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Abstract

Clustering is a fundamental problem that has been extensively studied over past
few decades, with most research focusing on point-based clustering such as k-
means, k-median, and k-center. However, numerous real-world applications, such
as motion analysis, computer vision, and missing data analysis, require clustering
over structured data, including lines, time series and affine subspaces (flats), where
traditional point-based clustering algorithms often fall short. In this paper, we
study the k-means of lines problem, where the input is a set L of lines in Rd,
and the goal is to find k centers C in Rd such that the sum of squared distances
from each line in L to its nearest center in C is minimized. The local search
algorithm is a well-established strategy for point-based k-means clustering, known
for its efficiency and provable approximation guarantees. However, extending
local search algorithm to the k-means of lines problem is nontrivial, as the capture
relation used in point-based clustering does not generalize to the line setting.
This is because that the point-to-line distance function lack the triangle inequality
property that supports geometric analysis in point-based clustering. Moreover,
since lines extend infinitely in space, it is difficult to identify effective swap points
that can significantly reduce the clustering cost. To overcome above obstacles, we
introduce a proportional capture relation that links optimal and current centers
based the assignment proportions of lines, enabling a refined analysis that bypasses
the triangle inequality barrier. We also introduce a CrossLine structure, which
provides a principled discretization of the geometric space around line pairs, and
ensures coverage of high-quality swap points essential for local search, thereby
enabling effective execution of the local search process. Consequently, based on the
proposed components, we develop the first single-swap local search algorithm for
the k-means of lines problem, achieving a (500 + ε)-approximation in polynomial
time for low-dimensional Euclidean space.

1 Introduction

Clustering is one of the most popular problems in machine learning, and has lots of applications in
data mining, image classification, etc. The goal of clustering is to partition a given set of points into
several disjoint clusters such that similar points end up in the same cluster, and dissimilar points are
separated into different clusters [23]. Among classical clustering models [11, 12, 25], k-means is one
of the most extensively studied, aiming to minimize the total squared distance from each data point to
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its nearest center. More formally, given a set P ⊆ Rd of n data points in a d-dimensional Euclidean
space and a positive integer k, the goal of k-means is to find a set C ⊂ Rd of k centers such that the
objective

∑
p∈P minc∈C ∥c− p∥2 is minimized.

Although the k-means problem is NP-hard [21, 15], numerous approximation algorithms have been
developed. One of the most widely used heuristics in practice is Lloyd’s algorithm [17], even though
it lacks provable worst-case approximation guarantees under general data distributions. To establish
approximation guarantees, researchers introduced a series of algorithms based on primal-dual and
randomized rounding techniques [2, 10], among which a primal-dual method leveraging nested
quasi-independent sets [5] achieves the best-known approximation ratio of 5.912. Meanwhile, local
search has emerged as a practical and theoretically grounded framework for the k-means problem.
Several local search algorithms [6, 7] achieved a (1 + ε)-approximation under the assumption of
fixed dimension d or a constant number of clusters k. To further enhance the initialization, Arthur
and Vassilvitskii [3] proposed an efficient seeding algorithm, known as k-means++, which achieves
an O(log k)-approximation in expectation. Subsequent studies [26, 1, 19] showed that k-means++
achieves constant-factor approximations when allowed to open O(k) centers. Building upon this,
Lattanzi and Sohler [16] proposed the LS++ algorithm by combining k-means++ seeding with local
search, achieving a constant-factor approximation in O(ndk2 log log k) time. Choo et al. [4] further
improved its efficiency, demonstrating that an O(1/ε3)-approximation can be obtained using only
O(εk) local search iterations. Under the assumption that each optimal cluster has size Ω(n/k),
Huang et al. [13] proposed a fast and practical local search algorithm for k-means problem, and
achieved a (100 + ε) approximation in expectation. More recently, Huang et al. [14] gave the first
multi-swap local search algorithm with running time linearly dependent on the data size, and achieved
a
(
50
(
1 + 1

t

)
+ ε
)
-approximation with any swap size t ≥ 2 in time O

(
ndk2t+1 log

(
ε−1 log k

))
,

improving the previous 509-approximation under linear-time constraints.

While these results provide strong theoretical and practical foundations for point-based clustering,
many real-world applications involve structured data that are more naturally represented as geometric
objects such as one-dimensional affine subspaces (i.e., lines). For example, in computer vision [18,
20], when multiple cameras are used to observe a set of fixed objects, each camera provides a
directional observation, that is, a direction vector from the camera to the object. By combining
each camera with its corresponding direction, a set of lines can be obtained. Clustering these lines
helps identify different objects and recover their locations, since the lines corresponding to the same
object tend to intersect at or near the object’s true location. This motivates the study of clustering
problems where the input consists of lines rather than points. Although conceptually similar to
classical point-based formulations, line clustering introduces unique algorithmic and geometric
challenges, and remains relatively underexplored in the literature. Among the few existing studies,
Har-Peled and Varadarajan [8] studied the problem of finding the minimum intersection radius of
a set of lines or affine subspaces, and introduced a substitute for the triangle inequality based on
a novel analog of Helly’s theorem. Aronov et al. [9] studied the problem of finding k minimum-
radius balls in Euclidean space that intersect all given lines, and developed a 2-approximation
algorithm for k = 2, 3 with quasi-linear running time. Ommer et al. [22] considered the k-means
of lines problem, and proposed the first heuristic algorithm without theoretical guarantee and time
constraints. Perets et al. [24] proposed an approximation algorithm in R2 that starts with a bi-criteria
approximate solution, and then uses the coresets technique, achieving a (1 + ε)-approximation in
time O(n(logn/ε))O(k) for any given parameter ε > 0. Further, Marom et al. [20] developed an
algorithm for the k-means of lines problem that computes an ε-coreset of size O(dkO(k) log(n)/ε2)
in time O(d3n log(n)k log k + (d/ε)2 + ndkO(k)).

In this paper, we focus on the k-means of lines problem. Given a set L of n lines in Rd and an
integer k ∈ N≥1, the objective is to find a set of k centers C ⊂ Rd that minimizes the total squared
distance from each line ℓ ∈ L to its nearest center in C. In this paper, we present the first local search
algorithm with provable approximation guarantees for the line-based setting. Although local search
has been extensively analyzed for point-based k-means due to its simplicity and strong empirical
performance, extending it to the line setting introduces several fundamental challenges. To motivate
our algorithm, we first review the classical local search framework and highlight the key obstacles in
adapting it to line clustering.

• The standard analysis of local search algorithm for k-means mainly relies on a capture
relation, in which each optimal center is captured by the nearest center in the current
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solution, such that it is easy to analyze the change in clustering cost incurred when points
are reassigned in the process of local search. However, the above relation is not workable
for the line setting, since the assignments of lines may be determined by an optimal center
that is not the closest in Euclidean distance, and reassigning lines based solely on geometric
closeness can lead to a significant increase in clustering cost.

• The sampling-based method is a commonly used technique in local search. However, unlike
the point setting, it is more challenging to sample a point close to the optimal center from
these lines, since the optimal center is unknown and each line spans a continuous space
of candidate points, even we show that the cost of a high-cost cluster can be effectively
approximated by lines that are close to their optimal center in the k-means of lines problem.

