine similarity is then
computed between corresponding segments from the gen-
erated and ground truth progressions. Table 1 reports the
average direct accuracy and average latent similarity, along
with their 95% confidence intervals. The results demon-
strate that our method significantly outperforms all base-
lines in chord accuracy.

(3) Intersection over Union (IoU) Metrics. We evaluate the
similarity between the generated and ground truth accom-
paniments using two IoU-based metrics: IoU of Chords
and IoU of Piano Roll. For IoU of Chords, we first ap-
ply the chord recognition method from Dai et al. (2020) to
both the generated and ground truth accompaniments. Each
chord is then represented as a 12-dimensional binary vector
indicating the presence of pitch classes (C through B). We
compute the IoU between the generated and ground truth
pitch class sets at every 16th-note time step and report the
average IoU across all time steps.

For IoU of Piano Roll, we represent each accompaniment
as a binary piano roll. The IoU is computed at each 16th-
note time step by comparing the sets of active pitches in
the generated and ground truth piano rolls. We then re-
port the average IoU across all time steps.13 The results,
presented in Table 1, show that our method consistently
achieves higher IoU scores than the baselines, indicating
closer alignment to the ground truth at both the harmonic
and note level.

(4) Subjective Evaluation

To compare performance of our FGG method against the
baselines (ground truth, WholeSongGen, and GETMusic),
we prepared 6 sets of generated samples, with each set
containing the melody paired with accompaniments gen-
erated by FGG, WholeSongGen, and GETMusic, along
with the ground truth accompaniment. This yields a to-
tal of 6 × 4 = 24 samples. The samples are presented
in a randomized order, and their sources are not disclosed

13While exact agreement with the ground truth is not necessar-
ily optimal—since a given melody may admit multiple valid ac-
companiments—the IoU still serves as a useful indicator of musi-
cal quality. A high-quality accompaniment is expected to align
reasonably well with the expert-written ground truth, and thus
should not deviate substantially.
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Methods % Out-of-Key Notes ↓ Direct Chord Accuracy ↑ Chord Similarity ↑ IoU (Chord) ↑ IoU (Piano Roll) ↑
FGG (Ours) 0.0% 0.485± 0.006 0.767± 0.007 0.769± 0.003 0.281± 0.005

WholeSongGen 2.1% 0.314± 0.006 0.611± 0.010 0.618± 0.004 0.107± 0.003

GETMusic 3.5% 0.153± 0.007 0.394± 0.012 0.412± 0.007 0.048± 0.003

Table 1. Evaluation of the similarity with ground truth for all methods.

to participants. Experienced listeners assess the quality of
samples in 5 dimensions: creativity, harmony (whether the
accompaniment is in harmony with the melody), melodi-
ousness, naturalness and richness, together with an overall
assessment. The results are shown in Figure 3. The bar
height shows the mean rating, and the error bar shows the
95% confidence interval. FGG consistently outperforms
the baselines in all dimensions. For details of our survey,
please see Appendix F.

5.1.5. ABLATION STUDY

In this section, we conduct ablation studies to better il-
lustrate the effectiveness of our FGG method. We aim
to demonstrate the effectiveness of both the fine-grained
training condition (training control) and the sampling con-
trol. We also compare with simple rule-based post-sample
editing14. The former leverages the structured gradual de-
noising process of diffusion models, ensuring a theoretical
guarantee of preserving the distributional properties of the
original learned distribution. In contrast, the latter employs
a brute-force editing approach that disrupts the generated
samples, affecting local melodic lines and rhythmic pat-
terns. The numerical results further validate this analysis.

Moreover, we compare with a so-called “Inpainting”
method, which treats the pixels where there is not supposed
to be a note as 0 and inpaints the remaining pixels. This
information is included by adding a mask channel in the
training process. We still allow for the fine-grained condi-
tioning in training.

Specifically, we include the following variants in our abla-
tion study:

• Training and Sampling Control: our full method,
which applies fine-grained conditioning during both
training and sampling.

• Inpainting: out-of-key pixels are treated as 0, and the
remaining positions are inpainted based on fixed con-
text.

• Training control + Round Notes Up/Down After
Sampling: training control is applied, and out-of-key

14Specifically, we compare with two rule-based post-sample
editing methods: 1) Rounding wrong notes up/down and 2) Re-
move wrong notes.

notes are corrected post-sampling by rounding to the
nearest in-key pitch.

• Training control + Remove Wrong Notes After
Sampling: training control is applied, and out-of-key
notes are corrected post-sampling by removing them.

• Training Control Only: only training control is used;
no sampling-time controls are enforced.

• No Control: neither training control nor sampling
control are applied.

We assess overall model performance using the same quan-
titative metrics as in the previous section. The results
are shown in Table 2. In general, fine-grained condition-
ing (i.e., training control) leads to substantial improve-
ments across all evaluation metrics, and adding sampling
control further enhances performance. While rule-based
post-sampling editing (e.g., removing or rounding out-of-
key notes) yields moderate gains, it is consistently outper-
formed by our fine-grained sampling control method. Our
approach fully leverages the structured, gradual denoising
process of diffusion models, allowing the model to itera-
tively correct or replace errors while preserving the coher-
ence of the original learned distribution.

Moreover, our method outperforms the inpainting baseline
across all evaluation metrics. Unlike our approach, the in-
painting method introduces additional architectural com-
plexity by requiring the model to handle an auxiliary mask
channel that indicates which pixels to regenerate. This not
only increases implementation overhead but also adds com-
putational burden during both training and inference.

5.2. Empirical Observations

Notably, harmonic control not only helps the model elimi-
nate incorrect notes, but also guides it to replace them with
correct ones. Such representative examples are presented in
Appendix G. Moreover, samples generated from ablation
conditions are available in Section 3 of our demo page15.
Across all ablations, we observed occasional occurrences
of excessively high-pitched notes and overly dense note
clusters.

15The demo page is available at https://huajianduzhuo-
code.github.io/FGG-diffusion-music/
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Figure 3. Subjective evaluation results on music quality.

Methods % Out-of-Key Direct Chord Chord IoU IoU
Notes Accuracy Similarity Chord Piano Roll

Training and 0.0% 0.485 0.767 0.769 0.281

Sampling Control ±0.006 ±0.007 ±0.003 ±0.005

Inpainting 0.0% 0.458 0.710 0.743 0.271

±0.006 ±0.008 ±0.003 ±0.005

Training Control 0.0% 0.472 0.756 0.763 0.272

Round Notes Up/Down After Sampling ±0.006 ±0.007 ±0.003 ±0.005

Training Control 0.0% 0.482 0.763 0.767 0.277

Remove Wrong Notes After Sampling ±0.006 ±0.007 ±0.003 ±0.005

Only 3.7% 0.465 0.748 0.757 0.270

Training Control ±0.006 ±0.007 ±0.003 ±0.005

No Control 10.1% 0.112 0.378 0.378 0.072

±0.004 ±0.007 ±0.004 ±0.002

Table 2. Ablation study.