Our Contributions. To overcome these obstacles, we introduce a new proportional capture relation
and a structured sampling technique tailored to the geometry of lines. Specifically, we define that an
optimal center is captured by a current center if it receives the largest fraction of lines from that center,
enabling a more faithful representation of line-to-center influence. To facilitate effective sampling, we
further design a discretization structure, called CrossLine, which guarantees the existence of a point
near the optimal center within a bounded region defined by two sampled lines. This structure allows
us to recover, with provable guarantees, a good replacement center from a finite set of representative
points. We formalize the proposed proportional capture relation and CrossLine structure in Section 3,
and discuss some key properties. Building on these foundations, we develop the first local search
algorithm for the k-means of lines problem with provable approximation guarantees. The main
contributions of this paper are summarized as follows:

• In two-dimensional space, we introduce a proportional capture relation and a geometry-
aware discretization structure CrossLine, both tailored to the challenges of line-based
clustering. These tools enable an accurate representation of line-to-center assignments, and
support efficient sampling from continuous line domains.

• In high-dimensional space, the existence of skew lines makes the CrossLine structure in R2

inadequate. To address this issue, we redefine the CrossLine structure to accommodate high-
dimensional geometry, ensuring that the coverage guarantees remain valid under arbitrary
line orientations.

• Building upon these tools, we propose the first single-swap local search algorithm for the
k-means of lines problem, achieving a (500 + ε)-approximation, and running in polynomial
time on low-dimensional Euclidean space.

• Extensive experiments on both synthetic and real-world datasets show that our algorithm
consistently outperforms coreset-based baselines in both efficiency and clustering quality.

Formally, we have the following results of this paper.

Theorem 1. For any ε > 0, there exists a local search algorithm for the k-means of lines problem,
which achieves a (500 + ε)-approximation in expectation with polynomial time on low-dimensional
Euclidean space.

2 Preliminaries

For any positive integer m ∈ N≥1, let [m] = {1, . . . ,m}. Given a set P ⊆ Rd of points, for any
p, q ∈ P , let δ(p, q) = ∥p − q∥22 denote the square Euclidean distance between p and q. Given
any two set A,B ⊆ Rd of points, for any p ∈ A, let δ(p,B) = minq∈B δ(p, q) denote the shortest
square distance from p to any point in B. Further, let δ(A,B) = minp∈A,q∈B δ(p, q) denote the
square distance between A and B, and let ∆(A,B) =

∑
p∈A δ(p,B) denote the sum of distances

from each point in A to its nearest point in B. Given a nonempty subset C ⊆ P of centers, for
any c ∈ C and a radius r, a ball B(c, r) is the set of points that are within a distance r from c, i.e.,
B(c, r) = {p ∈ P | δ(c, p) ≤ r}. Given a set L of lines in Rd and a set C ⊆ Rd of points, for any
ℓ ∈ L, let δ(ℓ, C) = minc∈C δ(ℓ, c), where δ(ℓ, c) is the shortest square distance from any point on
the line ℓ to c. Formally, the k-means of lines (denoted as k-ML) problem considered in this paper
can be defined as follows.
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Algorithm 1: SLS-k-ML

Input: An instance (L, d, k) of the k-ML problem and a parameter T
Output: A set C ⊂ Rd of at most k centers

1 P ← CENTROID-SET(L);
2 C ← Sample k points from P randomly;
3 for i ∈ {1, 2, . . . , T} do
4 Sample two lines ℓ1, ℓ2 from L with probability bℓ =

∆({ℓ},C)∑
ℓ′∈L ∆({ℓ′},C) (ℓ = {ℓ1, ℓ2});

5 M← the point set returned by CrossLine of (ℓ1, ℓ2);
6 for each point p ∈M do
7 if ∃ q ∈ C, s.t. ∆(L,C\{q} ∪ {p}) < ∆(L,C) then
8 C ← C\{q} ∪ {p};

9 return C.

Algorithm 2: CENTROID-SET

Input: A finite set L of n lines in Rd
Output: A set P of points

1 P ← ∅;
2 for each line ℓ ∈ L do
3 Pℓ ← ∅;
4 for each line ℓ′ ∈ L\{ℓ} do
5 πℓ′(ℓ)← the closest point on ℓ to ℓ′;
6 Pℓ ← Pℓ ∪ {πℓ′(ℓ)};
7 P ← P ∪ Pℓ;
8 return P .

Definition 1 (the k-ML problem). Given a set L ⊆ Rd of n lines in a d-dimensional Euclidean
space and a positive integer k, the goal is to find a set C ⊂ Rd of k centers such that the objective
∆(L,C) =

∑
ℓ∈L δ(ℓ, C) is minimized.

In this paper, we assume that all lines in L are pairwise non-parallel (possibly intersecting or skew),
ensuring distinct directional relationships and avoiding degenerate configurations. Given an instance
(L, d, k) of the k-ML problem, C is called a feasible solution of this instance if C ⊆ Rd is a set of k
points. Throughout this paper, letC∗ = {c∗1, . . . , c∗k} be the optimal solution and {L(c∗1), . . . , L(c∗k)}
be the corresponding optimal clusters by assigning each line in L to its closest centers in C∗. Let
τ = ∆(L,C∗) be the cost of the optimal solution C∗.

3 Local Search Algorithm with Single-Swap Strategy

The local search algorithm for the k-means problem typically begins with a candidate set of centers
and iteratively replace one or more centers, as in single-swap or multi-swap strategies, to progressively
reduce the clustering cost. Unlike classical k-means problem, which benefits from effective initial-
ization algorithms such as k-means++ [16], the k-ML problem lacks a well-established algorithm
for constructing a high-quality initial solution. Therefore, it is necessary to explicitly construct an
initial solution for the k-ML problem. Moreover, extending local search algorithm to the k-ML
problem introduces additional challenges beyond initialization. Specifically, the capture relation used
in k-means problem does not hold in the line setting, as line assignments are governed by projection
distances, and reassigning a line to the optimal center closest to its current center may lead to an
increase in clustering cost. In addition, it is more challenging to sample a point that is close to an
optimal center from given lines, since the optimal center is unknown and each line spans a continuous
space of candidate points.

To overcome these challenges, we develop a single-swap local search algorithm for the k-ML problem,
referred to SLS-k-ML, which is presented in Algorithm 1. Our algorithm SLS-k-ML consists of
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two stages. In the first stage (steps 1–2), the algorithm starts with a centroid set P obtained by
CENTROID-SET that reduces the lines in L to a set of points. Then, we obtain a feasible solution
C from the constructed centroid set P with an approximation guarantee. In the second stage (steps
3-8), we execute the single-swap local search with T iterations. In each iteration, the algorithm
first to sample two lines ℓ1, ℓ2 from L with a probability, and then constructs candidate swap pairs
based on the CrossLine structure with respect to ℓ1, ℓ2 to find improvements. The CrossLine structure
ensures that each optimal center can be effectively approximated by at least one grid point. Under
the proposed proportional capture relation, such a grid point can be used to replace a current center,
resulting in a reduction of the clustering cost.

3.1 Construct an Initial Solution

This section shows how to construct an initial solution with an approximation guarantee for a given
instance of the k-ML problem in polynomial time. It is known that the local search algorithm typically
begins with an initial solution. However, the k-ML problem lacks a well-established algorithm for
generating a high-quality initial solution. Therefore, we first need to construct such an initial solution
as a foundation for the local search process. To this end, we first construct a candidate point set P
by the CENTROID-SET procedure from [20] (see Algorithm 2). Given a set L of n lines in Rd, for
each line, CENTROID-SET computes its the closest points to all other lines, and collects them into a
candidate set P ofO(n2) points. We then obtain the initial solution C by sampling k points uniformly
at random from P . In the following, we show that the initial solution C provides a constant-factor
approximation to the optimal clustering cost, and can be computed in polynomial time.
Lemma 2. Given an instance I = (L, d, k) of the k-ML problem, let C be the set of points returned
by step 2 of SLS-k-ML. Then, for a finite constant ρ, we have ∆(L,C) ≤ ρ · ∆(L,C∗) (see
Appendix A.1 for proof).

3.2 Single-Swap Local Search in R2

To facilitate understanding of our proposed algorithm, this section focuses on the single-swap local
search process in R2. Specifically, we construct a swap pair between the center in C and a candidate
center inM obtained by the CrossLine structure, which is related to two lines sampled from L with a
specified probability. If the clustering cost is reduced, we update the current solution by replacing the
center in C with the candidate center fromM. In the following, we show that if the current solution
has a high cost (greater than 500τ ), then the clustering cost can be reduced with a certain probability
in each iteration.
Lemma 3. Let C ⊆ R2 be a set of centers with ∆(L,C) > 500τ , and let C ′ be the set of centers
obtained in the t-th (t ∈ [T ]) iteration of SLS-k-ML in step 8. Then, with probability at least Ω(ζ−1),
we have ∆(L,C ′) ≤ (1− 1

100k )∆(L,C), where ζ is a constant.

Before proving Lemma 3, we first analyze a single-swap (w.l.o.g. t-th iteration) in steps 3–8 of
SLS-k-ML. Let C = {c1, . . . , ck} denote the set of centers before the t-th swap operation, and
let {L(c1), . . . , L(ck)} be the corresponding partition of L induced by assigning the lines to the
closest center in C. For clarity, when the specific index is not relevant, we omit it and simply write,
for example, c ∈ C. Motivated by the local search for k-means [16], we adopt a similar strategy
to analyze the cost reduction by comparing the current and optimal center sets. Specifically, the
algorithm in [16] introduces the notion of a capture relation, which states that an optimal center can
be captured by the nearest center in the current solution. However, the above relation relies on a
point-to-point assignment setting, and is not workable for our problem, since the data consist of lines
and the clustering cost is based on projection distances. For example, in the k-means setting, for each
c∗ ∈ C∗, assume that c is the closest center in C to c∗. By the capture relation, the optimal center c∗
is captured by c, which means that c is the nearest center to c∗ among all centers in C. In the process
of analyzing local search, we consider replacing c with a point near to c∗, and reassigning the points
in the cluster of c, thereby achieving a reduction in clustering cost. However, in the line setting, the
lines in the cluster of c may be significantly closer to another optimal center in C∗. In such case, if
we reassign these lines to a point near to c∗, the clustering cost will drastically increase, indicating
that the original capture relation does not generalize to the k-ML problem. Therefore, we propose a
proportional capture relation better suited to the line setting: an optimal center c∗ ∈ C∗ is captured
by a center c ∈ C if c is assigned the largest proportion of lines from the cluster of c∗ among all
center in C. Clearly, a center c ∈ C may capture more than one optimal centers, and every optimal
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center is captured by exactly one center from C. For a center c ∈ C, let N (c) be the set of centers
in C∗ captured by c. For each optimal center c∗ ∈ C∗, let N−1(c∗) be the center in C capturing c∗.
Further, we introduce two types of matched swap pairs that correspond to the two cases encountered
in local search as follows.

The type-1 matched swap pair: For any c ∈ C, if |N (c)| = 1 (i.e., N (c) contains only one optimal
center c∗), we define (c, c∗) as a type-1 matched swap pair. Let CS denote all centers in C satisfying
the property of type-1 matched swap pair. For simplicity, we introduce a mapping ψS : CS → C∗

that maps each center in CS to an optimal center in C∗ such that (c, ψS(c)) is a type-1 matched swap
pair. For each type-1 matched swap pair (c, ψS(c)) (c ∈ CS), we replace the current center c with a
point near the optimal center ψS(c). For a type-1 matched swap pair, the lines in cluster c (c ∈ CS)
can be divided into two groups: The first group consists of lines that belong to both the current cluster
of c and the optimal cluster of ψS(c). These lines are reassigned to a point near their optimal center,
leading to a reduction in clustering cost. The second group consists of lines that belong to in the
current cluster of c but not to the optimal cluster of ψS(c). These lines are reassigned to other centers
in C, which may increase the clustering cost.

The type-2 matched swap pair: For any c ∈ C, if |N (c)| = 0 (i.e., c does not capture any optimal
center), we can find another center c′ ∈ C with |N (c′)| > 1, and assign one of its captured optimal
center c∗ ∈ N (c′) to form a type-2 matched pair (c, c∗). Let CN denote all centers in C satisfying
the property of type-2 matched swap pair. For simplicity, we introduce a mapping ψN : CN → C∗

that maps each center in CN to an optimal center in C∗ such that (c, ψN (c)) is a type-2 matched
swap pair. For a type-2 matched swap pair (c, ψN (c)) (c ∈ CN ), we replace the lonely center c with
a point near the optimal center ψN (c). Similar to the type-1 case, the lines in cluster c (c ∈ CN ) also
can be divided into two groups: The first group consists of lines that belong to the optimal cluster
of ψN (c). These lines are reassigned to a point near their optimal center, leading to a reduction in
clustering cost. The second group consists of lines that belong to the current cluster of c. These lines
are reassigned to other centers in C, which may increase the clustering cost.

Through this construction, each optimal center in C∗ is paired with a current center in C via exactly
one type-1 or type-2 matched swap pair. Each swap pair involves both clustering cost reduction (from
lines reassigned to a sampled point near their optimal center) and clustering cost increase (from lines
reassigned to potentially farther centers). In the following, we will argue that with high probability, a
point can be sampled to perform the swap operation such that the resulting reduction in clustering
cost significantly bigger than the corresponding increase. For a type-1 or type-2 matched swap pair,
we refer to the clustering cost increase as the reassignment cost, which is formally defined below.
Definition 2. For any c ∈ CS , the reassignment cost of the type-1 matched swap pair (c, ψS(c))
is defined as η1(c) = ∆(L\L(c∗), C\{c}) − ∆(L\L(c∗), C), where c∗ = ψS(c). Similarly, for
any c ∈ CN , the reassignment cost of the type-2 matched swap pair (c, ψN (c)) is defined as
η2(c) = ∆(L,C\{c})−∆(L,C).
Lemma 4. For any c ∈ CS (or c ∈ CN ), the reassignment cost η1(c) (or η2(c)) is at most
1
5∆(L(c), C) + 24∆(L(c), C∗) (see Appendix A.2 for proof).

Lemma 4 implies that there exists a good bound on the reassignment cost. To proceed, we discuss
the following two cases based on the cost contributions of type-1 and type-2 matched pairs: Case
1:
∑
c∈CS

∆(L(ψS(c)), C) >
1
3 ·∆(L,C). Case 2:

∑
c∈CS

∆(L(ψS(c)), C) ≤ 1
3 ·∆(L,C), thus∑

c∈C∗\∪c∈CS
ψS(c) ∆(L(c), C) ≥ 2

3 ·∆(L,C).