6. Limitations and Future Work
While our method achieves strong performance across mul-
tiple metrics, several limitations remain. First, we adopt
a 16th-note quantization scheme following Wang et al.
(2024), which simplifies temporal representation but re-
stricts rhythmic flexibility and precludes training on data
without explicit beat annotations. A promising future di-
rection is to integrate our pitch-class-based control mecha-
nism with approaches such as Huang et al. (2024), which
introduce a dynamic dimension and utilize finer 10ms time
quantization to better capture expressive timing variations.
Second, our method supports pitch class and rhythmic con-
trol in the piano roll representation, but does not accom-
modate more abstract forms or probabilistic control. Fi-
nally, we note that evaluation remains a broader challenge
across the field of symbolic music generation. Since musi-
cal quality evaluation is inherently detailed and partly sub-
jective, objective evaluation metrics such as rule-based and
structural evaluation methods used in this work have inher-
ent limitations in reflecting perceptual or creative aspects
of music. This is a key reason why many recent studies
supplement objective evaluation with subjective human lis-
tening evaluations. A valuable future direction is to develop
improved automatic evaluation metrics that more faithfully

align with human judgments of musicality and creativity.

7. Conclusion
In this work, we apply fine-grained textural guidance
(FGG) on symbolic music generation models. We provide
theoretical analysis and empirical evidence to highlight the
need for fine-grained and precise control over the model
output. We also provide theoretical analysis to quantify and
upper bound the potential effect of fine-grained control on
learned local patterns, and provide samples and numerical
results for demonstrating the effectiveness of our approach.
For the impact of our method, we note that the FGG method
can be integrated with other diffusion-based symbolic mu-
sic generation methods. With a moderate trade-off of flexi-
bility, the FGG method prioritizes real-time generation sta-
bility and enables efficient generation with precise control.

Acknowledgements
The authors gratefully acknowledge Jinghai He, Ang Lv,
Yifu Tang, Gus Xia, Yaodong Yu, Yufeng Zheng, anony-
mous reviewers, area chairs, and the anonymous evaluators
of this work’s demos.

9



Efficient Fine-Grained Guidance for Diffusion Model Based Symbolic Music Generation

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are a range of potential soci-
etal consequences of our work, none which we feel must be
specifically highlighted here.

References
Chang, H., Zhang, H., Barber, J., Maschinot, A., Lezama,

J., Jiang, L., Yang, M.-H., Murphy, K., Freeman, W. T.,
Rubinstein, M., et al. Muse: Text-to-image generation
via masked generative transformers. In International
Conference on Machine Learning, pp. 4055–4075, 2023.

Chen, S., Chewi, S., Li, J., Li, Y., Salim, A., and Zhang,
A. Sampling is as easy as learning the score: theory
for diffusion models with minimal data assumptions. In
International Conference on Learning Representations,
2023.

Choi, K., Hawthorne, C., Simon, I., Dinculescu, M., and
Engel, J. Encoding musical style with transformer au-
toencoders. In International Conference on Machine
Learning, pp. 1899–1908. PMLR, 2020.

Chung, H., Kim, J., McCann, M. T., Klasky, M. L., and
Ye, J. C. Diffusion posterior sampling for general noisy
inverse problems. In International Conference on Learn-
ing Representations, 2023.

Corneanu, C. A., Gadde, R., and Martı́nez, A. M. Latent-
paint: Image inpainting in latent space with diffusion
models. 2024 IEEE/CVF Winter Conference on Applica-
tions of Computer Vision (WACV), pp. 4322–4331, 2024.

Dai, S., Zhang, H., and Dannenberg, R. B. Automatic anal-
ysis and influence of hierarchical structure on melody,
rhythm and harmony in popular music. arXiv preprint
arXiv:2010.07518, 2020.

Dhariwal, P. and Nichol, A. Diffusion models beat gans on
image synthesis. Advances in Neural Information Pro-
cessing Systems, 34:8780–8794, 2021.

Dong, H.-W., Hsiao, W.-Y., Yang, L.-C., and Yang, Y.-H.
Musegan: Multi-track sequential generative adversarial
networks for symbolic music generation and accompa-
niment. In AAAI Conference on Artificial Intelligence,
2017.

Fishman, N., Klarner, L., De Bortoli, V., Mathieu, E., and
Hutchinson, M. J. Diffusion models for constrained
domains. Transactions on Machine Learning Research
(TMLR), 2023.

Fu, H., Yang, Z., Wang, M., and Chen, M. Un-
veil conditional diffusion models with classifier-free

guidance: A sharp statistical theory. arXiv preprint
arXiv:2403.11968, 2024.

Gao, S., Zhou, P., Cheng, M.-M., and Yan, S. Masked
diffusion transformer is a strong image synthesizer. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 23164–23173, 2023.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
In NeurIPS 2021 Workshop on Deep Generative Models
and Downstream Applications, 2021.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion prob-
abilistic models. Advances in Neural Information Pro-
cessing Systems, 33:6840–6851, 2020.

Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Shazeer,
N. M., Simon, I., Hawthorne, C., Dai, A. M., Hoffman,
M. D., Dinculescu, M., and Eck, D. Music transformer:
Generating music with long-term structure. In Interna-
tional Conference on Learning Representations, 2018.

Huang, Y., Ghatare, A., Liu, Y., Hu, Z., Zhang, Q., Sastry,
C. S., Gururani, S., Oore, S., and Yue, Y. Symbolic mu-
sic generation with non-differentiable rule guided diffu-
sion. In International Conference on Machine Learning,
pp. 19772–19797. PMLR, 2024.

Huang, Y.-S. and Yang, Y.-H. Pop music transformer:
Beat-based modeling and generation of expressive pop
piano compositions. In Proceedings of the 28th ACM
international conference on multimedia, pp. 1180–1188,
2020.

Karatzas, I. and Shreve, S. Brownian motion and stochas-
tic calculus, volume 113. Springer Science & Business
Media, 1991.

Lin, S., Liu, B., Li, J., and Yang, X. Common diffusion
noise schedules and sample steps are flawed. In Proceed-
ings of the IEEE/CVF winter conference on applications
of computer vision, pp. 5404–5411, 2024.

Lou, A. and Ermon, S. Reflected diffusion models. In Inter-
national Conference on Machine Learning, pp. 22675–
22701. PMLR, 2023.

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timo-
fte, R., and Gool, L. V. Repaint: Inpainting using de-
noising diffusion probabilistic models. 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 11451–11461, 2022.

Lv, A., Tan, X., Lu, P., Ye, W., Zhang, S., Bian, J., and Yan,
R. Getmusic: Generating any music tracks with a unified
representation and diffusion framework. arXiv preprint
arXiv:2305.10841, 2023.

10



Efficient Fine-Grained Guidance for Diffusion Model Based Symbolic Music Generation

Meade, N., Barreyre, N., Lowe, S. C., and Oore, S. Ex-
ploring conditioning for generative music systems with
human-interpretable controls. In Proceedings of the 10th
International Conference on Computational Creativity
(ICCC), Charlotte, North Carolina, 2019.

Min, L., Jiang, J., Xia, G., and Zhao, J. Polyffusion: A dif-
fusion model for polyphonic score generation with inter-
nal and external controls. Proceedings of 24th Interna-
tional Society for Music Information Retrieval Confer-
ence, ISMIR, 2023.

Müller, M. Fundamentals of music processing: Audio,
analysis, algorithms, applications, volume 5. Springer,
2015.

Nichol, A. Q. and Dhariwal, P. Improved denoising diffu-
sion probabilistic models. In International Conference
on Machine Learning, pp. 8162–8171. PMLR, 2021.

Novack, Z., McAuley, J., Berg-Kirkpatrick, T., and Bryan,
N. J. Ditto: Diffusion inference-time t-optimization for
music generation. In International Conference on Ma-
chine Learning, pp. 38426–38447. PMLR, 2024.

Ren, Y., He, J., Tan, X., Qin, T., Zhao, Z., and Liu, T.-
Y. Popmag: Pop music accompaniment generation. In
Proceedings of the 28th ACM international conference
on multimedia, pp. 1198–1206, 2020.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J.,
Denton, E. L., Ghasemipour, K., Gontijo Lopes, R.,
Karagol Ayan, B., Salimans, T., et al. Photorealistic
text-to-image diffusion models with deep language un-
derstanding. Advances in Neural Information Processing
Systems, 35:36479–36494, 2022.

Song, J., Meng, C., and Ermon, S. Denoising diffusion im-
plicit models. In International Conference on Learning
Representations, 2021a.

Song, J., Zhang, Q., Yin, H., Mardani, M., Liu, M.-Y.,
Kautz, J., Chen, Y., and Vahdat, A. Loss-guided diffu-
sion models for plug-and-play controllable generation.
In International Conference on Machine Learning, pp.
32483–32498. PMLR, 2023.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. Advances in Neural
Information Processing Systems, 32, 2019.

Song, Y. and Ermon, S. Improved techniques for training
score-based generative models. Advances in Neural In-
formation Processing Systems, 33:12438–12448, 2020.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A.,
Ermon, S., and Poole, B. Score-based generative model-
ing through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021b.
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A. Proof of propositions and calculation details
A.1. Calculation details in 3.2

Our goal is to find the optimal solution of problem (7). Since the constraint is an element-wise constraint on a linear
function of ε and the objective is separable, we can find the optimal solution by element-wise optimization. Consider the
(l, h)-element of ε.

First, if (l, h) /∈ w(l;K), there is no constraint on εlh. Therefore, the optimal solution of εlh is ε̂θ,lh(Xt, t).

If (l, h) ∈ w(l;K), the constraint on εlh is

Xt,lh −
√
1− ᾱtεlh√

ᾱt
≤ 1

2
,

which is equivalent to

εlh ≥ 1√
1− ᾱt

(
Xt,lh −

√
ᾱt

2

)
.

The objective is to minimize ∥εlh − ε̂θ,lh(Xt, t)∥. Therefore, the optimal solution of εlh is

εlh = max

{
ε̂θ,lh(Xt, t|C,R),

1√
1− ᾱt

(
Xt,lh −

√
ᾱt

2

)}
.

A.2. Proof of Proposition 1

Proof. Recall that According to Song et al. (2021b), the DDPM forward process Xt =
√
ᾱtX0 +

√
1− ᾱtε can be

regarded as a discretization of the following SDE:

dXt = −1

2
β(t)Xtdt+

√
β(t)dWt,

and the corresponding denoising process takes the form of a solution to the following stochastic differential equation
(SDE):

dXt = −
[
1

2
β(t)Xt + β(t)∇Xt log pt(Xt)

]
dt+

√
β(t)dW̄t,

where β(t/T ) = Tβt as T goes to infinity, W̄t is the reverse time standard Wiener process, and ᾱt term should be
replaced by its continuous version e−

∫ t
0
β(s)ds (or e−

∫ t
t0

β(s)ds when early-stopping time t0 is adopted). The score function
∇Xt

log pt(Xt) can be approximated by −εθ(Xt, t)/
√

1− e−
∫ t
0
β(s)ds.

Under the SDE formulation, the denoising process can take the form of a solution to stochastic differential equation (SDE):

dXt = −
[
1

2
β(t)Xt + β(t)∇Xt

log pt(Xt)

]
dt+

√
β(t)dW̄t, (11)

where β(t/T ) = Tβt, W̄t is the reverse time standard Wiener process. According to Song et al. (2021b), as T → ∞, the
solution to the SDE converges to the real data distribution p0.

In the diffusion model, ∇Xt
log pt(Xt) is approximated by −εθ(Xt, t)/

√
1− e

−
∫ t
t0

β(s)ds. Therefore, the approximated
reverse-SDE sampling process without harmonic guidance is

dX̂t = −

1
2
β(t)X̂t − β(t)

εθ(X̂t, t)√
1− e

−
∫ t
t0

β(s)ds

 dt+
√
β(t)dW̄t. (12)

Similarly, the sampling process with fine-grained harmonic guidance is

dX̃t = −

1
2
β(t)X̃t − β(t)

ε̃θ(X̃t, t)√
1− e

−
∫ t
t0

β(s)ds

 dt+
√
β(t)dW̄t, (13)
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where ε̃θ is defined as equation 7 and equation 8.

For simplicity, we denote the drift terms as follows:

f(Xt, t) = −
[
1

2
β(t)Xt + β(t)∇Xt

log pt(Xt)

]

f̂(X̂t, t) = −

1
2
β(t)X̂t − β(t)

εθ(X̂t, t)√
1− e

−
∫ t
t0

β(s)ds

 ,

f̃(X̃t, t) = −

1
2
β(t)X̃t − β(t)

ε̃θ(X̃t, t)√
1− e

−
∫ t
t0

β(s)ds

 .

Since
EXt∼pt

[∥ε∗(Xt, t)− εθ(Xt, t)∥2] ≤ δ,

and

ε∗(Xt, t) = −
√

1− e
−

∫ t
t0

β(s)ds∇Xt
log pt(Xt),

we have

EX∼pt [∥f(X, t)− f̂(X, t)∥] ≤ β(t)√
1− e

−
∫ t
t0

β(s)ds

δ.