3.2.1 The Analysis of Case 1

Recall that the definition of type-1 matched swap pair (c, ψS(c)) (c ∈ CS), we replace the current
center c with a point near the optimal center ψS(c), with the goal of achieving a significant reduction
in clustering cost. We refer to such clusters that yield a significant cost reduction as good clusters,
and we formalize this notion below.
Definition 3 (Good type-1 cluster). For any c ∈ CS , the cluster L(c) is called a good type-1 cluster,
if ∆(L(ψS(c)), C)− η1(c)− 9∆(L(ψS(c)), {ψS(c)}) > 1

100k∆(L,C). Otherwise, L(c) is called
a bad type-1 cluster with (c, ψS(c)).

For simplicity, let CgS denote the set of centers in CS for which the corresponding cluster is a good
type-1 cluster. Let CbS = CS\CgS . The Definition 3 estimates the cost reduction of replacing c with a
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point close to ψS(c) by considering a cluster that reassigns the lines in L(c)\L(ψS(c)), and assigns
all lines in L(ψS(c)) to the new center. We now aim to show that a good type-1 cluster can be
sampled with high probability. To this end, we first argue that the total clustering cost contributed by
good type-1 clusters is sufficiently large. Then, we show that with good probability, we can sample a
point that is close to the center.
Lemma 5. If 3

∑
c∈CS

∆(L(ψS(c)), C) > ∆(L,C), then we have
∑
c∈CS∩Cg

S
∆(L(ψS(c)), C) ≥

1
50 ·∆(L,C) (see Appendix A.3 for proof).

Then, we show that with good probability, a point close to the optimal center of a good type-1 cluster
is sampled. To prove this, we first establish the following the technical lemma.
Lemma 6. Let L be a set of lines in Rd, and let c, c′ ∈ Rd be two points. Then, the total squared
distance from the lines in L to c satisfies: ∆(L, {c}) ≤ 3|L| · d(c, c′) + 6 · ∆(L, {c′}), where
∆(L, {c}) =

∑
ℓ∈L δ(ℓ, c) and δ(ℓ, c) denote the squared Euclidean distance from line ℓ to point c,

respectively (see Appendix A.4 for the proof).

This lemma, used in the proof of Lemma 6, shows that the clustering cost of any two centers is related
to the distance between the centers. In the following lemma, we show that if a cluster with respect to
C incurs a large clustering cost, then the subset of lines located near its center likewise contributes a
comparably high cost.
Lemma 7. Let Q be a set of lines in Rd, let C ⊆ Rd be a set of k centers, and let c∗ be the optimal
single center for Q. Assume α ≥ 9. If the cost under C satisfies ∆(Q,C) ≥ α ·∆(Q, {c∗}), then
there exists a subset R ⊆ Q with ∆(R,C) ≥ α−1

24 ·∆(Q, {c∗}), where R = {ℓ ∈ Q | δ(ℓ, c∗) ≤
2

|Q| ·∆(Q, {c∗})} (see appendix A.5 for proof).

To find a point near the optimal center along a line, we first evaluate the probability of sampling a line
close to the optimal center. For any c ∈ CS , we have ∆(L(ψS(c)), C) ≥ 9 ·∆(L(ψS(c)), {ψS(c)})
due to Definition 3. Then, by applying Lemma 7 with Q = L(ψS(c)) and α = 9, we get that
∆(A, C) ≥ α−1

24 ·∆(L(ψS(c)), {ψS(c)}) = α−1
24α ·∆(L(ψS(c)), C) ≥ 1

27 ·∆(L(ψS(c)), C), where
A is the set of lines within distance 2∆(L(ψS(c)),{ψS(c)})

|L(ψS(c))| from ψS(c). By Lemma 5, we can obtain
that

∑
c∈CS∩Cg

S
∆(L(ψS(c)), C) ≥ 1

50 · ∆(L,C). Thus, we conclude that the total cost over all
sets A from good clusters satisfies

∑
c∈CS∩Cg

S
∆(A, C) ≥ 1

27·50 · ∆(L,C), implying that the
probability of sampling a line from

⋃
c∈CS∩Cg

S
A is at least 1

1500 . However, since A is a set of
lines rather than points, we cannot directly select a line as a candidate center. Instead, we need to
generate a set of points from the lines in A, and ensure that at least one of them lies within distance
2∆(L(ψS(c)),{ψS(c)})

|L(ψS(c))| from the optimal center. To proceed, we introduce a geometric discretization
structure, referred to as r-CrossLine, and prove that the set of points returned by this structure contains
at least one point that lies within distance r of any point inside the structure.
Definition 4 (r-CrossLine in R2). Let ℓ1 and ℓ2 be two intersecting lines in R2, intersecting at a
point p = ℓ1 ∩ ℓ2. For each line ℓi (i = 1, 2), we construct two lines parallel to ℓi by shifting it along
its normal direction by ±r. Let L1 = {ℓ−1 , ℓ1, ℓ

+
1 } and L2 = {ℓ−2 , ℓ2, ℓ

+
2 } denote the sets of three

parallel lines derived from ℓ1 and ℓ2, respectively. The r-CrossLine is defined as the union of all
regions enclosed by the lines in L1 and L2, and CrossLiner(ℓ1, ℓ2) = {ℓi ∩ ℓj | ℓi ∈ L1, ℓj ∈ L2}
denotes the set of all pairwise intersection points.

Based on Definition 4, we prove that for any point inside the r-CrossLine, there exists at least one
grid point within distance r of it.
Lemma 8. Let ℓ1 and ℓ2 be two intersecting lines in R2, and let r > 0 be a constant. Then, for
any point x within r-CrossLine, there exists at least one grid point from CrossLiner(ℓ1, ℓ2) whose
distance to x is at most r. (see Appendix A.6 for proof).

As mentioned earlier, A is the set of lines within distance 2∆(L(ψS(c)),{ψS(c)})
|L(ψS(c))| from ψS(c), and the

probability of sampling a line from the set
⋃
c∈CS∩Cg

S
A is at least 1

1500 . Therefore, the probability

that both ℓ1 and ℓ2 lie in A is at least ζ =
(

1
1500

)2
. Assuming that ℓ1, ℓ2 ∈

⋃
c∈CS∩Cg

S
A, r =

2∆(L(ψS(c)),{ψS(c)})
|L(ψS(c))| , let CrossLiner(ℓ1, ℓ2) be the point set obtained by Definition 4 based on ℓ1
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and ℓ2. Then, by Lemma 8, CrossLiner(ℓ1, ℓ2) contains at least one point within distance r of the
optimal center, which can be used as a high-quality swap candidate. However, since the radius r is
defined in terms of the (unknown) optimal cost, we adopt a multi-scale, data-driven schedule: let
rmin and rmax be empirical scales around the intersection (e.g., lower/upper quantiles of the distances
from the intersection to the candidate set returned by Algorithm 2). We progressively explore the
search radii rt ∈ [ rmin

10 , rmax], constructing an rt-CrossLine around the intersection at each scale
and performing a single-swap at every step until an improvement is found. By construction, at least
one of the radii rt lies within a constant factor of the theoretical radius r. At this scale, Lemma 8
guarantees a constant probability of success. By Definition 3, if such a point p is obtained, we
can swap it with c to get a new clustering with cost at most ∆(L,C \ {ch} ∪ {p}) ≤ ∆(L,C) −
∆(L(ψS(c)), C) + η1(c) + ∆(L(ψS(c)), {c}). By Lemma 6, we have that ∆(L(ψS(c)), {c}) ≤
9 ·∆(L(ψS(c)), {ψS(c)}). Thus, with a constant probability, the new clustering has cost at most
∆(L,C)− (∆(L(ψS(c)), C)− η1(c)− 9∆(L(ψS(c)), {ψS(c)})) ≤

(
1− 1

100k

)
·∆(L,C).