Now we consider ε̃θ(X̃t, t), which is the solution of the optimization problem (7). In the continuous SDE case, the
corresponding optimization problem becomes

min
ε

∥ε− ε̂θ(Xt, t|C,R)∥

s.t.

Xt −
√
1− e

−
∫ t
t0

β(s)ds
ε

e
− 1

2

∫ t
t0

β(s)ds

 ∈ RL×H\W′
K.

(14)

According to Proposition 1 of Chung et al. (2023), the posterior mean of X0 conditioning on Xt is

E[X0|Xt] =
1

e
− 1

2

∫ t
t0

β(s)ds

(
Xt + (1− e

− 1
2

∫ t
t0

β(s)ds
)∇Xt

log pt(Xt)
)

=
1

e
− 1

2

∫ t
t0

β(s)ds

(
Xt −

√
1− e

−
∫ t
t0

β(s)ds
ε∗(Xt, t)

)
.

Since the domain of X0 is RL×H\W′
K, which is a convex set, we know that the posterior mean E[X0|Xt] naturally belongs

to its domain. Therefore, ε∗(Xt, t) is feasible to the problem (14). Since the optimal solution of the problem is ε̃θ(Xt, t),
we have

∥ε̃θ(Xt, t)− εθ(Xt, t)∥ ≤ ∥ε∗(Xt, t)− εθ(Xt, t)∥
for all Xt and t. This further leads to the result that

EX∼pt
[∥f̃(X, t)− f̂(X, t)∥] ≤ β(t)√

1− e
−

∫ t
t0

β(s)ds

δ. (15)

Moreover, since ε̃θ(Xt, t) is essentially the projection of εθ(Xt, t) onto the convex set defined by the constraints in (14),
and ε∗(Xt, t) also belongs to the set, we know that the inner product of ε∗(Xt, t) − ε̃θ(Xt, t) and εθ(Xt, t) − ε̃θ(Xt, t)
is negative, which further leads to the result that

∥ε̃θ(Xt, t)− ε∗(Xt, t)∥ ≤ ∥ε∗(Xt, t)− εθ(Xt, t)∥, (16)
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which further implies

EX∼pt
[∥f̃(X, t)− f(X, t)∥] ≤ β(t)√

1− e
−

∫ t
t0

β(s)ds

δ. (17)

The following Girsanov’s Theorem (Karatzas & Shreve, 1991) will be used (together with equation 15 and equation 17) to
prove the upper bounds for the KL-divergences in our Proposition 1:

Proposition 3. Let p0 be any probability distribution, and let Z = (Zt)t∈[0,T ], Z ′ = (Z ′
t)t∈[0,T ] be two different processes

satisfying

dZt = b(Zt, t)dt+ σ(t)dBt, Z0 ∼ p0,

dZ ′
t = b′(Z ′

t, t)dt+ σ(t)dBt, Z ′
0 ∼ p0.

We define the distributions of Zt and Z ′
t as pt and p′t, and the path measures of Z and Z ′ as P and P′ respectively.

Suppose the following Novikov’s condition:

EP

[
exp

(∫ T

0

1

2

∫
x

σ−2(t)∥(b− b′)(x, t)∥2dxdt

)]
< ∞. (18)

Then, the Radon-Nikodym derivative of P with respect to P′ is

dP
dP′ (Z) = exp

{
−1

2

∫ T

0

σ(t)−2∥(b− b′)(Zt, t)∥2dt−
∫ T

0

σ(t)−1(b− b′)(Zt, t)dBt

}
,

and therefore we have that

KL(pT ∥p′T ) ≤ KL(P∥P′) =

∫ T

0

1

2

∫
x

pt(x)σ(t)
−2∥(b− b′)(x, t)∥2dxdt.

Moreover, Chen et al. (2023) showed that if
∫
x
pt(x)σ

−2(t)∥(b− b′)(x, t)∥2dx ≤ C holds for some constant C over all t,
we have that

KL(pT ∥p′T ) ≤
∫ T

0

1

2

∫
x

pt(x)σ(t)
−2∥(b− b′)(x, t)∥2dxdt,

even if the Novikov’s condition equation 18 is not satisfied.

.

According to equation 15 and equation 17, we have∫
x

pt(x)β(t)
−1∥f̃(X, t)− f̂(X, t)∥dx ≤ β(t)√

1− e
−

∫ t
t0

β(s)ds

δ ≤ sup
t∈[t0,T ]

β(t)√
1− e

−
∫ t
t0

β(s)ds

δ, (19)

∫
x

pt(x)β(t)
−1∥f̃(X, t)− f(X, t)∥dx ≤ β(t)√

1− e
−

∫ t
t0

β(s)ds

δ ≤ sup
t∈[t0,T ]

β(t)√
1− e

−
∫ t
t0

β(s)ds

δ. (20)

Therefore, we can apply Proposition 3 to obtain upper bounds for the KL-divergences, which leads to

KL(p̃t0 |p̂t0) ≤
∫ T

t0

1

2

∫
x

pt(x)β(t)
−1∥f̃(X, t)− f̂(X, t)∥dx

≤ δ

∫ T

t0

1

2

β(t)√
1− e

−
∫ t
t0

β(s)ds

dt
(21)
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and

KL(p̃t0 |pt0) ≤
∫ T

t0

1

2

∫
x

pt(x)β(t)
−1∥f̃(X, t)− f(X, t)∥dx

≤ δ

∫ T

t0

1

2

β(t)√
1− e

−
∫ t
t0

β(s)ds

dt.
(22)

Remark 1. Under the SDE formulation, the forward process terminates at a sufficiently large time T . Also, since the score
functions blow up at t ≈ 0, an early-stopping time t0 is commonly adopted to avoid such issue (Song & Ermon, 2020;
Nichol & Dhariwal, 2021). When t0 is sufficiently small, the distribution of Xt0 in the forward process is close enough to
the real data distribution.

A.3. Proof of proposition 2

We first provide the following definition 1, which is adopted from Fu et al. (2024).

Definition 1. Denote the space of density functions

P0 =
{
p(X) = f(X) exp(−C∥X∥22) : f ∈ L(RL×H , B), f(X) ≥ α > 0

}
,

where C and α can be any given constants, and L(RL×H , B) denotes the class of Lipschitz continuous functions on RL×H

with Lipschitz constant bounded by B.

Suppose that the density function of X belongs to the following space

Pδ =
{
p(X) ∈ P0|P (R̄, O) = δ

}
, (23)

where the distribution of M is defined from X by

Mlh = 1{Xlh ≥ 1/2}.

Proposition 4. Consider generating piano roll M from a continuous random variable X, i.e., given n i.i.d. data
{Xi}ni=1 ∼ pX, let {Mi}ni=1 be given by Mi

lh = 1{Xi
lh ≥ 1/2}. Denote the model for estimating the distribution of

X as p̂X. We have ∃ C > 0 such that ∀n,

inf
p̂X

sup
pX∈Pδ

E{Mi}n
i=1

P̂ (R̄, O) ≥ C · n− 1
LH+2 − P (R̄, O), (24)

where P̂ is the probability associated with the generated data p̂X.

Proof. We first restate a special case of proposition 4.3 of Fu et al. (2024) as the following lemma.

Lemma 1. (Fu et al. (2024), proposition 4.3) Fix a constant C2 > 0. Consider estimating a distribution P (x) with a
density function belonging to the space

P =
{
p(x) = f(x) exp(−C2∥x∥22) : f(x) ∈ L(Rd, B), f(x) ≥ C > 0

}
.

Given n i.i.d. data {xi}ni=1, we have
inf
µ̂

sup
p∈P

E{xi}n
i=1

[TV(µ̂, P )] ≳ n− 1
d+2 ,

where the infimum is taken over all possible estimators µ̂ based on the data.

From lemma 1, since the space P0 that we define satisfies all the same conditions as the space P in lemma 1, we know
from the conclusion of lemma 1 that

inf
p̂X

sup
pX∈P0

E{xi}n
i=1

[TV(p̂X, pX)] ≳ n− 1
LH+2 , (25)
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where by definition of total variation,

TV(p̂X, pX) =

∫
RL×H

|p̂X(X)− pX(X)|dX. (26)

For simplicity, suppose event O denotes a note-out-of-key occurring at (l, h) = (1, 1). We have

P̂ (O) =

∫
( 1
2 ,+∞)

dX11

∫
RL×H−1

dY p̂X(X11,Y )

∆
=

∫
ΩO

p̂X(X)dX,

(27)

where Y is a (LH − 1)-dimensional variable denoting the elements in matrix X excluding X11. Let C(O) denote the set
of all possible realizations of piano roll M that contains (i) the note O as an out-of-key note, and (ii) a “resolution”16 to
accommodate it. For each M ∈ C(O), let

δ(M) = {(l, h) ∈ J1, LK × J1, HK|Mlh = 1}.

Therefore, we have

P̂ (R,O) =
∑

M∈C(O)

∫
( 1
2 ,+∞)|δ(M)|

dXδ(M)

∫
(−∞, 12 )

L×H−|δ(M)|
dY p̂X(Xδ(M), XL×H\δ(M))

∆
=

∫
ΩC(O)

p̂X(X)dX,

(28)

and note that ΩC(O) ⊂ ΩO, we have

P̂ (R̄, O) = P̂ (O)− P̂ (R,O) =

∫
ΩO\ΩC(O)

p̂X(X)dX (29)

To better explain and summarize equation 27, equation 28 and equation 29, the probabilities P̂ (·) (the estimated probabil-
ities of O, {R,O} or {R̄, O}) are always calculated from integrating p̂X(X) on a corresponding domain, and the key of
the 3 equations are all about finding the domain on which to integrate . Similarly, for the ground truth distributions and
under definition 1 which provides PM (R̄, O) = δ, we have

P (R̄, O) =

∫
ΩO\ΩC(O)

pX(X)dX ≤ δ.

Therefore,

P̂ (R̄, O) =

∫
ΩO\ΩC(O)

p̂X(X)dX

≥
∫
ΩO\ΩC(O)

|p̂X(X)− pX(X)| − pX(X)dX

≥
∫
ΩO\ΩC(O)

|p̂X(X)− pX(X)| dX − δ

(30)

Therefore,
P̂ (R̄, O) = TV|ΩO\ΩC(O)

(p̂X, pX)− δ, (31)

where TV|ΩO\ΩC(O)
is the total variation integral restricted on the domain ΩO\ΩC(O).

16By definition, the resolution of an out-of-key note refers to how it is integrated into the surrounding harmonic and melodic structure
to make it sound intentional rather than an error.
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By construction of packing numbers provided in the proof of proposition 4.3 of Fu et al. (2024), we note that constraint
PM (R̄, O) = δ or restricting the integral of total variation on ΩO\ΩC(O) does not change the order of the packing numbers,
i.e., P0 and Pδ have the same packing numbers. Let

PΩO\ΩC(O)

δ =
{
C(ΩO\ΩC(O)) · p(X)1X∈ΩO\ΩC(O)

| p(X) ∈ Pδ

}
,

where the constant C(ΩO\ΩC(O)) is a scale factor to ensure that C(ΩO\ΩC(O))·p(X)1X∈ΩO\ΩC(O)
is a probability density

function. For simplicity we use P(δ,O) for short of PΩO\ΩC(O)

δ . Therefore, from the original lemma 1 of Fu et al. (2024)
we have equation 25. Only changing the P0 into P(δ,O) (all the arguments above are to justify why this change can be
made), we have

inf
p̂X

sup
p∈P(δ,O)

E{Xi}n
i=1

TV(p̂X, pX) ≳ n− 1
LH+2 . (32)

Combining equation 32 with equation 31, and starting from our target EP̂ (R̄, O), we have

inf
p̂X

sup
p∈Pδ

E{Xi}n
i=1

P̂ (R̄, O) + δ = inf
p̂X

sup
p∈Pδ

TV|ΩO\ΩC(O)
(p̂X, pX) + δ

= inf
p̂X

sup
p∈P(δ,O)

TV(p̂X, pX) + δ ≳ n− 1
LH+2 .

Therefore, ∃C > 0, ∀n,
inf
p̂X

sup
p∈Pδ

E{Xi}n
i=1

P̂ (R̄, O) ≥ C · n− 1
LH+2 − P (R̄, O).

which finishes the proof.

B. Details of Conditioning and Algorithms
B.1. Mathematical formulation of textural conditions in section 3.1

Denote a chord progression by C, where C(l) denotes the chord at time l ∈ J1, LK. Let γC(l) ⊂ J1, HK denote the set of
pitch index h that belongs to the pitch classes included in chord C(l).17, and let γR ⊂ J1, LK denote the set of onset time
indexes corresponding to rhythmic pattern R. We define the following versions of representations for the condition:

• When harmonic (C) and rhythmic (R) conditions are both provided, the corresponding conditional piano roll
M cond(C,R) is given element-wise by M cond

lh(C,R) = 1{l ∈ γR}1{h ∈ γC(l)}, meaning that the (l, h)-element is
1 if pitch index h belongs to chord C(l) and there is onset notes at time l, and 0 otherwise.

• When only harmonic (C) condition is provided, the corresponding piano roll M cond(C) is given element-wise by
M cond

lh(C) = −1− 1{h ∈ γC(l)}, meaning that the (l, h)-element is −2 if pitch index h belongs to chord C(l), and
−1 otherwise.