3.2.2 The Analysis of Case 2

For type-2 matched swap pair (c, ψN (c)) (c ∈ CN ), we similarly define clusters that yield a
significant reduction in assignment cost under such swaps as good clusters, as formalized below.

Definition 5 (Good type-2 cluster). For any c ∈ CN , the cluster L(c) is called a good type-2 cluster,
if ∆(L(ψN (c)), C)− η2(c)− 9∆(L(ψN (c)), {ψN (c)}) > 1

100k∆(L,C). Otherwise, L(c) is called
a bad type-2 cluster with (c, ψN (c)).

For simplicity, let CgN denote the set of centers in CN for which the corresponding cluster is a good
type-2 cluster. Let CbN = CN\CgN . The above definition estimates the cost reduction of replacing c
with a point close to ψS(c) by considering a cluster that reassigns the lines in L(c) and assigns all
lines in L(ψS(c)) to the new center. We now aim to show that a good type-2 cluster can be sampled
with high probability. To this end, we first argue that the total cost contributed by good type-2 clusters
is sufficiently large.

Lemma 9. If
∑
c∈C\CS

∆(L(ψN (c)), C) ≥ 2
3 · ∆(L,C), then we have∑

c∈C\CS ,c∈Cg
N
∆(L(ψN (c)), C) ≥ 1

50 ·∆(L,C) (see Appendix A.7 for proof).

Note that in this case we can now argue similarly as in the other case that sampling according
to sum of squared distances will provide us with constant probability with a good center using
Lemma 7. Indeed, since the sum of squared distances of lines in good centers is at least 1

50∆(L,C)
by Lemma 9, it follows together with Lemma 7 that we sample a point from a good cluster L(ϕN (c))
that is within distance two times the average cost of the cluster with probability 1

1500 . By the
definition of good cluster, we have that such a point improves the cost of the current clustering by
at least a factor of

(
1− 1

100k

)
. Thus, by combining Case 1 and Case 2, we complete the proof of

Lemma 3. Now we complete the proof of Theorem 1. Let Ĉ be the set of centers returned by step
2 of SLS-k-ML, which achieves a ρ-approximation guarantee by Lemma 2. Let C be the set of
centers returned by SLS-K-ML. By Lemma 3, we know that if the current cost exceeds 500τ , then
with probability at least Ω(1/ρ), a single iteration of SLS-K-ML reduces the cost by a factor of
(1 − 1

100k ). We introduce a random process X to analyze the change of the clustering cost. The
process starts at ∆(L, Ĉ), and over T = 100kζ log ρ steps, it decreases multiplicatively by a factor of(
1− 1

100k

)
with probability 1/ζ at each step, and finally increases additively by 500τ . Furthermore,

E[X] = 500 τ +∆(L, Ĉ) ·
∑T
i=0

(
T
i

)
( 1ζ )

i( ζ−1
ζ )T−i(1− 1

100k )
i = ∆(L, Ĉ)(1− 1

100kζ )
100kζ log ρ +

500τ ≤ ∆(L,Ĉ)
ρ + 500τ . This implies that E[∆(L,C) | Ĉ] ≤ ∆(L,Ĉ)

ρ + 500τ . Then, we have

E[∆(L,C)] =
∑
Ĉ E[∆(L,C) | Ĉ] · Pr(Ĉ) =

∑
Ĉ Pr(Ĉ)(∆(L,Ĉ)

ρ + 500τ) ≤ (500 + ε)τ .

Running Time Analysis. The overall time complexity of SLS-k-ML isO(n2+nk2ζ log ρ). The first
stage of constructing the initial solution takes O(n2) time, as it involves constructing the candidate
set using the CENTROID-SET procedure, which takes O(n2) time, and sampling k points from
the candidate set, which takes O(1) time. To achieve a (500 + ε)-approximate solution, SLS-k-
ML requires O(kζ log ρ) iterations. In each iteration, sampling two lines takes O(logn) time,
constructing the CrossLine structure takes O(1) time, finding swap points from the CrossLine output
takes O(1) time, and updating the distances between all lines and their nearest centers takes O(nk)
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time. Therefore, the total running time of the iterative procedure is O(nk2ζ log ρ), and the overall
time complexity of SLS-k-ML is O(n2 + nk2ζ log ρ).

3.3 Extended to Rd

In this section, we show how to extend our algorithm to the general case in Rd. In Rd, the the
existence of skew lines makes the CrossLine structure in R2 inadequate, as lines may not intersect
and can lie on different affine subspaces. To address this, we redefine the CrossLine structure to
accommodate high-dimensional geometry, ensuring coverage guarantees remain valid under arbitrary
line orientations. Moreover, in Rd, the reassignment argument remains valid, while the bound must
be adjusted to account for the dimensional dependence in the projection geometry. Formally, we
restate the following result for Rd.
Lemma 10. For any c ∈ CS (or c ∈ CN ), the reassignment cost η1(c) (or η2(c)) is at most
1
5∆(L(c), C) + 24∆(L(c), C∗) (see Appendix A.8 for proof).

Note that although Lemma 4 and Lemma 10 yield the same conclusion, they are derived in different
contexts and serve distinct purposes within the analysis. The second difference lies in the construction
of the CrossLine structure. Recall that in R2, we generate a constant-size candidate set based on the
intersection and perturbation of line pairs. In Rd, this structure must be extended to cover a higher-
dimensional geometric region induced by two non-parallel lines. Specifically, for each pair of lines,
we construct a discretized grid over the intersection of their respective r-bounded neighborhoods,
which forms a d-dimensional crossline region. Note that in the process of constructing the candidate
set in Rd, we retain the same discretization resolution as in the planar case, but extend it across all d
orthogonal directions to ensure sufficient coverage for sampling high-quality swap points. We now
introduce the required extensions to the candidate set construction.
Definition 6 (r-CrossLine in Rd). Let ℓ1, ℓ2 ⊂ Rd be two non-parallel lines. For each line ℓi
(i = 1, 2), we define the set of 3d axis-aligned parallel shifts as Li = {ℓs⃗i = ℓi+

∑d
j=1 sj ·r ·ej | s⃗ ∈

{−1, 0, 1}d}, where ej is the unit vector in the j-th coordinate direction. We define the r-CrossLine
as the union of all regions enclosed by the lines in L1 and L2, and CrossLiner(ℓ1, ℓ2) = {ℓ ∩ ℓ′ |
ℓ ∈ L1, ℓ

′ ∈ L2, ℓ ∩ ℓ′ ̸= ∅}. Assuming each pair of lines (ℓ, ℓ′) intersects (e.g., due to careful shift
alignment in a common plane), the total number of grid points is at most |CrossLiner(ℓ1, ℓ2)| ≤ 32d.

Based on the r-CrossLine in Rd, we restate Lemma 8 as follows.
Lemma 11. Let ℓ1 and ℓ2 be two intersecting lines in Rd, and let r > 0 be a constant. Then, for
any point x within r-CrossLine, there exists at least one grid point from CrossLiner(ℓ1, ℓ2) whose
distance to x is at most r (see Appendix A.9 for the proof).