Figure 1 and Figure 2 provides illustrative examples of M cond(C,R) and M cond(C). The use of −2 and −1 (rather than
1 and 0) in the latter case ensures that the model can fully capture the distinctions between the two scenarios, as a unified
model will be trained on both types of conditions.

B.2. Classifier Free Guidance

To enable the model to generate under varying levels of conditioning, including unconditional generation, we implement
the idea of classifier-free guidance, and randomly apply conditions with or without rhythmic pattern in the process of
training. Namely, the training loss is modified from equation 1 and given as

Et,ε,X0

[
λ1(t)∥ε− εθ(Xt,M

cond(C), t)∥2

+λ2(t)∥ε− εθ(Xt,M
cond(C,R), t)∥2

]
,

(33)

17For example, when C(l) = C major (consisting of pitch classes C, E and G), γC includes all pitch values corresponding to the three
pitch classes across all octaves.
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where λ1(t) and λ2(t) are hyper-parameters. Note that both Mcond(C) and Mcond(C,R) are derived from X0 via pre-
designed chord recognition and rhythmic identification algorithms.

The guided noise prediction at timestep t is then computed as

εθ(Xt, t|C,R) =εθ(Xt,M
cond(C), t)

+ w ·
[
εθ(Xt,M

cond(C,R), t)

−εθ(Xt,M
cond(C), t)

]
,

(34)

where w is the weight parameter. Note that the general formulation εθ(Xt, t|C,R) includes the case where rhythmic
guidance is not provided (R = ∅), and w in equation 34 is set as 0.

B.3. Additional algorithms in section 3.2

In this section, we provide the following algorithm: fine-grained sampling guidance additionally with rhythmic regulariza-
tion, fine-grained sampling guidance combined with DDIM sampling.

Let B denote the rhythmic regularization. Specifically, we have the following types of regularization:

• B1: Requiring exactly N onset of a note at time position l, i.e.,
∑

h∈J1,HK Mlh = N

• B2: Requiring at least N onsets at time position l, i.e.,

∃h ⊂ J1, HK, or ∃h ⊂ J1, HK\ωK(l) if harmonic regularization is jointly included

such that Mlh = 1, and |h| ≥ N

• B3: Requiring no onset of notes at time position l, i.e., ∀h ∈ J1, HK, Mlh = 0

Let the set of M satisfying a specific regularization B be denoted as MB, and the corresponding set of X be denoted as
M̃B, note that this includes the case where multiple requirements are satisfied, resulting in

M̃B = M̃B1,B2,... = M̃B1
∩ M̃B2

∩ . . . .

The correction of predicted noise score is then formulated as

ε̃θ(Xt, t|C,R) = argmin
ε

∥ε− ε̂θ(Xt, t|C,R)∥

s.t.
(
Xt −

√
1− ᾱtε√
ᾱt

)
∈ M̃B.

(35)

Further, we can perform predicted noise score correction with joint regularization on rhythm and harmony, resulting in the
corrected noise score

ε̃θ(Xt, t|C,R) = argmin
ε

∥ε− ε̂θ(Xt, t|C,R)∥

s.t.
(
Xt −

√
1− ᾱtε√
ᾱt

)
∈ (RL×H\W′

K) ∩ M̃B.
(36)

We for example provide a element-wise solution of ε̃θ(Xt, t|C,R) defined by problem (35). For given l, suppose B(l)
takes the form of B2, for simplicity take N = 1. This gives ε̃θ,lh = ε̂θ,lh if maxh E[X0|Xt]hl ≥ 1

2 and E[X0|Xt]hl =
1
2 ,

h = argmaxh E[X0|Xt]hl, i.e.,

ε̃θ,lh =
1√

1− ᾱt

(
Xt,lh −

√
ᾱt

2

)
,

if maxh E[X0|Xt]hl <
1
2 . The correction applied to predicted X0 (E[X0|Xt]) is illustrated in the following figure 4.
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(a) Fine-grained control for E[X0|Xt] ∈ RL×H\W′
K. The colored spots denote

places that we require E[X0|Xt]lh ≤ 1
2

.

(b) Fine-grained control for E[X0|Xt] ∈ W′
B. Original notes are removed at l if

B3 is applied. Otherwise if B1 is applied and currently no note exists, the “most
likely notes” (i.e., at h = argmaxE[X0|Xt]lh) are added.

Figure 4. Illustration of fine-grained control on predicted X0.
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Algorithm 2 DDPM sampling with fine-grained textural guidance

Input: Input parameters: forward process variances βt, ᾱt =
∏t

s=1 βt, backward noise scale σt, chord condition C, key
signature K, rhythmic condition R, rhythmic guidance B

Output: generated piano roll M̃ ∈ {0, 1}L×H

9 XT ∼ N (0, I);
10 for t = T, T − 1, . . . , 1 do
11 Compute guided noise prediction ε̂θ(Xt, t|C,R)
12 Perform noise correction: derive ε̃θ(Xt, t|C,R) optimization equation 36
13 Compute X̃t−1 by plugging the corrected noise ε̃θ(Xt, t|C,R) into equation 2
14 end
15 Convert X̃0 into piano roll M̃
16 return output

We additionally remark that the fine-grained sampling guidance is empirically effective with the DDIM sampling scheme,
which drastically improves the generation speed. Specifically, select subset {τi}mi=1 ⊂ J1, T K, and denote

Xτi−1
=
√

ᾱτi−1

(
Xt −

√
1− ᾱτi ε̂θ(Xτi , τi)√

ᾱτi

)
+
√
1− ᾱτi−1

− σ2
τi ε̂θ(Xτi , τi) + στiετi ,

we similarly perform the DDIM noise correction

ε̃θ(Xτi , τi|C,R) = argmin
ε

∥ε− ε̂θ(Xτi , τi|C,R)∥

s.t.
(
Xt −

√
1− ᾱτiε√
ᾱτi

)
∈ (RL×H\W′

K) ∩ M̃B.

on each step i.

C. Comparison with Related Works
We provide a detailed comparison between our method and two related works in controlled diffusion models with con-
strained or guided intermediate sampling steps:

Comparison with reflected diffusion models In Lou & Ermon (2023), a bounded setting is used for both the forward
and backward processes, ensuring that the bound applies to the training objective as well as the entire sampling process.
In contrast, we do not adopt the framework of bounded Brownian motion, because we do not require the entire sampling
process to be bounded within a given domain; instead, we only enforce that the final sample outcome aligns with the
constraint. While Lou & Ermon (2023) enforces thresholding on Xt in both forward and backward processes, our approach
is to perform a thresholding-like projection method on the predicted noise εθ(Xt, t), interpreted as noise correction.

Comparison with non-differentiable rule guided diffusion Huang et al. (2024) guides the output with musical rules by
sampling multiple times at intermediate steps, and continuing with the sample that best fits the musical rule, producing
high-quality, rule-guided music. Our work centers on a different aspect, prioritizing precise control to tackle the challenges
of accuracy and regularization in symbolic music generation. Also, we place additional emphasis on sampling speed,
ensuring stable generation of samples within seconds to facilitate interactive music creation and improvisation.

D. Numerical Experiment Details
D.1. Detailed Data Representation

The two-channel version of piano roll with with both harmonic and rhythm conditions (Mcond(C,R)) and with harmonic
condition (Mcond(C)) with onset and sustain are represented as:

• Mcond(C,R): In the first channel, the (l, h)-element is 1 if there are onset notes at time l and pitch index h belongs to
the chord C(l), and 0 otherwise. In the second channel, the (l, h)-element is 1 if pitch index h belongs to the chord
C(l) and there is no onset note at time l.
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• Mcond(C): In both channels, the (l, h)-element is 1 if pitch index h belongs to the chord C(l), and 0 otherwise.

In each diffusion step t, the model input is a concatenated 4-channel piano roll with shape 4 × L × 128, where the
first two channels correspond to the noisy target Xt and the last two channels correspond to the condition M cond (either
Mcond(C,R) or Mcond(C)). The output is the noise prediction ε̂θ, which is a 2-channel piano roll with the same shape
as Xt. For the accompaniment generation experiments, we provide melody as an additional condition, which is also
represented by a 2-channel piano roll with shape 2 × L × 128, with the same resolution and length as X . The melody
condition is also concatenated with Xt and M cond as model input, which results in a full 6-channel matrix with shape
6× L× 128.

D.2. Training and Sampling Details

We set diffusion timesteps T = 1000 with β0 = 8.5e−4 and βT = 1.2e−2. We use AdamW optimizer with a learning
rate of 5e−5, β1 = 0.9, and β2 = 0.999. We applied data augmentation by transposing each 4-measure piece into all
12 keys. This involves uniformly shifting the pitch of all notes and adjusting the corresponding chords accordingly. This
augmentation expands the dataset to 189,132 samples. Training is conducted with a batch size of 16, utilizing random
sampling without replacement. Specifically, in each iteration, 16 samples are randomly selected without replacement until
all samples are utilized, constituting one epoch. This procedure is repeated to ensure each sample was processed twice
during training, resulting in a total of 23,642 iterations.

To speed up the sampling process, we select a sub-sequence of length 10 from {1, · · · , T} and apply the accelerated
sampling process in Song et al. (2021a). It takes 0.4 seconds to generate the 4-measure accompaniment on a NVIDIA RTX
6000 Ada Generation GPU.

D.3. Experiments on Symbolic Music Generation Given only Chord Conditions

As mentioned in Section 5.1, we also run numerical experiments on symbolic music generation tasks given only chord
condition. However, compared with the accompaniment generation task, we remark that this experiment does not have
enough effective basis for comparison.

For the accompaniment generation task, we evaluate the cosine similarity of chord progression between the generated
samples and the ground truth, as well as the IoU of chord and piano roll. The comparison with ground truth on those features
make sense in the accompaniment generation task, because the leading melody inherently contains many constraints on
the rhythm and pitch range of the accompaniment, ensuring coherence with the melody. Thus, similarity with ground truth
on those metrics serves as an indicator of how well the generated samples adhere to the melody.

However, in symbolic music generation conditioned only on a chord sequence, while chord progression similarity remains
comparable (as the chord sequence is provided), evaluating IoU of piano roll against ground truth is less informative. This
is because multiple different pitch range and rhythm could appropriately align with a given chord progression, making
deviations from the ground truth in these features less indicative of sample quality. Therefore, chord similarity emerges as
the sole applicable metric in this context.

Additionally, WholeSongGen’s architecture does not support music generation conditioned solely on chord progressions,
as it utilizes a shared piano-roll for both chord and melody, rendering it unsuitable for comparison. Conversely, GETMusic
facilitates the generation of both melody and piano accompaniment based on chord conditions, allowing for a viable
comparison.

Consequently, we present results focusing on chord similarity between our model and GETMusic. For our model, we
evaluate performance under two conditions: with both conditioning and control during training and sampling, and with
conditioning during training but without control during sampling. The outcomes, summarized in Table 3, indicate that our
fully controlled FGG method surpasses both the one without sampling control and GETMusic.

Methods FGG (Ours) FGG, only Training control GETMusic
Chord Similarity 0.676± 0.007 0.645± 0.008 0.499± 0.013

Table 3. Evaluation of the similarity with ground truth, chord-conditioned music generation.
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E. Demo Page Details
In this section, we briefly introduce how the Dorian mode and Chinese style clips are generated. We note that both styles
are shaped not only by key-constraint K, but also with designed chord progressions C.

The key constraint for Dorian mode, example 1, is K1 = {A,B,C,D,E, F#, G} throughout the 4 bars, which means all
generated notes have to be in the pitch classes in K1. The the chord progression for Dorian mode, example 1 is

C1 = Am(4)− Em(2)− Am(2)− C(2)− D(2)− Am(2)− D(2).

For example 2, K2 = {D,E, F,G,A,B,C}, and

C2 = Dm(4)− G(4)− C(4)− F(4).

The number in parentheses corresponds to the number of beats the chord lasts. For example, at the beginning of C1, the
chord Am lasts 4 beats. Therefore, for the condition matrix under the 16th resolution, the positions corresponding to pitch
classes A, C and E have value 1, where the rest have value 0, for t = 0, 1, 2, . . . , 15. The condition is passed to the diffusion
model as generation condition. Then K1 is applied as sampling control to shape and refine the tonal quality.

Similarly, for Chinese mode, we have K1 = {C,D,E,G,A} and

C1 = G(2)− Am(2)− C(2)− G(2)− Em(2)− G(2)− D(4).

For the second example, K2 = {D,E,#F,A,B}, and

C2 = A(4)− Bm(2)Fm(2)− Bm(2)− A(2)− Fm(2)− A(2).

F. Subjective Evaluation
To compare performance of our FGG method against the baselines (WholeSongGen and GETMusic), we prepared 6 sets of
generated samples, with each set containing the melody paired with accompaniments generated by FGG, WholeSongGen,
and GETMusic, along with the ground truth accompaniment. This yields a total of 6 × 4 = 24 samples. The samples
are presented in a randomized order, and their sources are not disclosed to participants. Experienced listeners assess the
quality of samples in 5 dimensions: creativity, harmony (whether the accompaniment is in harmony with the melody),
melodiousness, naturalness and richness, together with an overall assessment.

F.1. Background of Participants

To evaluate the musical background of the participants, we first present the following questions:

• How many instruments (including vocal) are you playing or have you played?

• Please list all instruments (including vocal) that you are playing or have played.