Running Time Analysis. The overall time complexity of SLS-k-ML is O(n2d2 + 9dndk2ζ log ρ).
The first stage of constructing the initial solution takes O(n2d2) time, as it involves constructing
the candidate set using the CENTROID-SET procedure, which takes O(n2d2) time, and sampling k
points from the candidate set, which takes O(1) time. To achieve a (500 + ε)-approximate solution,
SLS-k-ML requires O(kζ log ρ) iterations. In each iteration, sampling two lines takes O(logn) time,
constructing the CrossLine structure takes O(1) time, finding swap points from the CrossLine output
takes O(9d) time, and updating the distances between all lines and their nearest centers takes O(ndk)
time. Therefore, the total running time of the iterative procedure is O(9dndk2ζ log ρ), and the overall
time complexity of SLS-k-ML is O(n2d2 + 9dnk2ζ log ρ).

4 Experiments

In this section, we give empirical evaluations on the performances of our proposed algorithms. All
algorithms are implemented and executed in Python. The experiments were done on a machine with
i7-14700KF processor and 256GB RAM.

Datasets. We evaluate the performance of our algorithm on both synthetic datasets (SYN 1 with
n = 5000, d = 10, and SYN2 with n = 10000, d = 5) and real-world OpenStreetMap datasets (RE
1 with n = 476, d = 2, and RE 2 with n = 418, d = 2) as used in [20]. For each dataset, we run both
algorithms 10 times and report the minimum cost (Min_Cost), maximum cost (Max_Cost), average
cost (Avg_Cost), standard deviation (Std), and runtime (Time(s)).
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Table 1: Experimental results of our SLS-k-ML algorithm and the coreset-based method.
Datasets Method k Min_Cost Max_Cost Avg_Cost Std Time(s)

RE 1
SLS-k-ML(Ours) 10 8.37E-10 1.72E-06 1.01E-07 2.73E-07 1.05
Coreset+sampling 10 8.17E-04 3.08E-02 6.24E-03 5.89E-03 6.05

Coreset+exhaustive search 10 - - - - Over 12 hours

RE 1
SLS-k-ML(Ours) 3 5.67E-06 1.15E-03 1.35E-04 2.00E-04 0.71
Coreset+sampling 3 1.57E-02 8.78E-01 1.39E-01 1.95E-01 4.08

Coreset+exhaustive search 3 1.10E-03 2.11E-03 1.56E-03 3.01E-04 93.97

RE 2
SLS-k-ML(Ours) 10 1.35E-08 3.16E-05 1.60E-06 4.66E-06 1.40
Coreset+sampling 10 2.89E-03 1.20E-01 2.16E-02 2.13E-02 3.34

Coreset+exhaustive search 10 - - - - Over 12 hours

RE 2
SLS-k-ML(Ours) 3 1.45E-05 5.59E-03 1.39E-03 1.18E-03 0.43
Coreset+sampling 3 4.88E-02 6.11E+00 6.21E-01 1.08E+00 4.91

Coreset+exhaustive search 3 4.69E-04 4.83E-03 2.51E-03 1.09E-03 2.59E+02

SYN 1
SLS-k-ML(Ours) 10 1.84E+04 1.88E+04 1.86E+04 1.97E+02 4.56E+02
Coreset+sampling 10 3.97E+04 4.51E+04 4.24E+04 2.70E+03 2.04E+04

Coreset+exhaustive search 10 Over 12 hours

SYN 2
SLS-k-ML(Ours) 3 1.87E+04 1.98E+04 1.98E+04 5.45E+02 1.15E+03
Coreset+sampling 3 - - - - Over 12 hours

Coreset+exhaustive search 3 - - - - Over 12 hours

Algorithms. In our experiments, we give comparisons between our local search algorithm and
the coreset-based method from [20]. For coreset-based method, we compress the data with their
coreset algorithm and select centers via sampling or exhaustive search. For our SLS-k-ML algorithm,
we design a sampling strategy that selects a subset of 100 points from r-CrossLine to improve
computational efficiency. Following the settings in [14], we set the number of sampling rounds to
T = 400, and the number of clusters to k = 3 and k = 10.

Results. Table 1 shows that our proposed SLS-k-ML algorithm always achieve the best performance
compared with coreset+sampling algorithm and coreset+exhaustive algorithm. In particular, on
datasets containing more than 5000 input lines, our algorithm runs at least 43 times faster while
maintaining or improving clustering quality. Furthermore, the consistently low standard deviation
observed across all experiments demonstrates the robustness of our algorithm.

5 Conclusions

In this paper, we propose the first local search algorithm for the k-means of lines problem, based on a
single-swap strategy, which achieves a (500 + ε)-approximation guarantee and runs in polynomial
time for low-dimensional Euclidean space. To handle the lack of triangle inequality and the geometric
complexity of line clustering, we design two core components: a proportional capture relation for
aligning optimal and current centers, and a CrossLine structure for discretizing line interactions.
Extensive experiments on both synthetic and real-world datasets demonstrate that our algorithm
consistently outperforms coreset-based baselines in both efficiency and clustering quality. However,
our current theoretical analysis and experimental evaluation are mainly limited to low-dimensional
settings, and alleviating the d-dependence will be an interesting direction for future work.

Acknowledgments and Disclosure of Funding

This work was supported by the National Natural Science Foundation of China (Nos. 62432016,
62172446) and the Central South University Research Program of Advanced Interdisciplinary Studies
(No. 2023QYJC023). This work was also carried out in part using computing resources at the High
Performance Computing Center of Central South University.

10



References
[1] Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-means clus-

tering. In Proceedings of the 12th International Workshop on Approximation Algorithms for
Combinatorial Optimization, pages 15–28, 2009.

[2] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for
k-means and euclidean k-median by primal-dual algorithms. SIAM Journal on Computing,
49(4):17–97, 2019.

[3] David Arthur and Sergei Vassilvitskii. k-means++ the advantages of careful seeding. In
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1027–
1035, 2007.

[4] Davin Choo, Christoph Grunau, Julian Portmann, and Václav Rozhoň. k-means++ few more
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A The Missing Proof

A.1 Proof of Lemma 2

Lemma 2. Given an instance I = (L, d, k) of the k-ML problem, let C be the set of points returned
by step 2 of SLS-k-ML. Then, for a finite constant ρ, we have ∆(L,C) ≤ ρ ·∆(L,C∗).

Proof. Let C∗ = {c∗1, . . . , c∗k} denote the optimal solution of I. For any ℓ ∈ L, let c ∈ C and
c∗ ∈ C∗ denote the closest centers to ℓ in C and C∗, respectively. Then, we have

∆(L,C) =
∑
ℓ∈L

δ(ℓ, c) ≤
∑
ℓ∈L

(√
δ(ℓ, c∗) +

√
δ(πℓ(c), δ(πℓ(c∗)) +

√
δ(c, c∗)

)2
≤
∑
ℓ∈L

(√
δ(ℓ, c∗) + 2

√
δ(c, c∗)

)2
≤
∑
ℓ∈L

δ(ℓ, c∗) + 4δ(c, c∗) + 4
√
δ(ℓ, c∗)

√
δ(c, c∗)

≤
∑
ℓ∈L

3δ(ℓ, c∗) + 6δ(c, c∗),

where the first inequality follows from triangle inequality, the second step follow from the fact that
the distance between the projections of two points onto a line is at most their original Euclidean
distance, and the last step follows the squared inequality and Cauchy inequality, respectively. Based
on the Theorem in [24], the optimal solution to the k-means of lines problem can be obtained
by selecting centers from the set of all pairwise line intersections (in R2). Since the maximum
pairwise distance between any two points in the candidate set P can be explicitly computed, we have
∆(L,C) ≤ ρ ·∆(L,C∗), where ρ is a constant. Moreover, the initial solution can be obtained in
O(n2d2) time, as constructing the candidate set P takes O(n2d2) time and sampling k centers from
P takes O(1) time.