• What is the instrument (including vocal) you have played the longest, and how many years have you been playing it?
(e.g., piano, 3 years)

We recruited 31 participants with substantial musical experience for our survey. The number of instruments these partic-
ipants play range from 0 to 5, with an average value of 2.03, and a standard deviation of 1.31. Examples of instrument
played include piano, violin, vocal, guitar, saxphone, Dizi, Yangqin and Guzheng. The average years of playing has an
average of 8.61 and standard deviation of 8.08. Specifically, the percentage of participants with ≥ 3 years of playing music
is 67.74%, and the percentage of participants with ≥ 10 years of playing music is 45.16%. The distributions are given in
the following figure 5.

F.2. Evaluation Questions

Thank you for taking the time to participate in this experiment. You will be presented with 6 sets of clips, each containing
4 clips. The first clip in each set features the melody alone, while the remaining three include the melody accompanied by
different accompaniments. After listening to each clip, please evaluate the accompaniments in the following dimensions
based on your own experience.
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(a) Number of instruments played by the participants.

(b) Distribution of the participants’ years of playing instruments.

Figure 5. Information of the musical background of the participants in the subjective evaluation.

• Does the accompaniment sound pleasant to you?

• How would you rate the richness (i.e., the complexity, fullness, and expressive depth) of the accompaniment?

• Does the accompaniment sound natural to you?

• Do you think the accompaniment aligns well with the melody?

• Does the accompaniment sound creative to you?

• Please give an overall score for the clip.

For each question, participants are provided with a Likert scale ranging from 1 to 5, where 1 represents “very poor” and 5
represents “very good.”

G. Representative Examples of Sampling Control
In this section, we provide empirical examples of how model output is reshaped by fine-grained correction in Figure 6.
Notably, harmonic control not only helps the model eliminate incorrect notes, but also guides it to replace them with correct
ones.
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(a) An example of replacing an out-of-key note B♭♭ with the
in-key note B♭.

(b) An example of replacing an out-of-key note D♮ with the
in-key note D♭.

Figure 6. Examples resulting from symbolic music generation with FGG. The first track is generated without key-signature control in
sampling, the second track is generated with key-signature sampling control. The third track presents the chord condition. In each
subfigure, the tracks are generated with the same conditions and the same set of noise.

H. The Effect of Guidance Weight for Classifier-free Guidance
In Section 3.1, we discussed the implementation of classifier-free guidance for rhythmic patterns, designed to enable the
model to generate outputs under varying levels of conditioning. Specifically, we randomly apply conditions with or without
rhythmic patter in the process of training. This approach ensures that the model can function effectively with both chord
and rhythmic conditions or with chord conditions alone. Following Ho & Salimans (2021), when generating with both
chord and rhythmic conditions, the guided noise prediction at timestep t is computed as:

εθ(Xt, t|C,R) =εθ(Xt,M
cond(C), t)

+ w ·
[
εθ(Xt,M

cond(C,R), t)− εθ(Xt,M
cond(C), t)

]
,

where εθ(Xt,M
cond(C,R), t) is the model’s predicted noise without rhythmic condition, and εθ(Xt,M

cond(C,R), t) is
the model’s predicted noise with rhythmic condition, and w is the guidance weight.

The literature has consistently demonstrated that the guidance weight w plays a pivotal role in balancing diversity and
stability in generation tasks (Ho & Salimans, 2021; Chang et al., 2023; Gao et al., 2023; Lin et al., 2024). In general,
a lower weight w enhances sample diversity and quality, but this may come at the cost of deviation from the provided
conditions. Conversely, higher values of w promote closer adherence to the conditioning input, but excessively high w can
degrade output quality by over-constraining the model, resulting in less natural or lower-quality samples.

In this section, we hope to investigate the effect of the guidance weight w on our music generation task. We focus on the
same accompaniment generation task as mentioned in Section 5. To measure the samples’ adherence to rhythmic controls,
we use the rhythm of the ground truth as the rhythmic condition and assess the overlapping area (OA) of note duration and
note density between the generated and ground-truth samples. Specifically, we split both the generated accompaniments
and the ground truth into non-overlapping 2-measure segments. Following (von Rütte et al., 2023), for each feature f
(f ∈ {note duration, note density}), we calculate the macro overlapping area (MOA) in segment-level feature distributions
so that the metric also considers the temporal order of the features. MOA is defined as

MOA(f) =
1

N

N∑
i=1

overlap(πgen
i (f), πgt

i (f)),

where πgen
i (f) is the distribution of feature f in the i-th generated segment, and πgt

i (f)) is the distribution of feature f in
the i-th ground truth segment. Additionally, we measured the percentage of out-of-key notes as a proxy for sample quality.

In these experiments, we only use the fine-grained control in training, but do not insert any sampling control so that we can
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evaluate the inherent performance of the models themselves. The experiments were conducted across a range of guidance
weights (w from 0.5 to 10), and he results are summarized in Table 4.

Values of w % Out-of-Key OA OA
Notes (duration) (note density)

0.5 1.3% 0.592 0.803

±0.005 ±0.004

1.0 1.4% 0.617 0.830

±0.005 ±0.003

3.0 1.7% 0.644 0.848

±0.003 ±0.003

5.0 2.6% 0.638 0.846

±0.005 ±0.003

7.5 6.0% 0.643 0.829

±0.005 ±0.004

10.0 14.3% 0.630 0.779

±0.005 ±0.005

Table 4. Comparison of the results with and without control in the sampling process.

The findings indicate that as the guidance weight w increases, the percentage of out-of-key notes rises, suggesting that
lower w values yield higher-quality samples. Meanwhile, the OA of duration and note density improves as w increases
from 0.5 to 3.0, indicating better alignment with rhythmic conditions. However, when w exceeds 5.0, a notable decline is
observed in both the OA metrics and the percentage of out-of-key notes. This degradation is likely due to a significant drop
in sample quality at excessively high w values, where unnatural outputs undermine adherence to the rhythmic conditions.
These observations are coherent with the existing results about the trade-off between sample quality and adherence to
conditions in literature.

I. Discussion
The role of generative AI in music and art remains an intriguing question. While AI has demonstrated remarkable perfor-
mance in fields such as image generation and language processing, these domains possess two characteristics that symbolic
music lacks: an abundance of training data and well-designed objective metrics for evaluating quality. In contrast, for mu-
sic, it is even unclear whether it is necessary to set the goal as generating compositions that closely resemble18 some
“ground truth”.

In this work, we apply fine-grained sampling control to eliminate out-of-key notes, ensuring that generated music adheres
to the most common harmonies and chromatic progressions. This approach allows the model to consistently and efficiently
produce music that is (in some ways) “pleasing to the ear”. While suitable for the task of quickly creating large amounts of
mediocre pieces, such models have a limited capability of replicating the artistry of a real composer, of creating sparkles
with unexpected “wrong” keys by themselves.

18or, in what sense?
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