A.2 Proof of Lemma 4

Lemma 4. For any c ∈ CS (or c ∈ CN ), the reassignment cost η1(c) (or η2(c)) is at most
1
5∆(L(c), C) + 24∆(L(c), C∗).

Proof. We first consider a type-1 match swap pair (c, ψS(c)) (c ∈ CS), as the case of type-2
match swap pair is nearly identical and even simpler. Let c∗ = ψS(c). By definition 2, we have
η1(c) = ∆(L\L(c∗), C\{c})−∆(L\L(c∗), C), since lines in clusters other than L(c) will still be
assigned to their current center. Consider a line ℓ ∈ L(c)\L(c∗), and it is easy to get that ℓ does not
belong to the optimal cluster L(c∗). Let c∗ℓ (c

∗
ℓ ̸= c∗) denote the closet optimal center in C∗ from ℓ.

Then, we construct a line ℓ′ that is the translation of ℓ to c∗ℓ , and then find a point cp that is the closet
center in C to ℓ′. It is easy to get that cp ̸= c, otherwise ℓ will remain assigned to its original center
and no reassignment will be necessary. We now assign every lines in L(c)\L(c∗) to cp, and get an
estimate for the cost of reassigning these lines. Figure 1(b)-(c) shows two configurations of ℓ, c, c∗ℓ ,
and cp. From Figure 1(b), we have

η1(c) ≤
∑

ℓ∈L(c)\L(c∗)

(δ(ℓ, cp)− δ(ℓ, c)) ≤
∑

ℓ∈L(c)\L(c∗)

(√
δ(ℓ, c∗ℓ ) +

√
δ(ℓ′, cp)

)2

− δ(ℓ, c)

≤
∑

ℓ∈L(c)\L(c∗)

(
2
√
δ(ℓ, c∗ℓ ) +

√
δ(ℓ, c)

)2

− δ(ℓ, c)

≤
∑

ℓ∈L(c)\L(c∗)

4δ(ℓ, c∗ℓ ) + 2

√
2

λ
·
√

2λ · δ(ℓ, c∗ℓ ) · δ(ℓ, c)

≤
∑

ℓ∈L(c)\L(c∗)

(4 +
2

λ
) · δ(ℓ, c∗ℓ ) + 2λ · δ(ℓ, c),
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Figure 1: Illustrations of Line Configurations in R2 and Rd.

where the first inequality follows from equidistance property of parallel lines and squared inequality,
the second step follow from the fact that cp is the closet center in C to ℓ′, and the last step follows
from the Cauchy Inequality, respectively. From Figure 1(c), we have

η1(c) ≤
∑

ℓ∈L(c)\L(c∗)

(δ(ℓ, cp)− δ(ℓ, c)) ≤
∑

ℓ∈L(c)\L(c∗)

(
2
√
δ(ℓ, c∗ℓ ) +

√
δ(ℓ, c)

)2

− δ(ℓ, c)

≤
∑

ℓ∈L(c)\L(c∗)

4δ(ℓ, c∗ℓ ) + 2

√
2

λ
·
√

2λ · δ(ℓ, c∗ℓ ) · δ(ℓ, c)

≤
∑

ℓ∈L(c)\L(c∗)

(4 +
2

λ
) · δ(ℓ, c∗ℓ ) + 2λ · δ(ℓ, c),

where the first inequality follows the fact that δ(ℓ, cp) < δ(ℓ, c∗ℓ ) under the configuration of Fig-
ure 1(c), the second steps and the last step follows from squared inequality and Cauchy Inequality.
For the configurations of Figure 1(b)-(c), let λ = 1

10 . Then η1(c) ≤ 1
5∆(L(c), C) + 24∆(L(c), C∗).

The cases for type-2 match swap pair (c, ψN (c)) (c ∈ CN ) are similar to the cases for type-1 match
swap pair.

A.3 Proof of Lemma 5

Lemma 5. If 3
∑
c∈CS

∆(L(ψS(c)), C) > ∆(L,C), then we have
∑
c∈CS∩Cg

S
∆(L(ψS(c)), C) ≥

1
50 ·∆(L,C).

Proof. By Definition 3 and Lemma 4, we have∑
c∈CS∩Cb

S

∆(L(ϕS(c)), C) ≤
∑
c∈CS

η1(c) + 9 · τ + 1

100
·∆(L,C) ≤ 21

100
·∆(L,C) + 33 · τ.

Based on the assumption that ∆(L,C) ≥ 500 · τ , we obtain
∑
c∈CS∩Cb

S
∆(L(ϕS(c)), C) ≤ 69

250 ·
∆(L,C), and thus

∑
c∈CS∩Cb

S
∆(L(ϕS(c)), C) ≥ 3

50 ·∆(L,C).

A.4 Proof of Lemma 6

Lemma 6. Let L be a set of lines in Rd, and let c, c′ ∈ Rd be two points. Then, the total squared
distance from the lines in L to c satisfies: ∆(L, {c}) ≤ 3|L| · d(c, c′) + 6 · ∆(L, {c′}), where
∆(L, {c}) =

∑
ℓ∈L δ(ℓ, c) and δ(ℓ, c) denote the squared Euclidean distance from line ℓ to point c,

respectively.
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Proof. For any point c ∈ R2 and line ℓ ∈ Q, let πℓ(c) denote the projection of c on ℓ. let c be a
center in C. We have

∆(L, {c}) ≤
∑
ℓ∈L

δ(ℓ, c) ≤
∑
ℓ∈L

(√
δ(ℓ, c∗) +

√
δ(πℓ(c), πℓ(c∗)) +

√
δ(c, c∗)

)2
≤
∑
ℓ∈L

(√
δ(ℓ, c∗) + 2

√
δ(c, c∗)

)2
≤
∑
ℓ∈L

δ(ℓ, c∗) + 4δ(c, c∗) + 4
√
δ(ℓ, c∗)

√
δ(c, c∗)

≤
∑
ℓ∈L

3δ(ℓ, c∗) + 6δ(c, c∗)

≤3∆(L, {c∗}) + 6|L|δ(c, c∗)

where the first inequality follows from the triangle inequality, the second step follow from the fact
that the distance between the projections of two points onto a line is at most their original Euclidean
distance, respectively.

A.5 Proof of Lemma 7

Lemma 7. Let Q be a set of lines in Rd, let C ⊆ Rd be a set of k centers, and let c∗ be the optimal
single center for Q. Assume α ≥ 9. If the cost under C satisfies ∆(Q,C) ≥ α ·∆(Q, {c∗}), then
there exists a subset R ⊆ Q with ∆(R,C) ≥ α−1

24 ·∆(Q, {c∗}), where R = {ℓ ∈ Q | δ(ℓ, c∗) ≤
2

|Q| ·∆(Q, {c∗})}.

Proof. Based on the Lemma 6, we know that the closest center in C to c∗ has distance at least
α−3
6|Q| ·∆(Q, {c∗}) as otherwise ∆(Q,C) < α ·∆(Q, {c∗}). Hence, the distance of every lines in R
to C is at least (

√
2− 2

√
α− 3

6

)2

· cost(Q, {c
∗})

|Q|
≥ α− 1

24
· cost(Q, {c

∗})
|Q|

,

where we use that α ≥ 9. Furthermore, by averaging we get |R| ≥ |Q|/2, which together with the
inequality above implies the result.

A.6 Proof of Lemma 8

Lemma 8. Let ℓ1 and ℓ2 be two intersecting lines in R2, and let r > 0 be a constant. Then, for
any point x within r-CrossLine, there exists at least one grid point from CrossLiner(ℓ1, ℓ2) whose
distance to x is at most r.

Proof. The 9 grid points defined in CrossLiner(ℓ1, ℓ2) form a regular 3× 3 grid in a parallelogram
arrangement. The lines in L1 are equally spaced at distance r, and so are the lines in L2. Thus, the
grid divides the local region around the intersection point into parallelogram cells, each defined by
two adjacent lines from L1 and two from L2. Any point x within CrossLiner(ℓ1, ℓ2) must lie in one
of these parallelogram cells. Since each parallelogram has diameter (i.e., maximal corner-to-center
distance) less than or equal to r, any point x must be within distance r of at least one vertex of the
cell, which is a grid point of CrossLiner(ℓ1, ℓ2). Hence, the lemma follows.

A.7 Proof of Lemma 9

Lemma 9. If
∑
c∈C\CS

∆(L(ψN (c)), C) ≥ 2
3 · ∆(L,C), then we have∑

c∈C\CS ,c∈Cg
N
∆(L(ψN (c)), C) ≥ 1

50 ·∆(L,C).
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Proof. Note that |C\CS | ≤ 2|CN |. By the Definition 5 and Lemma 4, we have∑
c∈C\CS ,c∈Cb

N

∆(L(ψN (c)), C) ≤2|CN | min
c∈CN

η2(c) + 9τ +
1

100
∆(L,C)

≤2
∑
c∈CN

η2(c) + 9τ +
1

100
∆(L,C)

≤ 41

100
∆(L,C) + 57τ.

Based on the assumption that ∆(L,C) ≥ 500 · τ , we obtain
∑
c∈C\CS ,c∈Cb

N
∆(L(ψN (c)), C) ≤

131
250 ·∆(L,C), and thus

∑
c∈C\CS ,c∈Cg

N
∆(L(ϕN (c)), C) ≥ 7

50 ·∆(L,C).

A.8 Proof of Lemma 10

Lemma 10. For any c ∈ CS (or c ∈ CN ), the reassignment cost η1(c) (or η2(c)) is at most
1
5∆(L(c), C) + 24∆(L(c), C∗) (see Appendix A.8 for proof).

Proof. Similar to Rd, we also construct a line ℓ′ that is the translation of ℓ to c∗ℓ , and then find a point
cp that is the closet center in C to ℓ′. We now assign every lines in L(c)\L(c∗) to cp, and get an
estimate for the cost of reassigning these lines. From Figure 1(c), we have

η1(c) ≤
∑

ℓ∈L(c)\L(c∗)

(δ(ℓ, cp)− δ(ℓ, c)) ≤
∑

ℓ∈L(c)\L(c∗)

(√
δ(ℓ, c∗ℓ ) +

√
δ(ℓ′, cp)

)2

− δ(ℓ, c)

≤
∑

ℓ∈L(c)\L(c∗)

(
2
√
δ(ℓ, c∗ℓ ) +

√
δ(ℓ, c)

)2

− δ(ℓ, c)

≤
∑

ℓ∈L(c)\L(c∗)

4δ(ℓ, c∗ℓ ) + 2

√
2

λ
·
√

2λ · δ(ℓ, c∗ℓ ) · δ(ℓ, c)

≤
∑

ℓ∈L(c)\L(c∗)

(4 +
2

λ
) · δ(ℓ, c∗ℓ ) + 2λ · δ(ℓ, c),

where the first inequality follows from equidistance property of parallel lines and triangle inequality,
the second step follow from the fact that cp is the closet center in C to ℓ′, and the last step follows
from the Cauchy Inequality, respectively. For the configuration of Figure 1(c), let λ = 1

10 . Then
η1(c) ≤ 1

5∆(L(c), C)+24∆(L(c), C∗). The cases for type-2 match swap pair (c, ψN (c)) (c ∈ CN )
are similar to the cases for type-1 match swap pair. The lemma follows.

A.9 Proof of Lemma 11

Lemma 11. Let ℓ1 and ℓ2 be two intersecting lines in Rd, and let r > 0 be a constant. Then, for
any point x within r-CrossLine, there exists at least one grid point from CrossLiner(ℓ1, ℓ2) whose
distance to x is at most r.

Proof. By construction, each Li contains 3d lines, generated by shifting ℓi along all combinations of
{−1, 0, 1}d at step size r along coordinate axes. This induces a discrete grid of intersection points,
where each point lies at the intersection of one line from L1 and one from L2. The resulting grid
forms a regular structure embedded within the union of two axis-aligned hypercubes of side length
2r, centered near a common point x∗. Since each axis-aligned hypercube is of side length 2r, the
distance between adjacent grid points along any axis is at most r, and each hypercube cell (in which
grid points are located at vertices) has diameter at most

√
d · r. Then, for any point x lying within the

convex hull of the grid points (i.e., the r-CrossLine region), there exists a hypercube cell that contains
x. By geometry of axis-aligned cubes, any point within such a cell lies within distance r from at least
one of its 2d corners, all of which are grid points. Hence, the lemma follows.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
contributions of the paper, which proposes the first single-swap local search algorithm for the
k-means of lines problem, leveraging a novel proportional capture relation and CrossLine
structure to achieve a (500 + ε)-approximation in polynomial time. see Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: The limitations are discussed in the last section of this paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theoretical results are stated with full assumptions, and complete proofs
are provided in the main paper and supplementary material (see Section 3 and appendix).
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides sufficient experimental details to allow reproduction of the
main results and validation of the conclusions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The codes (including dataset generation and experimental code) are available
upon request via email.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental settings have been clearly stated in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In the experiment comparison results, each algorithm is executed 10 times on
each dataset, and the average results are reported as the final results.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient details about the computational resources used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our research
complies fully. The paper does not involve human subjects, sensitive data, or applications
with known dual-use or misuse risks.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper mainly focuses on the theoretical aspect of the k-means of lines
problem. The primary purpose is to provide algorithmic insights, and we do not foresee any
specific societal consequences related to the proposed method.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks about safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper does not use any external assets such as datasets, models, or
third-party code. Therefore, licensing considerations are not applicable.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce or release any new assets such as datasets,
models, or software code. Therefore, documentation for new assets is not applicable.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing experiments or research with
human subjects. Therefore, this question is not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve any research with human subjects, and therefore
IRB or equivalent ethical approval is not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not involve the use of large language models (LLMs) as part
of the core research methodology. Therefore, no declaration is necessary.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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